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Coral reefs are highly diverse marine ecosystems increasingly threatened on a global
scale. The foundation species of reef ecosystems are stony corals that depend on
their symbiotic microalgae and bacteria for aspects of their metabolism, immunity, and
environmental adaptation. Conversely, the function of viruses in coral biology is less well
understood, and we are missing an understanding of the diversity and function of coral
viruses, particularly in understudied regions such as the Red Sea. Here we characterized
coral-associated viruses using a large metagenomic and metatranscriptomic survey
across 101 cnidarian samples from the central Red Sea. While DNA and RNA
viral composition was different across coral hosts, biological traits such as coral
life history strategy correlated with patterns of viral diversity. Coral holobionts were
broadly associated with Mimiviridae and Phycodnaviridae that presumably infect protists
and algal cells, respectively. Further, Myoviridae and Siphoviridae presumably target
members of the bacterial phyla Actinobacteria, Firmicutes, and Proteobacteria, whereas
Hepadnaviridae and Retroviridae might infect the coral host. Genes involved in bacterial
virulence and auxiliary metabolic genes were common among the viral sequences,
corroborating a contribution of viruses to the holobiont’s genetic diversity. Our work
provides a first insight into Red Sea coral DNA and RNA viral assemblages and reveals
that viral diversity is consistent with global coral virome patterns.
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INTRODUCTION

Coral reefs comprise one of the most diverse ecosystems in the marine environment. Reef-building
corals are the foundation of this ecosystem supporting thousands of animal species (Costanza et al.,
1997; Moberg and Folke, 1999; Rohwer et al., 2002). Corals also offer persistent, protected, and
nutrient-rich microenvironments to anchor stable partnerships with a wide diversity of microbes.
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Single-celled dinoflagellates of the family Symbiodiniaceae
provide energy for corals to build massive three-dimensional
calcium carbonate skeletons (Muscatine et al., 1981; Burriesci
et al, 2012), while some bacteria presumably contribute to
metabolic cycling and may be involved in immunity and
environmental adaptation (Raina et al., 2009; Ziegler et al., 2017;
Robbins et al., 2019; Voolstra and Ziegler, 2020). While coral-
associated bacterial and Symbiodiniaceae communities have been
extensively studied, viral diversity and function have only recently
been explored (for an overview consult the following reviews: van
Oppen et al., 2009; Vega Thurber and Correa, 2011; Sweet and
Bythell, 2017; Vega Thurber et al., 2017).

Early studies in this field used microscopy (Wilson et al.,
2004; Davy and Patten, 2007; Lohr et al., 2007), flow cytometry
(Seymour et al., 2005; Patten et al., 2006), or amplification-
and metagenomics-based genomic analyses (Wegley et al., 2007;
Marhaver et al., 2008; Vega Thurber et al., 2008) to show
that corals contain a variety of viruses that infect different
compartments of the coral holobiont including the associated
microalgae, and other organismal entities. Metagenomic surveys
of coral viromes have found that single-stranded DNA (ssDNA)
viruses are the predominant viral type in coral species from the
Great Barrier Reef (Correa et al., 2016; Weynberg et al., 2017a)
and the Caribbean Sea (Wegley et al., 2007; Soffer et al., 2014).
Phages from the order Caudovirales as well as the eukaryotic
viral families Herpesviridae and Phycodnaviridae were shown
to consistently associate with corals globally (Wegley et al,
2007; Marhaver et al., 2008; Vega Thurber et al., 2008; Correa
et al, 2012; Weynberg et al., 2017a). Further, several studies
assessing Symbiodiniaceae cultured isolates found sequences
similar to protist and plant infecting viruses in the families
Potyviridae, Picornaviridae, Herpesviridae, Phycodnaviridae, and
Mimiviridae (among others) (Briwer et al., 2017; Lawrence et al.,
2017; Weynberg et al., 2017b) and some postulated, a potential
role of viruses in the thermotolerance of Symbiodiniaceae
(Correa et al, 2012, 2016; Levin et al, 2016; Weynberg
et al, 2017b). In addition, metatranscriptomes of the coral
model Exaiptasia pallida (commonly referred to as Aiptasia)
were characterized by a high prevalence of the viral families
Herpesviridae, Partitiviridae, and Picornaviridae, similar to corals
(Brawer and Voolstra, 2018).

Despite the pervasive abundance of viral particles in marine
environments, including coral reefs (Paul et al., 1993; Payet et al.,
2014), and their seeming association with corals, even less is
known about their functional roles in the coral holobiont. Studies
that addressed the function of viruses mostly focus on their
detrimental effects (see Vega Thurber et al., 2017 for a review).
For instance, herpes-like viruses rapidly increased in response
to abiotic stress in corals (Vega Thurber et al., 2008). Further,
nucleocytoplasmic large DNA viruses (such as Phycodnaviridae,
Mimiviridae, and Iridoviridae) were found to be more abundant
in tissues affected by White Plague Disease compared to the
healthy tissue of corals (Soffer et al., 2014). Similarly, bleached
corals were found to harbor increased abundances of small
circular ssDNA viruses, including Nanoviridae, Circoviridae, and
Geminiviridae (Soffer et al.,, 2014; Correa et al., 2016). This
suggests a contribution of viruses to coral bleaching and disease,

