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ABSTRACT

Imaging genetics is a methodology for discovering
associations between imaging and genetic variables. Many
studies adopted sparse models such as sparse canonical
correlation analysis (SCCA) for imaging genetics. These
methods are limited to modeling the linear imaging genetics
relationship and cannot capture the non-linear high-level
relationship between the explored variables. Deep learning
approaches are underexplored in imaging genetics,
compared to their great successes in many other biomedical
domains such as image segmentation and disease
classification. In this work, we proposed a deep learning
model to select genetic features that can explain the imaging
features well. Our empirical study on simulated and real
datasets demonstrated that our method outperformed the
widely used SCCA method and was able to select important
genetic features in a robust fashion. These promising results
indicate our deep learning model has the potential to reveal
new biomarkers to improve mechanistic understanding of
the studied brain disorders.

Index Terms— Imaging genetics, feature selection,
deep learning, Parkinson’s disease

1. INTRODUCTION

Imaging genetics is an emerging research field, where the
relationship between imaging and genetic variables is
investigated to better understand genetic determinants of
imaging phenotypes. Several machine learning approaches
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were proposed to identify important genetic and imaging
features and reveal the association between them. Typical
previous studies applied sparse canonical correlation
analysis (SCCA), reduced-rank regression, and sparse
regularized linear models to identify the association between
imaging and genetic variables [1]-[3].

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder which triggers various motor
symptoms, such as bradykinesia, rigidity, resting tremor,
and postural instability. Although the neurological features
of PD are rather well-defined, such as the loss of
dopaminergic neurons in the substantia nigra, the underlying
genetic causal relationship of PD is unclear. Recently,
various neuroimaging techniques have been employed to
investigate the effects of PD on the brain. A genome-wide
association study (GWAS) revealed common genetic
variants related to PD. As an extension, integrating
complementary imaging and genetic information to study
PD has become an important topic.

Deep learning is a type of computational models with
multiple processing layers. These approaches have made
huge successes in solving problems from many domains.
Specifically, the methods have dramatically improved
performance in speech recognition, classification, and
segmentation. Also, a few studies investigated the usage of
deep learning for feature selection. For example, Li et. al.,
proposed a deep feature selection (DFS) architecture that
adopted one-to-one connected layer as the first hidden layer
of the deep network [4]. This method did not support multi-
modal data (e.g., imaging and genetics data), thus is not
suitable for imaging genetics.

In this study, we proposed a deep network-based feature
selection model for evaluating associations between genetic
and neuroimaging data. Specifically, we analyzed genetic
markers such as single nucleotide polymorphisms (SNPs)
and neuroimaging measures extracted from dopamine
transporter single photon emission computed tomography
(DaT-SPECT) scans. Our proposed network model is a
genetics-to-image  circulation network. Our network
includes two one-to-one connected layers with least absolute
shrinkage and selection operator (LASSO) regularization to
identify sparse significant features that associate genetic and
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Fig. 1. The overview of our end-to-end deep network-based
feature selection architecture. Subfigures (a) and (b) denote
the detailed procedures to extract selection vectors of two
different inputs, where X,¥, X', Y',w,, and w, denote
SNP, DaT-SPECT, estimated SNP, estimated DaT-SPECT,
selection weight vector of SNP, and selection weight vector
of DaT-SPECT, respectively. The functions f'and g denote a
SNP-to-image mapping function and image-to-SNP
mapping function, respectively.

neuroimaging data. Our contributions are as follows: i) A
novel deep network-based feature selection method is
proposed and applied to imaging genetics problems. ii) The
proposed algorithm is an unsupervised learning model, and
thus could be adopted in unlabeled data. iii) We have
applied our proposed algorithm to both simulation and real
data (i.e., PD patient) and compared the results with those
obtained using the SCCA method. Our algorithm identified
several well-established PD biomarkers and revealed new
potential SNPs.

2. METHODS
2.1. Sparse canonical correlation analysis (SCCA)

Herein, we use the boldface lowercase letter to denote a
vector, and the boldface uppercase letter to denote a matrix.
Specifically, given datasets X € R™P, Y € R™4 with n
samples, X denotes p features of the SNP data, and ¥
denotes ¢ features of the neuroimaging data [5]. The sparse
canonical correlation analysis (SCCA) method aims to
identify the maximized correlation between two datasets as
follows:
min —uTXTYv + 4, [lull; + |10l (D

where u and v are the corresponding selection vectors. The
A, and A, denote regularization parameters of LASSO
penalty which control the model sparsity.

2.2. Deep network-based feature selection (DN-FS)

2.2.1. Proposed Architecture

We assume that there exist significant cross-modal relations
between genetic and imaging data (e.g., SNPs and DaT-
SPECT) and our goal is to apply feature selection approach
to discover such relations between two different data
modalities. This is different from DFS that typically is
supervised and hence requires paired input data and label. In

this study, we propose a deep network-based feature
selection (DN-FS) model for evaluating associations
between genetic and neuroimaging data. Of note, our
approach belongs to an unsupervised category.

