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ABSTRACT 
  
Imaging genetics is a methodology for discovering 
associations between imaging and genetic variables. Many 
studies adopted sparse models such as sparse canonical 
correlation analysis (SCCA) for imaging genetics. These 
methods are limited to modeling the linear imaging genetics 
relationship and cannot capture the non-linear high-level 
relationship between the explored variables. Deep learning 
approaches are underexplored in imaging genetics, 
compared to their great successes in many other biomedical 
domains such as image segmentation and disease 
classification. In this work, we proposed a deep learning 
model to select genetic features that can explain the imaging 
features well. Our empirical study on simulated and real 
datasets demonstrated that our method outperformed the 
widely used SCCA method and was able to select important 
genetic features in a robust fashion. These promising results 
indicate our deep learning model has the potential to reveal 
new biomarkers to improve mechanistic understanding of 
the studied brain disorders. 
 

Index Terms— Imaging genetics, feature selection, 
deep learning, Parkinson’s disease 
 

1. INTRODUCTION 
 
Imaging genetics is an emerging research field, where the 
relationship between imaging and genetic variables is 
investigated to better understand genetic determinants of 
imaging phenotypes. Several machine learning approaches 
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were proposed to identify important genetic and imaging 
features and reveal the association between them. Typical 
previous studies applied sparse canonical correlation 
analysis (SCCA), reduced-rank regression, and sparse 
regularized linear models to identify the association between 
imaging and genetic variables [1]–[3].  

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder which triggers various motor 
symptoms, such as bradykinesia, rigidity, resting tremor, 
and postural instability. Although the neurological features 
of PD are rather well-defined, such as the loss of 
dopaminergic neurons in the substantia nigra, the underlying 
genetic causal relationship of PD is unclear. Recently, 
various neuroimaging techniques have been employed to 
investigate the effects of PD on the brain. A genome-wide 
association study (GWAS) revealed common genetic 
variants related to PD. As an extension, integrating 
complementary imaging and genetic information to study 
PD has become an important topic. 

Deep learning is a type of computational models with 
multiple processing layers. These approaches have made 
huge successes in solving problems from many domains. 
Specifically, the methods have dramatically improved 
performance in speech recognition, classification, and 
segmentation. Also, a few studies investigated the usage of 
deep learning for feature selection. For example, Li et. al., 
proposed a deep feature selection (DFS) architecture that 
adopted one-to-one connected layer as the first hidden layer 
of the deep network [4]. This method did not support multi-
modal data (e.g., imaging and genetics data), thus is not 
suitable for imaging genetics.  

In this study, we proposed a deep network-based feature 
selection model for evaluating associations between genetic 
and neuroimaging data. Specifically, we analyzed genetic 
markers such as single nucleotide polymorphisms (SNPs) 
and neuroimaging measures extracted from dopamine 
transporter single photon emission computed tomography 
(DaT-SPECT) scans. Our proposed network model is a 
genetics-to-image circulation network. Our network 
includes two one-to-one connected layers with least absolute 
shrinkage and selection operator (LASSO) regularization to 
identify sparse significant features that associate genetic and 



neuroimaging data. Our contributions are as follows: i) A 
novel deep network-based feature selection method is 
proposed and applied to imaging genetics problems. ii) The 
proposed algorithm is an unsupervised learning model, and 
thus could be adopted in unlabeled data. iii) We have 
applied our proposed algorithm to both simulation and real 
data (i.e., PD patient) and compared the results with those 
obtained using the SCCA method. Our algorithm identified 
several well-established PD biomarkers and revealed new 
potential SNPs. 
 

2. METHODS 
 
2.1. Sparse canonical correlation analysis (SCCA)  
 
Herein, we use the boldface lowercase letter to denote a 
vector, and the boldface uppercase letter to denote a matrix. 
Specifically, given datasets 𝑿	 ∈ 	ℝ%×', 𝒀	 ∈ 	ℝ%×* with n 
samples, X denotes p features of the SNP data, and Y 
denotes q features of the neuroimaging data [5]. The sparse 
canonical correlation analysis (SCCA) method aims to 
identify the maximized correlation between two datasets as 
follows: 
 min

.,/
−𝒖2𝑿2𝒀𝒗 + λ6‖𝒖‖6 + λ8‖𝒗‖6 (1) 

where u and v are the corresponding selection vectors. The 
λ6  and λ8  denote regularization parameters of LASSO 
penalty which control the model sparsity. 
 