although it is unclear whether altered viral communities are
connected to the underlying cause or simply a consequence
of the impacted coral holobiont. Viruses are also proposed to
play an important role in environmental acclimatization and
adaptation (van Oppen et al., 2009; Levin et al., 2016; Torda et al.,
2017). In addition, viruses of coral-associated eukaryotes and
bacteria are hypothesized to contribute to holobiont functional
diversity. For instance, adherence of some bacteriophages to coral
mucosal surfaces regulates the abundance of specific bacteria
through targeted infection and lysis, fulfilling an immunity-
like function (Barr et al., 2013). Moreover, phage- and virus-
induced mortality of bacterial and host cells may contribute
to nutrient provisioning within the holobiont (the “revolving
door” hypothesis) (Torda et al., 2017; Vega Thurber et al., 2017).
Likewise, viral genes encode for auxiliary functions that may be
beneficial to the holobiont. For instance, some coral-associated
viruses carry genes related to photosynthesis that are suggested to
alleviate and/or delay damage to Symbiodiniaceae photosystems
from high temperature (Weynberg et al., 2017a).

Regardless of such recent efforts, a basic understanding of viral
diversity associated with a phylogenetically diverse set of corals
or across regions is unavailable. To date, only a limited number
of studies have systematically examined the underlying virome
variation among coral species. Thus, to advance knowledge in
this field, we here provide the first assessment of viral diversity
associated with several coral genera from the central Red Sea. We
employed an untargeted metagenomics and metatranscriptomics
approach that aimed to avoid known biases and thus more
completely describe all viral genome types (RNA- or DNA-
based) and viral families associated with a broad coral host
range. We generated metagenomes and metatranscriptomes of
101 cnidarian samples collected from 14 different genera in the
central Red Sea. Taxonomic assignment of more than 800 million
high-quality read pairs (i.e., >1.6 billion sequences, comprising
497 Gb) reveals that coral viromes adhere to coral taxonomical
and biological traits.

MATERIALS AND METHODS

Sample Collection, Nucleic Acid
Extraction, Sequencing

From twelve scleractinian and two cnidarian outgroups species
we collected fragments from five replicate colonies per species
via SCUBA on May 17-18, 2016, at Al Fahal reef (N 22.3034, E
38.9602) in the central Red Sea. To best evaluate the diversity
of phage and eukaryotic viruses within Red Sea Scleractinia and
their relatives, we targeted species that together represent 12
different genera and comprise many coral clades and life history
strategies (Table 1). Coral and outgroup specimens were collected
using a hammer and chisel or bone cutters and placed in pre-
labeled sterile Whirl-Paks. Upon returning to the boat, samples
were immediately frozen in a liquid nitrogen dry shipper and then
transferred to the laboratory for storage and processing.

In total, 70 field samples were collected, consisting of
5 biological replicates (individual cnidarian colonies) per
species x 14 species. Nucleic acids for all 70 field samples
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TABLE 1 | Coral species collected from the Red Sea for assessment of associated viruses.

Species Family Order Major Life Growth Mode of Sexual Substrate Wave MG MT
(Molecular) clade history form larval system exposure
strategy development preference
Acanthastrea  Lobophyllidae Scleractinia robust Stress- massive spawner hermaphrodite attached broad X
echinata tolerant
Acropora Acroporidae Scleractinia complex Competitive  tables spawner hermaphrodite attached broad X
cytherea
Diploastrea Diploastraeidae  Scleractinia robust Stress- massive spawner gonochore attached broad X X
heliopora tolerant
Fungia sp. Fungiidae Scleractinia robust Stress- massive spawner gonochore unattached broad X
tolerant
Galaxea Euphyllidae Scleractinia complex Stress- massive spawner gonochore attached protected X X
fascicularis tolerant
Mycedium Merulinidae Scleractinia robust Generalist laminar spawner hermaphrodite attached protected X X
elephantotus
Pachyseris Pachyseridae Scleractinia complex  Generalist laminar spawner gonochore attached broad X X
speciosa
Pavona Agariciidae Scleractinia complex Stress- encrusting spawner gonochore attached broad X
varians tolerant
Plerogyra Plesiastreidae Scleractinia robust Stress- massive spawner hermaphrodite attached protected X
sinuosa tolerant
Pocillopora Pocilloporidae Scleractinia robust Competitive branching spawner hermaphrodite attached broad X X
verrucosa
Porites lutea Poritidae Scleractinia complex Stress- massive spawner gonochore attached protected X X
tolerant
Stylophora Pocilloporidae Scleractinia robust Weedy branching brooder hermaphrodite attached exposed X X
pistillata
Millepora Milleporidae  Anthomedusae NA NA NA NA NA NA NA X
platyphylla
Xenia sp. Xeniidae QOctocorallia NA NA NA NA NA NA NA X

NA, not applicable. Coral biological traits were taken from the Coral Trait Database (Madin et al., 2016). Traits for Fungia were annotated from Fungia fungites. Reproduction
traits for Acropora cytherea and Plerogyra sinuosa were missing from the coral trait database and therefore taken from previous reports (Mundy and Babcock, 2000).
Specimens were collected from 12 scleractinian corals from the robust and complex clades and 2 outgroups. Scleractinian corals fall within 11 families and represent four

different functional groups.

were extracted and processed for metagenomes but three
metagenomes were excluded due to low amount of DNA
extracted, resulting in 67 metagenomics libraries. A subset of
40 coral samples, consisting of 5 biological replicates (individual
coral colonies) per species X 8 species were processed for
metatranscriptomes, but six samples were excluded due to low
amount of RNA extracted, resulting in 34 metatranscriptomic
libraries. A total of 101 cnidarian samples (67 metagenomes
and 34 metatranscriptomes) were generated from the 70 field
samples, and of those, a total of 57 metagenomes plus 29
metatranscriptomes were included in the analysis.

