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Numerical modelling of deformation in hydromechanical systems can be time-
consuming using fully coupled classical numerical methods for large representative
porous media samples. In this paper, we present a new two-way coupled partitioned
fluid–solid system. The coupled system is applied for simulating geomechanical
processes at the pore-scale. We track the deformation of the solid resulting from the
drainage of resident fluids in the pores, as well as the evolution of fluid properties
from dynamic loading. The finite element method is responsible for capturing the
structural deformation in the coupled system while the dynamic pore network is
used for modelling multiphase flow in the fluid subsystem. A fictitious fluid–solid
interface is created at each pore network-finite element node junction via convex
hulling, followed by data exchange using linear interpolation. The results show good
agreement with a pre-existing coupled finite volume model and the computations are
completed in much less time.
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1. Introduction

The movement of fluids in porous media has been widely studied in various
fields. A porous medium initially saturated with a fluid can undergo implosive
collapse due to a change in pore pressure (Bueno & Gomez 2016; Alvarez 2017).
An alteration in fluid properties at a large scale could lead to creep formation (Zhu,
He & Yin 2014). In addition, polyaxial stresses acting on a porous medium in the
presence of pore fluids can induce significant deformation. Such occurrences may
significantly alter the hydromechanical equilibrium of the porous media, especially
in samples with low-to-medium compressive strength. It has been shown that stress
application has a controlling influence on pore-size distribution, porosity, tortuosity,
absolute permeability, relative permeabilities and capillary pressure (Zhu & Wong
1996). Therefore, it is clear that the hydromechanical interactions between the
fluids located in pore spaces and adjacent structures need to be accounted for.
Models for interactions between fluids and solids should be coupled within a robust
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framework (Zienkiewicz, Taylor & Taylor 2000; Zhang & Tahmasebi 2018; Tahmasebi
& Kamrava 2019).

In the literature, the traditional approach for achieving fluid–solid coupling is
referred to as fluid–structure interaction (FSI). A joint finite element methodology is
typically used to solve equations for both fluids and solids, along with the deforming
interface (Bathe, Zhang & Ji 1999; Rugonyi & Bathe 2001; Bathe & Zhang 2004;
Vierendeels et al. 2007; Sathe & Tezduyar 2008). Another technique that has gained
significant recognition is the hybrid technique of employing finite volume (FV) for
the fluid domain and finite element (FE) for the solid. This technique takes advantage
of the strength of both solvers, given that FE is conventionally applied to solving
computational solid mechanics equations while FV is used for computational fluid
dynamics (known as CFD) problems (Campbell 2010; Munsch & Breuer 2010). Other
techniques include lattice Boltzmann method finite element (known as LBM*-FE)
(Kollmannsberger et al. 2009; Geller et al. 2010) and discrete element method
(known as LBM*-DEM) (Han & Cundall 2012); the asterisk denotes flow solvers.

Coupled methods can be classified as either monolithic or partitioned. In the
monolithic approach, the governing equations are solved within the same computational
framework; in the partitioned approach, both equations are solved separately and
then coupled via coupling algorithms. The latter is less memory intensive and
easier to implement. However, some aspects such as code-to-code communication
or grid-to-grid interpolation (e.g. of loads and displacements) must be considered.
The monolithic approach, on the other hand, requires a multidisciplinary approach
in which communication between both solvers occurs synchronously within the same
code. The solutions tend to be more accurate than those generated by the partitioned
approach; however, they can be very memory intensive, and it may be difficult to
manage the codes. This paper, therefore, focuses only on the partitioned method.

Some of the difficulties encountered in coupled fluid–solid solver applications are
that the partial differential equations are always nonlinear in nature, and analytical
equations often do not exist to validate the results. Some data have been made
available for numerical benchmarking of problems involving elastic deforming
structures in the presence of laminar incompressible flow (Turek & Hron 2006; Turek
et al. 2010), as well as experimental data (Gomes & Lienhart 2006). Nevertheless, the
time-consuming nature of the simulations, especially for porous media applications (as
shown in table 1), remains a major problem. For example, the physical time required
to directly solve for two-phase flow alone, through a segmented 1203 voxels sandstone
rock geometry, of porosity 23 % and 502 k cells, is approximately nine hours or more
depending on the application. For a coupled system of the same geometry, it takes
nearly 5 × 9 hrs, even with a supercomputer cluster of 200 cores. Consequently, in
this study we attempt to improve computational efficiency by applying a meshless
technique for the fluid while still maintaining a boundary-fitted technique for the
solid, to ensure optimal accuracy for the coupled model.

