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We prove a claim by Williams that the coassembly map is a homotopy limit map.
As an application, we show that the homotopy limit map for the coarse version
of equivariant A-theory agrees with the coassembly map for bivariant A-theory
that appears in the statement of the topological Riemann—Roch theorem.
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1. Introduction

In the celebrated paper [Dwyer et al. 2003], Dwyer, Weiss, and Williams give index-
theoretic conditions that are necessary and sufficient for a perfect fibration £ — B
to be equivalent to a fiber bundle with fibers compact topological (or smooth)
manifolds. Williams [2000] defines a bivariant version of A-theory for fibrations,
which is contravariant in one variable and therefore comes with a coassembly map.
He then reinterprets the condition from [Dwyer et al. 2003] as the condition that
a certain class in bivariant A-theory (the Euler characteristic), after applying the
coassembly map, lifts either along the assembly map or the inclusion of stable
homotopy into A(X).

In this paper, we show that coassembly maps in general agree with homotopy
limit maps, the latter being more amenable to computations. In particular, this
shows that the target of Williams’ coassembly can be interpreted as a homotopy
fixed point spectrum, which has an associated homotopy fixed point spectral se-
quence that computes its homotopy groups. Together with well known formulas
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374 CARY MALKIEWICH AND MONA MERLING

for the assembly map, e.g., in [Malkiewich 2017, Definition 6.2], this means we get
combinatorial formulas for each of the maps used in the statement of the bivariant
topological and smooth Riemann—Roch theorems from [Williams 2000].

In general, the homotopy limit map is defined for any topological group G and
G-space or G-spectrum X as the map from fixed points to homotopy fixed points,

X¢ — xho,

Atiyah proved that for KU with C;-action induced by complex conjugation the
homotopy limit map is an equivalence. In general, this is not the case, and the ho-
motopy limit problem, beautifully described in [Thomason 1983], asks how close
the homotopy limit map is to being an equivalence. Some of the classical examples
of interest are Segal’s conjecture where X = Sg, the sphere spectrum for G finite,
the Atiyah—Segal completion theorem, where X = K Ug, equivariant topological
K -theory for G compact Lie, and Thomason’s theorem, where X = K E, the alge-
braic K -theory of a finite Galois extension with Galois group action. In all of these
cases, the homotopy limit map is shown to become an equivalence after suitable
completion or inversion of an element in the homotopy groups of the fixed point
spectrum. More recent solutions of homotopy limit problems appear in [Hu et al.
2011; Rondigs et al. 2018; Heard 2017], which study the homotopy limit problem
for KGL, the motivic spectrum representing algebraic K -theory, with Cy-action.
On the other hand, the coassembly map considered in [Williams 2000] is defined
for any reduced contravariant homotopy functor F, whose domain is the category
of spaces over BG. It is a natural transformation ¥ — Fg,, one that universally ap-
proximates F' by a functor that sends homotopy pushouts to homotopy pullbacks. It
is formally dual to the assembly map of [Weiss and Williams 1995; Davis and Liick
1998], which by [Hambleton and Pedersen 2004; Davis and Liick 1998] coincides
with the assembly map of the Farrell-Jones conjecture [1993]. A comprehensive
recent survey on assembly maps is given in [Liick 2019]. The coassembly map is
also a close analog of the linear approximation map of embedding calculus [Weiss
1999; Goodwillie and Weiss 1999]. Further applications of the coassembly map
appear in [Cohen and Klein 2009; Raptis and Steimle 2014; Malkiewich 2017].
Our first result is a precise correspondence between these two constructions. We
only consider topological groups G that are the realization of a simplicial group G,,
and we focus on the case where F' takes values in spectra, because the correspond-
ing result for spaces is similar and a little easier. Without loss of generality, we
assume that the homotopy functor F' is enriched in simplicial sets, so that F(EG)
carries a continuous left action by G, and F(BG) maps to its fixed points. We may
then make F(EG) into a G-spectrum whose fixed points are F(BG). An analog
of this result for the assembly map can be found in [Davis and Liick 1998, §5.2].
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Theorem A (Theorem 3.6). Let G be a group that is the realization of a simplicial
group G,. The coassembly map on the terminal object F(BG) — Fg,(BG) is
equivalent to the homotopy limit map of this G-spectrum, F(BG) — F(EG)"°.

