

# 1 Deep adversarial network for super-STED imaging

2 Mengzhou Li, Hongming Shan, Sergey Pryshchep, Maria M. Lopez and Ge Wang\*<sup>a</sup>

3 Biomedical Imaging Center, Department of Biomedical Engineering, Center for Biotechnology &  
4 Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY USA

## 5 ABSTRACT

6 Stimulated emission depletion (STED), as one of the emerging super-resolution (SR) techniques, defines a state-of-the-  
7 art of image resolution. It has been developed into a universal fluorescent imaging tool over the past several years. The  
8 currently best available lateral resolution offered by STED is around 20 nanometers but in real live cell imaging applications  
9 the regular resolution offered through this mechanism is around 100 nanometers, limited by photo-toxicity. Many critical  
10 biological structures are below this resolution level. Hence, it will be invaluable to improve the STED resolution through  
11 post-processing techniques. In this project, we propose a Deep Adversarial Network (DAN) for improving the STED  
12 resolution significantly, which takes a STED image as an input, relies on physical modeling to obtain training data, train  
13 the network with the simulated data, and outputs a self-refined counterpart image at a higher resolution level. In other  
14 words, we use the prior knowledge on the STED point spread function, and the structural information about the cells  
15 to generate simulated labeled data pairs for network training. Our results suggest that 30-nanometer resolution can be  
16 achieved from a 60-nanometer resolution STED image, and in our simulation and experiments, the SSIM values between  
17 the label and output result reached around 0.98, much higher than those obtained using the Lucy-Richardson deconvolution  
18 (LRD) method.

19 **Keywords:** Super-resolution, STED, deep adversarial network, image deconvolution

## 20 1. INTRODUCTION

21 Super-resolution optical microscopy enables quantitative inner vision of subtle structures in cells, which plays an increasing-  
22 ingly important role in life science research.<sup>1-3</sup> SR imaging is also referred to as image deblurring or image restoration.  
23 With the labeling techniques fluorescent microscopy provides appealing images for studies on targeted biological structures  
24 or processes,<sup>4-6</sup> without the interference of irreverent background components which show up in unlabeled imaging results.  
25 STED is one of the emerging SR techniques with a state-of-the-art image resolution. It has been developed into a general  
26 fluorescent imaging tool over the last several years.<sup>7</sup> The best lateral resolution attained by STED is currently around 20  
27 nanometers.<sup>8-10</sup> However, to avoid photo-toxicity and photo-bleaching in live cell imaging, the depletion and excitation  
28 laser beams have limited intensities, which results in a typical image resolution around 100 nanometers. Biologically,  
29 numerous critical structures are below this resolution level. Thus, it is of great and immediate significance to improve the  
30 STED image resolution for live cell based investigations. Instead of changing the scanning protocols and/or mechanisms  
31 for higher resolution,<sup>9,11,12</sup> employing deconvolution algorithms is effective and easy-to-implement for SR imaging. This  
32 approach has been widely used in many imaging applications. Many classic methods were developed and well known for  
33 this purpose, such as Wiener filtration, which is one of the most widely known linear deconvolution methods. It is fast  
34 and finds a certain trade-off between sharpness and noise. Superior microscopy image deconvolution methods are usually  
35 nonlinear, with the LRD algorithm as an excellent example for Maximum A Priori (MAP) deconvolution. It is an iterative  
36 method, which is slow but often generates better SR results than linear deblurring/restoration methods.

37 Recently, deep-learning based image methods have gained a tremendous attention due to their outstanding performance  
38 in solving many challenging imaging problems, such as image-SR, deconvolution, denoising, and compressive imaging.  
39 Those end-to-end data-driven methods usually do not require explicit physical models or priors that are used by the tradi-  
40 tional model-based methods, but deep learning methods often achieve results surpassing the state-of-the-art results obtained  
41 using the traditional methods. Typically, deep learning methods rely on "big data" which often consist of raw inputs and  
42 the corresponding desired outputs known as labels or ground truths. Related to the SR task of interest in our project, several  
43 deep-learning-based methods were proposed and demonstrated impressive performance. Given the pairs of low-resolution

\* Corresponding author: Ge Wang. E-mail: wanggg6@rpi.edu.

44 and high-resolution images, deep neural networks can be trained to successfully transform an image acquired with a low  
 45 numerical aperture (NA) to one with a high NA,<sup>13</sup> or different modality images can be synergized to improve image resolution,<sup>14</sup> Signal to Noise Ratio (SNR) and throughput in order to push the limit of fluorescent microscopy in terms of SNR, isotropic resolution, and temporal resolution,<sup>15</sup> etc. The key factor to the success of those methods is the availability  
 46 of big data. However, in biomedical imaging fields, the lack of high-quality datasets is very common because of privacy,  
 47 cost and other issues. Often times, most imaging data come without appropriate ground-truth images. For example, when  
 48 you already use the highest resolution imaging system to collect images, we run out of resources to collect higher resolution  
 49 counterparts for RS imaging. For this reason, some researchers simulated data to train a network, especially in the  
 50 stochastic SR microscopy field (i.e. STORM or PALM),<sup>16-18</sup> which is totally a different story from the deterministic SR  
 51 microscopy field (i.e. STED). The essential difference lies in that the former is a localizing task requiring a time-series  
 52 of low resolution images to achieve SR, while the latter is a deblurring task processing only a single image. It should be  
 53 also mentioned that the concepts of SR in the fields of computer vision (CV) and microscopy are also different. First, the  
 54 input for SR imaging in CV is a down-sampled image from the original high-resolution image. As a result, the goal is to  
 55 recover the original one. In contrast, the input for microscopic SR imaging is a blurry image due to the diffraction of light.  
 56 Accordingly, the goal is to restore a high-resolution image of an object being imaged by removing the diffraction effect. In  
 57 other words, the former is an under-sampling problem, while the latter is a deblurring problem. Second, the nature of SR  
 58 imaging in CV ensures that an enormous amount of natural images can be used as the training dataset, while the number  
 59 of good quality data for microscopy SR imaging is limited, as already mentioned.  
 60

61 Here we propose a DAN based SR method which includes a STED image simulation module and uses synthetic  
 62 data to train the network to overcome the missing data problem. As compared to acquiring real data from microscopes,  
 63 our method avoids the complex drift correction and image alignment procedures which are extremely critical in high-  
 64 resolution imaging, especially STED. In addition, a great amount of efforts are saved with respect to collection time, sample  
 65 preparation and instrumental cost. We rely on a state-of-the-art generative adversarial network (GAN) for SR and noise  
 66 reduction. Comprehensive experimental results on both simulated and physically acquired STED images demonstrate that  
 67 the proposed method successfully improves the resolution and effectively suppresses image noise, clearly outperforming  
 68 the classic LRD method in qualitative and quantitative metrics.  
 69

70 The rest of paper is organized as follows. In the next section, the STED model, sample structure and DAN architecture  
 71 are introduced. In the third section, The experimental design and results are reported. In the last section, relevant issues  
 72 are discussed, and then the conclusion is drawn.

## 73 2. METHODOLOGY

74 Our methodology relies on the prior knowledge of the STED PSF (calculated from the parameters specified during the  
 75 associated imaging experiment) to generate training data. To describe the whole process clearly, let us first review the STED  
 76 PSF calculation. Then, we cast light on training data generation. Finally, we present our adversarial network architecture.  
 77 Our goal is to achieve lateral SR for STED images, which means that the training data should be 2D image pairs. But the  
 78 real STED image formation is a convolution of a 3D sample and a 3D PSF. Thus, in addition to the lateral convolution  
 79 effects, neighbor slices will contribute to blurring the in-focus image slice. Indeed, it is a complex task for DNNs to learn  
 80 to separate the lateral blurring from the de-focusing effects from out of focus structure. To avoid complexity, we start from  
 81 simple cases in which sample structures are constrained to a transverse slice so that the influence of the defocusing effect is  
 82 avoided. Then the image formation can be taken as the 2D convolution of the sample and the central slices of the 3D PSF.