Direct simulation methods for fluid solvers tend to be time-consuming, especially
for multiphase fluid simulation (Joekar-Niasar & Hassanizadeh 2012). In general, the
pore network (PN) method (Fatt 1956) is an efficient alternative for modelling pore-
scale processes, using ideal geometries. The entire porous medium is represented as a
network of nodes (pore bodies) and connecting channels (throats) comprising circular
and triangular cross-sections, as well as other descriptive elements. This technique
has been adopted for a wide range of applications, including two-phase flow (Bryant
& Blunt 1992; Blunt 1995; Oren, Bakke & Arntzen 1998), foam injection (Kharabaf
& Yortsos 1998; Chen, Yortsos & Rossen 2005), drying processes (Figus et al. 1999),
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Method Fluid Coupled Decoupled
Cells CPU Fluid Solid CPU Fluid Solid CPU
×103 time cells cells time cells cells time

(min) ×103
×103 (min) ×103

×103 (min)

FV-FV* 502.7 508.76 466.8 1493.5 2797.2 — — —
FE-FE* 218.7 389.68 — — — — — —
FE-FV* — — — — — 502.7 827.9 626.7
FE-DPN* 640a 2 640 56.5 186.9 640 56.5 10.6

TABLE 1. Comparison of the computational times for various coupled pore-scale solvers
on a domain with 1203 voxels. Note that the review of speeds of coupled solvers includes
the preliminary results of this work. Similar step size and different cell sizes were
used. Coupled and decoupled solutions were performed using multiphase fluids, while
the stand-alone fluid simulations were performed for both multiphase (with FV) and
single-phase flow (with FE). The central processing unit, CPU, time is reported in minutes.
The FE-DPN*, which is the method implemented in this work, came out fastest by far in
all categories; DPN represents dynamic pore network.

aNumber of nodes and throats.
Note: The cells indicated for the DPN* are the number of pore bodies and throats

divided by 1000.

contaminant transport (Bijeljic & Blunt 2007) and three-phase flow (Pereira et al.
1996). Although PN far surpasses other flow solvers in terms of speed, its accuracy
has often been questioned because it simplifies the pore-space geometry. This
idealization could lead to loss of geometric and topological information. However,
some models have been shown to yield an acceptable match with experimental values
for relative permeability and capillary-saturation curves (Oren et al. 1998).

In this work, we develop a new segregated coupled pore-scale solver in which
DPN (a variation of PN) is used for simulating multiphase fluid flow, while FE is
used for solving the solid equations. The use of DPN can be a valuable tool in
coupled pore-scale modelling, as it can be quite fast and can potentially be applied
to larger domains. Here, DPN is used for modelling the fluid system based on
prescribed inlet flow rate boundary conditions. The solid is assumed to experience
large deformations; therefore, it is modelled as a nonlinear elastic material. A fictitious
fluid–solid interface is created at the DPN-finite element node junction via convex
hulling, followed by data exchange using linear interpolation.

The rest of this paper is arranged as follows: the first section examines the
equations of the fluid and solid solvers, including the coupling methodology; the next
section examines the application for an elastically deforming rock matrix experiencing
drainage in a water-wet system. We then verify the model with respect to an FV
model.

2. Methodology
We study the response of an elastic porous medium interacting with immiscible and

incompressible fluids. We focus on three-dimensional geometries while considering
large displacements of the rock matrix. The fluid motion is modelled using DPN and
the solid deformation is modelled using the FE methodology. The fluid in the network
interacts with the solid matrix, inducing elastic deformation; and this deformation
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FIGURE 1. A local PN structure.

leads to changes in pore pressure, thus giving rise to two-way hydromechanical
coupling. We neglect the effect of gravitational forces in this work because of the
scale of investigation. Both models are coupled using a segregated or partitioned
approach and linked together via a fictitious boundary.

2.1. DPN flow model
In DPN, the spatial arrangements of pores and throats are obtained, directly from
segmented images. In this work, this was achieved using the maximal ball method
(Dong & Blunt 2009), which can perform direct mapping of the actual sample to
an irregular lattice. We calculated the pore body volumes and throat conductances
based on the void space geometry. The pores are commonly represented in cubic or
spherical form. For pore throats, however, a variety of geometric shapes with various
cross-sections such as stars, circles, triangles, squares, etc., could be used. In this
work, we use spherical pore bodies and cylindrical throats. Figures 1 and 2 show a
typical arrangement of a network, with pore bodies (nodes) indicated by indices i and
j, and throats lij connecting both nodes i and j. Depending on the driving mechanism,
PN can be implemented either quasi-statically or dynamically. In quasi-static PN
modelling, invasion of the pores is based solely on capillary entry pressure. Capillary
pressure is imposed through boundary conditions on the network lattice. The position
of fluid–fluid interfaces is then determined at each stage of the fluid displacement
process independent of the time of the simulation, then the simulation runs until
an equilibrium is attained between the prescribed capillary pressure and that of the
system. If the interface is unstable, it moves through the network until a stable
position is found or until it reaches the outlet. No time dependence is included in the
calculation and the interface simply moves from one equilibrium position to another
(Celia, Reeves & Ferrand 1995). Quasi-static models can be considered extensions
of simple percolation models, with drainage floods being modelled through invasion
percolation and imbibition through adapted bond percolation processes (Li, Mcdougall
& Sorbie 2017).

