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The inclusive J/ψ meson production in Pb–Pb collisions at a center-of-mass energy per nucleon–nucleon 
collision of √

sNN = 5.02 TeV at midrapidity (|y| < 0.9) is reported by the ALICE Collaboration. The 
measurements are performed in the dielectron decay channel, as a function of event centrality and J/ψ
transverse momentum pT, down to pT = 0. The J/ψ mean transverse momentum 〈pT〉 and rAA ratio, 
defined as 〈p2

T〉PbPb/〈p2
T〉pp, are evaluated. Both observables show a centrality dependence decreasing 

towards central (head-on) collisions. The J/ψ nuclear modification factor RAA exhibits a strong pT
dependence with a large suppression at high pT and an increase to unity for decreasing pT. When 
integrating over the measured momentum range pT < 10 GeV/c, the J/ψ RAA shows a weak centrality 
dependence. Each measurement is compared with results at lower center-of-mass energies and with 
ALICE measurements at forward rapidity, as well as to theory calculations. All reported features of the 
J/ψ production at low pT are consistent with a dominant contribution to the J/ψ yield originating from 
charm quark (re)combination.

© 2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Quark-Gluon Plasma (QGP) is a state of strongly-interacting 
matter characterized by quark and gluon degrees of freedom pre-
dicted by Quantum Chromodynamics (QCD) to exist at high tem-
perature and energy density [1,2]. Such conditions are realized 
during the initial hot and dense stages of ultra-relativistic heavy-
ion collisions. The medium produced in these collisions has a short 
lifetime, which is of the order of 10 fm/c at the energies reached 
at the CERN Large Hadron Collider (LHC), see e.g. [3].

Due to their large masses, charm and beauty quarks are pro-
duced in hard partonic scatterings occurring during the early stage 
of the collision and therefore experience the full evolution of the 
medium. Charmonia, i.e. the bound states of charm and anti-charm 
quarks, are of particular interest for the understanding of the QGP, 
see e.g. [4,5]. In the framework of color-screening models, the sup-
pression of the charmonium state J/ψ is an unambiguous signature 
of the QGP [6,7]. The high density of color charges prevents charm 
and anti-charm quarks from forming bound states. Therefore, the 
J/ψ yield is expected to be suppressed compared to probes un-
affected by the hot and dense medium or from expectations of 
the incoherent superposition of nucleon–nucleon collisions at the 
same energy. This was experimentally observed in the most central 
heavy-ion collisions at SPS [8–10] and RHIC [11–13] energies.

� E-mail address: alice -publications @cern .ch.

At the significantly higher collision energies of the LHC, the 
suppression pattern of J/ψ mesons in heavy-ion collisions is 
fundamentally changed. In central Pb–Pb collisions at 

√
sNN =

2.76 TeV, where 
√
sNN is the center-of-mass collision energy 

per nucleon–nucleon pair, the suppression was found to be 
weaker [14–16] in comparison with the earlier measurements at 
lower energies mentioned above. The effect was measured by the 
ALICE Collaboration at both mid- and forward rapidity, dominantly 
for J/ψ mesons at a low transverse momentum (pT). This phe-
nomenon is understood as the result of the charmonium (re)gen-
eration due to copiously produced charm quarks, made possible 
by the deconfined nature of the QGP. In addition to the weaker 
nuclear suppression of charmonia, recent observations of non-zero 
elliptic flow of D [17,18] and J/ψ [19] mesons, suggest that charm 
quarks may thermalize and flow with the bulk particles during the 
QGP phase.

There are different phenomenological scenarios available for the 
description of charmonium production in heavy-ion collisions. In 
the framework of statistical hadronization, all charmonium states 
are created at chemical equilibrium at the phase boundary and 
their abundances are determined by thermal weights [20,21]. The 
transport approach considers a continuous production and disso-
ciation of charmonium states already during the QGP phase gov-
erned by a set of rate equations [22]. Another approach includes 
charmonium dissociation by the scattering of comoving partons 
and hadrons with a (re)generation component at LHC collision en-
ergies [23]. All current models implementing statistical hadroniza-
tion, microscopic transport approaches [24,25] or comover interac-
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tions take into account both the hot medium and the cold nuclear 
matter (CNM) [26] effects mainly originating from the modification 
of the gluon distribution function in the nucleus compared to the 
corresponding function of the free nucleon.

In this paper, we present the ALICE measurement of the inclu-
sive J/ψ production at midrapidity in Pb–Pb collisions at a center-
of-mass energy per nucleon pair of 5.02 TeV. The J/ψ mesons 
are reconstructed in the central barrel within the rapidity range 
|y| < 0.9 via the e+e− decay channel down to pT = 0 GeV/c. The 
J/ψ pT spectrum is measured in three centrality intervals. The 
J/ψ average transverse momentum 〈pT〉 and 〈p2

T〉 are evaluated 
as a function of collision centrality: the latter is shown in com-
parison with the J/ψ 〈p2

T〉 measured in pp collisions, via the ratio 
rAA = 〈p2

T〉PbPb/〈p2
T〉pp. The nuclear modification factor RAA, which 

is defined by the ratio of the production yield in Pb–Pb collisions 
and the production cross section in pp collisions normalized by 
the nuclear overlap function 〈TAA〉, as a function of event centrality 
and J/ψ pT, is obtained using the recent ALICE measurement of the 
inclusive J/ψ cross section in pp collisions at 

√
s = 5.02 TeV [27]. 