This is similar to a claim in [Williams 2000], when F is a contravariant form of
algebraic K -theory and G =~ QX . Giving a precise proof amounts to showing that
diagrams on a suitable category of contractible spaces over BG correspond to G-
objects, plus a little more structure. Our version of the argument uses parametrized
spectra to form a bridge between the two settings.

Our second result applies Theorem A to Williams’ bivariant A-theory functor
A(E — B) to fibrations of the form EG x5 X — BG where G is a finite group. This
gives the homotopy limit map of the “coarse” equivariant A-theory G-spectrum
from [Malkiewich and Merling 2019], equivalently the K -theory of group actions
from [Barwick et al. 2020] applied to retractive spaces over X.

Theorem B (Theorem 4.2). In the stable homotopy category, the homotopy limit
map for AZ*(X) is isomorphic to the coassembly map for bivariant A-theory:

Ag)arse(X)H Ag)arse(x)hH

|- |-
A(EGxyX —> BH) — Aq(EG xyg X — BH)

This is not quite a direct consequence of Theorem A because we have to show
that the equivalence between the two theories preserves the G-actions and inclu-
sions of fixed points, up to some coherent homotopies.

Remark. This provides one half of an argument that would significantly generalize
the main theorem of [Malkiewich 2017]. The other half relies on a conjectural
connection between assembly maps and the Adams isomorphism, which we do
not pursue here.

Remark. This paper does not consider the homotopy limit problems for profinite
groups, which involve a modified definition of homotopy fixed points that are asso-
ciated to the continuous cohomology of the profinite group [Devinatz and Hopkins
2004]. Our homotopy limit map is the usual one from, e.g., [Bousfield and Kan
1972, Chapter XI, §3.5], and we only consider those topological groups that are geo-
metric realizations of simplicial groups. The main example we have in mind is QX.

Conventions. Throughout, all of our topological spaces are compactly generated
weak Hausdorff (CGWH) [Lewis 1978, Appendix A; Strickland 2009]. Unless
otherwise noted, the term “spectra” can be interpreted to mean prespectra, symmet-
ric spectra, or orthogonal spectra. See [Mandell et al. 2001] for more information
about how to pass between these different models. The term “naive G-spectrum”
refers to a spectrum with an action by the group G, up to maps that are equivalences
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on all of the categorical fixed point spectra X subgroups H < G. Equivalently,
this can be viewed as a diagram of spectra on the orbit category O(G)°P. In fact, we
will only be concerned with diagrams restricted to the trivial orbit G/G and the full
orbit G /e, corresponding to the data of the G-fixed points of a naive G-spectrum
and its underlying spectrum with G-action.

2. Review of coassembly

Let B be an unbased space and let Up denote the comma category of spaces over B.
A commuting square in Up is a homotopy pushout square if it is such when we
forget the maps to B. A contravariant functor F' from Up to spectra is

e reduced if it sends @ — B to a weakly contractible spectrum,

» a homotopy functor if it sends weak equivalences of spaces to stable equiva-
lences of spectra, and

o excisive if it is a reduced homotopy functor that sends coproducts and homo-
topy pushout squares of spaces to products and homotopy pullback squares of
spectra, respectively.

Note that this last condition can be stated in several equivalent ways, the simplest
of which is that F takes all homotopy colimits to homotopy limits.

If F is a contravariant reduced homotopy functor from AUp to spectra, consider
the comma category of excisive functors P with natural transformations F — P.
Define a weak equivalence of such functors to be a natural transformation P — P’
(under F) that is a stable equivalence at every object. Inverting these equivalences
gives the homotopy category of excisive functors under F.