DNA and RNA were extracted from 70 cnidarian fragments
using the RNA/DNA AllPrep Kit (Qiagen, United States)
with modifications. For DNA isolation, coral fragments were
defrosted, and coral surface mucus layer and tissue were blasted
off from the skeleton using a pressurized air gun. Then ca.
30 mg of air-blasted tissue slurry was weighted out in a sterile
weight boat and 600 1 of lysis buffer (RLT buffer by Qiagen)
was added to the slurry. The mixture was homogenized with
a sterile 20-gauge needle on a 1-ml syringe and transferred in
a sterile 2-ml tube. DNA was then extracted as recommended
by the manufacturer. For RNA isolation, frozen samples were

placed in pre-cooled and sterile mortars and pulverized in the
presence of liquid nitrogen. Thus, RNA samples contain nucleic
acids from the coral skeleton, mucus and tissue, while DNA
samples contain nucleic acids from the coral mucus and tissue.
A 2-ml volume of lysis buffer and beta-mercaptoethanol solution
were added to the still frozen slurry, and samples were then
homogenized with a 20-gauge needle on a 1-ml syringe. RNA was
then extracted as recommended by the manufacturer. All DNA
and RNA extractions were quantified on a Qubit (Thermo Fisher
Scientific, United States) prior to sequencing library preparation.

Metagenomic libraries were generated using the NEBNext
Ultra IT DNA Library Kits and 100 ng of DNA per sample. First
the DNA was sheared to approximately 250-300 bp (Covaris
M2). Then, sheared DNA was end-repaired and A-tailed with
a single adenine. Following this, adapters were ligated to the
end-repaired A-tailed DNA fragments. For size selection of
250 bp fragment inserts, Agencourt AMPure XP beads (Beckman
Coulter) were used. Library enrichment was conducted with
Mumina TruSeq HT indexes (dual index) using six cycles of
PCR. For quality control of the libraries a Bioanalyzer DNA 1000
Chip (Agilent Technologies) was used, followed by quantification
using the Qubit BR DNA system (Invitrogen), and subsequent
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pooling in equimolar ratios to a final concentration of 10 nM.
Lastly, the pooled libraries were re-quantified using qPCR (KAPA
Biosystems library quantification on ABI HT7900, Applied
Biosystems) and paired-end sequenced (2 x 300 bp) on the
[lumina NextSeq 500 platform at 1.8 pM with 1% PhiX.

Metatranscriptomic libraries were generated using the
NEBNext Ultra Directional RNA Library kit. About 100 ng
of total RNA were fragmented to an approximate final size of
300 bp, equating to an incubation time of 10 min at 94°C. The
manufacturer’s protocol was followed for the remainder of the
steps. Size selection of the library was performed using AMPure
XP beads for size selection of 300 bp fragment inserts. Dual
indexes were used in the library enrichment step. The library
was enriched using 12 cycles of PCR. Libraries were quality
checked using the Agilent Bioanalyzer DNA 1000 Chip. Libraries
were quantified using the Invitrogen Qubit BR DNA system and
pooled in equimolar ratios to a final concentration of 10 nM. The
pool was re-quantified using qPCR, KAPA Biosystems Library
quantification, using the ABI HT7900. Libraries were paired-end
sequenced (2 x 300 bp) on the Illumina NextSeq500 platform at
1.8 pM with 1% PhiX.

Data Analysis

Illumina adaptors and low-quality reads (quality score below
15, length below 40 bp) were removed using Trimmomatic
v0.36 (Bolger et al., 2014). We first aimed for a contig-based
approach using MEGAHIT v1.1.1-2 (Li et al, 2015), but a
large fraction of putative viral reads remained unassembled
and therefore we opted for a read-based approach using Kaiju
(see below). To explore overall taxonomic read distribution
we used CCMetagen v1.1.5 (Marcelino et al, 2020). The
majority of reads were annotated to Anthozoa (86.46% of
annotated sequences in coral samples) and Hydrozoa (38.89%
of annotated sequences in outgroup samples), and to a lower
extend Dinophyceae (6.18% of annotated sequences across all
samples) (Supplementary Figure S1A and Supplementary
Table S5). Thus, as expected, a majority of sequence reads
stem from the respective cnidarian host or the associated
microalgae. To prepare data for analysis in Kaiju, we removed
cnidarian read pairs using bbsplit function from BBMap
v38.24 (Bushnell, 2014) against a collection of sequences
and genomes belonging to the NCBI taxonomy ID 6073
(Cnidaria) deposited in the database. Metatranscriptomic
read pairs were additionally compared against the SILVA
reference database release 132 (Quast et al, 2013) using
SortMeRNA v2.1b (Kopylova et al., 2012) to remove rRNAs.
The remaining metagenomic and metatranscriptomic read
pairs were taxonomically annotated using the maximum exact
matches (MEMs) mode of Kaiju v1.7.2 with a minimum match
length of 11 (Menzel et al, 2016). We queried the NCBI
BLAST nr_euk database that includes all proteins belonging to
viruses, archaea, bacteria, dinoflagellates, and other microbial
eukaryotes (2019-06-25).