The new pp reference and the larger Pb–Pb data set allow for a sig-
nificant reduction of the uncertainties compared to our previous 
measurements at 

√
sNN = 2.76 TeV [14,28]. The results are com-

pared with statistical [20], microscopic parton transport [24,25], 
and comover [23] model calculations.

The measurements presented in this publication provide a sig-
nificant complement to results in Pb–Pb collisions at the same 
collision energy by the ALICE Collaboration at forward rapid-
ity [29], the measurements on J/ψ suppression at high pT by 
the ATLAS [30] and CMS [31] Collaborations around midrapidity, 
as well as to results at forward rapidity in Xe–Xe collisions at √
sNN = 5.44 TeV [32].

2. Apparatus and data sample

A detailed description of the ALICE detector and its performance 
can be found in Refs. [33,34]. The ALICE central barrel detector 
allows for high resolution tracking and particle identification over 
the full azimuthal angle in the pseudorapidity range |η| < 0.9. The 
entire setup is placed inside a solenoidal magnet, which creates a 
uniform axial magnetic field of B = 0.5 T along the beam direction.

The main detectors used for the J/ψ meson reconstruction in 
the e+e− decay channel are the Inner Tracking System (ITS) [35]
and the Time Projection Chamber (TPC) [36]. The ITS consists of 6 
cylindrical layers of silicon detectors placed at radial distances to 
the beam line from 3.9 cm to 43 cm and provides high-precision 
tracking close to the interaction point as well as the determination 
of the primary vertex of the event. The two innermost layers form 
the Silicon Pixel Detector (SPD), the intermediate two layers are 
the Silicon Drift Detector (SDD), and the outermost layers are the 
Silicon Strip Detector (SSD).

Placed around the ITS, the TPC detector is a large cylindrical 
drift chamber extending radially from 85 cm to 250 cm from the 
nominal interaction point (x = y = z = 0 cm) and longitudinally 
between −250 cm and +250 cm. In addition to being the main 
tracking detector, the TPC also provides particle identification via 
the measurement of the specific energy loss (dE/dx) of charged 
particles in the detector gas.

The V0 detectors [37] consist of two scintillator arrays, V0A and 
V0C, which are located on both sides of the nominal interaction 
point at z = 329 cm and z = −90 cm and cover the pseudorapid-
ity interval 2.8 ≤ η ≤ 5.1 and −3.7 ≤ η ≤ −1.7. The centrality of 
the events, expressed in fractions of the total inelastic hadronic 
cross section, is determined via a Glauber fit to the V0 amplitude 
as described in [38–40]. In addition, the V0 detectors are used to 
provide a minimum-bias trigger (MB), defined as the coincidence 
of signals in both V0 arrays and the beam crossing.

The results presented in this paper are obtained using the MB 
trigger data collected during the 2015 LHC Pb–Pb run at a center-
of-mass energy per nucleon pair of 5.02 TeV. Beam-gas events are 
rejected using timing selections on the signals from the V0 and 
Zero Degree Calorimeters [41]. Pileup events are rejected online 
based on V0, but also in the offline analysis based on the cor-
relation between the V0 multiplicity and the number of tracks 
reconstructed in the TPC. All events must have a reconstructed pri-
mary vertex with a longitudinal position within ±10 cm around 
the nominal interaction point. Only the events corresponding to 
the most central 90% of the Pb–Pb inelastic cross section (0–90%) 
are used in this analysis. For these events the MB trigger is fully 
efficient and the contamination by electromagnetic interactions is 
negligible. After all selections, a sample of 70 million events is 
available for analysis, corresponding to an integrated luminosity of 
Lint ≈ 10 μb−1.

3. Analysis methods

The J/ψ candidates are reconstructed using the e+e− decay 
channel. The selected electron candidates are tracks reconstructed 
using both the ITS and TPC detectors. They must have a min-
imum transverse momentum of 1 GeV/c and pseudorapidity in 
the range |η| < 0.9. Primary electrons are selected using a max-
imum distance-of-closest-approach to the event vertex of at most 
1 cm and 3 cm in the transverse and longitudinal directions, re-
spectively. Additionally, kink-daughters, i.e. secondary tracks from 
long-lived weak decays of charged particles, are removed from the 
analysis. In order to improve the resolution of track reconstruction 
and to reject secondary electrons from photon conversions in the 
detector material, the tracks are selected to have at least one hit in 
either of the two SPD layers. Electrons and positrons from photon 
conversions are further rejected using a prefilter method [27] in 
which track candidates forming pairs with an electron-positron in-
variant mass lower than 50 MeV/c2 are removed from any further 
pairing. In the TPC, the electron candidates are required to have 
at least 70 out of 159 possible space points attached to the track, 
which ensures good tracking and particle identification resolution.