Proposition 2.1 [Cohen and Klein 2009; Malkiewich 2017, Proposition 5.4; 2015,
§7]. The homotopy category of excisive functors under F has an initial object Fg,,
in other words a universal approximation of F by an excisive functor. The natural
transformation F — Fg, can be given by the formula
F(X— B)— holim F((A"LUB)— B).
(A"—>X)eAT

Here Ay = Aging x is the category of simplices in the simplicial set Sing X.
Concretely, it has an object for every continuous map A" — X and a morphism
for every factorization A? — A? — X where A? — A? is a composite of inclu-
sions of a face. There is a natural “last vertex” operation that gives an equivalence
|Ax| = X [Goerss and Jardine 2009, Chapter III, §4; Malkiewich 2017, §5].

We could alternatively describe Fg,(X — B) as the spectrum of sections of a
parametrized spectrum over X whose fiber over x is F((x LI B) — B). See [Weiss
and Williams 1995; Williams 2000; Cohen and Klein 2009; Malkiewich 2015;
2017] for more details and other explicit constructions of the coassembly map.
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3. Proof of Theorem A

The first step is to interpret both the homotopy limit map and the coassembly map
as the unit of an adjunction.

Let G, be a simplicial group with realization G = |G,|, and let BG be the
topological bar construction of G. It will be convenient for us to let Ups refer
to the category of unbased spaces over BG that are homotopy equivalent to cell
complexes, as opposed to all spaces over BG. Recall that Agg C Upg is the
subcategory of spaces over BG consisting only of the simplices A? — BG for
varying p > 0 and the compositions of face maps. Note that a homotopy functor
on this subcategory must send every map to a weak equivalence.

Proposition 3.1. For reduced homotopy functors on spaces over BG, the coassem-
bly map is the unit of the adjunction of homotopy categories

reduced homotopy functors ﬁ homotopy functors
o °P . L g A
F:Ug,— Fp ol FA7) F:Apge—p
AP =X

Proof. We first examine the larger homotopy category of all functors. It is standard
that the homotopy right Kan extension is the right adjoint of restriction. Further-
more, the canonical map of F into the extension of the restriction of F is the unit
of this adjunction. By [Cohen and Klein 2009, §5] or [Malkiewich 2015, §7], this
particular model for the homotopy right Kan extension sends homotopy functors
to reduced homotopy functors, so the adjunction descends to these subcategories,
with the same unit. (]

Let BG, be the simplicially enriched category with one object [e] and morphism
space G,. Note that BG = |BG,|. Let C(BG,) be the “cone” category with one
additional object [G] and one additional nontrivial morphism [G] — [e]. This is
isomorphic to the full subcategory of the enriched orbit category O(G)°P on the
orbits G/e and G/G. Let t : BG, — C(RG,) be the inclusion.

Remark. If X is a G-space or naive G-spectrum, then X¢ and X = X'} form a
diagram over C(®G,). If X is a genuine orthogonal G-spectrum, the same is true
for the genuine fixed points X, by taking a fibrant replacement, then passing to
the underlying naive G-spectrum.

Proposition 3.2. For naive G-spectra, the map (—)¢ — (=)"C is equivalent to the
unit of the adjunction of homotopy categories

enriched C(BG.) ! i enriched BG,
diagrams of specira diagrams of spectra.
enriched homotopy (i.e., spectra with G-action)

right Kan extension

evaluated at [G].
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Proof. This is immediate from the local formula for an enriched homotopy right
Kan extension [Riehl 2014, Example 7.6.6]. O

The next step is to relate the categories on the left-hand side of these adjunctions
together. Morally, we take each homotopy functor F to the diagram on C(%8G.,)
given by F(BG) and F(EG).

There are two problems to address here. The first problem is that this is not an
equivalence of homotopy categories, but we can fix that by localizing the category
of homotopy functors along the maps that are equivalences on BG and EG. The
second problem is that G will not act on F(EG) unless we make F simplicially
enriched. We fix the second problem using the following result.

Lemma 3.3. Every contravariant homotopy functor F to spaces or spectra can be
replaced by a simplicially enriched functor, by a zig-zag of equivalences of functors

F < F = F
that is itself functorial in F.

