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Abstract

The significance of symbioses between eukaryotic hosts and microbes extends from the

organismal to the ecosystem level and underpins the health of Earth’s most threatened

marine ecosystems. Despite rapid growth in research on host-associated microbes, from

individual microbial symbionts to host-associated consortia of significantly relevant taxa, lit-

tle is known about their interactions with the vast majority of marine host species. We outline

research priorities to strengthen our current knowledge of host–microbiome interactions and

how they shape marine ecosystems. We argue that such advances in research will help pre-

dict responses of species, communities, and ecosystems to stressors driven by human

activity and inform future management strategies.

Introduction

Within the vast and dazzling biological diversity that inhabits the world’s oceans, it would be

challenging to find a eukaryotic organism that does not live in close relationship with a
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microbial partner. Such symbioses, i.e., persistent interactions between host and microbe in

which none of the partners gets harmed and at least one of them benefits (Box 1), are

Box 1. Terminology used to discuss communities of microbes and
their interactions with hosts.

Following are key terms and concepts that we use in this paper (see also [7]).

Microbiome and microbiota

We use “microbiome” to refer to a community of microbes (organisms too small to see

without the aid of a microscope) found at a specific place and/or a specific time. We

avoid using the term “microbiota,” which has a complicated history (see [7]). Ideally, the

place and/or time should be specified when discussing the microbiome. For example,

“the seagrass microbiome” is the total of microbial communities found in association

with seagrass, and “the seagrass root microbiome” would be those microbial communi-

ties found in/on the roots of seagrass. We also consider host-associated microbiomes

broadly to include any and all kinds of microbes (e.g., bacteria, archaea, microbial

eukaryotes, or viruses), which can be transient or persistent, and have variable functional

impacts from beneficial to unimpactful to detrimental. Microbiomes can inhabit the

external and internal surfaces of virtually every eukaryote, from microscopic unicellular

diatoms to macroscopic organisms such as kelp, coral, seagrass, cephalopods, and verte-

brates [8].

Symbiosis

We use “symbiosis” here in the broad sense, meaning a persistent relationship between

two or more organisms in which at least one of them benefits. Symbioses come in three

subcategories: in “mutualism,” both or many partners benefit; in “parasitism,” one part-

ner benefits and the other(s) is/are harmed; in “commensalism,” at least one partner

benefits and the other(s) is/are unaffected. In many discussions of microbes or microbial

communities living in and on a host organism, it is frequently assumed that the microbe

is benefitting in some way, and the question then becomes, “What is the effect on the

host?” If the host benefits, this is a mutualism; if the host is unaffected, this is a commen-

salism; and if the host is harmed, this is a parasitism. It is important to note that these

categories are fluid in that the type of interaction between two species is often condi-

tional and depends on many factors including genotype (of all partners), environmental

conditions, and developmental stage, among others.

Health status and microbiomes

Much of the work on host-associated microbiomes revolves around whether the com-

munity of microbes in some way affects the health status of the host [87]. In some cases,

researchers have used terms like “healthy” or “dysbiotic” or “optimal” to describe a par-

ticular microbiome (e.g., of one host individual at one time) or pattern of change docu-

mented among particular groups. Although these terms can sometimes be useful in

general discussions of microbiomes, they are hard to define quantitatively or apply and

therefore more likely to confuse than to illuminate in practice. For example, an “opti-

mal” microbiome could vary between individuals and across environmental conditions.
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ubiquitous from shallow reefs to deep-sea hydrothermal vents. Studies on corals [1], sponges

[2], and mollusks [3–5] have revealed some of the profoundly important symbiotic roles

microbes play in the lives of their hosts. These studies, however, have tended to focus on a

small number of specific microbial taxa. In contrast, most hosts retain groups of many hun-

dreds of different microbes (i.e., a microbiome [6,7]), which themselves can vary throughout

the ontogeny of the host and as a result of environmental perturbations [8–10]. It is now clear

that, rather than host-associated microbes functioning independently, complex multi-assem-

blage microbiomes have major impact on the fitness and function of their hosts. Studying

these complex interactions and biological outcomes is difficult, but if we wish to truly under-

stand the origin and evolution of organisms and populations and the structure and function of

communities and ecosystems, we must advance our understanding of symbioses in host–

microbiome systems [11,12].