Electrons are identified by requiring that the measured dE/dx
in the TPC lies within a ±3σe band around the expected value 
for electrons estimated from a parameterization of the Bethe for-
mula, where σe is the particle identification (PID) resolution in the 
TPC for electrons. The hadron contamination is reduced by exclud-
ing tracks compatible with the proton or pion hypothesis within 
±3.5σp,π .

The number of observed J/ψ is obtained by constructing the 
invariant mass distribution of all combinations of opposite-sign 
(OS) electron pairs from the same event. The top panels of Fig. 1
show the invariant mass distributions obtained in central (0–10%, 
left) and peripheral (60–90%, right) collisions together with the 
estimated background. The background is obtained using the dis-
tribution of OS pairs constructed by pairing electrons and positrons 
from different events, so-called mixed events (ME), which is scaled 
to match the same-event OS invariant mass distribution in two 
mass intervals on either side of the J/ψ signal region: 2.0 <mee <

2.5 GeV/c2 and 3.2 < mee < 3.7 GeV/c2, where the J/ψ contri-
bution is expected to be negligible. The raw J/ψ signal is then 
obtained by integrating the background-subtracted distribution in 
the mass window 2.92–3.16 GeV/c2. The lower panels of Fig. 1
show the OS invariant mass distribution after background subtrac-
tion. Good agreement with the J/ψ invariant mass distribution 
from Monte Carlo (MC) simulation, normalized to the integral of 
the raw signal, is observed. The potentially remaining correlated 
background from semi-leptonic decays of cc and bb pairs is in-
cluded in the systematic uncertainty.
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Fig. 1. Top panels: Invariant mass distribution of opposite-sign pairs from the same event and mixed events for the 0–10% (left) and 60–90% (right) centrality classes in 
Pb–Pb collisions at √sNN = 5.02 TeV. Bottom panels: Background-subtracted invariant mass distributions in comparison with the expected Monte Carlo signal shape.

The corrected J/ψ pT-differential production yield is obtained 
in a given centrality class as

d2N

dydpT
= NJ/ψ

Nev × BRJ/ψ→ee × (A × ε) × �y × �pT
, (1)

where NJ/ψ is the number of reconstructed J/ψ in the considered 
centrality class and pT and y intervals, Nev is the corresponding 
number of events, A ×ε is the acceptance and efficiency correction 
factor and BRJ/ψ→ee = (5.971 ± 0.032)% is the branching ratio of 
the J/ψ decaying into the dielectron channel [42].

MC simulations of Pb–Pb collisions with embedded unpolarized 
J/ψ mesons are used to obtain the A × ε factors. The Pb–Pb col-
lisions are generated using HIJING [43]. For the J/ψ , the prompt 
component is generated using a pT distribution tuned to the ex-
isting Pb–Pb measurements at forward rapidity while the non-
prompt component is obtained from bb pairs generated with 
PYTHIA forced to decay into channels with J/ψ in the final state. 
The J/ψ decays into the e+e− channel are handled using PHO-
TOS [44]. The transport of the simulated particles in the detector 
material is performed using a GEANT3 [45] model of the ALICE 
apparatus and the same algorithm as for the real data is used to 
reconstruct the simulated tracks. The acceptance times efficiency 
correction factors include the kinematic acceptance, the recon-
struction and PID efficiencies, and the fraction of signal in the 
integrated invariant mass window. The acceptance correction fac-
tor amounts to 33% and the fraction of the signal in the mass 
counting window is approximately 65%. Reconstruction and PID 
efficiencies are centrality dependent and together amount to ap-
proximately 24% in the most central collisions growing monoton-
ically to approximately 32% in the most peripheral collisions. The 
correction factors are also pT dependent which, for large pT in-
tervals, induces a dependence on the Monte Carlo pT distribution 
of the embedded J/ψ . This is taken as a source of systematic un-
certainty and is discussed in the following section. The inclusive 
pT-integrated J/ψ production is measured in 5 different central-
ity classes: 0–10%, 10–20%, 20–40%, 40–60% and 60–90% while 
the pT-differential cross sections are obtained in larger centrality 

classes to ensure sufficient statistical significance: 0–20%, 20–40% 
and 40–90%.

The average transverse momentum of J/ψ , 〈pT〉, is extracted 
using a binned log-likelihood fit of the 〈pee

T 〉 distribution of all 
electron pairs as a function of the invariant mass. Each pair con-
tribution is weighted by the (A × ε)−1 factor corresponding to its 
centrality and pT. The OS 〈pee

T 〉 distribution is fitted with the func-
tion:

〈pee
T 〉(mee) = Nbkg(mee) × 〈pbkg

T (mee)〉 + N J/ψ(mee) × 〈pT〉
Nbkg(mee) + N J/ψ(mee)

, (2)

where Nbkg(mee) and N J/ψ (mee) are the mass-dependent distri-
butions of background and signal pairs determined via the signal 
extraction procedure described above. The background mean trans-
verse momentum, 〈pbkg

T 〉, depends on the invariant mass and its 
shape is obtained from the ME technique, while its overall nor-
malization can vary in the fit. Fig. 2 illustrates the 〈pT〉 extraction 
procedure for the most central and most peripheral centrality in-
tervals using dielectron pairs in the transverse momentum interval 
0.15 < pT < 10 GeV/c. A similar procedure is employed also for 
the second moment of the transverse momentum distribution 〈p2