Proof. This is by a variant of the trick used in [Waldhausen 1985] to replace
functors by homotopy functors. It adapts from covariant to contravariant functors
by replacing Map(A”, —) with A? x —.

If F lands in orthogonal spectra, regard it as landing in prespectra or symmetric
spectra, and replace the spectrum F (X) at each level by F’(X) = |Sing F(X)|. The
effect of this is that each degeneracy map A” — A9 induces a levelwise cofibration
F'(A? x X) — F'(A? x X). Then pass back up to orthogonal spectra if desired,
and replace F’(X) again by the realization

F'(X)=|n+— F'(A" x X)|.

This defines a functor that receives a map from F’ by inclusion of simplicial level 0.
The map is an equivalence on each spectrum level, because F’ is a homotopy func-
tor and the simplicial space defined above is good and therefore Reedy cofibrant
[Lillig 1973]. We extend the functor structure on F'toa simplicial enrichment by
taking each map |Y,| x X — Z to the realization of the map that at level k is

Yi x F'(AF x X) > F/(A* x 2),
obtained from the map of spaces
kaAkxX—>Aka
whose coordinates are the action ¥; x A¥ x X — Z and the projection to A¥. [

Proposition 3.4. The forgetful functors in the following diagram are equivalences
of homotopy categories. Here “enriched” means simplicially enriched.:
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reduced homotopy functors
F: ou%PG — ¥p (localized)

~

enriched reduced homotopy functors
F: m‘g’G — ¥ p (localized)

~

enriched reduced functors
F :Up- — $p (localized)

~

enriched functors
C(BG,) —> Ip

Proof. The construction of Lemma 3.3 gives an inverse to the first equivalence.
Note this is still well defined after localizing because the construction preserves
the property of a map of functors F — F’ being an equivalence on one particular
space X. For the second pair of categories, by Whitehead’s theorem any enriched
functor is a homotopy functor on the cofibrant and fibrant objects. Hence we can
invert the forgetful functor by composing each F with a fibrant replacement in Up¢.
To check this respects the localization, we note that when we turn an enriched func-
tor into a homotopy functor, it will have equivalent values on EG and BG, because
these two spaces are already fibrant. For the final pair of categories, the restriction
functor has the enriched homotopy right Kan extension as its right adjoint, and
this adjunction clearly descends to the localization. In fact, since C(%BG,) is a full
subcategory of Ou‘;PG, the counit is an equivalence, and therefore by the definition
of our localization, the unit is also an equivalence; hence we get an equivalence of
categories. (]

Next we relate the categories on the right-hand side in Propositions 3.2 and 3.1
using parametrized spectra. To be definite, we will now assume that ¥ p means
orthogonal spectra. The category of parametrized orthogonal spectra is defined
in [May and Sigurdsson 2006, Definition 11.2.3], and its homotopy category is
obtained by inverting the ,-isomorphisms from [May and Sigurdsson 2006, Def-
inition 12.3.4].

The first part of the equivalence is as follows. Given a diagram F of orthogonal
spectra over 6, at each spectrum level we can take its Bousfield-Kan homotopy
colimit as a diagram of unbased spaces, giving a retractive space over |6|. In total
this gives a parametrized spectrum hocolimeg F over |€| [Lind and Malkiewich
2018, §4]. See the diagram
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homotopy functors
F: A(;pc —3p

hocolim F (AP)
AP
BG

~

parametrized spectra
over | A%pG

~ | W(QEXG—)

enriched functors BG, — Ip
(spectra with left G-action)

The second part of the equivalence is the Borel construction EG x g —, followed
by pullback along the equivalence |A%pG| => BG. Alternatively, we make the
following construction. Let E be any weakly contractible space with a free right
G-action, withamap E/G — |A%pG |. Let Q E be its cofibrant replacement as a free
G-space, so that there is an equivalence [ : QF /G = BG. If X is a spectrum with
G-action, take a cofibrant replacement if necessary so that its levels are well based,
then take QF x X, which is a parametrized spectrum over Q E /G, and push it
forward along / to |A%pG|. We will see in the next proposition that this is always
equivalent to the Borel construction, but it is convenient to allow ourselves to pick
a particular space E with this property, rather than having to use the pullback of
EG to |AYy].