### 83 2.1 STED PSF calculation

84 The principle of STED is the utilization of a donut-shaped depletion laser spot to suppress fluorescence at the outer part of  
 85 the excitation focus. For simplicity, STED can be taken as achieved by adding the depletion laser to a confocal microscope.  
 86 As described by Hell,<sup>8</sup> the effective PSF of STED can be depicted as

$$h_{STED}(\vec{r}) = \eta(\vec{r})h_{confocal}(\vec{r}), \quad (1)$$

87 where  $\vec{r}$  stands for a position vector,  $h_{confocal}$  represents the PSF of the confocal microscope, and  $\eta(\vec{r})$  is a suppression  
 88 factor, defined by

$$\eta(\vec{r}) = \exp[-\ln(2)I_{STED}(\vec{r})/I_S], \quad (2)$$

89 where  $I_{STED}(\vec{r})$  is the intensity distribution of the depletion light, while  $I_S$  is the effective saturation intensity (at which the  
 90 probability of fluorescence emission drops to one half of its maximum). For a certain sample with specific fluorophores  
 91 under illumination with certain polarization, the  $I_S$  can be regarded as part of the inherent properties of the sample. We are  
 92 more interested in the intensity distribution of the depletion laser spot  $I_{STED}(\vec{r})$  (also can be called as the depletion PSF)  
 93 and the PSF of the confocal microscope  $h_{confocal}(\vec{r})$ .

94 Depletion spot intensity  $I_{STED}(\vec{r})$  equals the modulus squared of the spot's electric field vector  $\mathbf{E} = (E_x(\vec{r}), E_y(\vec{r}), E_z(\vec{r}))$   
 95 defined in the Cartesian coordinates  $x, y, z$ . The donut shape depletion spot is usually generated by focusing a phase  
 96 modulated circularly polarized laser beam with an objective in common STED configurations. This kind of focusing  
 97 process can be calculated with Debye-Wolf vector diffraction integral as<sup>19,20</sup>

$$\mathbf{E} = \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} = \int_{\theta=0}^{\alpha} \int_{\phi=0}^{2\pi} \sqrt{\cos \theta} \begin{bmatrix} \cos \theta + 1 + (\cos \theta - 1)e^{i2\phi} \\ i(\cos \theta + 1) - i(\cos \theta - 1)e^{i2\phi} \\ -2 \sin \theta e^{i\phi} \end{bmatrix} \\ \cdot T(\theta, \phi) P(\theta, \phi) \exp[ik(\rho \sin \theta \cos(\phi - \xi) + z \cos \theta)] \sin \theta d\phi d\theta, \quad (3)$$

98 where  $k = n2\pi/\lambda$ ,  $n$  and  $\lambda$  are the index of fraction and the wavelength respectively.  $T(\theta, \phi)$  stands for the beam profile  
 99 at the pupil of the objective which includes the illumination profile from the laser and the phase modulation for generation  
 100 of the donut shape spot.  $P(\theta, \phi)$  is used to depict the effects of aberrations. The integration is defined on a spherical cap  
 101 described by the coordinates  $\theta, \phi$ , where  $\theta$  is the aperture angle while  $\phi$  stands for the azimuthal angle.  $\alpha$  is the upper  
 102 limit of  $\theta$ , and decided by the numerical aperture of the objective  $NA$  as  $\alpha = \arcsin(NA/n)$ .  $(\rho, \xi, z)$  are the cylindrical  
 103 coordinates to depict the distribution of  $E_x$ ,  $E_y$  and  $E_z$ .

104 To simplify the Eq. (3), if we define  $E_l = (E_x - iE_y)/\sqrt{2}$  and  $E_r = (E_x + iE_y)/\sqrt{2}$ , then we obtain

$$\mathbf{E} = \begin{bmatrix} E_l \\ E_r \\ E_z \end{bmatrix} = \int_{\theta=0}^{\alpha} \int_{\phi=0}^{2\pi} \sqrt{\cos \theta} \begin{bmatrix} \sqrt{2}(\cos \theta + 1) \\ \sqrt{2}(\cos \theta - 1)e^{i2\phi} \\ -2 \sin \theta e^{i\phi} \end{bmatrix} \\ \cdot T(\theta, \phi) P(\theta, \phi) \exp[ik(\rho \sin \theta \cos(\phi - \xi) + z \cos \theta)] \sin \theta d\phi d\theta, \quad (4)$$

105 where  $E_l$  and  $E_r$  are the left and right circularly polarised components.

106 Assume the system is aberration free and the illumination beam is a plane wave, we have  $P(\theta, \phi) = 1$  and  $T(\theta, \phi)$  only  
 107 includes the phase modulation by the STED phase mask. Our initial goal is to achieve lateral SR of STED, thus we will  
 108 use the 2D STED configurations. For our case, the helicoidal phase pattern of  $T(\theta, \phi)$  for 2D STED can be described by

$$T_{2D}(\theta) = \exp(i\phi). \quad (5)$$

109 Substituting Eq. (5) into Eq. (4), we can further simplify the equation with the identity  $\int_0^{2\pi} \exp[iw \cos(\beta - \gamma) +$   
 110  $im\beta] d\beta = i^m 2\pi e^{im\gamma} J_m(w)$ , where  $J_m$  is the  $m$ th Bessel function of the first kind, and obtain

$$\mathbf{E} = \begin{bmatrix} E_l \\ E_r \\ E_z \end{bmatrix} = 2\pi \int_{\theta=0}^{\alpha} \sqrt{\cos \theta} \begin{bmatrix} i\sqrt{2}e^{i\xi}(\cos \theta + 1)J_1(k\rho \sin \theta) \\ -i\sqrt{2}e^{i3\xi}(\cos \theta - 1)J_3(k\rho \sin \theta) \\ 2e^{i2\xi} \sin \theta J_2(k\rho \sin \theta) \end{bmatrix} \\ \cdot \exp(ikz \cos \theta) \sin \theta d\theta, \quad (6)$$

111 then the depletion spot intensity  $I_{STED}(\vec{r})$  can be computed as

$$I_{STED}(\rho, \xi, z) = |\mathbf{E}|^2 = |E_x|^2 + |E_y|^2 + |E_z|^2 = |E_l|^2 + |E_r|^2 + |E_z|^2. \quad (7)$$

112 Based on Eq. (6), Eq. (7), and the conversion formulas between Cartesian coordinates and cylindrical coordinates,

$$\begin{cases} \rho &= \sqrt{x^2 + y^2}, \\ \xi &= \arctan(y/x) \end{cases} \quad (8)$$

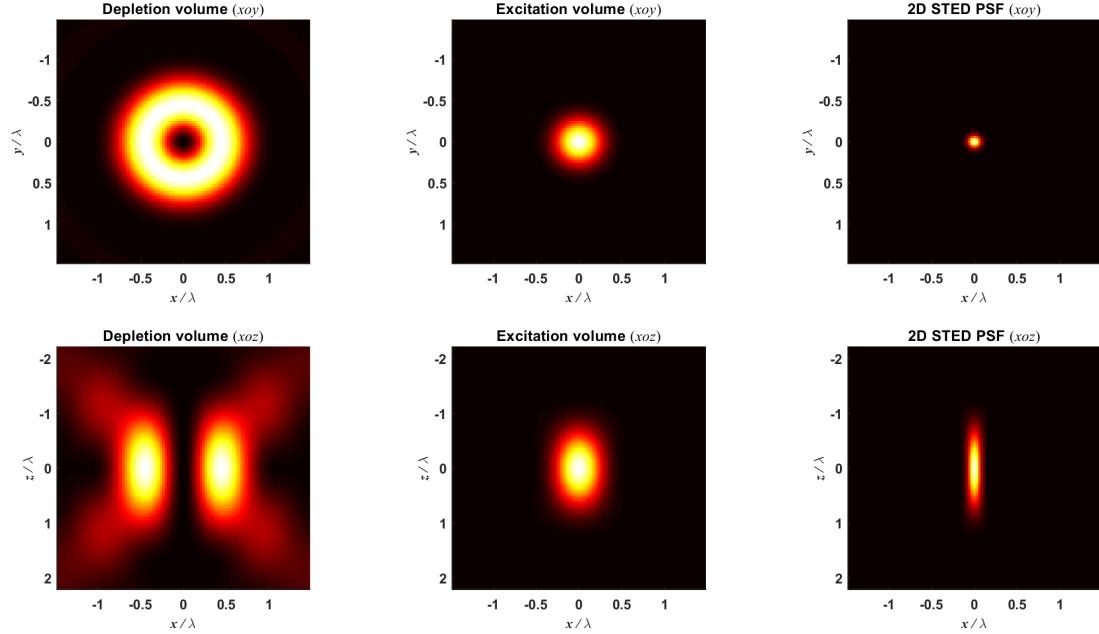


Figure 1: Depletion PSF sections. Colour maps of different images are independent. The parameters for this simulation are  $NA = 1.4$ ,  $n = 1.518$ , 775 nm depletion laser, 633 nm excitation laser and emission peak around 665 nm. The coordinates are normalized with the wavelengths. The lateral resolution is set around 60 nm (half height full width)

113 the distribution of  $I_{STED}(\vec{r})$  has been numerically simulated as shown in Fig. 1. The images in upper row and lower row  
 114 illustrate sections of the depletion PSF, excitation PSF and the effective STED PSF along  $xy$  plane and  $xz$  plane respectively.