T〉.
A low-pT cut-off on the J/ψ candidates is applied due to the 

observation of a J/ψ excess for pT < 0.3 GeV/c at forward rapidity 
in peripheral Pb–Pb collisions at 

√
sNN = 2.76 TeV [46], which is 

found to originate from coherent photo-production. Since this pro-
duction mechanism is not normally included in hadro-production 
models, the low-pT interval is excluded for enabling comparisons 
with theoretical calculations. At midrapidity, mainly due to a better 
momentum resolution, nearly all of the coherent yield is contained 
in the range of reconstructed pT < 0.15 GeV/c, as shown by the 
ALICE measurements of J/ψ photo-production in ultra-peripheral 
collisions [47]. A small component of incoherently photo-produced 
J/ψ is still present in the range pT < 1 GeV/c, but for the central-
ity intervals considered in this work it is negligible. Thus, in the 
following, unless otherwise specified, all the results refer to J/ψ
with pT larger than 0.15 GeV/c.
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Fig. 2. Extraction of the J/ψ 〈pT〉 in Pb–Pb collisions at √sNN = 5.02 TeV for the 0–10% (left) and 60–90% (right) centrality classes in the transverse momentum interval 
0.15 < pT < 10 GeV/c. The background, obtained from event-mixing, is shown by the red line.

Table 1
Average number of participant nucleons 〈Npart〉 and average nu-
clear overlap function 〈TAA〉 for the centrality classes used in this 
analysis. The values are derived from [40].

Centrality (%) 〈Npart〉 〈TAA〉 (mb−1)

0–10 357.3 ± 0.8 23.26± 0.17
0–20 309.7± 0.9 18.83± 0.14
10–20 262.0 ± 1.2 14.40 ± 0.13
20–40 159.4 ± 1.3 6.97± 0.09
40–60 70.7± 0.9 2.05± 0.04
40–90 39.0 ± 0.7 1.00± 0.03
60–90 17.9± 0.3 0.31± 0.01

0–90 125.9 ± 1.0 6.28± 0.12

The inclusive J/ψ nuclear modification factor is computed for a 
given centrality class as

RAA = d2N/dydpT

〈TAA〉d2σpp/dydpT
, (3)

where d2N/dydpT is the inclusive J/ψ yield defined in Equation 1, 
the 〈TAA〉 is the average nuclear overlap function corresponding 
to the considered centrality class and d2σpp/dydpT is the in-
clusive J/ψ cross section measured by ALICE in pp collisions at √
s = 5.02 TeV [27]. The values used for the nuclear overlap func-

tion are shown in Table 1 and are obtained from [40].

4. Systematic uncertainties

The systematic uncertainties on the measured J/ψ yields, 〈pT〉, 
and 〈p2

T〉 originate from uncertainties on tracking, electron identifi-
cation, signal extraction procedure, the kinematics used in the MC 
simulation for estimating the A × ε corrections, and the J/ψ de-
cay branching ratio. For the RAA and the rAA, the uncertainties on 
the J/ψ cross section measurement in pp collisions [27] and (only 
in the case of the RAA) on the nuclear overlap function 〈TAA〉 [40]
need to be considered in addition. A summary of the uncertainties 
on the pT-integrated and pT-differential yields is given in Table 2.

The systematic uncertainty on the tracking of the candidate 
electrons is mainly due to uncertainties on the ITS-TPC track 
matching and on the track reconstruction efficiency in both the ITS 
and the TPC. These uncertainties, mainly due to differences in the 
reconstruction efficiency between data and MC, are estimated by 
varying the main track selection criteria and repeating the whole 
analysis chain. All variations which provide a corrected yield that 
deviates from the yield obtained with the standard selection cri-
teria by more than one standard deviation are considered [48]. 
The tracking uncertainty is then obtained as the root-mean-square 

Table 2
Systematic uncertainties on the pT-integrated and on pT-differential J/ψ yields for 
different centrality intervals. Only the ranges of uncertainty are quoted over the 
considered centrality intervals. The individual contributions and the total uncertain-
ties are given as percent values.
Source pT-integrated pT-differential 〈pT〉 rAA

Tracking 2–7 4–9 2–4 3–6
PID 3–6 1–6 1–2 2–4
Signal extraction 2–7 5–7 1–2 2–3
MC input 2 1–2 n.a. n.a.

〈TAA〉 2–5 2–5 n.a. n.a.
pp reference 7 9–12 3 5

of the distribution of all the valid variations, while the distribu-
tion mean is used as the central value. For the J/ψ yields, this 
uncertainty ranges between 2% and 7% as a function of central-
ity (integrated over pT) and between 4% and 9% as a function of 
transverse momentum. The tracking systematic uncertainty on the 
〈pT〉 and 〈p2

T〉 are smaller than those for the corrected yields and 
detailed in Table 2.