Proposition 3.5. These are equivalences of homotopy categories, and the second
is independent of the choice of E, up to isomorphism.

Proof. For the first one, the homotopy category of homotopy functors on A%pG
is equivalent to the homotopy category of functors that are fibrant in the aggre-
gate model structure of [Lind and Malkiewich 2018, Theorem 4.4]. Therefore,
hocolim A% F(AP) is naturally isomorphic as a map of homotopy categories to
the left Quillen equivalence of [Lind and Malkiewich 2018, Theorem 4.5], and is
thus an equivalence. On the other hand, for a G-space X the horizontal maps in
the following square are equivalences:

QE xg X — EG xg X

| |

|AD| ——— BG

Hence the functor QF x s — is equivalent to the Borel construction EG xg —
(which lands in spectra over BG) followed by the pullback from BG to |A%pG|.
(Under the cofibrancy assumptions on X, the same is also true if we push QF x g X
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forward along /.) This factorization into Borel-then-pullback also holds at the level
of homotopy categories, since the Borel construction preserves all equivalences and
outputs a fibration, on which the pullback preserves equivalences. Then the Borel
construction is an equivalence by [Ando et al. 2018, Appendix B] or [Lind and
Malkiewich 2018, Theorem 4.5], and the derived pullback is an equivalence by
[May and Sigurdsson 2006, Proposition 12.6.7]. (|

Now we may finish the proof of Theorem A.

Theorem 3.6. For any reduced homotopy functor F : ou‘;;’G — &Pp, the coassem-
bly map on BG is isomorphic in the homotopy category to the map F(BG) —
F(EG)"S induced by the functoriality of F.

Proof. The adjunction from Proposition 3.1 descends to the localization we de-
scribed above; hence we get the following diagram of adjunctions and equivalences
of homotopy categories. It remains to check that the equivalences and left adjoints
in this figure commute up to some natural isomorphism, so that the figure is an
“equivalence of adjunctions”:

reduced homotopy functors :&‘ homotopy functors
. g °P : . AOP
F :Wp, — Fp (localized) X holig F(A7) F:Apg;—>%p
A

X

~

enriched reduced ‘
homotopy functors ~. | hocolim F(A”)

A
F: ou‘;PG — ¥p (localized) #e

~

enriched reduced functors parametrized spectra

F: 5. — $p (localized) over | A
~ ~| QExg—
enriched functors resirm enriched functors BG, — Ip
CRG,) — Ip (spectra with left G-action)

homotopy right
Kan extension

To form this natural isomorphism, we assume that F is an enriched reduced
homotopy functor on Upc. Composing with fibrant replacement, then reenriching
by the equivalences in Proposition 3.4, we may assume that F sends equivalences
of spaces to level equivalences of spectra. We may also compose with |Sing —|
so that it is enriched in topological spaces. These manipulations are natural in F;
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hence we can make these assumptions even if what we are after is an isomorphism
that is natural in F.
We define
E= hocg)plim Mapg;(A?, EG)

BG

with G acting on the right on EG. By Lemma 3.7 below, E is weakly contractible.
Form the following diagram at each spectrum level, in which the second map along
the top uses the enriched functoriality of F:

QF x F(EG) — hocolimMapg; (A?, EG) x F(EG) — hocolim F(A?)
l APEAT, ., AreAyy

—
—

OF x¢ F(EG) — hocolimMapg; (A?, EG) xg F(EG)
APeAyy

This map of spaces induces a map of parametrized spectra over QFE/G — |A%pG [,
or a map from the pushforward of the first to the second over |A%pc |. To argue that
the above map is an equivalence of parametrized spectra, it suffices to argue it is
an equivalence at each spectrum level.