Here, we report on the opportunities in studies of marine eukaryotic host-associated micro-

biomes. First, we highlight our current knowledge with key examples of known ecosystem

functions of host-associated marine microbes. Second, we outline ways in which comparative

and experimental studies across hosts and habitats could be integrated to show how microbial

symbioses at the microbiome level contribute to host evolution, resilience, and conservation

strategies. There is a plethora of outstanding questions in ecology and evolution that could be

Similarly, there could be numerous and equivalent alternative microbiome states, each

of which could be referred to as “healthy,” which include transient or permanent neutral

members and/or active symbiotic players. The inverse of a healthy association is “dysbio-

sis,” often suggested to be any change in the composition and/or variability of a micro-

bial community that can cause any negative impact on the host. Generally, we believe

such terms need to be used with extreme caution and to be clearly and quantitatively

defined when in practice (see a useful discussion of this topic in [91]).

Ecosystem functions

“Ecosystem functions or processes” are generally considered to be aggregate fluxes of

energy or materials [14]. Ecosystem function has also sometimes been defined as the

joint effects of all processes, including fluxes of energy and chemical compounds, that

sustain an ecosystem over time and space through biological activities [92]. Generally,

ecosystem functioning depends disproportionately on a small subset of species in the

system. These include particularly “foundation species” (dominant sessile invertebrates,

plants, or algae that provide physical structure and have a strong role in structuring the

community [93]) and “keystone species,” (taxa that have a large effect on other species

that is disproportionate to their own relatively low abundance and that, if they were

removed, would drastically change the ecosystem). “Resilience” is the capacity of an eco-

system to respond to a perturbation or disturbance by recovering quickly. Another form

of response is “evolutionary adaptation,” in which species change genetically to adapt to

a new environment. Over several generations and through the process of natural selec-

tion, physical and behavioral features of organisms may adapt to function better in the

new environment. If hosts and their associated microbes change in concert, this is

termed “coevolution.” Moreover, when two coevolving organisms also undergo specia-

tion, this can lead to the formation of new species, i.e., co-speciation and co-

diversification.
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addressed by expanding the phylogenetic and ecological breadth of host-associated micro-

biome studies, including all possible interactions throughout the microbiome. We list two

questions that we believe would move the research field significantly forward, and we give spe-

cific examples of how these questions could be answered. There is strong empirical evidence

and new consensus that biodiversity (i.e., the richness of species and their interactions) perva-

sively influences the functioning of Earth’s ecosystems, including ecosystem productivity

[13,14]. However, this research has focused almost exclusively on macroorganisms. Because

microbial symbionts are integral parts of most living organisms [9,15], broadening our under-

standing of how microbial symbionts contribute to host performance and adaptability is

essential.

How microbial symbiosis impacts marine ecosystem functioning

Foundations of productive ecosystems

Ecosystem engineers, such as many types of corals, deep-sea mussels, and hydrothermal vent

tubeworms, contribute to primary productivity and create the structural habitats and nutrient

resources that are the foundation of their respective ecosystems [16]. All of these taxa engage

in mutualistic nutritional symbioses with microbes. There are many examples of marine nutri-

tional mutualisms in which microbes enable hosts to utilize resources or substrates otherwise

unavailable to the host alone. Such symbioses have been described in detail in reduced and

anoxic sediments (e.g., lucinid clams, stilbonematid nematodes, and gutless oligochaetes) and

hydrothermal vents (e.g., the giant tube worm Riftia pachyptila or Bathymodiolus deep-sea

mussels) [17]. Moreover, many foundational species of marine macroalgae are vitamin auxo-