115 Similarity, we can compute the distribution of  $h_{confocal}(\vec{r})$ . If we remove the phase modulation term  $T(\theta, \phi)$  from Eq.  
 116 (3) or Eq. (4), we can obtain the focusing spot  $\mathbf{E}'(\vec{r})$  of a circularly polarised plane wave beam. Then the PSF of the  
 117 objective  $h_{lens}(\vec{r})$  will be the modulus squared of the  $\mathbf{E}'(\vec{r})$ ,

$$\mathbf{E}' = \begin{bmatrix} E'_l \\ E'_r \\ E'_z \end{bmatrix} = 2\pi \int_{\theta=0}^{\alpha} \sqrt{\cos \theta} \begin{bmatrix} \sqrt{2}(\cos \theta + 1)J_0(k\rho \sin \theta) \\ -\sqrt{2}e^{i2\xi}(\cos \theta - 1)J_2(k\rho \sin \theta) \\ -2ie^{i1\xi} \sin \theta J_1(k\rho \sin \theta) \end{bmatrix} \cdot \exp(ikz \cos \theta) \sin \theta d\theta, \quad (9)$$

$$118 \quad h_{lens}(\rho, \xi, z) = |\mathbf{E}'|^2 = |E'_l|^2 + |E'_r|^2 + |E'_z|^2. \quad (10)$$

119 For a conventional confocal microscope, its PSF will be the product of the PSF of focusing lens and the PSF of the  
 120 collecting lens. In our case, we use the same objective to focus the excitation beam and to collect the fluorescence signals,  
 121 thus the PSF of our confocal microscope  $h_{confocal}(\vec{r})$  can be depicted as

$$122 \quad h_{confocal}(\vec{r}) = h_{lens}(\vec{r}) \cdot h_{lens}(\vec{r}). \quad (11)$$

123 Combining Eqs. (1) to (11), we will obtain the 3D PSF of STED. As mentioned above, to simplify the image formation  
 124 model, we use the average of several central slices of 3D STED PSF as a simplified 2D PSF that will be used to generate  
 training data.

## 125 2.2 Training data generation

126 To generate image pairs for training a neural network, common structures of cell specimens should be modeled, which can  
 127 be classified into three categories, dots, lines and planes. Small particle-like structures like nuclear pores, small vesicle and  
 128 single fluorophores can be modeled as dots, while microtubules and cytoskeletal filaments are line-type structures which

129 can be modeled by lines, and plane type structures like membrane and golgi apparatus will be modeled by ellipsoid shells  
130 or curved planes.

131 Based on literature, the thickness of the cell membrane is approximately 7 to 10 nm,<sup>21</sup> the diameters of cytoskeletal  
132 filaments (or microfilaments) range from 8 nm (actin filaments)<sup>22</sup> to 24 nm.<sup>23</sup> The nuclear pores are usually dense in  
133 nuclear envelope and the channel diameter ranges from 5.2 nm (human)<sup>24</sup> to 10.7 nm. In addition, the fluorescent protein  
134 size taking the GFP as an example will be around 4.2 nm (4.2 nm long and 2.4 nm in diameter).<sup>25</sup> The structural size of  
135 those nuclear pores and fluorophores are too small, so we will model them as dots. Most of structures are imaged with the  
136 aid of fluorophores under microscopes since most structures do not generate fluorescence themselves. In other words, what  
137 we see in fluorescent microscopes is the image of the fluorophores which form the shape of target structures when they are  
138 bound to the structures. Thus, we need to add the size of fluorophores to the size of structures to correctly model the real  
139 size of the structures we will see under the microscope with ultra-high resolution like STED.

### 140 2.2.1 Sample structure simulation

141 Since we limit our scope to the 2D case, we will not deal with the membrane structures which usually couple the defocused  
142 blurring and lateral blurring together and represent 3D cases. Thus, we just use lines and dots to mimic the structures in  
143 cells, especially ellipses and dots because the curved structures and dot structures are very common in cells. In addition,  
144 we add a random value (0, 1) for every pixel instead of all 1 to mimic the discrete property and intensity difference of  
145 fluorophores. As for the details, we set the pixel size of the 2D structure image slice as 10 nm, and the image size as 512  
146 by 512. Each slice contains randomly generated structures including:

- 147 a) 3 actin filaments (straight line segments with lengths in  $[0, 10\mu m]$ , random positions and directions in plane, line width  
148  $0.02\mu m$ );
- 149 b) 3 microtubules (straight line segments with lengths in  $[0, 10\mu m]$ , random positions and directions in plane, line width  
150  $0.035\mu m$ );
- 151 c) 8 curved structures (ellipse with random orientation and random position in plane, radii in  $[0.4\mu m, 3\mu m]$ , line width  
152 around  $0.035\mu m$ );
- 153 d) 200 nuclear pores (dots with random positions in plane, the radii  $0.01\mu m$ ).

154 Finally, the average mean of the slice (all effective pixels are set 1 in value) is around 0.12. Those structure slices will serve  
155 as the ground truth images. Low resolution STED images can be generated with the structures and the simplified 2D PSF  
156 of STED, which will be introduce in details in 2.2.2.

### 157 2.2.2 STED imaging simulation

158 As mentioned before, we only use the average of several central slices of the 3D PSF to simply the model to 2D based on  
159 the assumption that samples are thin enough. This is a reasonable assumption when we are looking at the tiny structures  
160 on the outer layer of the sample, like nano-beads sample on a slide or nuclear pores on the nuclear membrane.

161 Without loss of generality, we choose the NA of objective as 1.4, the refractive index as 1.518, a depletion laser of 775  
162 nm, an excitation laser of 633 nm, and the emission peak around 665 nm, which are the common settings used in STED.  
163 The lateral resolution is set around 60 nm (half height full width) with a certain saturation factor, and the axial resolution  
164 remains the same with that of the confocal microscopy around 1 micron. The pixel size of the PSF is set as 10 nm, resulting  
165 a 3D volume with the size  $15*15*101$ . We select the central five slices and generate the simplified 2D PSF after averaging  
166 operation along slice dimension.

167 The ideal STED images are then generated through convolution between ground truth structures and the 2D PSF.  
168 Then a low pass filter is applied on the ideal STED images to generate the corresponding backgrounds which mimic the  
169 auto-fluorescence. Finally, mixed Poisson-Gaussian noise is added on the sum of background images and the ideal STED  
170 images to generate the simulated noisy STED images, which follows the following model

$$I_{noisy} = \alpha P \left( \frac{I_{ideal} + I_{bg}}{\alpha} \right) + N(0, \sigma^2) \quad (12)$$

171 where  $I_{noisy}$ ,  $I_{ideal}$  and  $I_{bg}$  are the simulated noisy STED images, the ideal STED images and the background images;  $P(\cdot)$   
172 and  $N(\cdot)$  stand for Poisson and Normal distribution respectively;  $\alpha$  and  $\sigma$  control the Poisson noise level and the Gaussian  
173 noise level respectively.

174 The noisy STED images and their corresponding structure images are paired as low resolution input and high resolution  
175 labels for network training.

### 176 2.2.3 Deep adversarial network

177 The training network is adapted from the Conveying Path based Convolutional Encoder-decoder (CPCE) network,<sup>26,27</sup>  
178 which is under the Wasserstein Generative Adversarial Network (WGAN)<sup>28</sup> framework as shown in Fig. 2. The GAN<sup>29</sup>  
179 generally consists of two networks, a generator  $G$  and a discriminator  $D$ . The generator takes the input and tries to generate  
180 samples that meet our expectation, while the discriminator takes the role as a critic which receives both the generated  
181 samples from the generator and the real good samples which stand for the golden standards, and tries to distinguish between  
182 the two sources. It is a game relationship between the two networks. During the training, the generator improves its  
183 generation ability while the discriminator improves its discrimination ability. The final goal is that the generator generates  
184 so realistic samples that makes the discriminator fail to distinguish them from the real data.