Metagenomes and metatranscriptomes with no replicates
or with less than 50 read pairs annotated as viral were
removed from downstream analyses (underlined samples shown
in Supplementary Tables S1, S2) as well as taxa with

relative abundance lower than 0.1%. Viral family abundances
were normalized by sequencing depth, and statistical analyses
and plotting were performed with R v3.4.2 (R Development
Core Team, 2010). Average relative abundances of sequences
annotated to the most abundant 20 viral families for each
coral species were represented as bar plots using ggplot2
v3.0.0 (Wickham, 2016). Observed number of families were
calculated using the estimateR function of the package Vegan
(Oksanen et al,, 2013). Shapiro-Wilk tests confirmed alpha
diversity estimate values were not normally distributed. Overall
significant differences were calculated with Kruskal-Wallis
tests and pairwise post hoc comparisons were done using
the Dunn’s test. P-values from multiple testing were adjusted
using the False Discovery Rate (FDR) correction for multiple
testing. The variation on viral communities was evaluated
by pairwise Permutational Multivariate Analysis of Variance
(PERMANOVA) using the wrapper function “pairwise.adonis”
(Arbizu, 2019) for multilevel pairwise comparison from “adonis”
function of the package Vegan in R. Hierarchical clustering
was done using Ward’s minimum variance method using
the “hclust” function. A distance-based redundancy analysis
(RDA) was performed using Bray-Curtis dissimilarity matrices
of logl0(1 + x) transformed viral family abundances using
“capscale” from Vegan implemented in Phyloseq (McMurdie
and Holmes, 2013). RDAs of logl0(l1 + x) transformed
viral family abundances were independently constrained to
taxonomical and biological host traits and therefore the sum
of their inertia values lead to >100%. We compared the
relative influence of each trait on viral diversity by z-score
normalizing inertia scores within traits and representing
them as heatmaps for the purpose of depicting which traits
have stronger influence on viral assemblages. Biological traits
associated with each coral species were annotated from the
Coral Trait Database (Madin et al., 2016). To represent
the contribution of viral families between coral host species
and life history strategies, a principal component analysis
(PCA) biplot was done. Species scores were indicated by
biplot arrows, obtained from unconstrained distance-based
RDAs using the package Vegan. LoglO(x + 1)-transformed
abundances of microbial and the most abundant 20 viral
families were used to calculate the non-parametric Spearman’s
rank correlation coefficient using the “rcorr” function of the
Hmisc package (Harrell and Harrell, 2019). Reads pairs that
were classified as virus by Kaiju were merged and functionally
annotated against the SEED subsystems database (Overbeek
et al, 2005) using the Metagenomics RAST server (MG-
RAST) (Meyer et al, 2008). Additionally, viral sequences
were annotated against viral protein databases from UniProt
(Swiss Prot: 17,008 protein sequences and TrEMBL: 4,480,041
protein sequences as of Aug 5th, 2020) using a translated
nucleotide query. The search was done using MMseqs v11-
elalc (Steinegger and Soding, 2017) only allowing hits with
e-values < 0.001 and bitscores >30. UniProt annotations were
mapped to Gene Ontology (GO) terms that were summarized
in semantic similarity-based tree-maps in REVIGO (last update
Jan 2017) (Supek et al., 2011) and visualized using CirGO v2.0
(Kuznetsova et al., 2019).
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RESULTS

Viral Sequencing Overview

In this study we characterized taxonomic and functional
viral consortia from a diverse set of Red Sea corals using
metagenomic and metatranscriptomic sequencing of whole-
tissue preparations. A total number of 828 million read pairs
(i.e., ~1.6 billion paired-end reads) were obtained across 67
metagenomic and 34 metatranscriptomic samples, comprising
14 cnidarian species (12 corals and two outgroups, see Table 1
and Supplementary Tables S1, S2). A total of 780 million
read pairs passed quality control (Supplementary Tables S1,
§2). After removing cnidarian sequences from all samples and
rRNA sequences from metatranscriptomic samples, on average
~232 million and ~1.3 million read pairs were retained per
sample for metagenomes and metatranscriptomes, respectively.
A total of 49,998 (0.01%) and 16,169 (0.004%) viral read pairs
were identified in 57 metagenomes and 29 metatranscriptomes,
respectively. This corresponds to an average of 877 and 558 viral
read pairs per sample in metagenomes and metatranscriptomes,
respectively, that were used for subsequent analyses.