Uncertainties on the electron identification are due to the TPC 
electron PID response and the hadron rejection. A data-driven pro-
cedure is used to improve the matching between data and sim-
ulation for the electron selection by employing a pure sample of 
electrons from tagged photon conversions in the detector mate-
rial. The residual mismatches are estimated by varying all the PID 
selection criteria following a similar procedure as for the track-
ing systematic uncertainty. The extracted uncertainty on the J/ψ
yields ranges between 1% and 6%, depending on the centrality and 
transverse momentum interval.

The uncertainty from the signal extraction procedure includes 
two components, one due to the J/ψ signal shape and one due to 
the residual correlated dielectron background in the J/ψ mass re-
gion. In order to estimate the uncertainty on the signal shape, the 
corrected J/ψ yields are estimated using variations of the stan-
dard signal counting mass region, 2.92-3.16 GeV/c2. For this we 
used three additional values of the lower mass limit, between 
2.92 and 2.80 GeV/c2 and two additional values for the upper 
mass limit, namely 3.12 and 3.20 GeV/c2. The correlated dielec-
tron background in the invariant mass range used to extract the 
signal has generally a different shape compared to the combinato-
rial background. So matching the ME background in the sidebands 
of the same-event OS distribution may lead to a bias in the estima-
tion of the raw yields. This is taken as a systematic uncertainty and 
is estimated by varying the mass ranges of the sidebands where 
the ME background is matched. By these variations the width of 
the sidebands was modified between 400 and 800 MeV/c2. The 
total uncertainty on the signal extraction ranges between 2% to 7% 
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Fig. 3. Left panel: Transverse momentum dependence of the J/ψ production yields in Pb–Pb collisions at √sNN = 5.02 TeV at midrapidity in the centrality intervals 0–20%, 
20–40%, and 40–90%. Right panel: Comparison of the pT distribution in the centrality interval 0–20% with models [25,49].

as a function of centrality and between 5% and 7% as a function of 
pT.

The acceptance and efficiency correction is pT dependent which 
makes correction factors averaged over large pT intervals sensi-
tive to the J/ψ pT spectrum used in the simulation. Since precise 
measurements of the J/ψ transverse momentum spectra at midra-
pidity down to pT = 0 GeV/c are not available, the simulations 
used for corrections rely on the ALICE measurement at forward ra-
pidity (2.5 < y < 4.0) in Pb–Pb collisions at 

√
sNN = 5.02 TeV [29]. 

The measured spectrum including the statistical and systematic 
uncertainties is fitted using a power law function and the fit pa-
rameters are varied randomly within their allowed uncertainties 
taking into account their correlation matrix. The resulting uncer-
tainty amounts to 2% for the pT-integrated corrected yields and 
ranges between 1% to 2% in the considered pT intervals.

Systematic uncertainties on the extraction of 〈pT〉 and 〈p2
T〉 are 

obtained by repeating the fit procedure with similar variations of 
tracking and PID selections as for the yield estimation. Since for 
this measurement the A × ε correction is applied for each dielec-
tron pair using a fine-binned distribution of the correction factors, 
the systematic uncertainty due to the kinematics of the J/ψ used 
in the MC simulation is negligible. In addition, the 〈pT〉 and 〈p2

T〉
are also extracted by directly fitting the corrected J/ψ spectrum 
with a power law function and are found to be compatible to the 
values obtained from the fit with Equation 2.

Systematic uncertainties on the tracking, PID and MC kinemat-
ics are considered to be partly correlated over both the centrality 
and the transverse momentum. The systematic uncertainties on 
signal extraction are considered as uncorrelated. The uncertain-
ties on the nuclear overlap function are taken as uncorrelated 
over centrality and fully correlated over pT within a given cen-
trality interval. The uncertainty on the pT-integrated pp reference 
is considered to be fully correlated over centrality, while the un-
certainties on the pT-differential values are fully correlated over 
centrality and highly correlated over pT.

5. Results and discussions

The inclusive J/ψ pT-differential yields evaluated using Equa-
tion 1 are shown in the left panel of Fig. 3 (left) for the 0–20%, 
20–40%, and 40–90% centrality intervals. The vertical error bars in-
dicate statistical uncertainties while the systematic uncertainties, 
independently of their degree of correlation, are shown as boxes 
around the data points. The horizontal error bars show the evalu-
ated pT-range with the data point placed in the center.

The experimental results are compared with different phe-
nomenological models of the charmonium production in relativis-
tic heavy-ion collisions, i.e. the statistical hadronization model 

(SHM) by Andronic et al. [21], the comover interaction model (CIM) 
by Ferreiro [23,50] and two different microscopic transport mod-
els, by Zhao et al. (TM1) [24] and by Zhou et al.(TM2) [25].

In the SHM, all heavy quarks are produced during the initial 
hard partonic interactions followed by their thermalization in the 
QGP and the subsequent formation of bound states at the phase 
boundary according to their thermal weights. The pT-integrated 
charmed-hadron yields depend only on the total cc cross section 
in heavy-ion collisions and on the chemical freeze-out parameters, 
which are determined by fitting measured light-flavored hadron 
yields. In addition to the high-density core part in the QGP, a 
corona contribution is added for the case that the nuclear den-
sity decreases below 10% of its maximal value, where no QGP is 
assumed and the number of J/ψ is calculated from yields in pp
collisions scaled by the number of binary nucleon–nucleon colli-
sion. A recent update of the SHM [49] uses a MUSIC (3+1)D [51]
hydrodynamical simulation to extract the transverse flow velocity 
and the radial velocity profile of the freeze-out hyper-surface, such 
that the J/ψ pT can be extracted from a blast-wave parameteriza-
tion which follows a Hubble-like expansion [52].