trophs (for example, half of more than 300 surveyed species were unable to synthesize cobala-

min), and their productivity depends on provisioning from their epiphytic bacteria [18]. Reefs

often consist of scleractinian corals, one of the most well-known examples of a mutualistic

symbiosis, in which the dinoflagellate alga Symbiodiniaceae supplies the coral with glucose,

glycerol, and amino acids, while the coral provides the algae with a protected environment and

limiting compounds (e.g., nitrogen species) needed for photosynthesis. However, this is a clas-

sic example of a mutualistic symbiosis that is sensitive to environmental disturbances, which

can disrupt the fragile interactions between host and microbe. When reefs become warm and

eutrophic, mutualistic Symbiodiniaceae may induce cellular damage to the host and/or seques-

ter more resources for their own growth, thereby injuring and parasitizing their hosts [19,20].

Reef fishes, which seek homes on coral reefs, are important in fostering coral recovery in the

wake of disturbance. Epulopiscium bacteria in the guts of surgeonfishes produce enzymes that

allow their hosts to digest complex polysaccharides, enabling the host fish to feed on tough,

leathery red and brown macroalgae [21]. This trophic innovation has facilitated niche diversi-

fication among coral reef herbivores. Surgeonfishes are critical to the functioning of Indo-

Pacific coral reefs, as they are among the only fishes capable of consuming large macroalgae

that bloom in the wake of ecosystem disturbance and suppress coral recovery [22].

Along with more standard examples of nutritional symbioses in animals, recent advances

in genome sequencing technology have led to the discovery of many endosymbiotic associa-

tions in “protists” (a general term to refer to a non-monophyletic collection of unicellular

eukaryotes that are not fungi or in the Plantae group) that illustrate the incorporation of vari-

ous new biochemical functions, such as photosynthesis, nitrogen fixation and recycling, and

methanogenesis, into protist hosts by endosymbionts [23]. Endosymbiosis in protists is wide-

spread and represents an important source of innovation. Previously unrecognized metabolic

innovations of marine microbial symbioses that are ecologically important are discovered reg-

ularly [24]. For example, Candidatus Kentron (a clade of Gammaproteobacteria found in
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association with ciliates) nourish their ciliate hosts in the genus Kentrophoros and recycle ace-

tate and propionate, which are low-value cellular waste products from their hosts, into biomass

[25]. Another interesting example is found in the anaerobic marine ciliate Strombidium pur-
pureum [26]. The ciliate lives under anaerobic conditions and harbors endosymbiotic purple

nonsulfur bacteria that contain both bacteriochlorophyll a and spirilloxanthin. The endosym-

bionts are photosynthetically active; hence, this symbiosis represents an evolutionary transi-

tion of an aerobic organism to an anaerobic one while incorporating organelles.

Reproduction and host development

Extending beyond nutritional symbioses, microbial symbionts can alter the reproduction,

development, and growth of their hosts. Specific bacterial strains in marine biofilms often

directly control the recruitment of planktonic larvae and propagules, either by inhibiting set-

tlement or by serving as a settlement cue [27,28]. For example, the settlement of zoospores

from the green alga Ulva intestinalis onto the biofilms of specific bacteria is mediated by their

attraction to the quorum-sensing molecule, acyl-homoserine lactone, secreted by the bacteria

[29]. Classic examples of marine host–microbe developmental dependence include the obser-

vation that algal cultures grown in isolation exhibited abnormal morphologies [30] and the

subsequent discovery of morphogenesis-inducing compounds, such as thallusin, secreted by

epiphytic bacterial symbionts [31]. Bacteria are also known to influence the growth of marine

plants, macroalgae, and phytoplankton by secreting phytohormones such as indole acetic acid

and cytokinin-type hormones [32–34]. In the marine choanoflagellate Salpingoeca rosetta,

both multicellularity and reproduction are triggered by specific bacterial cues, offering a view

into the origins of bacterial control over animal development (reviewed by Woznica and King