2.2. Deep network-based feature selection (DN-FS) 
 
2.2.1. Proposed Architecture 
We assume that there exist significant cross-modal relations 
between genetic and imaging data (e.g., SNPs and DaT-
SPECT) and our goal is to apply feature selection approach 
to discover such relations between two different data 
modalities. This is different from DFS that typically is 
supervised and hence requires paired input data and label. In 

this study, we propose a deep network-based feature 
selection (DN-FS) model for evaluating associations 
between genetic and neuroimaging data. Of note, our 
approach belongs to an unsupervised category.  

The idea of circulation network comes from the image-
to-image translation model, such as cycle generative 
adversarial network, proposed by Jun-Yan Zhu et. al. [6]. 
The network architecture consists of two circulation 
networks as shown in Fig. 1. The first circular network 
translates the input data X (i.e., SNPs) to another input data 
space (i.e. DaT-SPECT) using a deep neural network (f) and 
then translates back again to estimate data 𝑿9  with 
selection vector (𝒘;) using a deep neural network (g) (Fig. 
1-a). In the second network, input data Y (i.e., DaT-SPECT) 
is mapped to another input data space using the network f 
and then translates back using the network g to estimate data 
𝒀9 with selection vector (𝒘<) (Fig. 1-b). 
 
2.2.2. Feature selection with deep learning 
We borrowed two ideas from conventional machine learning 
literature to select correlated features between two data sets. 
First, we added a one-to-one mapping layer, named feature 
selection layer, between the last hidden layer and the output 
layer (Fig. 1). The i-th node of the feature selection layer 
was only connected to the i-th output element with linear 
activation function. Then, we applied the LASSO penalty to 
force the selection vectors to be sparse. The second idea was 
to add a CCA penalty to the cost function since the mean 
squared error between 𝑿 and 𝑿9  or  𝒀 and 𝒀9  cannot 
guarantee that the select features from 𝑿  and 𝒀  were 
significantly correlated. Thus, the proposed full objective 
function is as follow: 

min	‖𝑿 − 𝑿9‖=8 + ‖𝒀 − 𝒀9‖=8−𝒘;
2𝑿2𝒀𝒘< +

𝜆6‖𝒘;‖6 + 𝜆8?𝒘<?6 (2) 
 
2.2.3. Implementation and training details 
We adopted a shallow fully connected network as mapping 
function (i.e., f and g). For the simulation setup, we used 
three hidden layers ({500, 2000, 100} neurons for SNP-to-
image mapping and {100, 2000, 500} neurons for image-to-
SNP mapping). For real imaging genetics setup, we also 
used three hidden layers ({3365, 2000, 90} neurons for 
SNP-to-image mapping and {90, 2000, 3365} neurons for 
image-to-SNP mapping). Each hidden layer includes a 
rectified linear unit as activation function followed by batch 
normalization. For all the experiments, we tuned the hyper-
parameters, 𝜆6 and 𝜆8, using a grid search algorithm. Both 
parameters were jointly tuned by nested five-fold cross-
validation to maximize the averaged correlation. We set 
𝜆6 = 0.5 and 𝜆8 = 0.5 for the proposed model and 𝜆6 = 
0.1 and 𝜆8 = 0.1 for the SCCA model. We used adaptive 
gradient optimizer implemented in TensorFlow. The 
learning rate was 0.1 and a batch size was 200. 
 
2.3. Neuroimaging genetics data processing 

 
Fig. 1. The overview of our end-to-end deep network-based 
feature selection architecture. Subfigures (a) and (b) denote 
the detailed procedures to extract selection vectors of two 
different inputs, where	𝑿, 𝒀, 𝑿9 , 𝒀9,𝒘; , and 𝒘<  denote 
SNP, DaT-SPECT, estimated SNP, estimated DaT-SPECT, 
selection weight vector of SNP, and selection weight vector 
of DaT-SPECT, respectively. The functions f and g denote a 
SNP-to-image mapping function and image-to-SNP 
mapping function, respectively.  