The idea of circulation network comes from the image-
to-image translation model, such as cycle generative
adversarial network, proposed by Jun-Yan Zhu et. al. [6].
The network architecture consists of two circulation
networks as shown in Fig. 1. The first circular network
translates the input data X (i.e., SNPs) to another input data
space (i.e. DaT-SPECT) using a deep neural network (f) and
then translates back again to estimate data X' with
selection vector (w,) using a deep neural network (g) (Fig.
1-a). In the second network, input data ¥ (i.e., DaT-SPECT)
is mapped to another input data space using the network f
and then translates back using the network g to estimate data
Y’ with selection vector (w,,) (Fig. 1-b).

2.2.2. Feature selection with deep learning

We borrowed two ideas from conventional machine learning
literature to select correlated features between two data sets.
First, we added a one-to-one mapping layer, named feature
selection layer, between the last hidden layer and the output
layer (Fig. 1). The i-th node of the feature selection layer
was only connected to the i-th output element with linear
activation function. Then, we applied the LASSO penalty to
force the selection vectors to be sparse. The second idea was
to add a CCA penalty to the cost function since the mean
squared error between X and X' or Y and Y’ cannot
guarantee that the select features from X and Y were
significantly correlated. Thus, the proposed full objective
function is as follow:

min [|X - X'|I7 + [IY = Y'||z—w,"X"Yw, +
Allwlly + 2|l ||, @)

2.2.3. Implementation and training details

We adopted a shallow fully connected network as mapping
function (i.e., f and g). For the simulation setup, we used
three hidden layers ({500, 2000, 100} neurons for SNP-to-
image mapping and {100, 2000, 500} neurons for image-to-
SNP mapping). For real imaging genetics setup, we also
used three hidden layers ({3365, 2000, 90} neurons for
SNP-to-image mapping and {90, 2000, 3365} neurons for
image-to-SNP mapping). Each hidden layer includes a
rectified linear unit as activation function followed by batch
normalization. For all the experiments, we tuned the hyper-
parameters, A4, and A4,, using a grid search algorithm. Both
parameters were jointly tuned by nested five-fold cross-
validation to maximize the averaged correlation. We set
A, =0.5 and A, = 0.5 for the proposed model and 4, =
0.1 and A, = 0.1 for the SCCA model. We used adaptive
gradient optimizer implemented in TensorFlow. The
learning rate was 0.1 and a batch size was 200.

2.3. Neuroimaging genetics data processing



We obtained neuroimaging (i.e., DaT-SPECT) and
genotyping data from the Parkinson's Progression Markers
Initiative (PPMI) database. In detail, we used 94 PD cases of
unrelated Caucasian subjects. For the neuroimaging data,
the reconstructed and attenuation-corrected DaT-SPECT
images were aligned onto the standard MNI space and used
to compute the specific binding ratio (SBR). The SBR is
computed as the ratio between the concentrations of the
specific binding radioactivity to the nonspecific binding
radioactivity. The SBR is computed as the ratio between the
target region and the reference region. We used the occipital
cortex as the reference region. The SBR map of each subject
was computed for all voxels, which were averaged to 90
region-of-interest (ROI) measurements using ROIs defined
in the automated anatomical labeling (AAL) atlas.

We performed quality control of the genotyping data
based on the minor allele frequency, genotype missing rate,
Hardy—Weinberg equilibrium, and genotyping rate. SNPs
that did not satisfy the criteria and subjects with a low
genotyping rate were excluded. We then conducted the
conventional genome-wide association analysis to select the
candidate PD-related genes. Quality control analysis of the
genetic data led to 148,631 SNPs. Conventional analysis to
select candidate PD-related SNPs (corrected p-value <
0.001) led to 3,365 SNPs.

3. RESULTS

We quantified the performance of our algorithm on how
well we can detect imaging genetics features (SNPs and
regional DaT-SPECT). We compared our approach with the
existing SCCA method. We first compared the variable
selection performance by using simulation data. Our
algorithm was applied to real PD imaging genetics data to
investigate the brain regions potentially linked with PD and
discover genetic variants associated with PD.

