Deep Multiview Learning to Identify Population Structure with Multimodal Imaging
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Abstract—We present an effective deep multiview learning
framework to identify population structure using multimodal
imaging data. Our approach is based on canonical correlation
analysis (CCA). We propose to use deep generalized CCA
(DGCCA) to learn a shared latent representation of non-
linearly mapped and maximally correlated components from
multiple imaging modalities with reduced dimensionality. In
our empirical study, this representation is shown to effectively
capture more variance in original data than conventional
generalized CCA (GCCA) which applies only linear transfor-
mation to the multi-view data. Furthermore, subsequent cluster
analysis on the new feature set learned from DGCCA is able
to identify a promising population structure in an Alzheimer’s
disease (AD) cohort. Genetic association analyses of the cluster-
ing results demonstrate that the shared representation learned
from DGCCA yields a population structure with a stronger
genetic basis than several competing feature learning methods.

Keywords-Deep learning, multiview learning, deep general-
ized canonical correlation analysis, multimodal imaging, image-
driven population structure

I. INTRODUCTION

Cluster analysis is a popular machine learning approach
used in identifying population structure, and is often applied
on brain imaging and genetic data. Clusters can help identify
groups of individuals with similar imaging or genetic char-
acteristics [1], and sometimes coupled with feature learning
(feature reduction) methods given a large number of imag-
ing features [2]. Multimodal imaging, compared to single
imaging modality, are more likely to capture partial but
complementary information of population structures from
different perspectives [3]. However, many studies typically
employed traditional clustering methods on the original
features directly. These methods have limited capabilities in
automatically learning effective features for the clustering
task, in comparison with modern deep learning methods.

To bridge this gap, we propose an effective deep mul-
tiview learning framework, and demonstrate its power via
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applying it to the multimodal imaging data in an Alzheimer’s
disease (AD) cohort for identifying imaging-driven popula-
tion structure. Our framework is based on an extended ver-
sion of canonical correlation analysis (CCA), named as deep
generalized CCA (DGCCA) [4]. CCA is a popular technique
to identify linear relationships between two multivariate
datasets [5]. Traditional CCA models have two limitations:
1) it cannot be applied to data with more than two modalities,
and 2) it cannot capture nonlinear relationships between data
modalities.

To overcome the first limitation, CCA can be extended
to generalized CCA (GCCA) [6], designed to learn a rep-
resentation that is able to explain many views of the data,
and is a promising strategy to capture meaningful variation
shared by multiple imaging modalities. To overcome the
second limitation, GCCA can be extended to DGCCA [4],
which non-linearly maps the feature space of each imag-
ing modality to a common latent space. To demonstrate
the power of DGCCA for effective feature representation
learning, we perform an empirical study using the imaging
and genetics data from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [7]. DGCCA and several competing
feature learning methods, coupled with cluster analysis, are
applied to the ADNI multimodal imaging data to identify
population structure. Genetic association analyses are sub-
sequently performed on the learned feature representations
to evaluate genetic basis for the learned imaging-driven
structures. The shared representation learned from DGCCA
yields a population structure with a stronger genetic basis
than studied competing methods.

II. MATERIALS

To demonstrate the power of DGCCA in learning effective
feature representation from multimodal imaging data for
detecting population structure, we apply it to the imaging
and genetic data in an AD study. This study was approved



Table 1
PARTICIPANT CHARACTERISTICS IN OUR EXPERIMENTS. THERE ARE
TOTALLY 805 PARTICIPANTS, WHERE HC AND SMC PARTICIPANTS ARE
GROUPED AS CONTROLS (N=274), AND EMCI, LMCI AND AD
PARTICIPANTS ARE GROUPED AS CASES (N=531).

Diagnosis Control Case P
Number 274 531 -
Gender(M/F) 125/149 282/249 5.25E-02
Age(mean=sd) 74.84+6.35 72.99+8.05 9.81E-04
Education(mean+sd) 16.4442.72 15.9942.73 2. 71E-02

P-values were computed using one-way T-test (except for gender using
x?2 test). The bold text denoted p < 0.05.

by institutional review boards of all participating institutions
and written informed consent was obtained from all partic-
ipants or authorized representatives.