Viral Community Composition of Red

Sea Corals

To gain further insight into the viral diversity of Red Sea corals,
we first assessed relative abundances of the 20 most abundant
viral families in addition to all other families aggregated under
the common category “others” (Figure 1A). A total of 117
viral families were found across all samples, 95 in metagenomes
and 114 in metatranscriptomes, and 92 were shared between
metagenomes and metatranscriptomes. The median number of
families found per sample was 46 in metagenomic samples
and 34 in metatranscriptomes (Figure 1B). Overall viral
diversity was significantly different between metagenomes
and metatranscriptomes across all samples (PERMANOVA,
R2 = 0.07, P < 0.05, Supplementary Figure S3) and pairwise
comparisons revealed differences between viral composition in
metagenomes and metatranscriptomes of Diploastrea heliopora,
Mycedium elephantotus, Pocillopora verrucosa, and Stylophora
pistillata (Supplementary Table S3). Significant higher viral
family richness was observed in metagenomes compared to
metatranscriptomes in Porites lutea, and S. pistillata (pairwise
t-tests, all P < 0.01, Supplementary Table S4). The most
abundant viral families were Mimiviridae, Retroviridae, and
Siphoviridae, that represent mostly dsDNA viruses infecting
eukaryotes and bacteria (Supplementary Figure S2). Notably,
many of the most abundant viral families were shared between
metagenomes and metatranscriptomes. However, some of the
low-abundance viral families were only present in either
metagenomes or metatranscriptomes, partially due to the
differences in the nucleic acid composition (RNA or DNA) of
the putative viral genome (Figure 1). For instance, Qinviridae,
Nyamiviridae, and Solinviviridae, all negative-sense ssRNA
viruses, were only present in metatranscriptomes, while 22
viral families were only present in metagenomes. Notably, in
the metagenomic dataset, the cnidarian outgroups Millepora

platyphylla and Xenia sp. had distinct viral communities from
each other (PERMANOVA test: F = 2.83, P = 0.01), and
only M. platyphylla had a different viral composition in
comparison to scleractinian corals (PERMANOVA test, F = 4.31
P=0.01).

Drivers of Coral-Associated Viral

Diversity

To determine which coral traits were the most significant to
explain differences in viral composition, a series of constrained
RDA analyses were performed (Supplementary Table S5). We
compared the relative influence of coral traits by Z-score
normalizing RDA inertia values (i.e., variation explained) across
factors to elucidate which traits explain most of the variation
in viral assemblages between coral hosts. Coral taxonomic
traits, particularly at lower ranks such as species and family,
explained a large fraction of the variation of viral communities
in metagenomes and metatranscriptomes (Figure 2). Host
species identity explained the highest proportion of the
variance in metagenomes (RDA, constrained inertia = 62.44%)
and metatranscriptomes (RDA, constrained inertia = 64.51%)
(Figure 2 and Supplementary Table S5). Among coral biological
traits, “growth form” and “life history strategy” explained the
highest proportion of the variance in metagenomes (RDA,
constrained inertia = 28.00%) and metatranscriptomes (RDA,
constrained inertia = 37.96%). Notably, however, besides “growth
form” and “life history strategy,” the remaining coral biological
traits explained only little of the variation in viral composition
(Figure 2 and Supplementary Table S5).

To elucidate which viral families contributed to differences
in viral community between coral species, growth form,
and life history strategies, we projected viral family scores
obtained by RDA on PCA biplots (Supplementary Figure S4).
For the metagenomes, the viral families Hepadnaviridae,
Parvoviridae, and Mimiviridae had the highest scores (RDA
family scores = 175.74, 107.14, and 97.94, respectively) to explain
differences between coral species, life history strategies, and
growth forms. For instance, the viral family Parvoviridae was
more abundant (relative abundances from 5 to 16%) in viromes
of the stress-tolerant corals with massive growth (Acanthastrea
echinata, D. heliopora, Fungia sp., and Plerogyra sinuosa) in
comparison to those with other life history strategies and
growth forms (relative abundances from 0 to 2%). Similarly,
higher relative abundances of the viral family Dicistroviridae
were observed in the outgroups M. platyphylla and Xenia sp.
as well as in S. pistillata, representing the weedy life history
strategy (relative abundances between 1 and 3%) compared to
the rest of the coral viromes (relative abundances <1%). In
metatranscriptomic samples Picobirnaviridae and Siphoviridae
(RDA family scores = 0.97 and 0.79, respectively) accounted for
most of the variation between viromes of Galaxea fascicularis,
M. elephantotus, and Pachyseris speciosa (9% average relative
abundance) in comparison to Acropora cytherea, P. verrucosa,
and S. pistillata (1.4% average relative abundance), resulting
in differences between competitive and weedy strategist coral
species with branching and table growth versus generalists
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FIGURE 1 | Coral viral community composition and diversity. Taxonomic profile of viral reads classified to the family level (left) and estimated number of viral families
(right) found in coral (A) metagenomes and (B) metatranscriptomes. Barplots represent mean abundances of the 20 most abundant viral families annotated.
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and stress-tolerant corals with laminar and massive growth
(Supplementary Figure S4).

To identify potential viral-host associations of members
of the coral holobiont, we calculated the non-parametric
Spearman’s rank correlations between the abundance of
bacterial and microbial eukaryotic hosts and viral families
(Supplementary Figures S1B-D and Supplementary Table S6).
Phages from the family Siphoviridae showed strong positive
correlations (Spearman’s R > 0.8, P-value < 0.01) with bacterial
families (n = 37), mainly affiliated to the phyla Firmicutes and
Actinobacteria. Similarly, phages of the Podoviridae family
showed strong correlations with 10 bacterial families, mostly
members of the Proteobacteria and Actinobacteria phyla
(Supplementary Table S$6). In addition, viruses infecting
invertebrates and unicellular eukaryotes showed strong positive
correlations (Spearman’s R > 0.8, P-value < 0.01) with 429
families of microbial eukaryotes in the dataset. Members of
the Mimiviridae, Baculoviridae, Pithoviridae, Flaviviridae,
and Iridoviridae showed strong positive correlations with
members of the class Agaricomycetes (Kingdom: Fungi,
Phylum: Basidiomycota) followed by members of the classes
Sordariomycetes (Kingdom: Fungi, Phylum: Ascomycota) and

Mucoromycetes (Kingdom: Fungi, Phylum: Mucoromycota)
(Supplementary Table S6).