 
We obtained neuroimaging (i.e., DaT-SPECT) and 
genotyping data from the Parkinson's Progression Markers 
Initiative (PPMI) database. In detail, we used 94 PD cases of 
unrelated Caucasian subjects. For the neuroimaging data, 
the reconstructed and attenuation-corrected DaT-SPECT 
images were aligned onto the standard MNI space and used 
to compute the specific binding ratio (SBR). The SBR is 
computed as the ratio between the concentrations of the 
specific binding radioactivity to the nonspecific binding 
radioactivity. The SBR is computed as the ratio between the 
target region and the reference region. We used the occipital 
cortex as the reference region. The SBR map of each subject 
was computed for all voxels, which were averaged to 90 
region-of-interest (ROI) measurements using ROIs defined 
in the automated anatomical labeling (AAL) atlas. 

We performed quality control of the genotyping data 
based on the minor allele frequency, genotype missing rate, 
Hardy–Weinberg equilibrium, and genotyping rate. SNPs 
that did not satisfy the criteria and subjects with a low 
genotyping rate were excluded. We then conducted the 
conventional genome-wide association analysis to select the 
candidate PD-related genes. Quality control analysis of the 
genetic data led to 148,631 SNPs. Conventional analysis to 
select candidate PD-related SNPs (corrected p-value < 
0.001) led to 3,365 SNPs. 
 

3. RESULTS 
 
We quantified the performance of our algorithm on how 
well we can detect imaging genetics features (SNPs and 
regional DaT-SPECT). We compared our approach with the 
existing SCCA method. We first compared the variable 
selection performance by using simulation data. Our 
algorithm was applied to real PD imaging genetics data to 
investigate the brain regions potentially linked with PD and 
discover genetic variants associated with PD. 
 
3.1. Simulation setup and results 
 
3.1.1. Simulation setup  
We used simulation datasets to compare the performance of 
DN-FS model to the existing SCCA algorithm. Specifically, 
we generated two correlated datasets with known ground 
truth of selection vectors (Fig. 2-a). A dataset of SNP data X 
with p SNPs and neuroimaging data Y (DaT-SPECT) with q 
regional features for n samples were generated. We applied 
a latent model to generate correlations between SNP and 
neuroimaging data [7], [8]. The correlations between SNPs 
and imaging features were generated with a latent variable ζ 
with a normal distribution 𝑁(0, 𝜎H8). We generated one 
genetic selection vector α with p elements and neuroimaging 
selection vectors β with q elements. We assumed that if an 
element of α and β was correlated, the element was a non-
zero value obtained from a uniform distribution U(-1, -0.5) 

∪	U(0.5, 1). Otherwise, the elements would be zero. Each 
selection vector was made block sparse to mimic real data.  

For neuroimaging data, we generated simulation 
datasets using 𝒀 = 𝜷𝜻 + 𝒆 for correlated features and 𝒀 =
𝒆 for uncorrelated ones, where noise e is drawn from the 
normal distribution 𝑁(0, 𝜎N8)  with 𝜎N8  as the noise 
variance. For genotyping data, we generated SNP variables 
by 𝑿 = 𝜶𝜻 + 𝒆  for correlated SNPs and 𝑿 = 𝒆  for 
uncorrelated SNPs. Since the SNP data were categorical 
variables at three levels (0 [no minor allele], 1 [one minor 
allele], and 2 [two minor alleles]), we convert the SNP data 
X into categorical variables using a binomial distribution 
B(2, logitV6(𝑿 + logit(𝜂))) , where logit(𝜂) = log X Y

6VY
Z 

was the logit function and the minor allele frequency 𝜂 was 
drawn from a uniform distribution U(0.2, 0.4). 
 