The CIM [23] was developed specifically for the description of 
charmonium suppression in heavy-ion collisions via its interac-
tions with a comoving medium, either hadronic or partonic. The 
hot medium effects are modeled using a rate equation which con-
tains a loss term for charmonium dissociation, and a gain term 
for (re)generation. In this model, the charmonium dissociation rate 
depends on the density of comovers, obtained from experimental 
measurements and on the charmonium dissociation cross section 
which is an energy-independent parameter of the model, fixed 
from fits to low energy data. Charmonium dissociation is balanced 
by the (re)generation component which depends on the primordial 
charm-quark cross section.

Both microscopic transport models considered here, TM1 [24]
and TM2 [25], solve the Boltzmann equation for charmonia (J/ψ , 
χc and ψ ′) with dissociation and recombination terms. Each model 
considers the fireball evolution using implementations of ideal hy-
drodynamics which include both the deconfined and the hadronic 
phase separated by a first order phase transition. The dissocia-
tion rate in both models depends on the medium density and 
on a lattice-QCD-inspired charmonium binding energy (in TM1) 
or squared radius of the bound state (in TM2), all of them being 
functions of temperature. The (re)generation component is imple-
mented using different approaches. In the TM1 calculations, it is 
based on the assumption that the charm quarks reach statistical 
equilibration after a relaxation time of about a few fm/c, while in 
the TM2 calculations the charm quarks are recombined using the 
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Fig. 4. J/ψ 〈pT〉 (left) and rAA (right) at midrapidity as a function of the mean number of participant nucleons 〈Npart〉. The ALICE measurements at √sNN = 5.02 TeV are 
compared with previous results in pp and Pb–Pb collisions at 2.76 TeV [28], Pb–Pb collisions at 5.02 at forward rapidity [53], and with those at lower collision energies at 
SPS [54] and RHIC [11,55,56]. The red box around unity at Npart ≈ 400 in the right panel indicates the correlated uncertainty of the ALICE data points due to the 〈p2T〉 in pp
collisions.

Fig. 5. Inclusive J/ψ 〈pT〉 (left) and rAA (right) in pp [27] and Pb–Pb collisions at √sNN = 5.02 TeV at midrapidity as a function of the mean number of participating nucleons. 
The ALICE results are compared with calculations from the transport models [57,58] and the SHM [49]. The colored bands represent model uncertainties. As in Fig. 4, the red 
box around unity at Npart ≈ 400 in the right panel indicates the correlated uncertainty of the ALICE data points due to the 〈p2T〉 in pp collisions.

same cross section as for the dissociation process and a thermal-
ized distribution of charm quarks.

The primordial cc production cross section in Pb–Pb collisions 
is a common input for all of the above mentioned models. There is 
so far no measurement of the cc cross section in Pb–Pb or pp col-
lisions at 

√
sNN = 5.02 TeV at midrapidity, which lead dominantly 

to the uncertainty of the models. The cross section in Pb–Pb col-
lisions is obtained from the total cc cross section in pp collisions 
dσcc/dy scaled by the average number of nucleon–nucleon colli-
sions 〈Ncoll〉 in a given centrality class of Pb–Pb collisions with 
additional CNM effects taken into account. For the rapidity inter-
val used in this work, |y| < 0.9, the value of dσcc/dy estimated for 
MB Pb–Pb collisions is 0.53 ±0.10 mb for the SHM, 0.76 ±0.13 mb 
for TM1, 0.78 ± 0.09 mb for TM2 and 0.56 ± 0.11 mb for CIM.

The right panel of Fig. 3 shows a comparison of the inclu-
sive J/ψ transverse momentum spectrum in the 20% most central 
Pb–Pb collisions to calculations from the SHM and TM2 models. 
The bands indicate model uncertainties mainly due to the as-
sumptions on the dσcc/dy. Good agreement between data and 
the SHM predictions is observed in the low-pT region, while for 
pT � 5 GeV/c the calculations underestimate the data. The TM2 
calculations underestimate the measured yields over the measured 
pT range.