Quasi-static systems are not time dependent and are, consequently, unsuitable for
the problem at hand due to the transient nature of the coupled system whose fluid and
structural properties must evolve with time. Therefore, we employ a dynamic approach.
In DPN systems, the model solves the pressure evolution problem based on capillary
entry pressure and introduces a time dependent pore-filling mechanism. The emergent
rate-dependent flow regimes are determined by a competition between capillary and
viscous forces. The DPN model calculates the pressure forces by solving pressure
evolution based on minimum filling time for each of the pores, which are eventually
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FIGURE 2. A subsample or elementary volume used for coupling simulations.

imparted onto the solid phase. If the pores are located in domain Ωf , and fluid flow in
the pore throats is laminar, given Poiseuille’s law, each fluid phase obeys the following
volume conservation law:

Vi
∂Si

∂t
+

∑
i∈N

Qij = 0, in Ωf (2.1)

where N is the number of pore bodies, Vi is the volume of pore body i, Si represents
the local saturation of the reference phase and Qij is the total volumetric flux from
pore body i to pore body j. If a channel or throat is completely filled with a single
fluid, the flow rate along the throat from pore body i to pore body j can be calculated
by

Qij =Gij(Φi −Φj), (2.2)

where Φk is the hydraulic potential in pore body k={i, j} defined as Pk+ρghk, where
hk is the coordinate of the pore k in the direction of the gravitational field, Pk is the
fluid pressure in pore k, g is the gravitational force and Gij is the throat conductance,
defined as

Gij =
Sαr4

ij

lijη
, (2.3)

where Sα is the shape factor, rij is the radius of the connecting throat, lij is the length
of the throat taken from the centroids of pore body i and pore body j, and η is the
fluid viscosity. The conductance is calculated at every throat location and is dependent
on its radius and length. By applying a pressure gradient across the network (via
boundary conditions), the pressure field inside the network can eventually be obtained
by applying mass conservation at each interior node i,∑

i∈Ni

Qij = 0. (2.4)

For more than one fluid occupying the throat, the effects of capillary pressure must
be accounted for across the fluid–fluid interface. The DPN model can be further
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simplified by using a circular throat cross-section, which prevents corner flow. For
the case of drainage, if the displacement occurs in a piston-like manner and the
effects of gravity are neglected, equation (2.2) is rewritten as

Qij =Gij(Pi − Pj −1Pc
ij), (2.5)

where

Gij = Sαr4
ij

(
1

l(i)ij ηi
+

1

l( j)
ij ηj

)
. (2.6)

In equation (2.6), ηi and ηj are the viscosities of the fluids in segments of the pore
throats adjacent to pore i and pore j, while l(i)ij and l( j)

ij are the corresponding segment
lengths. The capillary pressure jump between the fluid–fluid interface is expressed by
the Young–Laplace equation,

1Pc
ij = γsf cos θ

(
1
R1
+

1
R2

)
, (2.7)

where R1 and R2 are the radii of curvature of the interface in any two orthogonal
planes, θ is the contact angle and γsf is the surface tension. For a given distribution
of fluids, the phase conductances are calculated from (2.6). The pressure fields can be
computed by substituting (2.5) into (2.4), which yields the following linear system of
equations:

[G]{P} = [B], (2.8)

where G is the matrix of the conductivities, P is the vector of unknown nodal
pressures and B is a vector formed from boundary pressures and capillary pressures.
This equation can be solved using the biconjugate gradient solution method. The
updated pressure field is then used in (2.5) to compute fluxes through the pore
throats. Simulations can also be carried out with constant injection rate boundary
conditions (Aker et al. 1998), which we used in this work. After solving for the
volumetric fluxes of all capillary elements, the current invading phase saturation in
each pore body is used to determine the minimum filling time for each of the pores;
this is set as the time step size 1t. This time step corresponds to the shortest time
required to fill one non-wetting phase-filled pore. Then, equation (2.1) is used to
update the saturation in each pore body.

2.2. Finite element method
In this paper, the solid response is quantified using finite element formulation. We
assume that the solid undergoes large deformations and, as such, we model the solid
domain as nonlinear elastic. For a spatial solid domain Ω0

s ⊂Rd bounded by Γ , the
continuum equations can be described in total Lagrangian form as

ρ0ü=∇0 · (S ·FT)+ ρ0b in Ω0
s , (2.9a)

u= u on Γ 0
D , (2.9b)

(S ·FT) · n= T on Γ 0
N , (2.9c)

where 0 indicates the quantities related to the initial (undeformed) configuration, the
displacement of the solid phase is denoted by u, while each dotted accent represents
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the time derivative and F is the deformation gradient, F = ∇0u. The Dirichlet and
Neumann partitions at the boundaries are u and T, respectively. Here, n is the unit
surface normal in the reference configuration, ρ0 is the initial density and b is the
body force per unit mass. The stress is obtained in terms of the second Piola–Kirchoff
stress tensor S and the Green strain tensor E . The first Piola–Kirchoff stress is related
to S by P = S · FT. For a finite element discretization, Boh =

⋃E
e=1 Ω

e,∗
s which is a

combination of Ωe
0 and Γ e

0 = Γ
0

D ∪ Γ
0

N . The finite-dimensional piecewise polynomial
approximation uh, Ph of the solution is defined in the spaces

Xk
h = {uh ∈ L2(Boh)|[uh|Ωe

0
∈Mk(Ωe

0)∀Ω
e
0 ∈ Boh]} ⊂ Xf (Boh)=

∏
e

(H1(Ωe
0)), (2.10)

Sk
h = {Ph ∈ [L2(Boh)]