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu) [7]. The ADNI was
launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomograph (PET), other
biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. For up-to-
date information, see www.adni-info.org.

A. Study Participants

In this work, we analyzed 805 non-Hispanic Caucasian
subjects with complete baseline measurements of three stud-
ied imaging modalities, genotyping data and visit-matched
diagnostic information. Specifically, there are 274 controls
(i.e., 196 healthy controls (HC) and 78 normal controls with
significant memory concern (SMC)) and 531 cases (i.e., 235
patients with early mild cognitive impairment (EMCI), 162
patients with late mild cognitive impairment (LMCI), and
134 AD patients). Shown in Table I are their characteristics.

B. Imaging Data

We focus on analyzing three imaging modalities in ADNI:
structural MRI [8] (sMRI, measuring brain morphome-
try, VBM), amyloid-PET [9] (measuring amyloid burden,
AV45), and FDG-PET [10] (measuring glucose metabolism).
The multi-modality imaging data were aligned to each
participant’s same visit. The sMRI scans were processed
with voxel-based morphometry (VBM) using the Statistical
Parametric Mapping (SPM) software tool [11]. Generally,
all scans were aligned to a T1-weighted template image,
segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) maps, normalized to the standard
Montreal Neurological Institute (MNI) space as 2x2x2

mm?> voxels, and were smoothed with an 8mm FWHM

Figure 1. DGCCA architecture. The DGCCA applies a deep neural net-
work to learn non-linear projection from each view to a new representation,
and these new representations are then analyzed together via a GCCA
model.

kernel. The FDG-PET and AV45-PET scans were also
registered into the same MNI space by SPM. The MarsBaR
ROI toolbox [12] was used to group voxels into 116 regions-
of-interest (ROIs). ROI-level measures were calculated by
averaging all the voxel-level measures within each ROIL. As
mentioned above, participants in this work included 805 non-
Hispanic Caucasian subjects with complete baseline ROI-
level measurements of three modalities and visit-matched
diagnostic information; see Table I for their characteristics.

C. Genetic Data

The ADNI genotyping data, acquired on multiple II-
lumina platforms, have been quality controlled, imputed
and combined using the same procedure as described in
Yao et al. [13]. To avoid population stratification effect,
our analysis was performed on only non-Hispanic Cau-
casian participants. There were a total of 805 non-Hispanic
Caucasian participants (Table I) with all imaging, genetic
and diagnostic data available. A list of 19 AD candidate
SNPs (Table III) discovered by a large-scale meta-analytic
genome-wide association study (GWAS) [14] was included
in the genetic association analysis.

III. MULTIVIEW LEARNING MODELS

Multiview learning refers to the method that learns a
single model from multimodal data. In this study, we adopt
this approach by learning a latent representation from three
brain imaging modalities, VBM, AV45 and FDG. Given
limited data and rich feature space, multiview learning can
reduce the dimensionality of the data, and learn a shared
latent representation [15]. The learned latent representation
is expected to capture valuable information fused from all
the input views, and has great potential to catch the intrinsic
population structure in the studied sample.

A. Genalized CCA (GCCA)

The GCCA is an extended version of CCA to handle more
than two views of data [6]. Given M views of data X; €
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Figure 2. Flowchart of our experiments, which include two major components. The first component is to learn six different feature representations. The
second component is to perform clustering on each feature representation to identify a population structure, and then compare the genetic bases of six
resulting population structures together with the original case control structure. Experiment 1 (Exp 1), we focused on original data space (i.e., concatenation
of VBM, AV45 and FDG) to explain the population structure. Then, in Experiments 2-6 (Exp 2 - Exp 6), we used different latent spaces (i.e., X;U; and
G for GCCA, and O;U; and G for DGCCA) learned from GCCA or DGCCA to better explain the population structure. X;U; (and O;U;), obtained by
applying the learned projection matrices to the original data views, are compared with G, the shared latent feature representation from multiview learning

methods.