185 The adopted network mainly contains three parts, a generator which uses a CPCE structure, a perceptual loss calculator  
186 utilized with a pre-trained VGG-19 network,<sup>30</sup> and a discriminator consisting of 6 convolutional layers. The network is  
187 trained with image patches and applied on entire images. The simulated noisy STED images are used as inputs while cor-  
188 responding structure images are used as the high resolution label images during the training. During the testing procedure,  
189 the noisy low resolution images are sent to the generator and high resolution output will be generated.

## 190 3. EXPERIMENTS

### 191 3.1 Experimental setup

192 **Dataset:** A total of 4000 pairs of 512 by 512 simulated pictures are used to train the network, 100 pairs serve for validation,  
193 and another 100 pairs for testing. The images pairs for training are sliced into patches, and the patches are then randomly  
194 ordered for training. The patch size is 64 by 64. In addition, two real STED images of nano-beads and nuclear pores are  
195 acquired to evaluate the proposed method.

196 **Protocol:** The Adam optimization method<sup>31</sup> was used to train the network with a learning rate  $\alpha 1.0 \times 10^{-4}$ , two expo-  
197 nential decay rates  $\beta_1$  and  $\beta_2$  were set to 0.9 and 0.999 respectively. The trade-off parameter  $\lambda$  set to 10, as suggested in,<sup>32</sup>  
198 and  $\lambda_1$  was empirically set to 0.1. The mini-batch size was 128. Figure 3 demonstrates the convergence of the model after  
199 24 epochs.

### 200 3.2 Results

201 The performance of the method is first validated on the simulated testing data and benchmarked against the classic LRD  
202 method. The 2D PSF used during image generation was provided to ‘deconvlucy’ function, which is a build-in function  
203 in MATLAB, to implement the deconvolution, and the iteration number was set as the default value 10. The restoration  
204 results of different methods on a randomly selected testing image are shown in Fig. 4. From the magnified views of the  
205 red region, it clearly demonstrates the effectiveness of the proposed method. The result is almost the same with the ground  
206 truth, and high frequency structures are all recovered from the blurry cloud in the input despite slight difference in the  
207 intensity distribution which might be induced by the presence of noise in the input image. The LRD method also restores  
208 part of the structures and it is obvious it improves the result. But it still misses the two holes in the center and the result is  
209 not sharp and also seems noisy. For the orange region, two adjacent lines evidenced by the ground truth merge to one thick  
210 line in the noisy input, and input also contains lot of noises. The proposed method successfully distinguished the two lines  
211 but the right line wrongly appears brighter than the left one. In addition, most of noises are removed but fine structures  
212 are kept which can be evidenced by the recovered small dot near the lines which is extracted from the noisy background  
213 in the input. The LRD method failed to distinguish the two lines or keep the dot, and the result is not clean but line width  
214 is reduced. We also conducted the width projection along the line in the yellow region as shown in Fig. 4m. The result  
215 obtained from the proposed method almost overlaps with the ground truth while the LRD result is slightly wider than the  
216 ground truth but still demonstrates the SR effect.

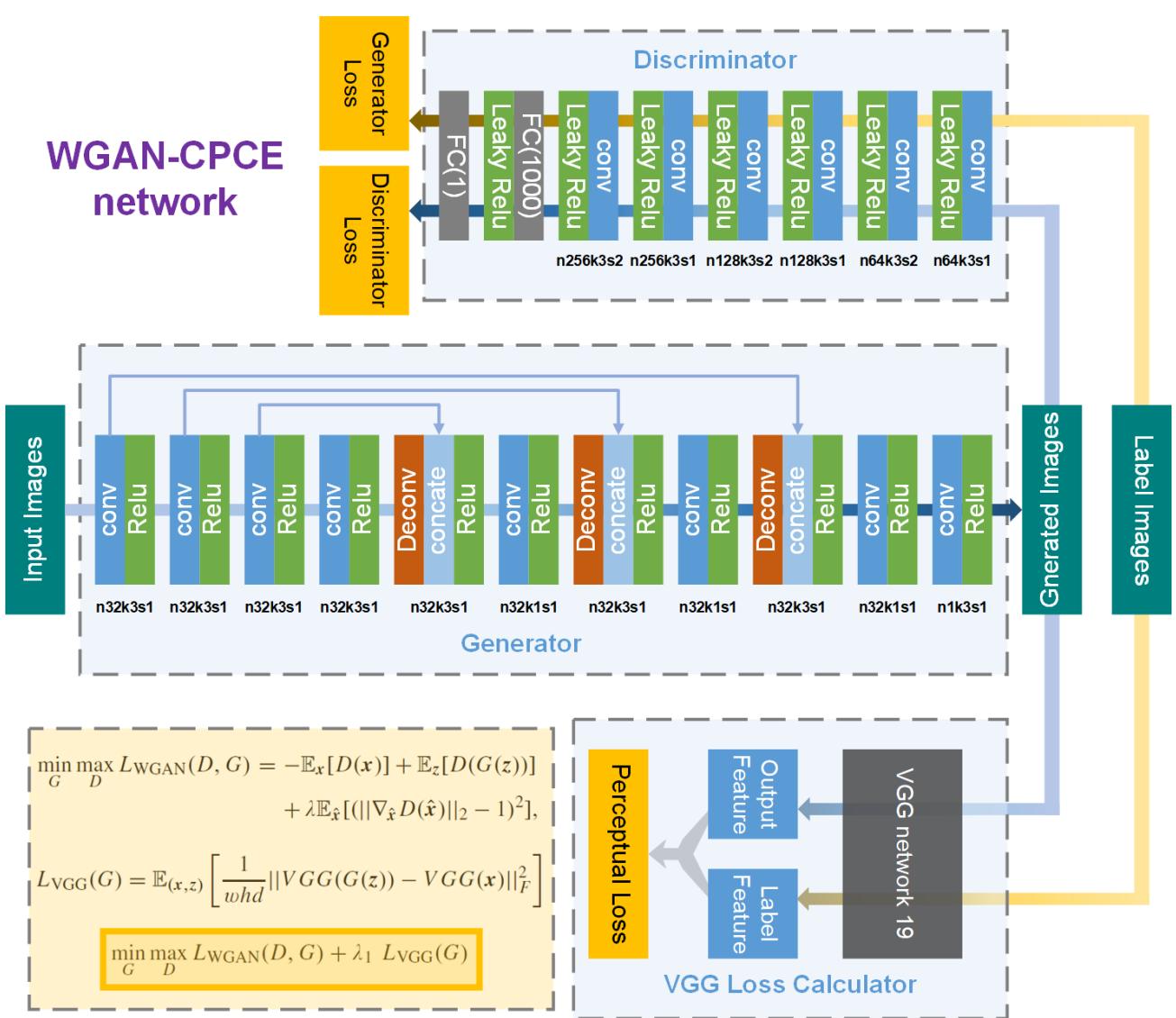


Figure 2: The adopted deep neural network structure.  $n$ ,  $k$  and  $s$  stand for the convolutional kernel number, kernel size and convolutional stride respectively.  $z$  denotes a noisy STED image and  $x$  denotes the corresponding high resolution structure image.  $\lambda$  and  $\lambda_1$  are constant weighting parameters.  $\|\cdot\|_F$  denotes the Frobenius norm.

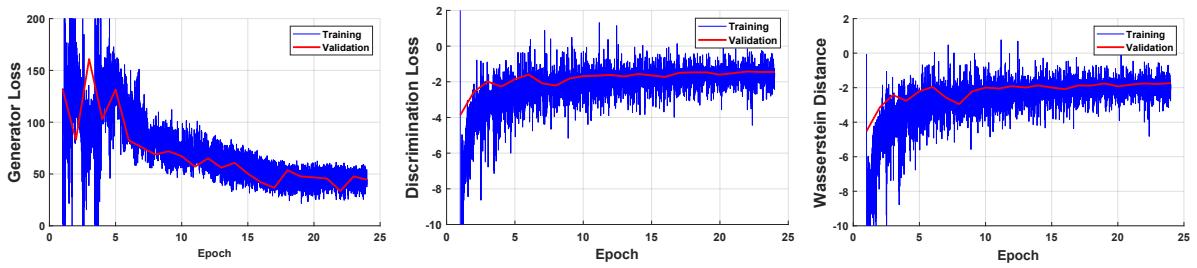


Figure 3: Plots of generator loss, discriminator loss, and Wasserstein distance versus the epoch number during training.