In order to facilitate the comparison of the J/ψ pT spectra 
obtained in this work with other measurements or theory calcu-
lations, the J/ψ 〈pT〉 and 〈p2

T〉 are extracted in several centrality 
intervals, using the method described in Sec. 3. The left panel 

of Fig. 4 shows the J/ψ 〈pT〉 dependence on the mean num-
ber of participant nucleons 〈Npart〉. The 〈pT〉 in Pb–Pb collisions 
at 

√
sNN = 5.02 TeV shows a monotonic decrease from the most 

peripheral collisions, where it is compatible to the measurement 
in pp collisions at 

√
s = 5.02 TeV, to the most central collisions, 

which hints towards a strong contribution from (re)combination 
processes. This trend is not clearly visible for the measurement at √
sNN = 2.76 TeV, which suffered from large statistical and system-

atic uncertainties.
The rAA ratio, defined as 〈p2

T〉PbPb/〈p2
T〉pp, which is shown in 

the right panel of Fig. 4, is a measure of the broadness of the 
pT spectra in heavy-ion collisions relative to pp collisions at the 
same energy. A strong decrease of the rAA is observed in Pb–Pb
collisions at 

√
sNN = 5.02 TeV between peripheral, where it is con-

sistent with unity, and central collisions where rAA reaches a value 
of 0.6 at midrapidity and 0.75 at forward rapidity [53]. When com-
paring with measurements at lower energies from RHIC [11,55,56]
and SPS [54], a very different picture emerges. While the RHIC 
measurements for both 〈pT〉 and rAA are compatible with a con-
stant trend as a function of 〈Npart〉 [25], the SPS results show a 
monotonic increase of both 〈pT〉 and rAA as a function of collision 
centrality which, at this energy, can be explained by a broadening 
of the pT distribution due to the Cronin effect [59].

The results for the 〈pT〉 and rAA in Pb–Pb collisions at 
√
sNN =

5.02 TeV are compared with model calculations in Fig. 5. The sta-
tistical hadronization model agrees with the data only for the most 
central collisions but underestimates the measurements for more 
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Fig. 6. Inclusive J/ψ nuclear modification factor at midrapidity, integrated over pT, as a function of 〈Npart〉 in Pb–Pb collisions at √sNN = 5.02 TeV compared with results at √
sNN = 2.76 TeV [14] (left panel) and with calculations from the CIM [23], SHM [49], TM1 [58] and TM2 [25] models (right panel). The yields in the left panel are shown 

without the low-pT cut-off in order to be able to compare with the lower energy data which are obtained for pT > 0. The calculations are shown as bands indicating the 
model uncertainties. Boxes around unity at Npart ≈ 400 in both panels indicate the correlated uncertainty of the data points due to the cross section in pp collisions.

peripheral collisions. A good description of the centrality trend is 
obtained with the transport model TM1 calculation, which includes 
a detailed implementation of the fireball evolution, with the excep-
tion of most central collisions where the model overestimates both 
the J/ψ 〈pT〉 and rAA.

The pT-integrated nuclear modification factor for inclusive J/ψ
in Pb–Pb collisions at 

√
sNN = 5.02 TeV obtained using Equation 3

is shown in the left panel of Fig. 6 as a function of the mean 
number of participants and compared with a measurement at √
sNN = 2.76 TeV [14]. The boxes shown around unity indicate 

the correlated systematic uncertainties and include the uncertain-
ties on the pp reference. Besides the most central collisions where 
there is a hint of an increase of the RAA with collision energy, 
the results at the two energies are compatible within uncertain-
ties. A comparison of the experimental results at 

√
sNN = 5.02 TeV 

with calculations based on the models described before is shown 
in the right panel of Fig. 6. The calculations are shown as bands 
that indicate model uncertainties, dominated by the uncertainties 
on the cc cross section and on the CNM effects. The SHM cal-
culation shows a good agreement with the data over the entire 
centrality range. CIM, TM1 and TM2 calculations underestimate the 
experimental results towards the data points corresponding to the 
most central collisions despite the fact that the total cc cross sec-
tion assumed in TM1 and TM2 is significantly larger compared to 
the SHM and the CIM. The large model uncertainties do not allow 
a conclusion to be made on the phenomenology of charmonium 
production in nuclear collisions. This emphasizes the importance 
of a precise measurement of the total cc cross section, but also the 
need of using consistent model inputs, including the total cc cross 
section, the pp reference J/ψ cross section and CNM effects.

The inclusive J/ψ nuclear modification factor in Pb–Pb colli-
sions as a function of pT is shown in the left panel of Fig. 7 for 
the centrality intervals 0–20%, 20–40% and 40–90%. The system-
atic uncertainties shown as boxes around the data points include 
the systematic uncertainties from the Pb–Pb analysis while the un-
certainties from the pp reference, correlated over centrality, are 
shown as the gray band around unity. The colored boxes at high 
pT around unity indicate the correlated uncertainties due to the 
〈TAA〉 values used for the RAA calculation. These results are com-
patible with binary scaling for pT < 3 GeV/c, with the exception of 
the data point around 2 GeV/c which shows a downward statisti-
cal fluctuation for 40–90% centrality, while the J/ψ production is 
suppressed at higher pT. With the current uncertainties it is diffi-
cult to extract a centrality trend except for the highest pT interval, 
5–10 GeV/c, where a stronger suppression is observed in the most 
central collisions relative to the more peripheral centrality inter-

vals at a significance level of about 3σ . The results for the 20% 
most central collisions are compared with model calculations and 
shown in the right panel of Fig. 7. Both the SHM and TM1 models 
describe qualitatively the data. In these models, the increasing RAA
towards low pT is a consequence of the dominant contribution of 
(re)generated J/ψ . At high pT, the contribution from recombina-
tion decreases, and the J/ψ production is suppressed due to color 
charges in the medium. The main J/ψ sources at high pT are pri-
mordial production and feed-down from beauty decays. The SHM, 
where the J/ψ at high pT are produced only in the corona, over-
estimates the degree of J/ψ suppression.

