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Abstract. The connectivity analysis is a powerful technique for investi-
gating a hard-wired brain architecture as well as flexible, functional dy-
namics tied to human cognition. Recent multi-modal connectivity stud-
ies had the challenge of combining functional and structural connectivity
information into one integrated network. In this paper, we proposed a
simplex regression model with graph-constrained Elastic Net (Graph-
Net) to estimate functional networks enriched by structural connectiv-
ity in a biologically meaningful way with a low model complexity. Our
model constructed the functional networks using sparse simplex regres-
sion framework and enriched structural connectivity information based
on GraphNet constraint. We applied our model on the real neuroimag-
ing datasets to show its ability for predicting a clinical score. Our results
demonstrated that integrating multi-modal features could detect more
sensitive and subtle brain biomarkers than using a single modality.

Keywords: Structural connectivity · functional connectivity · simplex
regression · GraphNet · depression

1 Introduction

Connectivity analysis is a powerful technique for investigating a hard-wired brain
architecture as well as flexible functional dynamics tied to human cognition [16,
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23]. Indeed, the whole-brain structural connectome can be measured via diffu-
sion magnetic resonance imaging (dMRI) data through tractography algorithms
by approximating structural wiring in white matter. Functional connectivity is
constructed by measuring statistical associations of temporal coherence between
different brain regions, and often computed from the resting-state functional
MRI (rs-fMRI) data.

In the functional domain, various network modeling methods were introduced
to measure the degree of coherence in the functional network [3, 14, 19], such as
Pearson correlation (PearC), partial correlation (PartC), and graphical LASSO
(GL). These approaches provided a novel perspective for understanding a large-
scale functional organization of the brain, which was often used for distinguishing
healthy and diseased brains in the studies of psychiatric and neurological disor-
ders [2, 13, 20]. Unlike functional connectivity that infers statistical association,
structural connectivity provides information of physical neuronal connections of
the complex brain network, which can be used for identifying disrupted physical
wiring between distinct brain regions. Recent multi-modal studies found that
imaging features combining structural and functional connectivity information
provided better imaging biomarkers for common diseases [21, 22], indicating the
integration of multi-modal features may help detect more sensitive and subtle
brain biomarkers than using a single modality alone.

Recently, some studies have proposed various sparse models to estimate brain
networks from structural, functional and/or genomic data. Huang et al. proposed
a sparse simplex model (Simplex) to build a brain network using whole brain
gene expression data, but their methods did not consider spatial proximity and
structural connectivity [7]. Pineda-Pardo et al. applied adaptive GL to estimate
an MEG connectivity network guided by a structural connectivity network [15].
Li et al. proposed an ultra-weighted-LASSO approach to efficiently estimate
functional networks by considering structural connectivity and derivatives of
the temporal signal [10]. These methods incorporated the adaptive LASSO reg-
ularization approach to incorporate multi-modal information. However, if one
node is linked to two highly connected regions, this approach tends to select
only one of the two regions randomly, thus inadequate to capture all the signals.

To over these limitations, in this paper, we proposed a simplex regression
model with graph-constrained Elastic Net (GraphNet) to estimate functional
networks enriched by structural connectivity in a biologically meaningful way
with low model complexity. Our major contributions are as follows: i) We de-
signed a simplex regression model to build a functional network. ii) We extended
the simplex regression model to include the GraphNet penalty to incorporate
structural connectivity computed from dMRI data using a tractography algo-
rithm. iii) We applied our proposed algorithm to the Human Connectome Project
(HCP) database to demonstrate its ability to predict a clinical score and showed
the promise of our algorithm compared with multiple competing methods.
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2 Materials

2.1 Data description

We obtained neuroimaging (i.e., fMRI and dMRI) and genotyping datasets from
the HCP database. Specifically, genetically unrelated, non-twins, non-Hispanic,
white participants with full demographic information were considered in this
study; see Table 1 for their characteristics. Of those, we randomly selected 100
participants and divided them into two groups (depression vs healthy) with
equal size based on the Diagnostic and Statistical Manual of Mental Disorders
5th edition depression (DSM-dep) scores. Participants with a DSM-dep larger
than 6 were classified as depression subjects, and the remaining participants
were classified as healthy subjects [12]. The age, sex, and mini-mental state
examination were matched between healthy and depression groups.

Table 1. Participant characteristics.