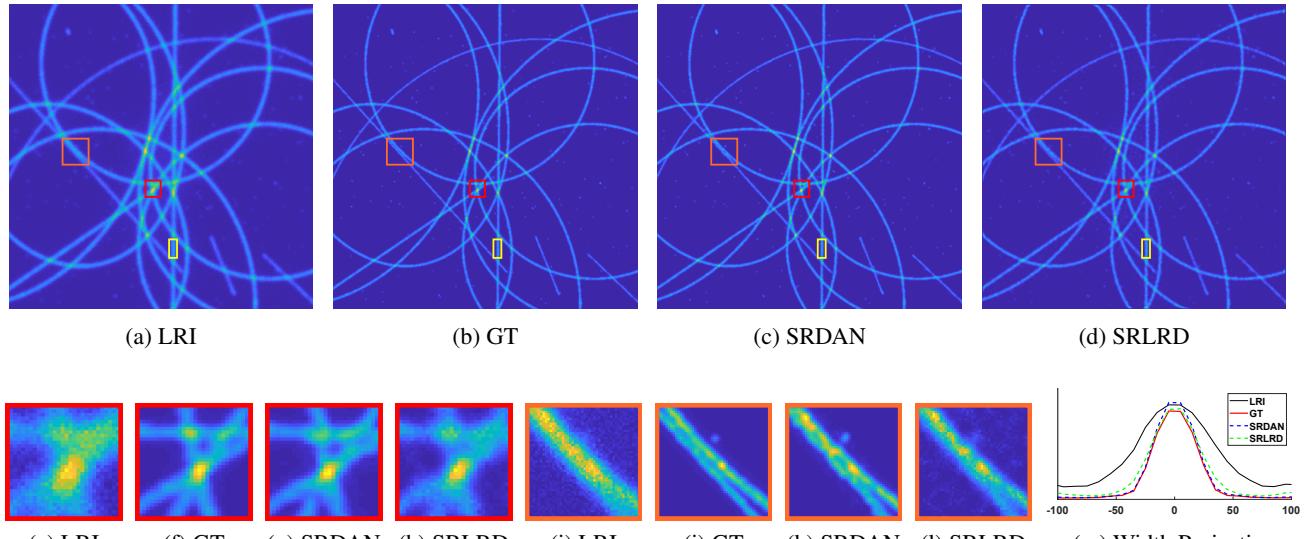


Figure 4: Testing on a simulated image. (a) Input low-resolution noisy STED image (LRI). (b) Ground truth (GT). (c) Super-resolution result with our deep adversarial network (SRDAN). (d) Super-resolution result with LRD method (SRLRD). (e) to (h) Magnified views of red region. (i) to (l) Magnified views of orange region. (m) Width projections of the yellow region.

217 In order to estimate the resolution improvement through the network, a set of horizontal stripes are synthesized with  
 218 decreasing separations (resolution phantom), as shown in Fig. 5b. Then following the procedure to generate the noisy  
 219 STED images, it was transformed into a low resolution noisy image as shown in Fig. 5a, and the noisy result was used to  
 220 test the proposed method as shown in Fig. 5c. The results are summed along horizontal direction with range normalized  
 221 to  $[0, 1]$  to assess the resolution improvement, and lines corresponding to the top part is shown in Fig. 5e. From those  
 222 restoration results in Fig. 5, we can see that the result of the proposed method is much cleaner than the LRD result and the  
 223 input, but there are also tiny artifacts around the edges, and textures seem not similar to those of the ground truth. This may  
 224 be attributed to the fact that the phantom structures are too sharp and none of similar images appears in the training dataset.  
 225 The texture of the phantom are generated by random noise which has a resolution up to one pixel which is out of the  
 226 capability of the proposed method. But after the sum operation along horizontal direction, this randomness can be kind of  
 227 removed and the resulting line will reflect the SR ability of different methods.<sup>16</sup> In Fig. 5e, based on the contrast calculated  
 228 in Tab. 1, the line of the input shows the resolution of the input image is around around 60 nm (using 50% modulation  
 229 criterion), while that of the network output is around the third gap which corresponds to 30 nm. This demonstrates that the  
 230 proposed method can improve the STED resolution from 60 nm to 30 nm.

Table 1: Contrast Measurements on the Resolution Phantom

| Gap width | 20 nm  | 30 nm         | 40 nm         | 50 nm  | 60 nm         |
|-----------|--------|---------------|---------------|--------|---------------|
| LRI       | 0.0019 | 0.0537        | 0.2006        | 0.3832 | <b>0.5418</b> |
| SRDAN     | 0.0030 | <b>0.4846</b> | 0.7725        | 0.8680 | 0.9095        |
| SRLRD     | 0.0083 | 0.1037        | <b>0.5630</b> | 0.8348 | 0.8894        |

231 Structural similarity index (SSIM) and peak signal-to-noise ratio metric have also been evaluated on randomly selected  
 232 8 images in the test dataset between the ground truth and the low-resolution input, the proposed method SR result, and the  
 233 LRD method SR result, as shown in Tab. 2. The selected images are attached in the appendix. From Tab. 2 we can see that  
 234 both the proposed method and the deconvolution method improve the original input significantly in perspective of SSIM  
 235 and PSNR, and the proposed method performs more stable and better than the other one in evidence of bad performance  
 236 of deconvolution method on sample 6 and the leading scores of the proposed method on all images. This suggests the

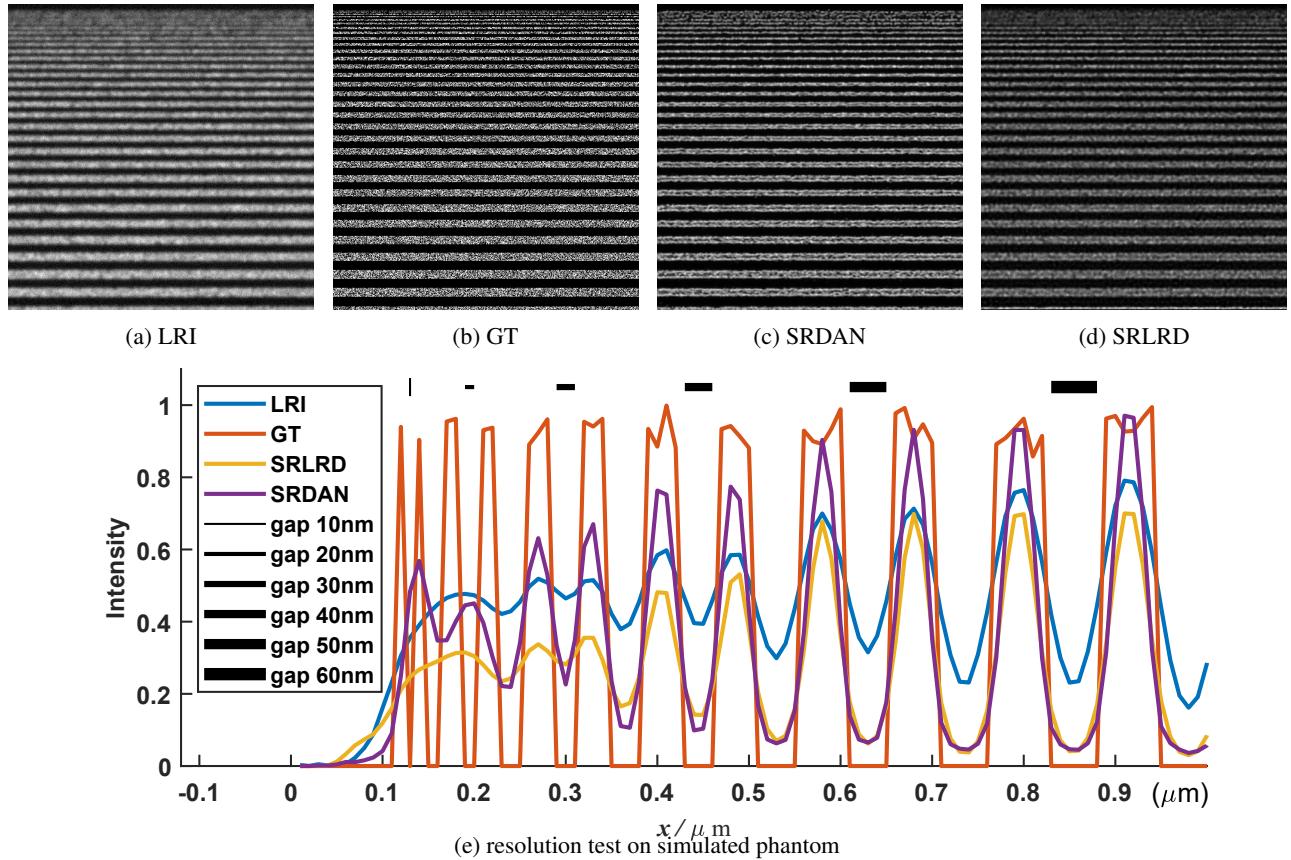


Figure 5: Testing on a simulated resolution phantom. (a) Low resolution noisy STED image of the phantom. (b) Ground truth. (c) Super-resolution result with our deep adversarial network. (d) Super-resolution result with the LRD method. (e) Sum along the horizontal direction of phantom images mentioned above.