2
|[Ph|Ωe

0
∈Mk(Ωe

0)
2
∀Ωe

0 ∈ Boh]} ⊂ Sf (Boh)=
∏

e

(H1(Ωe
0))

2, (2.11)

where Mk is the set of polynomial functions up to degree k>1. Let δuh be an arbitrary
test function defined in the space

Xk
hc = {δuh ∈ Xk

h| [δuh = 0∀X ∈ ∂Boh, ∀t ∈ T and δuh(t0)= 0∀X ∈ Bohδuh(tf )

= 0∀X ∈ Boh]} . (2.12)

The weak formulation of the expression is carried out by integration in the reference
coordinate system by finding uh ∈ Xk

h and Ph ∈ Sk
h, such that∑

e

∫
Ωe

0

(ρ0üh −∇0 · Ph) · δuh dV =
∑

e

∫
∂Ωe

0

T · δuh dS+
∑

e

∫
Ωe

0

ρ0b · δuh dV∀δuh

∈ Xk
hc, ∀t ∈ T. (2.13)

Based on the nonlinear dynamic behaviour of the solid, the following discrete
nonlinear system of linear equations can be obtained:

Mü(t)+ Cu̇(t)+ f int(t)= f ext(t), (2.14)

where M is the 3N × 3N mass matrix, C is the damping matrix, f int(t) and f ext(t) are
the internal force vector and the external force vector from the fluid in 3N dimensions,
respectively. Since the solution is solved using Lagrangian meshes, M is time invariant.
Vibration effects are not considered in this work, so the damping coefficient is zero.
The mass matrix, internal and external forces follow as

M IJ =

∫
Ωs

ρ0NINJ dV, (2.15)

(f int,I)
T
=

∫
Ωs

∂NI

∂X
S ·FT dV, (2.16)

f ext,I =

∫
Ωs

ρ0bNI dV +
∫
Γ 0

N

T ·NI dS, (2.17)

where NI is the shape function corresponding to node I. The internal and external
nodal forces are functions of nodal displacement and time. The external loads are
prescribed as a function of time incrementally. Therefore, assembling the fluid load
requires the computation of the time-varying force exerted by the encompassing fluid
on the solid across the interface.
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2.2.1. Time discontinuous Galerkin method
To solve for the solid response, we apply the time-discontinuous Galerkin method

(TDG) (Mancuso & Ubertini 2003; Noels & Radovitzky 2008). A similar procedure
has been used by De Rosis et al. (2014) for finite element method (FEM) coupling
with the lattice Boltzmann method (LBM). However, their coupling methodology
was applied only for linear dynamics. The TDG they applied can be easily adapted
for nonlinear analysis, such as for Eulerian formulation (for example, see Denoël
& Detournay (2011)). The TDG method considered in this work uses piecewise
linear time interpolation. It is based on prediction and correction schemes, which can
provide the requisite accuracy in a few iterations. The implementation is based on
the Nørsett algorithm, which is optimal from the computational standpoint among
higher-order unconditionally stable methods (Mancuso & Ubertini 2002).

The integration is accomplished through the incremental solution procedure, in
which the time interval of interest (T) is discretized into nf time steps such that
T =

⋃n=nf
−1

n=0 [tn, tn+1
] and 1t = tn+1

− tn is the time step. The scheme treats the
displacement and velocity vectors as independent variables and uses piecewise linear
time interpolants. The iterative scheme is summarized by the following equation:

M∗vl+1
k (t)=Fk(t)−

∂f int

∂u
ũl+1

k (t),

ul+1
k (t)= ṽ

l+1
k (t)+µ1tvl+1

k (t),
, k= 0, 1; l= 0, 1

 (2.18)

where ∂f int/∂u = K int is the Jacobian matrix of the internal forces or the tangent
stiffness matrix, and the barred terms represent time derivatives. The predictor
displacements ũk and velocities ṽk are given as

ṽ
l+1
0 = vt

∗
+ λ∗1t(vl

0 − vl
1), (2.19a)

ũl+1
0 = ut

∗
+ λ∗1t(ul

0 − ul
1)+ α

∗1tṽl+1
0 , (2.19b)

ṽ
l+1
1 = vt

∗
+ (1− α∗)1tvl+1

0 , (2.19c)

ũl+1
1 = ut

∗
+ (1− α∗)1tul+1

0 + α
∗1tṽl+1

1 , (2.19d)

where ut
∗

and vt
∗

are the vector of unknown displacements and its time derivative at
time t of the FE solution. Here, M∗ is the effective mass matrix given by

M∗ =M + α∗2
1t2 ∂f int

∂u
. (2.20)

It should be noted that this effective mass matrix is equally symmetric and positive-
definite, just as M and K int. The effective load Fk (in which the fluid loads would be
transmitted) is obtained within two iterations. Based on the on left Radau abscissas,
the effective loads are defined as

F0 =

(
3
√

2
4
−

1
2

)
f ext,0 + (6− 3

√
2)f ext,2/3, (2.21)

F1 =
3
2 f ext,2/3 −

1
2 f ext,0, (2.22)

where f ext,0 is the value of f ext at time t and f ext,2/3 is the value at time t + 2/31t.
Coefficients λ∗ and α∗ are given as follows:

λ∗ =
√

2−
4
3
, α∗ = 1−

√
2

2
. (2.23a,b)
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The model is iterated twice to achieve third-order accuracy. To complete the TDG
algorithm, the following equations are solved at the end of the current time step:

vn+1
∗
= ul

1, un+1
∗
= un

∗
+1t[(1− α∗)ul

0 + α
∗ul

1]. (2.24a,b)

2.3. Coupled model
As stated previously, this work aims to develop a three-dimensional fluid–solid
model incorporating FE and DPN. Both solution domains are illustrated in figure 3.
Pore fluids exert forces on the solid walls, resulting in deformation and eventual
modification of force balance. Additionally, the deformation of the solid results in
the rearrangement of its structure which can alter fluid properties and the network
topology. Thus, the need to update the network regularly during the simulation
to track the deformation of the solid. To achieve the solution of such a system, the
fluidic and structural computations are performed sequentially. Therefore, at each time
step, we began by solving the DPN equation, from which we obtain the pressure at
each node and throat. The DPN solver then feeds the hydrodynamic load to the solid
at each time-exchange step. The FE solver computes the solid displacement u, which
is then used to determine the new structure of the DPN.

More precisely, the updated set of displacements are used to compute the new
position of the solid boundary. The structural computation updates the position of
the structural surface. Thus, an updated fluid domain is needed to accommodate the
new interface location. We achieved this by performing a re-extraction process for
the network. This provides a new value for the node radius {r′i} and volume {V ′i }, as
well as a new throat length {l′ij} and radius {r′ij}. An iterative process is also required
at each time step to ensure that the coupled system converges to a steady solution
before advancing to the next time step. This is done to reduce the magnitude of
errors that could occur during the network re-extraction process. We examine this
further in § 3. Another important aspect of the fluid–solid coupling procedure is the
hydrodynamic load calculation. The force on the pore body is calculated with the
following equation:

Fi =

∫
Γi,f

Pin ds, on Γi,f (2.25)

where Fi is the pressure force applied by the ith pore with pore pressure Pi. The
boundary of the ith pore is Γi,f and n is the unit vector pointing from the centroid of
the pore to the nearest solid boundary. Since we are using spherical DPN nodes, we
assume the force is the same across the same pore-body node. The fluid load from
the pore-body surface along the normal direction is imparted to the solid nodes. One
of the central features in this coupling implementation is the exchange of information
across the fluid and solid domains. As demonstrated in figure 3(a), the transmission
of the fluid load to the solid would require a secondary domain for interfacing both
subsystems since the adjoining pore bodies and solid do not match exactly.

2.3.1. Convex hull
In this work, the fluid loads are transmitted to solid nodal points that border an

arbitrary volume surrounding the nearest pore body and throat. This initially requires
test point values (spatial surface data) generated on the pore network, followed by a
sequential neighbourhood search for FE nodal points within a prescribed region of the
test point data. Several volumetric shapes could be used to enclose the points (e.g. the



10 S. Fagbemi and P. Tahmasebi

´1

´2

(a)
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FIGURE 3. Schematic of the superimposed domains (fluid and solid). (a) The voxelized
solid phase along with the PN and (b) discretized finite element domain and PN.

smallest cube or sphere). However, we use a convex hull, which is defined as the
smallest convex set enclosing the points. The convex hull helps reduce the amount
of empty space and saves memory. Calculation of convex hulls is a well-studied
problem in computational geometry and this method has diverse applications in
other fields, such as cluster analysis, collision detection, image processing, statistics,
sphere packing and point location (Barber, Dobkin & Huhdanpaa 1996). It has also
been applied in the natural element method (Sukumar, Moran & Belytschko 1998),
which relies on Delaunay triangulations in Rn, computed from convex hull in Rn+1, to
construct its interpolants. Convex hull has also been applied for modelling geophysical
phenomena and complex FSI problems (Sukumar et al. 1998). We define a convex
hull as follows: for a set of randomly generated points Υ k

= {γ1, γ2, . . . , γN} on
the kth pore in Rn, the convex hull C of the points is expressed mathematically
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in the form

C=

{
n∑

i=1

λiγi : λi > 0∀i ∈ {1, . . . , n} ∧
n∑

i=1

λi = 1

}
. (2.26)

Equation (2.26) describes the convex combinations of points in set Υ . For an
n-dimensional convex hull set of nodal points, we apply the Quickhull (known as
Qhull) algorithm developed by Barber et al. (1996) to calculate the convex hull of
sets of the multidimensional points of that hull. The hull is created based on random
points (test points) generated on the surface of pores. Now for such a set of points, if
a distinctive portion of the finite element nodal points (n={n1, n2, . . . , nM}) and Υ are
found within the same space, they are labelled unity, while points outside are labelled
zero. This process is graphically shown in figure 4. The forces Fi are then transmitted
to nodes labelled unity while others outside this space, labelled zero, are left out.

Thus, at each time step, the coupling algorithm proposed in this work has the
following sequence of operations:

Algorithm 1 Pseudo-code for coupling operation.