Viral Functional Diversity of Cnidarian

Metagenomes and Metatranscriptomes

From the 49,998 metagenomic and 16,169 metatranscriptomic
viral paired reads, 1,451 and 343 merged sequences showed
similarities to the SEED database, respectively, and 18,260
and 6,068 to UniProt databases, respectively (Supplementary
Tables S1, S2). The two most common functional categories
annotated to the SEED database were “Virulence, Disease, and
Defense” and “Phages, Prophages, Transposable elements, and
Plasmids” (Supplementary Table S7). Bacteriophage structural
proteins accounted for 37% of the annotated viral sequences
in metagenomes and 61% in metatranscriptomes, whereas
genes related to Streptococcus virulomes accounted for 40%
of the annotated viral sequences in metagenomes and only
9% in metatranscriptomes (Supplementary Table S7). Genes
related to nucleoside and protein metabolism, motility and
chemotaxis, photosynthesis, amino acids and vitamin synthesis,
were less frequent and accounted for an additional 20% in
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metagenomes and 30% in metatranscriptomes (Supplementary
Table S7). Similar patterns were found in UniProt annotations
(Supplementary Tables S8, S9 and Figure 3). Viral proteins
involved in DNA integration and recombination, and those
involved in viral penetration into host cells, comprised the
most common biological processes found across all samples
(Figure 3A). Notably, metagenomes were enriched for viral
proteins involved in DNA integration, recombination, and
replication, while most metatranscriptomes contained a large
proportion of proteins involved in DNA transcription and viral
RNA replication (Figure 3B). Sequences encoding for proteins
involved in metabolic processes (e.g., carbohydrate metabolism),
photosynthesis, bioluminescence and chemotaxis were found at
much smaller frequencies (less than 0.01%) (Supplementary
Table S9 and Figure 3A).

DISCUSSION

Despite an increase of studies investigating viral diversity
associated with corals [reviewed in Wood-Charlson et al.
(2015); Sweet and Bythell (2017), Vega Thurber et al. (2017)],
the identification of viral sequences in metagenomic and
metatranscriptomic data is still challenging due to the limited
amount of viral sequence reference data available (Edwards and
Rohwer, 2005; Briiwer et al., 2017; Briwer and Voolstra, 2018).
At the time of analysis (19 March 2020), 63,337,142 sequences
were deposited in the NCBI nucleotide database for bacteria while
only 3,295,539 sequences for viruses (~5% compared to bacteria)
were available. Besides the paucity of reference databases for virus
annotation, uncertainties associated with a lack of homology at
the nucleotide level need to be considered.

In this study we present the first exploratory insight of
Red Sea coral viruses across a diverse range of coral species.
A caveat to our analysis is the low viral coverage compared
to coral, microalgae, and bacteria, but we made a conscious
decision to trade in sequencing coverage for reducing known
bias stemming from enrichment methods (Yilmaz et al., 2010;
Kim and Bae, 2011; Wood-Charlson et al., 2015). Our approach
provided the possibility to analyze viral diversity independently
from known bias(es) caused by fractionation, and further, the
possibility to integrate meta-omics data from the same sample
(e.g., for correlative analyses to propose viral-host pairings).
Furthermore, while the assembly of metagenomic reads into
contigs offers many advantages for taxonomic and functional
annotation, the effectiveness of this approach depends on the
sequencing coverage and complexity of the sample. Coral
metagenomes and metatranscriptomes are challenging due to
pervasive coral host representation and high and heterogenous
sequence diversity that only favors the assembly of the most
abundant representatives from the total community, while at
the same time it limits the resolution of the compartments
with lower biomass such as bacteria and viruses. On the other
hand, read-based approaches are proven to be effective to create
accurate taxonomical and functional profiles from complex
environments where it is not always feasible to produce high
quality metagenomes or metatranscriptomes (Beinart et al., 2018;
Liu et al., 2019). Here we used the maximum exact match at the
protein level as implemented in Kaiju for annotation (Menzel
etal., 2016). This method can increase annotation sensitivity by a
factor of 10 in comparison to k-mer based nucleotide matching
methods (Menzel et al., 2016). From the initial ~800 million
read pairs, Kaiju annotated 50,122 read pairs in metagenomes
and 16,254 read pairs in metatranscriptomes as viruses across
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all 86 cnidarian samples. Thus, given the high number of coral
species and their viral sequence representation assessed here, this
comprises the most replicated coral virome dataset to date.

Red Sea Corals Are Dominated by
Transcriptionally Active dsDNA Viruses

The viral families Mimiviridae, Myoviridae, Retroviridae, and
Siphoviridae were ubiquitous and abundant in metagenomes
and metatranscriptomes. Notably, these families are not only
abundant in Red Sea corals, but they are also associated with
corals from diverse locations such as the Great Barrier Reef
(Weynberg et al., 2017a), Hawaii (Vega Thurber et al., 2008),
Florida (Correa et al., 2012), and the Eastern Caribbean (Soffer
et al., 2014). This argues for a common set of viral families
associated with corals globally.