[35]). The benefit to the bacteria, in return, is that they receive physical space to colonize at

particular points in the water column typically accessible only to planktonic microbes. Perhaps

the best-studied example of intimate host–microbe interactions controlling animal develop-

ment is the Hawaiian bobtail squid Euprymna scolopes [36]. It lives in a mutualistic symbiosis

with the bioluminescent bacteria Aliivibrio fischeri. The bacteria are fed a solution of sugars

and amino acids by the host and, in return, provide bioluminescence for countershading and

predator avoidance [5]. This mutualism with microbes provides a selective advantage for the

squid in predator–prey interactions. Another invertebrate example can be found in tube-

worms, in which Hydroides elegans metamorphosis is mediated by a bacterial inducer and

mitogen-activated protein kinase (MAPK) signaling in biofilms [37].

Biofouling and microbial community assembly

Some host-associated microbes produce compounds that prevent biofouling and regulate micro-

biome assembly and maintenance in many marine organisms, including sponges, macroalgae,

and corals [38,39]. For example, tropical corals harbor diverse bacteria in their surface mucus

layer that produce quorum-sensing inhibitors and other antibacterial compounds as a defense

against colonization and infection by potential microbial pathogens [1]. Epiphytic bacteria of

marine macroalgae excrete a diverse chemical arsenal capable of selectively shaping further bac-

terial colonization and deterring the settlement of biofouling marine invertebrates such as bryo-

zoans [32,40]. As in corals, these diverse, microbially secreted compounds include not only

bactericidal and bacteriostatic antibiotics but also compounds like halogenated furanones, cyclic

dipeptides, and acyl-homoserine lactone mimics that disrupt bacterial quorum sensing and

inhibit biofilm formation [41]. The bacteria likely are able to utilize the carbon-rich exudates

from their hosts [42,43]. For example, in the case of giant kelp, the alga emits approximately

20% of primary production as dissolved organic carbon [43]. Whereas these prior examples
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illustrate how the microbiomes can protect hosts from surface colonization, a similar phenome-

non has also been observed internally in the shipworm Bankia setacea, in which symbionts pro-

duce a boronated tartrolon antibiotic thought to keep the wood-digesting cecum clear of

bacterial foulants [44]. By producing antimicrobial compounds, these microbes are able to

defend their niche space to prevent other organisms from crowding them out.

Biogeochemical cycling

Host-associated microbiomes also influence biogeochemical cycling within ecosystems with

cascading effects on biodiversity and ecosystem processes. For example, microbial symbionts

comprise up to 40% of the biomass of their sponge hosts [45]. Through a process termed the

“sponge-loop,” they convert dissolved organic carbon released by reef organisms into particu-

late organic carbon that can be consumed by heterotrophic organisms [2]. Along with the

coral–Symbiodiniaceae mutualism, this sponge-bacterial symbiosis helps explain Darwin’s

paradox, i.e., how highly productive coral reef ecosystems exist within otherwise oligotrophic

tropical seas. Some sponge symbionts play a significant role in the marine phosphorus cycle by

sequestering nutrients in the form of polyphosphate granules in the tissue of their host [46]

and nitrogen cycling, e.g., through nitrification, denitrification, and ammonia oxidation

[2,39]. Many macroalgal-associated bacteria are specifically adapted to degrade complex algal

polysaccharides (e.g., fucoidan, porphyran, and laminarin [47,48]) and modify both the quality

and quantity of organic carbon supplied to the ecosystem [42,49]. The sulfur-oxidizing gill

endosymbionts of lucinid clams contribute to primary productivity through chemosynthesis

and facilitate the growth of seagrasses (important foundation species) by lowering sulfide con-

centrations in tropical sediments [50]. Gammaproteobacterial symbionts of lucinid clams and

stilbonematid nematodes were also recently shown to be capable of nitrogen fixation (bacterial

symbiont genomes encode and express nitrogenase genes [51]), highlighting the role of symbi-

otic microbes in nutrient cycling in shallow marine systems.