RN*Pi where X; is the i-th view of the data, N is the
number of data points, and p; is the number of features in
view 7. The goal of GCCA is to learn a shared representation
or embedding from all views by optimizing the objective

function in Eq. 1.

M
minimize Z |G — X;Ui||% st GTG =1,
{vierrixk} Y GeRrNxk ]

ey

where G denotes the embedding space, and contains the top
. -1 .

k eigenvectors of Zi]:l X; (XZ-TXi) XT as its columns,

which we use as the share latent features. U; denotes

projection matrix for the i-th view.

B. Deep GCCA (DGCCA)

The DGCCA applies a deep neural network to learn non-
linear projection from each view to a new representation,
and these new representations are then analyzed together
via a GCCA model. Fig. 1 shows a schematic design of
the DGCCA model [4]. Specifically, DGCCA is defined as
follows:

M

minimize Y IG-0iUillE st GG =14

2

where O; denotes the output of the final layer in the network
for the ¢-th imaging modality.

IV. EXPERIMENTAL SETUP
A. Experimental Design

We design six experiments to compare six different feature
representations for identifying an image-driven population
structure. These representations include the direct concate-
nation of all multimodal imaging features, two latent feature
spaces extracted from GCCA, and three latent feature spaces
extracted from DGCCA. Fig. 2 shows the overall flowchart
of these experiments, which include two major components.
The first component is to learn six different feature represen-
tations. The second component is to perform clustering on
each feature representation to identify a population struc-
ture, and then compare the genetic bases of six resulting
population structures together with the original case control
structure.

Table II summarizes the feature representations learned
from six experiments, which were used for cluster analysis.
Details for these feature representations extracted from six
experiments are outlined below:

o In Experiment 1 (Exp 1), we concatenate features from
all three imaging modalities in the order of VBM,
AV45 and FDG. Each modality contains 116 ROI-based
features. Thus the total number of features is 348.

o In Experiment 2 (Exp 2), we extract the learned projec-
tion matrices for each imaging modality from GCCA
U;, and apply them on the original feature set X; to
get X,;U; to obtain new feature set for each modality.
After that, we concatenate them together across three
imaging modalities. For each modality, we keep the first
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Figure 3. Variance explained against number of features. It is evident that
non-linear transformation through neural network implemented in DGCCA
can capture more variance in the original data with fewer components than
the linear projection implemented in GCCA.

30 components (see Fig. 3 for the variance captured
by these components in our experiments). Thus, the
resulting representation contains 90 features.

o In Experiment 3 (Exp 3), we use the shared feature rep-
resentation GG learned directly from GCCA. Similarly
to Exp 2, we keep first 30 components to form the new
representation.

o In Experiment 4 (Exp 4), we extract the learned
projection matrices for each imaging modality from
DGCCA U;, and apply them on the respective output
representation from neural network O; to get O;U;.
After that, we concatenate them together across three
imaging modalities. For each modality, we keep the first
20 components (see Fig. 3 for the variance captured
by these components). Thus the resulting representation
contains 60 features.

o Experiment 5 (Exp 5) is similar to Exp 4, with the
exception that we select top latent features based on
correlation matrices in Fig. 4. This experiment was
designed based on the observation that the first few
DGCCA components capture not only most of the
data variance, (Fig. 3) but also most of the corre-
lations between modalities (Fig. 4). Specifically, in
our experiments, we chose the first two, eight, eight
components for VBM, FDG and AV45 respectively.
Thus, this representation consists of 18 features in total.

o In Experiment 6 (Exp 6), we use the shared feature rep-
resentation GG learned directly from DGCCA. Similarly
to Exp 4, we keep first 20 components to form the new
representation.

Note the difference between Exp 2 vs. Exp 3, and Exp

4 vs. Exp 6, of using concatenation of X,;U; and G. The
objective of GCCA and DGCCA is to directly learn a
shared latent space G along with projection matrices Uj.
Using X;U; allows us to understand the how each modality
contributes to the final shared latent space. Concatenation of

Table II
COMPARISON OF FEATURES USED IN CLUSTER ANALYSIS

Experiments Features used for Clustering # Features
Exp 1 [X1, X2, X3] 348

Exp 2 [X1Ugeea1, X2Ugeca2, X3Ugecas) 90

Exp 3 Ggcca 30

Exp 4 [01Uageca1s O2Udgecaz, O3Udgecas) 60

Exp 5 [OlUtIigcca17 OQUc/lgccaQ’ O3U(,igcca3] 18

Exp 6 Gageca 20

X,U; serves as a comparison with Exp 1 to see if applying
GCCA and DGCCA projection matrices on each single
modality imaging data can convey as much information as
using the full original features space.