1: Initialize variables: Fi = 0, t= 0, v0
∗
= v0, u0

∗
= u0, k= 0, n= 0

2: Apply boundary conditions to the solid phase, u, T
3: Solve FE
4: un+1, vn+1, K int

5: TDG, vn+1
∗
= ul

1, un+1
∗
= un

∗
+1t[(1− α∗)ul

0 + α
∗ul

1]

6: Update quantities, un+1
= un+1

∗
, vn+1

= vn+1
∗

7: Extract DPN: {Vi}, {lij}, {rij}.
8: Initialize fluid forces: Fi = 0.
9: Set the number of precoupling iterations→Iter.

10: Solve (2.8).
11: while l< Iter
12: Pi, t, Pmax

13: Update position of the solid
14: Voxelize solid domain
15: Perform re-extraction of the network: {V∗i }, {l

∗

ij}, {r
∗

ij}.
16: Determine average PSD
17: if Ea(Xp) > tol
18: l= l+ 1, else terminate
19: end while loop
20: for time, t
21: Find Ft+1

i using (2.25).
22: (a) identify n ∈ n in convex hull set Υ k

23: (b) Ft+1
i = f ext

24: Repeat step 3
25: Update t= t+1t
26: end for loop
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¬i = 1

Finite element
nodes

Pore-network
node

Fictitious
interface

FIGURE 4. Test points used for convex hulling. The hydrodynamic load is transferred to
the solid mesh node points by linear interpolation of node points within the convex hull.
Here, εi+rn represents the enlarged hull volume to include more points for interpolation.
Points enclosed within εi+rn are labelled as one. Points outside are zero.

3. Numerical results
The coupled technique was used to simulate the drainage of water by oil in a

water-wet system in a Berea sandstone sample. The deformation of the solid was
investigated during the drainage process. The DPN domain was extracted from the
sandstone image such that the image in binary was defined by

I =
{

1, Z ∈ pore
0, Z ∈ solid, (3.1)

where 1 represents the pores and 0 the solid. Here, Z denotes an arbitrary voxel in
the binarized image. Extraction was achieved using the maximal ball algorithm (Dong
& Blunt 2009). Tetrahedral meshes were generated directly from the image for the
solid domain. The domain size (Lx, Ly, Lz) is (0.641, 0.641, 0.641) mm. Absolute
permeability and void fraction are 210mD and 18.82 %, respectively. Details of the
simulation parameters can be found in table 2.

3.1. Boundary conditions
As mentioned earlier, DPN models are well suited for multiphase flow simulation. In
this study, therefore, we considered a two-phase flow model, containing oil and water.
We carried out drainage for a water-wet system (water is the wetting fluid and oil
is the non-wetting fluid). Both fluids are incompressible and immiscible. The wetting
phase has a dynamic viscosity of 1 cP and the non-wetting phase has a dynamic
viscosity of 10 cP. Dynamic pore network simulation began with an injection of water
across the network with a constant flow rate of 1.25 × 10−13 m3 s−1 at the inlet.
Simulation continued until after the length of the injection time was attained, which
in this case was 20 s. The contact angle was set at 0◦ at the inlet because only water
was present at the start of the simulation and oil had not yet begun to displace water.
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Parameters Value

Number of FE nodes 11 976
Number of FE elements 56 559
Elastic modulus 20× 109 Pa
Poisson ratio 0.28
Number of DPN pore nodes 240
Inlet flow rate 1.25× 10−13 m3 s−1

Injection time 20 s
Domain size 0.641, 0.641, 0.641 mm
Void fraction (i.e. porosity) 18.82 %

TABLE 2. Properties used for the coupled simulation.

3.2. Results
At low flow rates, the capillary forces are more dominant than the viscous forces. This
is governed by capillary number Ca=ufµ/γsf , where uf is the fluid velocity, µ is the
dynamic viscosity and γsf is the interfacial tension. The viscous pressure drop (1Pµ)
can play a major role when the flow rate is high when the characteristic length Lx of
the representative element volume is large, or in near-miscible displacements with low
interfacial tension. Capillary pressure scales as Pc = 2γsf /rc ∼ γsf

√
Pµ/K, where rc is

the mean radius of interfacial curvature. The viscous pressure drop scales as 1Pµ =
qfµLx/K, where K is the effective rock permeability. Therefore, the capillary pressure
is not related to flow rate or Lx. When the ratio of viscous pressure drop to capillary
pressure is high, macroscopic flow properties (e.g. relative permeability) can be a
function of flow rate, leading to a Darcy law scenario in which flow rate nonlinearly
depends on the pressure gradient. For this work, however, we only consider low flow
rates that correspond to a capillary-dominated flow regime.

Figure 5 illustrates the drainage sequence at DPN simulation times. It can be
observed that water sweeps the oil phase continually from the pore space by a
piston-like displacement. Over time, more residing fluid was swept through the outlet.
As the wetting phase was being displaced, we kept track of the hydrodynamic or
pressure forces that are to be exchanged across the fictitious fluid–solid interface.

The deformation of the solid induced by fluid pressure is observed in figures 6
and 7. It can be seen that the forces at the throats are very small compared to those
at the pores; thus, the forces at the throats can be ignored.