These examples demonstrate the importance of microbial symbioses for the functioning of

ocean ecosystems. Understanding symbioses with this same level of detail in the context of

complex communities (i.e., whole microbiomes) remains ripe for exploration and, indeed,

requires a more integrated framework from the fields of microbiology, evolutionary biology,

community ecology, and oceanography. Individual taxa within the microbiome may help

hosts withstand a wide range of environmental conditions, including those predicted under

scenarios of climate change. Next, we explore two different avenues of how interdisciplinary

collaborations could advance this line of research.

Two example outstanding questions: The influence of

microbiomes in a changing ocean

I. How can host-associated microbiomes influence host adaptation in a

changing ocean?

Global change creates new niches and conditions to which organisms must adapt. Whether

and how marine species adapt to change may depend on their microbiomes. Host-associated

microbes can be treated as extended host phenotypes if host and microbe show a concerted

adaptive response [17]. Geological events have played central roles in driving evolution [52].

Studying them can provide great insight into the processes of adaptive evolution [53]. The for-

mation of the Isthmus of Panamá, for example, represents a natural evolutionary experiment.

Until relatively recently (on a geological time scale), the Tropical Eastern Pacific (TEP) and

Caribbean Sea were connected, and marine life could mix freely [54,55]. Before the Isthmus
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formed, the Caribbean and the TEP shared a homogenous, nutrient-rich biotic realm [54].

Over millions of years, the rising land bridge blocked interoceanic currents, causing the Carib-

bean to become oligotrophic and allowing the great tracts of reefs and seagrasses we know

today to proliferate [56]. Conversely, the Pacific coast continued to be dominated by nutrient-

rich ecosystems [57,58], and reefs remain rare and seagrasses all but nonexistent. Within this

major environmental and ecological divergence, once-contiguous populations became isolated

and followed distinct eco-evolutionary paths [55]. Today, all major groups (except corals) have

representative species pairs that were split by the Isthmus, and most have examples distributed

across their respective clades [55,59]. The Isthmus system therefore offers a remarkable oppor-

tunity to explore drivers and processes of speciation, diversification, and adaptation with a rep-

licated suite of taxonomic and functional host–microbiome assemblages, often with well-

calibrated phylogenetic support (Fig 1). We can explore questions of parallel versus differential

evolution between hosts and their microbiomes, reveal general processes of adaptive evolution

(e.g., loss/gain of genes in microbial genomes), and unveil the relative contribution of vertical

and horizontal transmission in marine host communities [60].

Vertical transmission of symbiotic microbes to the offspring is expected to stabilize the

association between a given host and microbe, thereby making phenotypic traits of the host–

microbe interaction potentially heritable. This stabilization could, in turn, drive adaptive evo-

lution of host–microbe interactions if it allows host populations to adapt to new ecological

niches or persist in a changing environment [15,61]. In contrast, horizontal transmission of

symbiotic microbes generally requires some form of selective host filtering of beneficial symbi-

onts and/or host sanctioning of detrimental symbionts and cheaters in order to align host and

microbial interests and coordinate their adaptive responses [62]. Indeed, some corals can

expulse their Symbiodiniaceae algal symbionts in exchange for a set that is better adapted to a

given condition [63]. Consequently, horizontally acquired symbionts have more opportunity

to exchange genes with environmental and/or free-living conspecifics and can thereby increase

their adaptive potential [64]. The acquisition of novel symbionts has been postulated as a form

of phenotypic plasticity that could potentially assist foundational seagrass and macroalgal spe-

cies acclimatize to a changing climate [65]. Studying taxonomic, genomic, and functional

microbial compositions in combination with the phylogenies and habitats of their hosts either

side of the Isthmus will help identify which microbes are tightly associated with the host, their

mode of transmission, and their genomic features [66,67]. The Isthmus system is not an iso-

lated example. The relatively recent emergence of oceanic islands (e.g., Marquesas, Hawai’i, or

the Galapagos Islands), for example, can be used to reveal processes of coevolution in marine

hosts and their associated microbes [68]. Indeed, natural events like these have been instru-

mental in resolving ecological and evolutionary processes in multicellular life. So long as test-

able predictions and hypotheses are constructed, we propose they can offer significant insights

into host–microbiome assemblage evolution and ecosystem functions.