B. Clustering and Genetic Association

Clustering along with genetic association can help identify
population structures with novel genetic basis. For each
experiment, we applied hierarchical agglomerative clustering
[16] to all the subjects using the corresponding feature
representation, where the Ward’s method was used to min-
imize the variance when merging clusters. We chose a
cluster number of 2, similar to case/control group. We
evaluated the clusters by plotting confusion matrices to
check for distribution of cases and controls for each cluster.
Genetic association is performed by conducting Pearson’s
Chi-squared test on genetic data versus clustered data, and
the assigned case and control. The goal is to identify genetic
markers that are associated with case-control status or the
cluster membership identified in each of Exps. 1-6. We
used the Benjamini—Hochberg procedure to control the False
Discovery Rate (FDR) at oo = 0.05 [17].

C. Implementation of GCCA and DGCCA

For both GCCA and DGCCA, we applied stratified split
on the imaging data 80/20 into training and test set. For
GCCA, we used implementation of weighted GCCA in
Benton et al. [18], which included added regularization for
each view for stabilization. Our DGCCA extends this GCCA
implementation to apply non-linear transformations using
neural networks. The network for each view is composed
of 2 hidden linear layers of 64 nodes with ReLU activation,
and trained with Adam optimizer with a learning rate of
0.0008 and weight decay of 0.01. The network outputs
have the same dimensions as the inputs with 116 features.
Additional regularization was applied using dropout and
early stopping. We tuned the model using training loss and
evaluated resulting G and U; by plotting correlation matrices
between pairs of modalities.
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Figure 4. Correlation matrices between pairs of imaging modalities are plotted for extracted GCCA and DGCCA components in the new latent feature
spaces. The first row shows the training performances and the second row shows the testing performances. The first three columns show the GCCA
results for three pairwise comparisons. The last three colummns show the DGCCA results for three pairwise comparisons. While the first 30 cannonical
components identified by GCCA show the strong correlation between imaging modalities, DGCCA identifies much fewer components (e.g., 2 for VBM,
around 8 for AV45 or FDG in the testing results) that are correlated between imaging modalities.
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Figure 5. Clusters discovered in each experiment vs. case control status.

V. RESULTS

A. Comparison of GCCA and DGCCA

Table II records the number of features in data extracted
for each of the six experiments. Note that the number of
latent features k here is different for DGCCA k = 20 and
GCCA k = 30, since we speculate that DGCCA would
learn fewer maximally correlated components given the non-
linear transformations applied to the data. But we discovered
that DGCCA learns maximally correlated components from
input views in fewer components compared to GCCA and
even 20 components became enough. Therefore, Exp 5 was
added where a subset of latent features Uy, learned
from DGCCA was selected based on diagonal values in
correlation matrices (see last three columns in Fig. 4).

We compared the performances of GCCA and DGCCA
by plotting correlation matrices in the new latent feature
space between pairs of imaging modalities (see Fig. 4). Since

GCCA and DGCCA maximize correlation between more
than two modalities by extracting the top k latent space
features (eigenvectors), we evaluate GCCA and DGCCA
results by looking at the diagonal values on the correlation
matrices. We can see that DGCCA learns much fewer
maximally correlated components compared to GCCA, and
the chosen & = 20, so for Exp 5, we chose the first 2
components for VBM and the first 8 components for FDG
and AV45. In addition, DGCCA results show a discrepancy
of the maximally correlated components for AV45 and FDG
pair compared to the other two pairs, which require future
work to be done investigating these differences using CCA,
Deep CCA methods [19].