237 feasibility of the idea behind the proposed method that we can meet the demand of big data with simulation supported by  
 238 our professional knowledge.

Table 2: Quantitative metrics on Testing Images

| GT as ref.   | sample 1       | sample 2       | sample 3       | sample 4       | sample 5       | sample 6       | sample 7       | sample 8       |
|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| LRI (SSIM)   | 0.77402        | 0.77179        | 0.73163        | 0.75592        | 0.70309        | 0.68028        | 0.72022        | 0.67642        |
| SRDAN (SSIM) | <b>0.98534</b> | <b>0.97354</b> | <b>0.98380</b> | <b>0.98226</b> | <b>0.98587</b> | <b>0.97556</b> | <b>0.98637</b> | <b>0.98100</b> |
| SRLRD (SSIM) | 0.94555        | 0.94686        | 0.93059        | 0.95499        | 0.93754        | 0.87277        | 0.94117        | 0.94424        |
| LRI (PSNR)   | 24.5195        | 26.1955        | 25.3600        | 24.1606        | 23.5735        | 25.9906        | 23.9409        | 24.3680        |
| SRDAN (PSNR) | <b>35.1704</b> | <b>35.4851</b> | <b>36.5990</b> | <b>35.1378</b> | <b>36.1270</b> | <b>36.6259</b> | <b>36.1870</b> | <b>36.4868</b> |
| SRLRD (PSNR) | 30.9748        | 32.5516        | 32.0144        | 31.4760        | 31.3604        | 30.9036        | 31.3858        | 33.1481        |

239 We also tested the trained network on experimental STED images of nuclear pores and beads. The parameters for  
 240 STED images acquisition are similar to those used during simulation, namely, objective NA, wavelengths and resolution.  
 241 The results are shown in Fig. 6. From Figs. 6a to 6c, we can see that both methods can remove most of the noises and make  
 242 the images sharper. Visually, the network output is slightly brighter than the LRD result, and at the similar level to the  
 243 input. Moreover, in the network output, the dots seem more regular and symmetric than those in the LRD result, and the  
 244 dots in LRD result are in bar-shapes which are less appealing. Figure 6d shows that both methods remove the background  
 245 noises but still keep the tiny structures. As for the nano-beads image, it can be clearly observed that the resolution of the

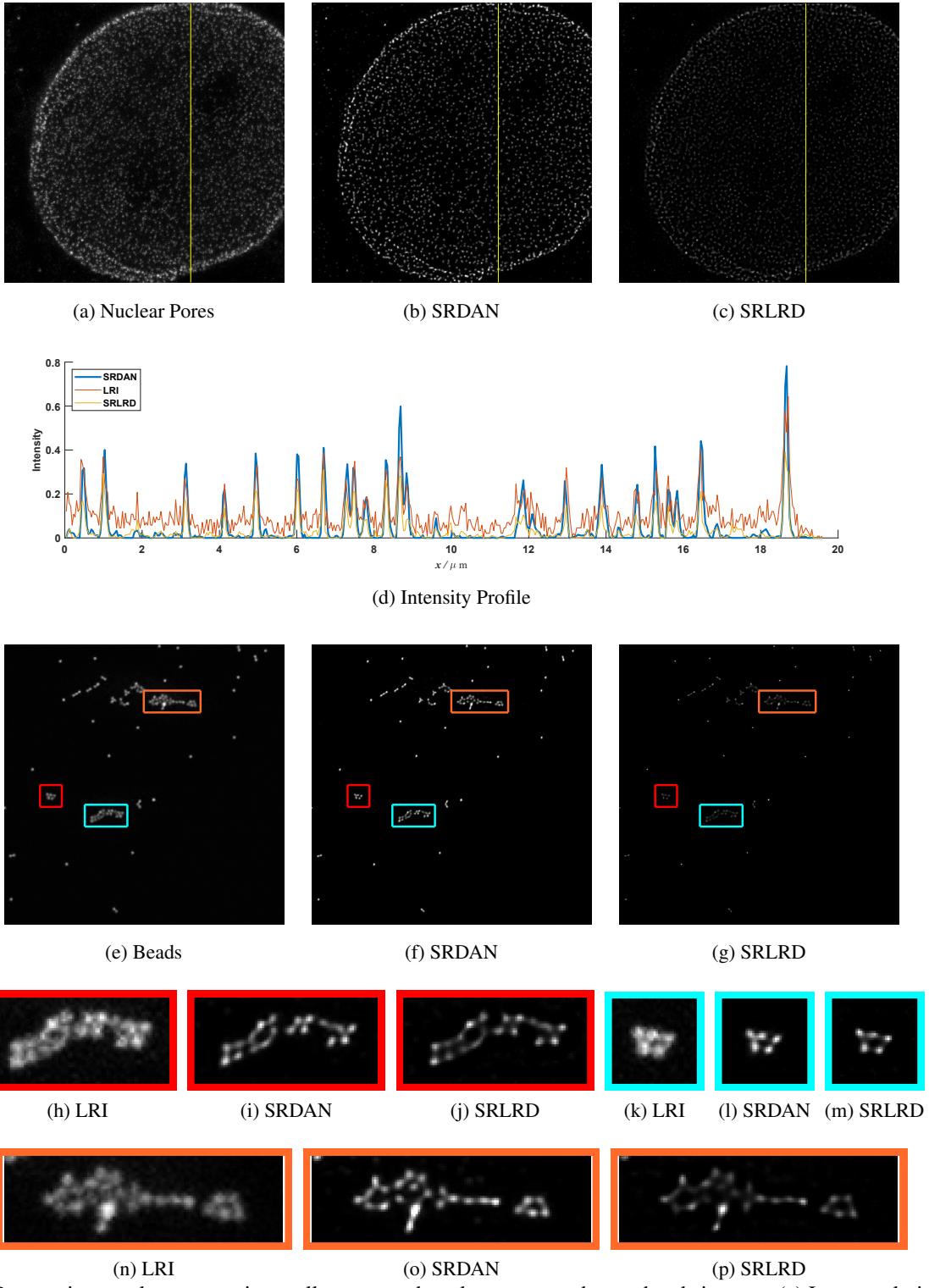


Figure 6: Restoration results on experimentally measured nuclear pores and nano-beads images. (a) Low resolution noisy STED nuclear pores image. (b) SRDAN of the nuclear pores image. (c) SRLRD of the nuclear pores image. (d) Line intensity profile across the images. (e) Noisy STED nano-beads image. (f) SRDAN of the beads image. (g) SRLRD of the beads image. (h) to (j) Magnified views of the red region. (k) to (m) Magnified views of the blue region. (n) to (p) Magnified views of the orange region.

246 original images are significantly enhanced through both methods, but the results of the proposed method are more likely  
247 to be the truth than the LRD method for the following reason. We know the beads generally should be in round shape and  
248 they should be very close to each other if they gather to a block as shown in Figs. 6h and 6n. Comparing Figs. 6i and 6o  
249 with Figs. 6j and 6p, we found that the beads in LRD results seem to be escaping from each other and have obvious gaps  
250 in between while the beads' centers in the network outputs are closer and the gaps are very small. Moreover, beads in Fig.  
251 6l seem closer and more symmetric than in Fig. 6m.