At the final time of the simulation, in figure 7(d), there is a greater distribution of
pores with higher pressure forces than those in the earlier drainage sequence, because
most of the pores have been invaded by the non-wetting phase. The deformation
resulting from the local displacement of the wetting phase fluid is illustrated in
figure 7(e–h), for which the maximum (5.67 × 10−5 µm) occurs at the end of the
injection process.

We applied several random distributions to select the test points on the pore
surface. Each test point was selected randomly from the interval [−ri,j, ri,j]. In this
work, we considered data from 100 to 1000 random test points on each spherical
pore body surface. We then conducted a sensitivity analysis for the optimum number
of test points to be used for the simulations. Figure 8, for example, shows how
the capillary pressure solution is affected by varying the number of test points. It
can be observed in the earlier part of the displacement process (from the right-hand
side) that the capillary pressure (Pc) values are more sensitive to the number of
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t = 1 s

t = 5 s

t = 3 s

t = 15 s

(a) (b)

(c) (d)

FIGURE 5. Drainage evolution in time for a water-wet system (oil is blue and water
is red).
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FIGURE 6. Solid deformed as a result of fluids residing in the pores at different
pore pressures.

test points used; using more points lowers Pc values by approximately 13.5 kPa. As
water saturation decreases, this value becomes less dependent on the number of test
points. Based on our preliminary results, 800 test points proved to be sufficient for
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FIGURE 7. Hydrodynamic forces and the corresponding deformation induced by nodal
pressure in the network at times 1 s, 3 s, 5 s and 15 s, respectively.

our simulation. Another important parameter we considered in the coupling procedure
is the tolerance/range of inclusivity. The apparent gap between both domains requires
that the hull of pore body spatial points be enlarged to accommodate more FE nodal
points, as seen in figure 4. This is achieved by defining a tolerance that can be
interpreted as the range of FE points, away from the convex hull, which could still
be regarded as an interpolation point. The tolerance and range of inclusivity are given
as

εi = η

∑
i γi

N
, εi+rn = rn + η

∑
i γi

N
, (3.2)

where εi and εi+rn are ranges of inclusivity, η is a constant that depends on the size of
the pore body radius ri and N is the total number of test points used for each pore
body. Here, rn is a value that varies with ri where rn < ri. For all simulations, we
examined the sensitivity of each FE node point nk, with respect to ‖εi+rn‖.

We also examined the effect of inflow volumetric rate on deformation in a four-case
scenario while maintaining pre-existing boundary conditions. The first case, case A,
had a flow rate of 1.25× 10−13 m3 s−1, while the base case (case B) had a flow rate
of 2.5× 10−13 m3 s−1. The flow rates of cases C and D were 5.0× 10−11 m3 s−1 and
5.0 × 10−10 m3 s−1, respectively. Flow rates were increased and the subsequent
deformation and von Mises stress were computed. The results are shown in
figures 9(a) and 9(b), respectively. The deformation and stress increased monotonically
for the flow rate up to a critical point, slightly below 1.0× 10−10 m3 s−1. Thereafter,
the solid deformed more significantly for all cases.

A precoupling step was required, as indicated in algorithm 1, to ensure that the
coupled system would converge to a steady solution before advancing to the next
time step. The number of iterations would depend on the nature of the imaged data.
The coordination number, which is the average number of pore bodies connected
to a specific pore, could be affected based on the nature of the image from which
the network is derived. Consequently, the stochastic nature of the maximal ball
algorithm would generate inconsistent values for the maximum and minimum pore
body and throat sizes for each re-extraction. Hence, we define a function Ea(Xp)

which quantifies the error between each subiteration before the start of the transient
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FIGURE 9. Evolution of (a) solid deformation and (b) the von Mises stress at different
flow rates.

coupling procedure. Each iteration p signifies p number of re-extractions performed.
This error is defined by the following equation:

Ea(Xp)=
|X(p)− X(p+ 1)|

X(p)
, (3.3)

where X(p) is the average value of the pore size at iteration p. This error allows us to
estimate the accuracy of the extraction code, especially when boundary conditions are
applied to the solid. In all of the proposed computational tests, the coupled system
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advances if Ea(Xp) is smaller than a prescribed tolerance value. From figure 10, it is
observed that the network extraction converged after four iterations.

3.3. The effect of boundary conditions during drainage
Several boundary loads were applied on the solid in the axial direction to investigate
how such prescribed values affect flow properties. The absolute permeability and pore-
size distribution were tracked as the simulation progressed. Figure 12(a) indicates the
boundary conditions applied in this work. By applying a constant strain rate ε̇(=
1z/(Lz1t)) at boundary B(x2)= L, we monitored the deformation. A fixed constraint
(zero displacement boundary condition) at boundary B(x2) = 0 was applied at the
opposite boundary; rollers were used at the other boundaries to prevent the collapse
of the solid normal to that boundary. The solid boundary loads were only applied at
the beginning of the simulation, while the hydrodynamic forces were coupled at each
subsequent iteration.