3.1. Simulation setup and results

3.1.1. Simulation setup

We used simulation datasets to compare the performance of
DN-FS model to the existing SCCA algorithm. Specifically,
we generated two correlated datasets with known ground
truth of selection vectors (Fig. 2-a). A dataset of SNP data X
with p SNPs and neuroimaging data ¥ (DaT-SPECT) with ¢
regional features for n samples were generated. We applied
a latent model to generate correlations between SNP and
neuroimaging data [7], [8]. The correlations between SNPs
and imaging features were generated with a latent variable
with a normal distribution N(0,07). We generated one
genetic selection vector a with p elements and neuroimaging
selection vectors f# with g elements. We assumed that if an
element of & and g was correlated, the element was a non-
zero value obtained from a uniform distribution U(-1, -0.5)
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Fig. 2. Comparison of estimated selection vectors using
simulation datasets. Each subfigure has two rows, where the
first row is the selection vector of X (i.e., SNPs) and the
second row is the selection vector for ¥ (i.e., DaT-SPECT).
Subfigures (a), (b), and (c) correspond to the ground truth
vectors and estimated selection vectors using the SCCA and
DN-FS, respectively.
U U(0.5, 1). Otherwise, the elements would be zero. Each
selection vector was made block sparse to mimic real data.
For neuroimaging data, we generated simulation
datasets using Y = B{ + e for correlated features and Y =
e for uncorrelated ones, where noise e is drawn from the
normal distribution N(0,02) with 62 as the noise
variance. For genotyping data, we generated SNP variables
by X=a{+e for correlated SNPs and X =e for
uncorrelated SNPs. Since the SNP data were categorical
variables at three levels (0 [no minor allele], 1 [one minor
allele], and 2 [two minor alleles]), we convert the SNP data
X into categorical variables using a binomial distribution

B(2,logit™(X + logit(n))) , where logit(n) = log (%)

was the logit function and the minor allele frequency n was
drawn from a uniform distribution U(0.2, 0.4).

2.3.2. Simulation results

We compared the performance of DN-FS model with the
existing SCCA method. The model performances of the
algorithms were evaluated using the area under the curve
(AUC) from the test data. We generated training and test
data, where we set n = 200, p = 500, and q = 100 with a
noise level of 3 (g, =3), and n =100, p = 500, and q = 100
with a noise level of 3 (g, = 3), respectively. Our algorithm
showed improved performance for estimating the selection
vectors compared to the SCCA method (Fig. 2). In detail,
the AUC of our model showed 11% improvement over the
SCCA (i.e., 0.8475 for our model and 0.7598 for SCCA).
Both algorithms showed generally good performance for
estimating genetic selection vectors (i.e., 0.8283 for our
model and 0.8247 for SCCA), and our algorithm was better
at estimating neuroimaging selection vectors (i.e., 0.9577
for our model and 0.7537 for SCCA).

3.2. Experiment on a real imaging genetics dataset

In addition to the experiment with simulation dataset, we
tested the algorithms using a real dataset. We applied the
algorithms to real genotyping and neuroimaging datasets of
PD obtained from the PPMI research database. The
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Fig. 3. Comparison of estimated selection vectors using real
imaging genetics data. Each subfigure has two rows, where
the first row is the selection vector for the SNPs and the
second row is the selection vector for the neuroimaging
data. Subfigures (a) and (b) correspond to the estimated
selection vectors using the SCCA and DN-FS, respectively.
genotyping and neuroimaging data of 94 subjects with PD
were used. We extracted 3,365 SNP markers and 90
regional DaT-SPECT features by using the preprocessing
steps as described in Section 2.3.

We applied our algorithm to the preprocessed feature
data (i.e., SNP and DaT-SPECT features). Our algorithm
revealed that 181 SNPs were significantly linked with 22
ROIs of DaT-SPECT features and a canonical correlation of
0.6836 was reported between the identified genetic and
DaT-SPECT features (Fig. 3). The SCCA algorithm showed
that 197 SNPs and 29 DaT-SPECT features were
significantly related and a canonical correlation of 0.6025
was reported between the identified features.

We further analyzed our results to determine whether
the identified SNPs were consistent with the prior
knowledge of PD. We compared the identified SNPs to PD-
related SNPs in the PDGene database [9]. Using our
algorithm, there were four genes, SNCA, IRF4, GCH1, and
HCA-DQAI1, which confirmed the existing findings in PD
literature. The SNCA is one of the critical risk genes for PD.
The SNCA gene provides instructions for making an alpha-
synuclein, which plays an important role in movement
structures. Previous reports showed that the mutations in
SNCA were responsible for autosomal dominant PD [10]. In
addition, we computed odd ratios (ORs) for the identified
SNPs to measure the association between the identified
SNPs and clinical diagnosis. We found that the identified
SNPs by our algorithm showed an averaged OR of 1.53,
which was higher than the values obtained using the
competing method (0.96 for the SCCA). For the
neuroimaging features, we found that the identified five
ROIs were common in both methods, including globus
pallidus, thalamus, Heschel's gyrus, bilateral inferior frontal
gyrus, and pars opercularis. Most of these regions were parts
of basal ganglia structures, which are related to PD [11].

4. CONCLUSION

In this study, we proposed a deep network-based feature
selection model for evaluating associations between genetic

and neuroimaging data. We demonstrated the feasibility of
the algorithm using both simulation and real data. The
proposed algorithm is an unsupervised learning model with
deep learning framework. Thus, it could be used in
unlabeled or categorized datasets. Our algorithm confirmed
not only several well-established PD biomarkers but also
revealed new potential SNPs. The proposed imaging
genetics model has the potential to reveal new biomarkers to
improve mechanistic understanding of the studied brain
disorders. In the future, we will expand our method to the
analysis of additional modalities, and apply our method to
cohorts such as Alzheimer’s patients and the healthy to test
if our approach generalizes to other cases.
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