Among the most abundant viral families observed in Red
Sea corals, members of the Mimiviridae are known to infect
algae and putatively infect coral endosymbionts of the family
Symbiodiniaceae (Correa et al., 2012; Weynberg et al., 2017b).
Further, members of the family Phycodnaviridae (Correa et al.,
2012, 2016; Levin et al., 2016) are suggested to be implicated
in coral bleaching (Marhaver et al., 2008; Correa et al., 2016).
Families from the largest order of phages, the Caudovirales (e.g.,
Siphoviridae, Podoviridae, and Myoviridae), are among the most
abundant viruses identified in the Red Sea corals assessed here,
and constitute a dominant viral group in most coral species
(Soffer et al., 2014; Weynberg et al., 2017a) as well as in other
marine invertebrates, such as sponges (Laffy et al., 2016, 2018).
Caudovirales are comprised of tailed bacteriophages that infect
a wide range of bacterial hosts, including members of the
Pseudoalteromonas (Wichels et al., 2002), Vibrio (Kim et al., 2012;
Sun et al, 2019), and Rhodobacteraceae (Huang et al., 2011),
which are all common coral-associated bacterial taxa. Some
members of the Caudovirales are prevalent in bleached corals
(Marhaver et al., 2008; Littman et al., 2011; Correa et al., 2016),
suggesting that phage infections contribute to the physiology of
the coral holobiont.

We also found a large proportion of viruses (Retroviridae,
Hepadnaviridae Parvoviridae, Iridoviridae, and Herpesviridae
among others) known to target invertebrate and vertebrate
hosts (~50% of the most abundant 20 families), which we
presume to target the coral host. Although some of these
are generally considered vertebrate viruses, exceptions have
been identified in various invertebrates (Leblanc et al., 1997;
Davison et al., 2005; Gudenkauf et al., 2014), including corals
and even Symbiodiniaceae cultures (Weynberg et al.,, 2017b),
where putative vertebrate-specific viruses were found to be
widely associated. These viral families are often linked with
coral stress. For instance, herpes-like viruses increase their
abundance during heat and nutrient stress (Vega Thurber
et al., 2008; Correa et al., 2016), members of the Circoviridae
are associated with White Plague Disease in Caribbean corals
(Soffer et al., 2014), and Iridoviridae-like viruses were found
associated with White Syndrome (Patten et al., 2008). In our
study, Iridoviridae and Herpesviridae were among the 10 most
abundant families across metagenomes and metatranscriptomes,

indicative of their cosmopolitan prevalence and transcriptional
activity in seemingly healthy Red Sea corals. This is consistent
with the hypothesis presented by Soffer et al. (2014) that herpes-
like viruses are implicated in long-term and non-fatal infections
in corals, similarly to their infections of vertebrate hosts.

Analysis of metagenomic and metatranscriptomic viromes
evidenced that dsDNA viruses were prevalent in both types of
samples, most likely, as a consequence of the high transcriptional
activity of DNA viruses. Apart from this, differences in viral
diversity of metagenomes and metatranscriptomes were observed
(Supplementary Figure S3), suggesting absence of a strong
methodological bias previously observed in pre-fractionated or
chloroformed samples (e.g., predominance of ssDNA viruses)
(Wegley et al., 2007; Marhaver et al., 2008). In addition, most
studies report a lower occurrence of RNA viruses in most
marine invertebrate systems (Shi et al., 2016), which might be
attributed to the circumstance that the majority of studies focus
on metagenomes for the study of viral communities. However,
we cannot rule out that limited representation of RNA viruses
in the database queried (NCBI nr + microbial eukaryotes, see
above) contributes to this observation. In any case, viral diversity
analyses of metagenomes and metatranscriptomes is informative
and complementary allowing for direct links between presence
and activity of certain viruses. For instance, members of the
Mpyoviridae (dsDNA) were found in higher relative abundances
in metatranscriptomes compared to metagenomes of P. verrucosa
suggesting their high transcriptional activity. Similarly, members
of the Hepadnaviridae (partially dsDNA) were dominant in
metagenomic data of M. elephantotus, but their low abundance
in metatranscriptomes suggests that they are not particularly
active. Notably, due to their reverse transcription activity during
replication (Nassal, 2008), Hepadnaviridae RNA intermediates
are converted into cDNA, causing a potential underestimation of
this family in metatranscriptomes.

Despite the high prevalence of DNA viruses in
metatranscriptomes, we could evidence a predominance of some
RNA viruses, such as the dsRNA viral family Picobirnaviridae in
D. heliopora, M. elephantotus, P. verrucosa, and P. [utea. Members
of this viral family are shown to be associated with invertebrates
(Shi et al., 2016) therefore, they presumably infect corals.

Coral Species Harbor Different Viral
Assemblages That Reflect Coral Biology

and Microbial Diversity Patterns

We found that patterns of viral diversity correlated best with
coral host species or family, and conversely, very little with
higher taxonomic categories (i.e., coral clade or order). Besides
the general notion of coral host-specificity that is supported
by this observation, we accounted for several cases where
distant coral species harbored similar viral communities. In
these cases, the similarity in associated viruses may arise from
shared biological traits. For instance, our results suggest that
competitive and weedy corals have similar viral assemblages
that are distinct from stress-tolerant and generalist corals in
metatranscriptomes and metagenomes, even though the coral
species considered span large taxonomic distances. In the same
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way, corals with laminar and massive growth forms have similar
viral diversity that differs from corals with branching and laminar
growth forms. Given that growth form is an important trait for
defining coral life history strategy, our results suggest that growth
form is the individual biological trait that best correlates with
viral diversity.