Healthy Depression p-value

Number of subjects 50 50 −
Age 29.06 ± 3.89 28.66 ± 3.54 0.5925
Sex M:28, F:22 M:24, F:26 0.4284

DSM-dep 0.66 ± 0.47 8.44 ± 2.22 <0.0001
Mini-Mental State Examination 29.16 ± 0.91 28.86 ± 1.16 0.1538

2.2 Data pre-processing

HCP database provided minimally pre-processed neuroimaging (i.e., rs-fMRI and
dMRI) and genotyping datasets. For the rs-fMRI data, the CIFTI dense time
series data in standard grayordinate space were obtained using the minimal
pre-processing pipeline, which includes corrections for EPI distortions and head
motion, registration to the T1-weighted data and subsequently MNI space, skull
removal, and intensity normalization [5]. Then, the artifacts of head movement,
white matter, cardiac pulsation, arterial, and large vein related contributions
were removed by FMRIB’s ICA-based X-noisifier (FIX) [17]. Finally, we averaged
the vertex-wise time-series into parcel-level using HCP multi-modal parcellation
atlas (HCP-MMP) [4]. We added 12 subcortical regions to the 360 cortical areas
yielding a total of 372 brain regions.

The dMRI data were processed using a procedure similar to the one described
by Kim et al. [8]. Head motion and eddy current were corrected and then prob-
abilistic tractography was performed to build structural connectivity using FSL
[18]. Graph nodes were defined by HCP-MMP atlas and the edges were defined
using connection density between the nodes. Finally, the structural connectivity
information was used as the constraint in our proposed approach described later.
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3 Methods

3.1 Simplex representation

Herein, we used the boldface lowercase letter to denote a vector, and the boldface
uppercase letter to denote a matrix. Specifically, given the datasets X ∈ Rn×p,
where X corresponded to the pre-processed rs-fMRI data as described in Sec-
tion 2.2., n denoted time points of rs-fMRI data, and p denoted number of brain
regions. The sparse simplex learning model proposed by Huang et al. was orig-
inally proposed to construct the neuroanatomical and transcriptomic networks
[7]. The model is defined as follows:

β̃i = min
βi

||X(:,i) −X(:,6=i)βi||22 + λ||βi||1 s.t. βi ≥ 0,βTi 1 = 1, (1)

where X(:,6=i) is the matrix X with the i-th column (i.e., i-th region) removed,
X(:,i) is the i-th column of X, βi is p − 1 dimensional coefficient vector for
the i-th brain region, and ≥ denotes “componentwise larger than or equal to”.
One advantage of the simplex regression model is that the simplex constraint
yields network edge weights (i.e., regression coefficients) that can be treated as
probability values.

3.2 Functional brain network construction with simplex regression
framework and GraphNet constraint

We herein proposed an algorithm for constructing functional network enriched
by structural connectivity. Fig. 1 showed overall procedure of our approach.
Specifically, we proposed a sparse simplex regression model penalized by Graph-
Net penalty. GraphNet penalty, proposed by Grosenick et al., has an advantage
for integrating biological graph constraint, such as structural connectivity, by
encouraging the coefficients to be similar between two highly connected nodes
[6]. For example, when the structural connectivity between the i-th and j-th
regions is high, the GraphNet penalty forces the corresponding coefficients to
be similar. Additionally, the structural connectivity contains white matter fiber
information, which is a good source for a biological constraint. Thus, we applied
the GraphNet penalty on the sparse simplex regression model. The formula for
the algorithm is defined as follows:

β̃i = min
βi

||X(:,i)−X(:,6=i)βi||22 +λ||βi||1 +λGβ
T
i LSCβi s.t. βi ≥ 0,βTi 1 = 1,

(2)
where, LSC is the Laplacian matrix of the structural connectivity C with the
i-th brain region excluded. The Laplacian matrix is defined as LSC = D − C,
where D is the degree matrix of structural connectivity. Since simplex constraint
yield l1 penalty to be the constant term, we can rewrite eq. (2) as the following:

β̃i = min
βi

||X(:,i) −X(:,6=i)βi||22 + λGβ
T
i LSCβi s.t. βi ≥ 0,βTi 1 = 1. (3)
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Fig. 1. The overall procedures of proposed algorithm.

The constraints in Eq. (3) is also simplex, so we can optimize it using the accel-
erated projected gradient method, as described in the next section.

We constructed the functional network by repeating the proposed algorithm

p times for every brain region. The constructed network S = [β̃1, β̃2, ..., β̃p]

is sparse and asymmetric. The β̃i denoted a p dimensional vector, zero was
inserted for the i-th coefficient of estimated coefficients vector βi. We defined the
symmetric functional network by replacing S(i,j) and S(j,i) with the maximum
value between them.