#### 252 **4. DISCUSSIONS AND CONCLUSION**

253 As mentioned earlier, this pilot study is by design a 2D SR imaging task, and has been intended to deal with thin samples  
254 only. In the next step, we would like to extend our approach to a 3d setting. Our hypothesis is that both 3D cellular  
255 structures and the system PSF are spatially correlated, and the defocusing effect can be recognized by a deep neural  
256 network. Actually, experts' eyes can perceive the defocusing effect and infer underlying structures, and hopefully a data-  
257 driven deep learning process could, to a good degree, simulate the human perception. If this is proven successful, our SR  
258 work will be much more significant than 2D SR imaging. Also, our results suggest the feasibility of using simulation data  
259 to train a deep network and achieve resolution enhancement in other fields.

260 In conclusion, we have presented a DAN-based method for improving the STED resolution to the next level. The  
261 proposed method overcomes the unavailability of missing paired training data with physically realistic modeling. The  
262 synthetic data generated according to the analytic PSF model has been cost-effective in training our deep neural network  
263 and delivered promising SR results. In comparison, the testing results on both simulated images and experimental images  
264 suggest that the proposed method performs much better than the classic LRD method in resolution enhancement and noise  
265 reduction, and quantitatively achieves 30 nm resolution from 60 nm-resolution STED images.

#### 266 **5. ACKNOWLEDGEMENTS**

267 This work was supported by the National Science Foundation (Award MRI-1725984).

#### 268 **APPENDIX A. MORE TESTING RESULTS ON SIMULATED IMAGES**

269 Testing results on 8 randomly selected samples from the testing dataset are shown in Figs. A.1 and A.2, on which SSIM  
270 and PSNR are also evaluated to obtain Tab. 2.

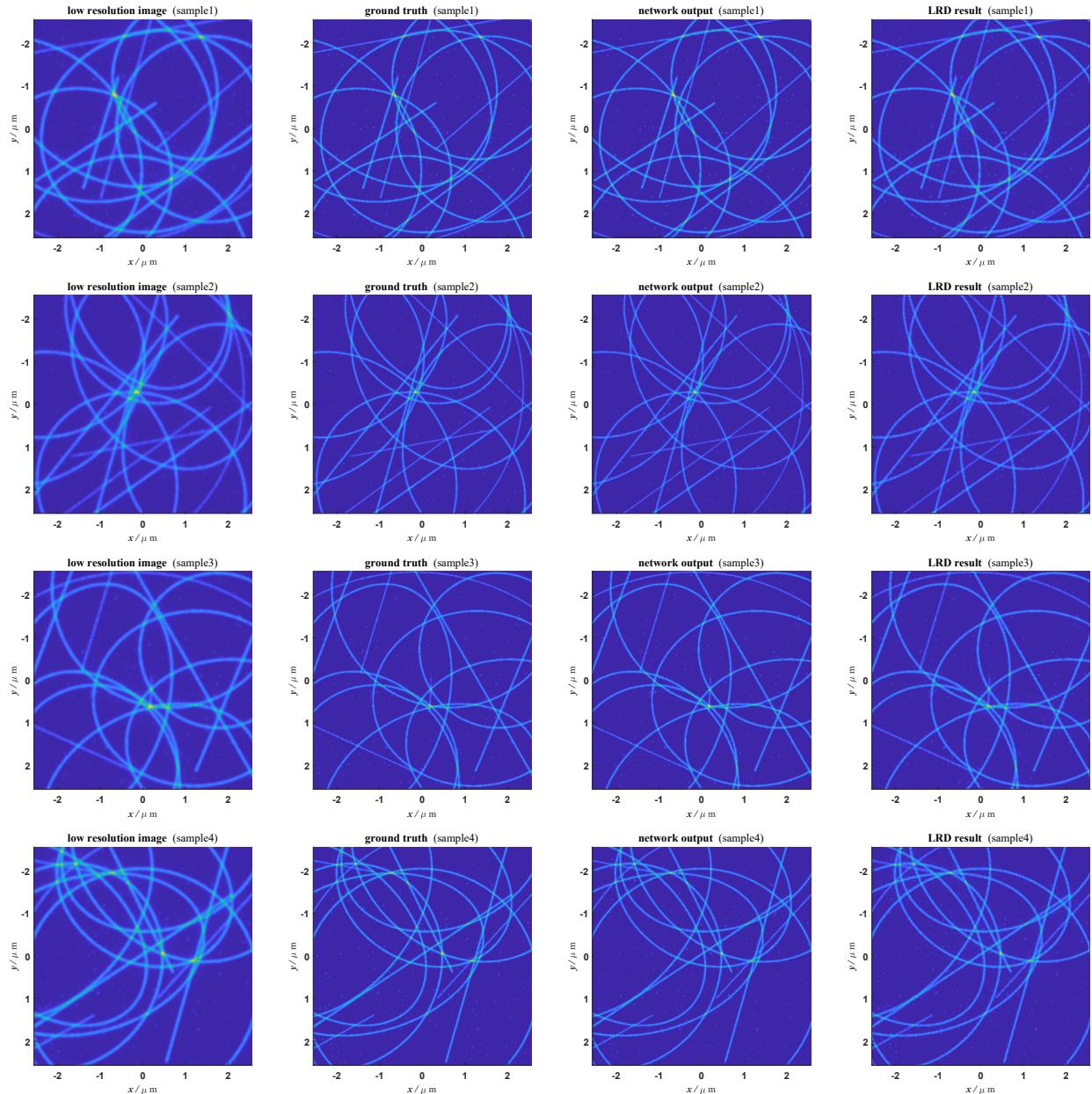


Figure A.1: Testing results on simulated sample images 1 to 4.

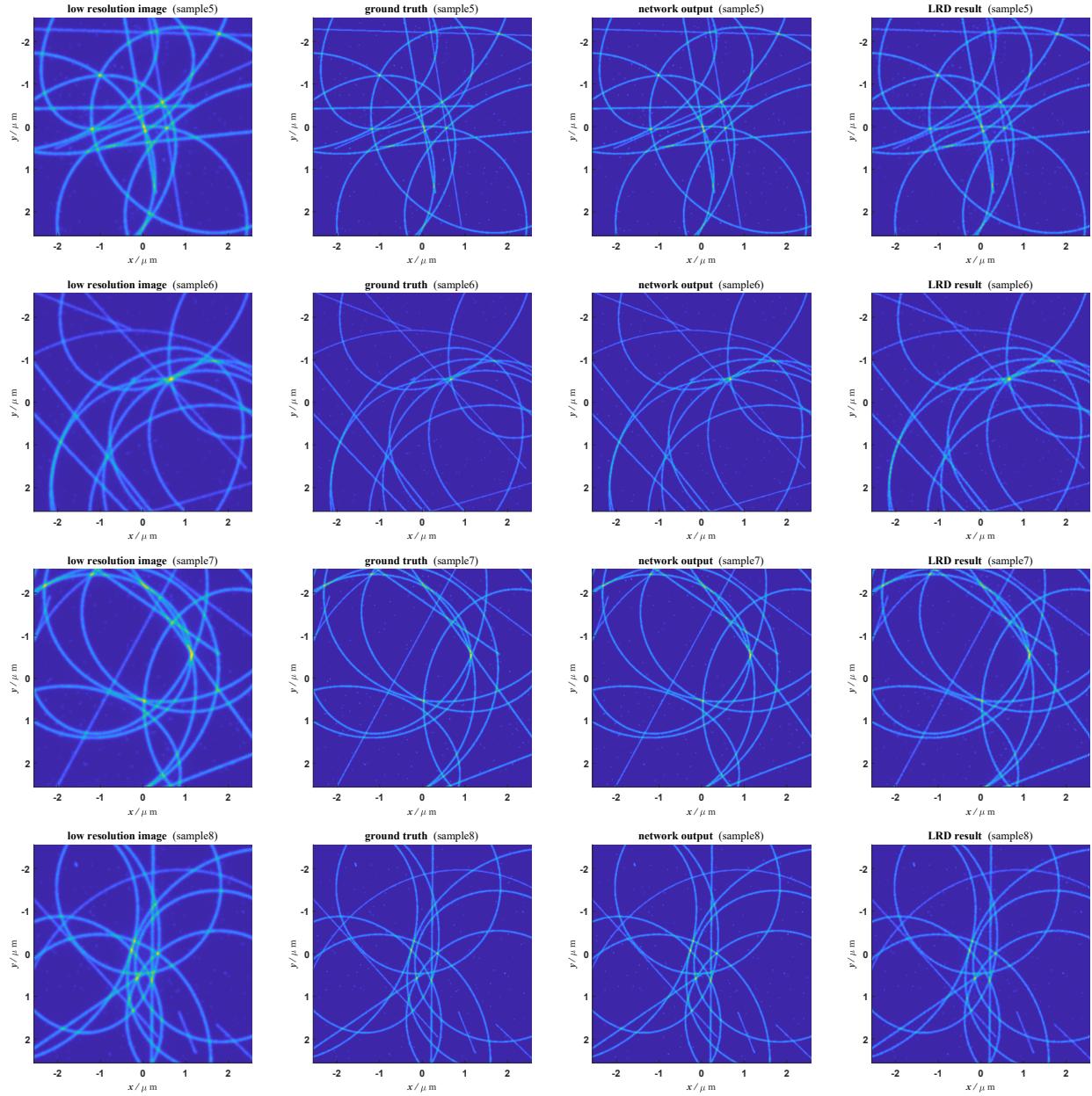


Figure A.2: Testing results on simulated sample images 5 to 8.