On the other hand, biotic factors are key to understand
viral diversity as viral communities drive and are driven
by the diversity of their hosts. To provide insight on the
role of viruses to influence microbial communities, we
used Spearman’s correlative associations to infer potential
viral-host pairings in the coral holobiont. Our results show
that phages from the families Siphoviridae and Podoviridae
possibly infect members of the bacterial phyla Actinobacteria,
Firmicutes, and Proteobacteria and have a broader range
of bacterial hosts in comparison to other viral families of
the order Caudovirales, suggesting better adaptability to
exploit novel hosts within the coral holobiont. Most viral-
eukaryote pairings involve the viral families Mimiviridae and
Baculoviridae with several families of the classes Agaricomycetes
and Sordariomycetes, previously reported as dominant
fungal taxa in corals (Amend et al, 2012). Mimiviridae and
Baculoviridae are known to infect unicellular eukaryotes and
members of the phylum Arthropoda, respectively. Notably,
the full range of hosts infected by Mimiviridae is probably
underestimated, given that studies have suggested corals
and sponges as Mimiviridae hosts (Claverie et al., 2009).
While we cannot discard the possibility that unicellular fungi
are Mimiviridae hosts, another explanation for our results
is that these fungal associates live in a close relationship
with coral-associated Arthropoda and therefore positively
correlated with Arthropoda viruses. In addition, the absence
of correlations between viral abundances and the algal
endosymbionts (Symbiodiniaceae) or the pervasive bacterial taxa
Endozoicomonas (Endozoicomonadaceae), suggests complex
viral-host interactions that likely involve non-linear changes in
abundances of more than one viral family.

Red Sea Coral-Associated Viruses
Encode for Virulence-Related,
Metabolism, and Photosynthesis

Proteins

Viruses can provide a plethora of benefits to their eukaryotic
and prokaryotic hosts, e.g., in the form of lysis-derived nutrient
cycling, modulation of host gene expression, or horizontal
gene transfer (Rohwer and Vega Thurber, 2009; Roossinck,
2011; Obeng et al, 2016). In particular, viral-mediated gene
transfer can profoundly impact the way in which host cells
interact with their environments (Ochman et al., 2000; Briissow
et al, 2004) in addition to expanding the genetic diversity
of the holobiont (Weynberg et al., 2017a; Laffy et al., 2018).
For instance, horizontally aquired genes encode for toxins,
antibiotic resistance, or photosystem genes (among others)
and can provide a (temporal) selective advantage through
supporting the colonization of tissues or supplementing the host’s

photosynthesis (Ochman et al., 2000; Briissow et al., 2004; Lindell
et al., 2005, 2007; Sullivan et al., 2006).

Our results show that genes involved in metabolism,
bacterial motility, and photosynthesis were consistently found
in Red Sea coral metagenomes and metatranscriptomes. Viral
genes annotated to photosynthesis encode for homologs of
the photosystem II, psbA (protein D1), and psbD (protein
D2), often found in phages, especially cyanophages (Sullivan
et al, 2005, 2006; Ruiz-Perez et al., 2019). Evidence for
the presence of psbA and psbB have been found in coral
viromes from the Caribbean (Marhaver et al., 2008) and
the Great Barrier Reef (Weynberg et al, 2017a) as well as
from metatranscriptomes of corals infected with Black Band
Disease (Garcia et al,, 2016). Viral-mediated transduction of
photosynthetic genes has been suggested to alleviate the damage
to photosystem II of Symbiodiniaceae and photosynthetic
bacteria during heat stress (Weynberg et al.,, 2017a). The high
diversity of auxiliary processes linked with viral sequences
suggests that viral assemblages are important contributors
of genetic diversity to coral holobionts. Genes related to
bacterial virulence were the most common within Red Sea
coral viromes, suggesting that viruses engage in active genomic
exchange with bacteria. Transfer of genes related to virulence
plays an important role in the emergence of pathogenic
bacterial strains (Examples discussed in Ochman et al., 2000;
Briissow et al, 2004). In fact, some Vibrio species have
acquired their virulence genes from phages (Jermyn and
Boyd, 2002; Khemayan et al, 2012). Coral-derived viral
sequences obtained in this study had the highest similarity
to “Streptococcus pyogenes virulomes.” Such gene families are
conserved among strains and characterized by the presence of
a wide array of exotoxins, adhesins and invasins, proteases,
and many other genes (Ibrahim et al, 2016). Phage-mediated
transduction has been previously suggested to be a main
driver of coral-associated bacterial virulence. For instance,
transcriptomes of the bacterial compartment of the coral
Orbicella faveolata during White Plague Disease were enriched
for phage transcription factors and staphylococcal associated
pathogenicity island (SaPI) genes (Daniels et al, 2015). In
addition, Weynberg et al. (2015) proposed that phages mediate
the transfer of homologs of virulence genes of the human
pathogen Vibrio cholerae to some strains of the coral-associated
Vibrio coralliilyticus, by demonstrating that phages encode
homologs of those virulence genes. In the same way, a viral
origin was suggested for several virulence genes found in
metatranscriptomes of coral reef bacterioplankton populations
(Cérdenas et al., 2017).
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