II. How can we use marine host-associated microbiomes to inform

conservation?

Human activities are directly affecting the composition of natural microbiomes. Examples

include the introduction of pathogens as well as non-native species and their microbial symbi-

onts [69] and environmental contamination with antimicrobials in offshore farms [70]. Con-

ventional aquaculture practices can promote high numbers of diverse bacteria on farmed hosts

(some of them symbionts and some pathogens), that, in combination with the use of antibiot-

ics, can develop into hotspots for horizontal gene transfer [71] and consequent dissemination

of antibiotic resistance [70]. The composition of host-associated microbiomes may also be
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Fig 1. The formation of the Isthmus of Panamá split an ocean into two, creating a natural experiment to explore

general processes of host–microbe evolution. (A) Panmictic populations of hosts and their microbiomes living under

similar environmental conditions became (B) physically isolated when the land bridge formed between North and
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modified by other stressors, such as elevated seawater temperatures associated with global cli-

mate change or the locally discharged water from power plants [72], oil spills [73], and contami-

nation with heavy metals from mining activities [74], with potential effects on host biology.

Microbial-based mitigation strategies can be focused on specific contaminants or threats (e.g.,

oil-degrading bacteria, heavy metal immobilization, biological control of pathogens) or more

broadly, based on the maintenance or improvement of the host health. For example, corals

exposed to high temperatures were significantly more resistant to bleaching when inoculated

with a consortium of microorganisms isolated from native healthy host corals [75]. Jin Song

and colleagues (2019) summarized and discussed examples of successful probiotics used to pro-

mote animal health and conservation in the wild [76]. Such mitigation strategies, like these that

make use of host-associated microbiomes by direct bioaugmentation (i.e., enriching the envi-

ronment with specific microbes) or through the biostimulation of specific metabolisms to

enhance host resistance and recovery, are promising but remain rare and in their infancy.

Effective microbially based mitigation will benefit from a thorough understanding of the

identity and physiology of beneficial microbes and the attributes of healthy microbiomes,

although microbial mitigation via bioaugmentation may only be effective for horizontally

acquired symbionts. To this end, during the most successful trials of microbiome engineering,

scientists have considered niche-specific traits and the manipulation of stable and native

groups rather than the use of generic microbial cocktails [77]. Nevertheless, manipulative

approaches can succeed even without knowing the detailed mechanisms a priori, as long as a

rigorous experimental design is applied, which can eventually lead to the discovery of key

strains and mechanisms [39,78].

From the perspective of applied ecosystem recovery, the most promising focal organisms

for such bioaugmentation projects are keystone and foundational organisms and their associ-

ated microbiomes, as such efforts can cascade throughout the ecosystem by enhancing recov-

ery of the central food source and biological niche within the habitat. Thus, efforts to quantify

and compare the net effects of microbiome functions across multiple hosts and contexts (e.g.,

health status, life stage, and habitat) are critical to advancing our understanding of the roles of

microbiomes for threatened hosts and ecosystems [19,79]. The fact that there are microbiomes

specific to different developmental stages in tropical corals suggests that microbiomes may

serve distinct, specific roles throughout host life cycles [80]. Environmental stressors can com-

promise or eliminate mutualistic microbe species that need to be replaced by beneficial, or at

least neutral, microbes to passively prevent the spread of diseases. Incubation experiments and

mesocosm setups are urgently needed to study the individual and interactive effects of increas-

ingly common disturbances such as increased temperature, changes in partial pressure of car-

bon dioxide and acidification, nutrient enrichment, and physical damage on foundation and

keystone species’ microbiomes [81]. The main goal for future studies of microbiomes in con-

servation biology is understanding the degree to which important functional roles can be

maintained in nonoptimal environmental conditions and whether diverse communities of

transient microbes may allow hosts to broaden their realized ecological niche [82,83]. Describ-

ing and understanding the organizing principles of microbiome assembly and maintenance is

critical for developing effective microbial-based mitigation strategies [84,85]. Studying shifts

in microbiome taxonomic composition and functional diversity in organisms that experience