3.3 Optimization details and the proposed algorithm

In this section, we describe an iterative algorithm for minimizing the cost func-
tion. The cost function, Eq. (3), can be solved by taking the derivative with
respect to βi and setting it to zero:

X(:,6=i)
TX(:,6=i)βi + λGLSCβi −X

T
(:,6=i)X(:,i) = 0. (4)

Thus, the solution can be obtained by solving Eq. (4) as follows:

β̃i =
(
X(:,6=i)

TX(:,6=i) + λGLSC
)−1

XT
(:,6=i)X(:,i). (5)

Next, we applied the accelerated projected gradient methods to solve the
simplex problem as follow:

min
βi

1

2
||βi − v||22 s.t. βi ≥ 0,βTi 1 = 1, (6)

where v denoted β̃i. We rewrite the Eq (6) using unconstrained formulation as

1

2
||βi − v||22 − γ(βTi 1− 1)− λTβi, (7)

where γ and λ is a Lagrangian multiplier and Lagrangian multiplier vector,
respectively, both of which are to be determined. Suppose the optimal solution
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to the proximal problem (6) is β∗, the associated Lagrangian multipliers are
γ∗ and λ∗. We then derived the following equations, according to the KKT
conditions [1]:

∀j,β∗ij − vj − γ
∗ − λ∗j = 0, (8)

∀j,β∗ij ≥ 0, (9)

∀j,λ∗j ≥ 0, (10)

∀j,β∗ijλ
∗
j = 0, (11)

where β∗ij denoted the j-th element of β∗i . We can rewrite Eq. (8) as β∗ij − vj −
γ∗1 − λ∗j = 0. We have γ∗ = 1−1T v−1Tλ∗

n using the constraint βTi 1 = 1 and

derive β∗ =
(
v− 1

n1
Tv+ 1

n1−
1Tλ∗

n 1
)

+λ∗. We rewrite it as β∗ = u+λ∗−λ∗1,

where λ∗ = 1Tλ∗

n and u = v − 1
n1

Tv + 1
n1. Thus, ∀j we have

β∗ij = uj + λ∗j − λ∗. (12)

According to Eqs. (9)-(12), we have uj + λ∗j − λ∗ = (uj − λ∗)+, where

x+ = max(x, 0). We then have β∗ij = (uj − λ∗)+. Therefore, given we know λ∗,

we can compute the optimal solution β∗.
To obtain λ∗, we rewrite Eq. (12) as λ∗j = λ∗ + β∗ij − uj . According to Eqs.

(9)-(11), we have λ∗j = (λ∗ − uj)+. Since v is a p − 1 dimensional vector, we

have λ∗ = 1
p−1

∑p−1
j=1(λ∗ − uj)+. Thus, we define a function as follow:

f(λ∗) =
1

p− 1

p−1∑
j=1

(λ∗ − uj)+ − λ, (13)

and we obtain λ∗ by solving Eq. (13) to be zero. Since λ∗ ≥ 0, f ′(λ∗) ≤ 0, and
f ′(λ∗) is a piecewise linear and convex function, we can compute the root of
f ′(λ∗) = 0 using Newton method efficiently.

4 Experiments and Results

4.1 Experimental results on Human Connectome Project data

In our experiments, we used pre-processed rs-fMRI and dMRI data, as described
in Section 2.2. The rs-fMRI pre-processing procedure resulted in 2, 400 time
points for 372 regions, and the dMRI pre-processing yielded structural connec-
tivity matrix (i.e., 372× 372 matrix) based on probability tractography for each
subject.

We applied the proposed model to construct functional networks. We com-
pared our approach with five different functional network construction methods
(i.e., PearC, PartC, GL, GL with structural connectivity [GLs], and simplex) ac-
cording to previous studies [3, 9, 11]. When we constructed functional networks
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Fig. 3. The sparsity and similarity comparison of networks. Sub-figure (a) and
(b) denoted a boxplot of the sparsity for each model and pair-wise correlation between
models with varying hyper-parameters.

using our algorithm, GL, and GLs, we applied different sets of hyper-parameters
for each model. We used [1, 10, 100, 1000, 10000] for the proposed algorithm,
[0.01, 0.1, 1, 10, 100] for GL and GLs.