Further comparison between GCCA and DGCCA is done
by plotting variance explained by each feature in original
feature space (p = 348), seen in Fig. 3. We can see that non-
linear transformation through neural network can capture
more variance in the original data with fewer components.

B. Clustering and Genetic Association Analysis

For each of the six experiments, the transformed data
is clustered using agglomerative clustering, then confu-
sion matrices are plotted again assigned case and control
(HC/SMC vs. EMCI/LMCI/AD), see Fig. 5. We can see
that in Exp 3 and Exp 6, using learned shared representation
G from GCCA and DGCCA representation have low true
negative rate but the highest true positive rate. Out of the six
experiment, Exp 6 clustered data yield a significant result
(p 1.23e-14,0R = 4.653,95%CI : 3.008,7.195) in
addition to Exp 1 which uses the full feature set, indicating
a relatively high level alignment between the data-driven
clusters with case control groups.

From the genetic association analyses, p-value after FDR
correction from the Pearson’s Chi-squared test are recorded



FDR-CORRECTED p-VALUE FROM CHI-SQUARED TEST IN GENETIC ASSOCIATION ANALYSIS. NO RESULTS FROM EXP 2 - EXP 5 ARE SIGNIFICANT

Table III

AND THUS NOT SHOWN HERE.

SNP Gene Case Control Exp 1 Exp 6

1rs6656401 CR1 6.89e-01 1.11e-01 2.04e-01
156733839 BIN1 8.16e-01 6.62e-01 7.68e-01
1535349669 INPP5D 9.53e-01 9.44e-01 8.68e-01
rs190982 MEF2C 9.53e-01 6.79¢-01 9.89¢-01
rs10948363 CD2AP 9.53e-01 8.99¢-01 8.64e-01
rs2718058 NMES 9.53e-01 6.79e-01 8.68e-01
rs1476679 ZCWPW1 9.53e-01 6.71e-01 8.68e-01
rs11771145 EPHAI1 9.53e-01 9.70e-01 4.97e-01
28834970 PTK2B 9.53e-01 6.62e-01 8.68e-01
rs9331896 CLU 9.53e-01 5.97e-01 3.29¢-01
rs10838725 CELF1 8.16e-01 8.69¢-01 9.89¢-01
rs983392 MS4A6A 6.89¢-01 5.97e-01 8.68e-01
rs10792832 PICALM 9.53e-01 5.97e-01 1.56e-01
rs17125944 FERMT2 8.16e-01 5.97e-01 2.78e-01
rs10498633 SLC24A4 9.52e-01 8.69¢e-01 9.89e-01
rs4147929 ABCA7 7.88e-01 2.18e-01 2.63e-02
rs429358 APOE 1.55e-08 3.17e-20 9.27e-20
rs3865444 CD33 9.53e-01 5.97e-01 8.68e-01
rs7274581 CASS4 9.53e-01 5.97e-01 9.89e-01

in Table III. Our analyses from original case control, Exp
1 and Exp 6 yielded statistically significant results. All
three tests produced significant results for APOE, the best
known genetic risk factor for AD [20]. In addition, clustered
results from Exp 6, using learned shared representation from
DGCCA, yielded significant results for SNP rs4147929 from
ABCA7 gene (x? = 11.777,FDR-corrected p < 0.05).
There has been compelling evidence suggesting that ABCA7
is a risk gene for both early and late-onset AD [21]. In
Exp 6, our DGCCA method learned the promising feature
representation leading to the discovery of a new population
structure with a novel genetic basis (i.e., an ABCA7 SNP),
which was not detected by the standard case-control status.

VI. CONCLUSION

We have proposed a multi-view representation learning
framework using deep generalized CCA (DGCCA), and
applied it to multi-modal brain imaging data (VBM, FDG,
AV45) for identifying population structure. DGCCA is able
to capture original data in much fewer maximally correlated
components compared to generalized CCA (GCCA) by
applying non-linear transformation to each view. Further-
more, we have shown that the learned shared representation,
coupled with cluster analysis, can be utilized to identify
promising population structure with a stronger genetic basis.

In the future, we plan to explore the use of our method
to identify not only population structure, but also disease
subtypes with novel imaging and genetic characteristics.
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