Plots of solid displacement during loading are represented in figure 11. These
results are taken at the same time corresponding to vertical strains of 0.00056 and
0.00160. The pore-size distribution (PSD) evolution is shown in figure 13 at different
coupling times ranging from 1 s to 20 s. At these times, the results illustrate a shift
in the PSD to the left, indicating a reduction in pore-size and the closures of some
pores. There is also a vertical shift upwards, implying an increase in the number of
smaller-sized pores. However, at much higher strain rate values, the distribution shifts
downwards and the rest of the pore sizes are spread primarily to the right (with
some to the left), indicating constriction as well as lateral dilation of some pores
due to stress. The network also becomes distorted at equilibrium points as higher
strain rate values are applied. Figure 14 shows a snapshot of the physical structure
of the network after the deformation. The pore pressure also increases as the strain
increases, as seen in figure 12(b). Another important property that we monitored
during the deformation process was absolute permeability. Figure 15 shows the effect
of the loading on absolute permeability. It can be observed that absolute permeability
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FIGURE 12. (a) Solid boundary conditions used in microscale tests. (b) Pore pressure
change.

decreased as more load was applied. Furthermore, due to rearrangements of the pore
network, precoupling iterations were carried out as shown in figure 10. It is apparent
that the solution converged after four iterations.

3.4. Verification of results
We tested the results of the coupled FE-DPN* pore-scale model for accuracy. A
coupled finite volume system was used as the basis for the comparison (Fagbemi,
Tahmasebi & Piri 2020). The system constitutes a strongly coupled partitioned
solver whose meshes are unstructured, independent and conformed at the interface.
The hydrodynamic load is transmitted via face interpolation while the displacement
is exchanged using vertex interpolation. The initial computational domain is an
undeformed porous medium of size 103 mm. The sample geometry, and the
preprocessing steps, are shown in figure 16. The drainage sequence began with
the wetting phase occupying the entire computational fluid domain. Then, based
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FIGURE 13. Change in PSD with a load increase at fluid injection times 1 s, 4 s, 5 s, 8 s,
10 s and 14 s. There is an apparent shift to the left of the original plot when the solid is
compacted in the axial direction, indicating a reduction in the pore radii. At a strain value
of 0.01247, there is constriction as well as lateral dilation of some pores due to stress.

on prescribed initial secondary fluid saturation, the non-wetting phase displaces the
wetting phase.

Similar flow rates were used, while a fixed pressure value boundary condition of
zero was used at the outlet. No-slip boundary conditions were applied at the walls.
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(a) (b)

FIGURE 14. The network (a) before deformation and (b) after deformation. The
differences between (a) and (b) are noted by white colouring in (b).
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FIGURE 15. Absolute permeability evolution at different times.

Plots of deformation at selected mesh nodes, at the third time step from the last
time ‖dT−3‖, are compared for both solvers. As illustrated in figure 17, the results
are in good agreement with those from the FE-DPN* model. The deformations for
both solvers induced by fluid injection at lower flow rates are very similar. However,
at higher flow rates, we begin to see a separation of values.

4. Conclusion
We presented a new multimethod approach for studying fluid and solid interaction

problems at the pore-scale. This approach drastically reduces the time required for
computing results of the coupled solid and fluid analysis. We represented the pore
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FIGURE 16. The FV geometry, similar to the coupled model used in this work, was
obtained using micro-CT imaging technology. To effectively study the effects of external
stresses and fluid forces on the sample at the pore-scale, high-porosity Berea sandstone
was used. The Berea image was initially filtered to improve the signal-to-noise ratio and
then subsequently segmented into binary data, where each domain is represented by 0 or 1.
The rock image sample has a pore volume fraction of 21.174 %. The original voxel size
of the sample was 10003, which was later resized to 1203 for the simulation.

structure as a network of spheres and cylinders for each pore and throat in space,
respectively. The solid was represented using real segmented images generated by
X-ray micro computed tomography (micro-CT) technology. The computational domain
comprised a segregated two-way coupled system composed of a solid subdomain,
having unstructured meshes whose nonlinear response was investigated using FEM;
and a fluid subdomain whose flow characteristics was modelled using dynamic pore
network method. Due to the meshless nature of the DPN and incongruity of the solid
surface, hydrodynamic load transmission to the FE solver is a non-trivial task. In this
work, continuity of stress was achieved by interpolation of fluid forces directly across
a fictitious boundary. Solid nodal points and selected tested points on the surface of
the pore bodies were interpolated within a convex hull of points based on a defined
range of inclusivity. The deformation of the solid, which results in a rearrangement of
its structure, required that the pore network be updated regularly during the simulation
to track the deformation of the solid. The pore network was hence re-extracted at
each time interval. Curtailing the host of potential errors from such a stochastic
process required the implementation of several coupling subiterations which ensured
that the average pore-size distribution was uniform at every time step. From our
results, these errors were very minimal, indicating the potential of this technique
for studying more complex interactions of fluid in complex solid media. We applied
the coupled model for investigating solid deformation during the drainage process
for capillary-dominated flow regimes. The effect of boundary conditions prescribed
in the solid subdomain on the pore size distribution and absolute permeability were
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FIGURE 17. Verification of results for solid deformation from the finite volume model
(FVM) and this work for selected nodal points, at the third time step from the last time
‖dT−3‖.

equally studied. Results from such computational experiments were then compared
with those from a coupled finite volume solver, showing good agreement. One of
the main applications of this approach is for modelling of deformation in large-scale
problems for which direct numerical simulations and lattice Boltzmann methods for
coupled systems are computationally expensive.
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