271

## REFERENCES

272 [1] Sahl, S. J., Hell, S. W., and Jakobs, S., “Fluorescence nanoscopy in cell biology,” *Nature reviews Molecular cell*  
273 *biology* **18**(11), 685 (2017).

274 [2] Phan, N. T., Li, X., and Ewing, A. G., “Measuring synaptic vesicles using cellular electrochemistry and nanoscale  
275 molecular imaging,” *Nature Reviews Chemistry* **1**(6), 0048 (2017).

276 [3] Leterrier, C., Dubey, P., and Roy, S., “The nano-architecture of the axonal cytoskeleton,” *Nature Reviews Neuro-*  
277 *science* **18**(12), 713 (2017).

278 [4] Sahoo, H., “Fluorescent labeling techniques in biomolecules: a flashback,” *Rsc Advances* **2**(18), 7017–7029 (2012).

279 [5] Szent-Gyorgyi, C., Schmidt, B. F., Creeger, Y., Fisher, G. W., Zabel, K. L., Adler, S., Fitzpatrick, J. A., Woolford,  
280 C. A., Yan, Q., Vasilev, K. V., et al., “Fluorogen-activating single-chain antibodies for imaging cell surface proteins,”  
281 *Nature biotechnology* **26**(2), 235 (2008).

282 [6] Weil, T. T., Parton, R. M., and Davis, I., “Making the message clear: visualizing mrna localization,” *Trends in cell*  
283 *biology* **20**(7), 380–390 (2010).

284 [7] Blom, H. and Widengren, J., “Sted microscopytowards broadened use and scope of applications,” *Current opinion in*  
285 *chemical biology* **20**, 127–133 (2014).

286 [8] Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schönle, A., and Hell, S. W., “Resolution scaling in sted microscopy,”  
287 *Optics express* **16**(6), 4154–4162 (2008).

288 [9] Vicidomini, G., Bianchini, P., and Diaspro, A., “Sted super-resolved microscopy,” *Nature methods* **15**(3), 173 (2018).

289 [10] Göttfert, F., Wurm, C. A., Mueller, V., Berning, S., Cordes, V. C., Honigmann, A., and Hell, S. W., “Coaligned dual-  
290 channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution,” *Biophysical journal* **105**(1), L01–L03  
291 (2013).

292 [11] Göttfert, F., Pleiner, T., Heine, J., Westphal, V., Görlich, D., Sahl, S. J., and Hell, S. W., “Strong signal increase in  
293 sted fluorescence microscopy by imaging regions of subdiffraction extent,” *Proceedings of the National Academy of*  
294 *Sciences* **114**(9), 2125–2130 (2017).

295 [12] Oracz, J., Westphal, V., Radzewicz, C., Sahl, S. J., and Hell, S. W., “Photobleaching in sted nanoscopy and its  
296 dependence on the photon flux applied for reversible silencing of the fluorophore,” *Scientific reports* **7**(1), 11354  
297 (2017).

298 [13] Rivenson, Y., Göröcs, Z., Günaydin, H., Zhang, Y., Wang, H., and Ozcan, A., “Deep learning microscopy,” *Op-*  
299 *tica* **4**(11), 1437–1443 (2017).

300 [14] Wang, H., Rivenson, Y., Jin, Y., Wei, Z., Gao, R., Günaydin, H., Bentolila, L. A., Kural, C., and Ozcan, A., “Deep  
301 learning enables cross-modality super-resolution in fluorescence microscopy,” *Nat. Methods* **16**, 103–110 (2019).

302 [15] Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., Wilhelm, B., Schmidt, D., Broaddus, C.,  
303 Culley, S., et al., “Content-aware image restoration: pushing the limits of fluorescence microscopy,” *Nature meth-*  
304 *ods* **15**(12), 1090 (2018).

305 [16] Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y., “Deep-storm: super-resolution single-molecule microscopy  
306 by deep learning,” *Optica* **5**(4), 458–464 (2018).

307 [17] Ouyang, W., Aristov, A., Lelek, M., Hao, X., and Zimmer, C., “Deep learning massively accelerates super-resolution  
308 localization microscopy,” *Nature biotechnology* **36**(5), 460 (2018).

309 [18] Li, Y., Xu, F., Zhang, F., Xu, P., Zhang, M., Fan, M., Li, L., Gao, X., and Han, R., “Dlbi: deep learning guided  
310 bayesian inference for structure reconstruction of super-resolution fluorescence microscopy,” *Bioinformatics* **34**(13),  
311 i284–i294 (2018).

312 [19] Richards, B. and Wolf, E., “Electromagnetic diffraction in optical systems, ii. structure of the image field in an  
313 aplanatic system,” *Proc. R. Soc. Lond. A* **253**(1274), 358–379 (1959).

314 [20] Antonello, J., Burke, D., and Booth, M. J., “Aberrations in stimulated emission depletion (sted) microscopy,” *Optics*  
315 *communications* **404**, 203–209 (2017).

316 [21] Hine, R. et al., [*The facts on file dictionary of biology*], Infobase Publishing (2009).

317 [22] Egelman, E. H., “The structure of f-actin,” *Journal of Muscle Research & Cell Motility* **6**(2), 129–151 (1985).

318 [23] Pilhofer, M., Ladinsky, M. S., McDowall, A. W., Petroni, G., and Jensen, G. J., “Microtubules in bacteria: ancient  
319 tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton,” *PLoS biology* **9**(12), e1001213 (2011).

320 [24] Mohr, D., Frey, S., Fischer, T., Gütter, T., and Görlich, D., “Characterisation of the passive permeability barrier of  
321 nuclear pore complexes,” *The EMBO journal* **28**(17), 2541–2553 (2009).

322 [25] Brejc, K., Sixma, T. K., Kitts, P. A., Kain, S. R., Tsien, R. Y., Ormö, M., and Remington, S. J., “Structural basis  
323 for dual excitation and photoisomerization of the aequorea victoria green fluorescent protein,” *Proceedings of the*  
324 *National Academy of Sciences* **94**(6), 2306–2311 (1997).

325 [26] Shan, H., Zhang, Y., Yang, Q., Kruger, U., Kalra, M., Sun, L., Cong, W., and Wang, G., “3-D convolutional encoder-  
326 decoder network for low-dose CT via transfer learning from a 2-D trained network,” *IEEE Trans Med Imaging* **37**(6),  
327 1522–1534 (2018).

328 [27] Shan, H., Padole, A., Homayounieh, F., Kruger, U., Khera, R. D., Nitiwarangkul, C., Kalra, M. K., and Wang, G.,  
329 “Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose  
330 ct image reconstruction,” *Nature Machine Intelligence* **1**(6), 269–276 (2019).

331 [28] Arjovsky, M., Chintala, S., and Bottou, L., “Wasserstein generative adversarial networks,” in [*International Conference on Machine Learning*], 214–223 (2017).

332 [29] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.,  
333 “Generative adversarial nets,” in [*Advances in Neural Information Processing Systems*], 2672–2680 (2014).

334 [30] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale image recognition,” in [*Int. Conf. Learn. Representations*], (2015).

335 [31] Kingma, D. and Ba, J., “Adam: A method for stochastic optimization,” in [*International Conference on Learning Representations*], (2015).

336 [32] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C., “Improved training of Wasserstein  
337 GANs,” in [*Advances in Neural Information Processing Systems*], 5769–5779 (2017).

338

339

340