Overall, the constructed functional networks showed similar patterns except
the PerC and SC, as shown in Fig. 2. We noted that our approach yielded more
relevant and sparser patterns in sub-cortical structures compared to the methods
using either fMRI and dMRI alone, as shown in the white box of Fig. 2. We
compared the sparsity (ratio of non-zero connections in the functional network)
for all methods. Fig. 3(a) shows the boxplots of sparsity across all subjects for
each method. The sparsity decreased for every method, as we increase the hyper-
parameter value. For our approach, the sparsity did not change much when λ
was larger than 100. The GL and GLs resulted in networks with almost zero
sparsity, when λ was larger than 1. We also evaluated the similarity of the
network patterns by reporting the pair-wise correlation among each method. We
computed the correlation for network edge weights across subjects between two
different methods (Fig. 3-(b)). Interestingly, the networks based on our approach
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were very similar to those of partial correlation networks and the networks with
GL. Finally, our results suggested that our approach constructed relatively sparse
networks that are to some extent consist with existing methods but with better
enriched sub-cortical structural connectivity information.

4.2 Evaluations using prediction task

In this section, we demonstrated and compared the efficacy of the constructed
networks. However, there is no ground-truth for network constructions, thus
we cannot directly compare the performances of all tested methods. Instead, we
used the prediction task to compare the performances among different functional
network construction methods. We first selected relevant features based on two-
sample t-tests and built the ridge regression model to predict a DSM-dep score
on the training set. A nested 10-fold-cross-validation was conducted to test the
prediction performance. Specifically, the hyper-parameter for ridge regression
was tuned using 10-fold-cross-validation on the training set. The trained predic-
tion model was applied to testing set to measure the prediction performance.

After 10-fold-cross-validation, there were 349.98±6.87 features were selected
with λ = 1000. The lowest root-mean-square-error (RMSE) of 3.783 was ob-
tained using our algorithm with λ = 1000. Our algorithm also led to the highest
correlation of 0.475 between the actual and predicted DSM5-Depression scores.
Additionally, the GLs with λ = 0.01 yielded a RMSE of 5.117 and a correlation
of 0.279, the GL with λ = 0.01 yielded a RMSE of 4.113 and correlation of 0.208,
and the PartC yielded a RMSE 4.218 and correlation of 0.227. The detailed per-
formances of seven different models with varying parameters were shown in Table
2. Interestingly, functional networks from GL and GLs with λ = 0.01, and our
algorithm with λ = 1000 showed similar network pattern and sparsity. However,
our algorithm showed higher prediction performance than those from GL and
GLs. Thus, we believe our approach leads to a more robust network with sparser
connections.

Table 2. The prediction performances of various methods. Nested 10-fold-cross-
validation was conducted to select the features and tune the hyper-parameters. The
performance was reported in terms of RMSE and correlation coefficients (CC) between
actual and predicted DSM-dep score. The asterisk denoted the CC with p < 0.05.

Method RMSE CC Method RMSE CC
PearC 5.077 0.110 GLs (λ = 1) 5.252 -0.248*
PartC 4.218 0.227* GLs (λ = 10) - -

SC 4.597 0.139 GL (λ = 100) - -
GL (λ = 0.01) 4.113 0.208* Ours (λ = 1) 4.799 0.119
GL (λ = 0.1) 5.153 -0.065 Ours (λ = 10) 4.557 0.261*
GL (λ = 1) - - Ours (λ = 100) 4.191 0.240*
GL (λ = 10) - - Ours (λ = 1000) 3.783 0.475*
GL (λ = 100) - - Ours (λ = 10000) 4.119 0.232*

GLs (λ = 0.01) 5.117 0.279* Simplex 4.548 0.110
GLs (λ = 0.1) 4.711 0.152
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5 Conclusion

In this work, we proposed a simplex regression model with GraphNet penalty
to estimate functional networks enriched by structural connectivity. We demon-
strated the feasibility of our algorithm on the HCP database. Compared to
the existing methods, our model has two advantages. First, the functional net-
work based on simplex regression can be interpreted as a probability, which
can help further analysis. Second, the simplex representation with GraphNet
can efficiently combine structural and functional information. Furthermore, we
validated our proposed algorithm on real neuroimaging data and compared the
results with those obtained using the existing competing methods.

In the future, we will further look into generating the whole-brain connectiv-
ity at once by applying the matrix optimization algorithm. Furthermore, there is
no ground-truth for network constructions. Thus, our results should be further
confirmed by future independent replications.
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