Since the charm quark density, i.e. the cc cross section, is ex-
pected to decrease towards larger rapidity, the comparison to the 
forward-rapidity measurements is a valuable source of information. 
In the left panel of Fig. 8, the pT dependence of the J/ψ RAA in the 
20% most central Pb–Pb collisions at midrapidity is compared with 
the ALICE results measured at forward rapidity (2.5 < y < 4) [29]. 
The boxes around the data points represent systematic uncertain-
ties, while the boxes drawn around RAA = 1 show global uncer-
tainties on the pp reference due to uncertainties on the beam lu-
minosity and 〈TAA〉. In the low-pT range (pT < 5 GeV/c) these data 
indicate larger RAA values at midrapidity compared to those at for-
ward rapidity, with a combined statistical significance of nearly 4σ , 
compatible with expectations from a (re)generation scenario due 
to the larger primordial cc density at midrapidity. The rapidity de-
pendence of the inclusive J/ψ suppression, integrated over pT, is 
shown in the right panel of Fig. 8 for the 0–90% centrality interval. 
The value of the RAA at midrapidity is 0.97 ±0.05(stat.) ±0.1(syst.), 
and a monothonic decrease is observed towards forward rapid-
ity [29,53].

6. Conclusions

The measurements of the inclusive J/ψ yields and nuclear mod-
ification factors at midrapidity (|y| < 0.9) were performed in the 
dielectron decay channel in Pb–Pb collisions at a center-of-mass 
energy 

√
sNN = 5.02 TeV using an integrated luminosity of Lint ≈

10 μb−1 collected by the ALICE Collaboration. The results were 
presented as a function of transverse momentum in different col-
lision centrality classes.

The J/ψ transverse momentum dependent yields in central 
Pb–Pb collisions are well reproduced in the low pT range by an 
updated SHM calculation [49] and underestimated for large pT. 
The TM2 [25] transport calculations underestimate the J/ψ yields 
over the entire measured pT range. The J/ψ 〈pT〉 and 〈p2

T〉 show a 
decrease from peripheral collisions, where they are similar to the 
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Fig. 7. Inclusive J/ψ RAA at midrapidity in Pb–Pb collisions at √sNN = 5.02 TeV as a function of pT for different centrality intervals (left) and compared with model 
calculations [49,58] for the centrality interval 0–20% (right).

Fig. 8. Left: Inclusive J/ψ RAA in the 20% most central Pb–Pb collisions at √sNN = 5.02 TeV as a function of pT, at midrapidity and at forward rapidity [29,53]. Right: Rapidity 
dependence of the inclusive J/ψ RAA in the centrality interval 0–90%. The error bars represent statistical uncertainties, while the boxes around the data points represent 
systematic uncertainties. The boxes around unity represent global uncertainties on the pp reference due to normalization and 〈TAA〉. In the right panel, the correlated 
uncertainty of the point at midrapidity is included in the box around the data point.

values observed in pp collisions, towards most central collisions. 
This centrality-dependent behavior is qualitatively different com-
pared to the observations at lower energies from RHIC and SPS and 
can be explained through the interplay between the (re)generation 
process, dominant at low pT for central events at the LHC, color 
screening, and CNM effects like gluon shadowing. A good descrip-
tion of the observed trends is provided by the TM1 calculations, 
while the SHM calculations agree with the data for central colli-
sions only.

The pT-integrated nuclear modification factor as a function of 
the number of participant nucleons shows a moderate level of 
suppression in the range 50 < 〈Npart〉 < 300, and indicates an in-
crease towards central collisions. In the most peripheral collisions, 
our results are compatible with binary scaling of the J/ψ produc-
tion. The nuclear modification factor as a function of the transverse 
momentum shows a strong suppression, centrality dependent, for 
pT > 3 GeV/c but is compatible with unity or with a small en-
hancement at small pT, suggestive of the large contribution from 
the (re)generation process. Furthermore, from these measurements 
we observe significantly larger values for RAA compared to the re-
sults at forward rapidity [29] for both the pT-integrated values in 
the 0–90% centrality interval and for the pT-differential RAA in the 
low pT region (pT < 5 GeV/c) in the centrality interval 0–20%.

Consequently, these results strenghten the hypothesis that char-
monium at low pT is produced predominantly via (re)generation in 
the late stages of the collision at the LHC. However, due to the re-
maining experimental and theoretical uncertainties, the exact phe-

nomenology leading to these observations cannot be determined 
yet.
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J. Pan 143, A.K. Pandey 48, S. Panebianco 137, P. Pareek 49,141, J. Park 60, J.E. Parkkila 126, S. Parmar 99, 
S.P. Pathak 125, R.N. Patra 141, B. Paul 23,58, H. Pei 6, T. Peitzmann 63, X. Peng 6, L.G. Pereira 70, 
H. Pereira Da Costa 137, D. Peresunko 87, G.M. Perez 8, E. Perez Lezama 68, V. Peskov 68, Y. Pestov 4, 
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