2.3.2. Simulation results 
We compared the performance of DN-FS model with the 
existing SCCA method. The model performances of the 
algorithms were evaluated using the area under the curve 
(AUC) from the test data. We generated training and test 
data, where we set n = 200, p = 500, and q = 100 with a 
noise level of 3 (𝜎N = 3), and n = 100, p = 500, and q = 100 
with a noise level of 3 (𝜎N = 3), respectively. Our algorithm 
showed improved performance for estimating the selection 
vectors compared to the SCCA method (Fig. 2). In detail, 
the AUC of our model showed 11% improvement over the 
SCCA (i.e., 0.8475 for our model and 0.7598 for SCCA). 
Both algorithms showed generally good performance for 
estimating genetic selection vectors (i.e., 0.8283 for our 
model and 0.8247 for SCCA), and our algorithm was better 
at estimating neuroimaging selection vectors (i.e., 0.9577 
for our model and 0.7537 for SCCA). 
 
3.2. Experiment on a real imaging genetics dataset 
 
In addition to the experiment with simulation dataset, we 
tested the algorithms using a real dataset. We applied the 
algorithms to real genotyping and neuroimaging datasets of 
PD obtained from the PPMI research database. The 

 
Fig. 2. Comparison of estimated selection vectors using 
simulation datasets. Each subfigure has two rows, where the 
first row is the selection vector of X (i.e., SNPs) and the 
second row is the selection vector for Y (i.e., DaT-SPECT). 
Subfigures (a), (b), and (c) correspond to the ground truth 
vectors and estimated selection vectors using the SCCA and 
DN-FS, respectively. 



genotyping and neuroimaging data of 94 subjects with PD 
were used. We extracted 3,365 SNP markers and 90 
regional DaT-SPECT features by using the preprocessing 
steps as described in Section 2.3. 

We applied our algorithm to the preprocessed feature 
data (i.e., SNP and DaT-SPECT features). Our algorithm 
revealed that 181 SNPs were significantly linked with 22 
ROIs of DaT-SPECT features and a canonical correlation of 
0.6836 was reported between the identified genetic and 
DaT-SPECT features (Fig. 3). The SCCA algorithm showed 
that 197 SNPs and 29 DaT-SPECT features were 
significantly related and a canonical correlation of 0.6025 
was reported between the identified features. 

We further analyzed our results to determine whether 
the identified SNPs were consistent with the prior 
knowledge of PD. We compared the identified SNPs to PD-
related SNPs in the PDGene database [9]. Using our 
algorithm, there were four genes, SNCA, IRF4, GCH1, and 
HCA-DQA1, which confirmed the existing findings in PD 
literature. The SNCA is one of the critical risk genes for PD. 
The SNCA gene provides instructions for making an alpha-
synuclein, which plays an important role in movement 
structures. Previous reports showed that the mutations in 
SNCA were responsible for autosomal dominant PD [10]. In 
addition, we computed odd ratios (ORs) for the identified 
SNPs to measure the association between the identified 
SNPs and clinical diagnosis. We found that the identified 
SNPs by our algorithm showed an averaged OR of 1.53, 
which was higher than the values obtained using the 
competing method (0.96 for the SCCA). For the 
neuroimaging features, we found that the identified five 
ROIs were common in both methods, including globus 
pallidus, thalamus, Heschel's gyrus, bilateral inferior frontal 
gyrus, and pars opercularis. Most of these regions were parts 
of basal ganglia structures, which are related to PD [11]. 
 

4. CONCLUSION 
 
In this study, we proposed a deep network-based feature 
selection model for evaluating associations between genetic 

and neuroimaging data. We demonstrated the feasibility of 
the algorithm using both simulation and real data. The 
proposed algorithm is an unsupervised learning model with 
deep learning framework. Thus, it could be used in 
unlabeled or categorized datasets. Our algorithm confirmed 
not only several well-established PD biomarkers but also 
revealed new potential SNPs. The proposed imaging 
genetics model has the potential to reveal new biomarkers to 
improve mechanistic understanding of the studied brain 
disorders. In the future, we will expand our method to the 
analysis of additional modalities, and apply our method to 
cohorts such as Alzheimer’s patients and the healthy to test 
if our approach generalizes to other cases. 
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Fig. 3. Comparison of estimated selection vectors using real 
imaging genetics data. Each subfigure has two rows, where 
the first row is the selection vector for the SNPs and the 
second row is the selection vector for the neuroimaging 
data. Subfigures (a) and (b) correspond to the estimated 
selection vectors using the SCCA and DN-FS, respectively. 