South America. Well-calibrated phylogenetic data are available for marine animal hosts such as clams, fishes, porcelain

crabs, snapping shrimps, and urchins. (C) Example of sister species isolated by the Isthmus of Panamá (left: Eastern

Pacific, right: Caribbean): fish, Abudefduf saxatilis and Abudefduf troschelii; clams, Ctena mexicana and Ctena
distinguenda; and shrimps, Alpheus panamensis and Alpheus formosus. Photo credit: fish, Ross Robertson (A. saxatilis)

and Ettore Balocchi (A. troschelii); clams, Laetitia G. E. Wilkins and Benedict Yuen; shrimps, Arthur Anker.

https://doi.org/10.1371/journal.pbio.3000533.g001

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000533 November 11, 2019 9 / 15

https://doi.org/10.1371/journal.pbio.3000533.g001
https://doi.org/10.1371/journal.pbio.3000533


drastic seasonal or thermal shifts (e.g., temperate organisms or species living in intertidal

zones) will help identify these principles [86,87]. For example, the microbiome of the temper-

ate coral Astrangia poculata resembles a diseased tropical coral microbiome in the winter

months, during host quiescence, and it transitions in the spring to a community dominated by

taxa that continue to be present throughout the year [88]. This seasonal shift represents an

opportunity to identify the molecular basis of microbiome assembly within an animal host.

Such complex interactions among microbial species and their hosts can be informed by theory

and empirical generalizations in community ecology developed primarily from studies of

macroorganisms, including succession, community assembly, metacommunities, multitrophic

interactions, disturbance, and restoration [84–86].

Integration of information across hosts for an ecosystem-level

understanding of the roles of microbial symbionts

Future progress in microbial symbioses research—and, indeed, in our understanding of eco-

system functioning generally—depends on adopting a microbiome perspective and expanding

the scope of inquiry beyond single host taxa. First, this will require a broad comparative

approach to identify similarities and differences across marine host species within a phyloge-

netic framework, especially with respect to their physiologies, microbiome profiles, and habitat

distributions. Second, studies of terrestrial hosts and microbiomes can inform research priori-

ties and generate hypotheses to be tested in marine environments [61,89]. Thus, we see great

value in building a framework of broad collaborative networks. Collaborative efforts are more

sustainable, and ultimately more productive, if we credit online resource generators, share

data and workflows, and acknowledge others [90].

Identifying the factors that promote the contribution of microbial symbionts to host adapt-

ability is fundamentally important to understanding ecological and evolutionary processes as

well as predicting the response of populations, species, and communities to a changing envi-

ronment. Key events (e.g., formation of the Isthmus of Panamá) can provide model systems to

test hypotheses about the roles of marine host-associated microbiomes for ecosystem function-

ing. The biggest payback will likely come from a focus on taxa that have disproportionately

large roles in the ecosystem, including dominant, foundational, and keystone species. We rec-

ommend special focus on how horizontally transferred microbes play critical roles in the

hosts’ ability to respond to environmental change because we predict that these types of symbi-

onts may be able to adapt quicker than their vertically transmitted counterparts. Together,

these research directions will enhance our ability to predict how climate change, invasion by

non-native species, food web disruption, and environmental contamination will affect species

and inform practical strategies for directly assisting marine conservation in novel ways. For

example, understanding the influence of the microbiome on host development and function

will ultimately help prioritize management decision.
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