To check the composite along the bottom is an equivalence, it suffices to examine
the induced map on their homotopy fibers over |A%pG |. In the target, by a variant
of Quillen’s theorem B [Meyer 1986; Grayson 1976], the map to |A%pG| is a quasi-
fibration, so the fiber F'(A?) is equivalent to the homotopy fiber. In the source, we
pick a single G-orbit of Q E and check that the inclusion of G x F(EG) into the
homotopy fiber of QF x¢ F(EG) — QFE/G is an equivalence, by replacing E by
a space that is fibrant, then comparing to EG. Therefore the above map induces on
homotopy fibers a map equivalent to F'(EG) — F(A?), which is an equivalence
because F is a homotopy functor. This proves that the left adjoints commute up to
isomorphism. U

Lemma 3.7. The space E = hocolim A% Mapgg (AP, EG) is weakly contractible.

Proof. We first rearrange the colimit using the string of weak equivalences

hocolim A? x g EG ———— hocolim A? x g EG
Tw(ApG)°P T ApG

hocolim A? x Mapg; (A4, EG) (3.3)

Tw(Apg)P

~

hocolim Map; (A4, EG) ———— hocq)limMapBG(A”, EG)
A

Tw(ApG)P G
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Here Tw(Apg)°P denotes (the opposite of) the twisted arrow category of Apg.
The objects are arrows in A g, and a morphism from A? — AY — BG to A —
AY — BG is a factorization

AP — AP

|

Al —— A7

|

BG == BG

In general, for a category 6, the twisted arrow category Tw(6)°P is equipped with
a “source” functor s : Tw(%)°? — C that remembers just the source of each arrow,
and a “target” functor ¢ : Tw(%€)°P — 6°P that remembers the target of the arrow.
It is straightforward to define the diagrams on the left-hand side of (3.8). The
top horizontal map is the pullback of a diagram on Apgg along the source func-
tor. Similarly, the horizontal diagram on the bottom is a pullback along the target
functor. The bottom vertical arrow arises by collapsing A” to a point and is thus a
levelwise equivalence. The top vertical arrow arises from the levelwise maps

AP xMapy;(A?, EG) - AP xpg EG

defined by sending (x, f) — (x, f(g(x))), where g is the given map A? — Af9.
We check from the definition that this is indeed a map of Tw(A ps)°P-diagrams.
It is also an equivalence on each term, since restricting the A” or A? to a single
point is an equivalence, and after this substitution we get a homeomorphism

Map ¢ (%}, EG) = {%} x5 EG.

The next step is to show that these four maps of colimits are weak equivalences.
For the vertical maps, this follows because the two maps of diagrams are an equiv-
alence on each term. For the horizontal arrows, this follows because the source
and target functors are homotopy terminal. For the source functor, this means that
for any object j € C, the overcategory (j | s) is contractible. To prove this, we
note that the overcategory consists of pairs of arrows j — a — b and morphisms
of the form

S .
QU o~

T
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The inclusion of the subcategory of all arrows of the form j = j — b has a right
adjoint, so that subcategory has an equivalent nerve. Furthermore, this subcategory
has a terminal object j = j = j, so it is contractible. All together, this proves that
s is homotopy terminal. A similar proof works for the target functor 7.

We have now reduced to proving that hocolima,,(A? xps EG) is weakly
contractible. Since geometric realization commutes with finite limits, we get a
homeomorphism

hogolim(Ap xgg EG) = (hocolim A”) xgg EG.
BG

ApG

Clearly BG xpg EG = EG is contractible, so it is enough to prove that the map

¢ :hocolim A” — BG,
Apg

which arises from all the individual maps A” — BG, is an equivalence. There is
an immediate equivalence

hocolim A? =5 hocolim* — |Agg| = BG (3.9)
ApG ApG
but that is a different map. To show that ¢ is an equivalence, we extend it to a
natural transformation of functors on unbased spaces

hocolim A? — X.
Ax
It is clearly an equivalence when X is empty or contractible. Furthermore, using
(3.9), both sides are equivalent to the identity functor and are therefore excisive.
A standard inductive argument then shows that ¢ is an equivalence on all spaces.
This finishes the proof. U

4. Review of coarse and bivariant A-theory

Let G be a finite group and X a G-space. Let R(X) be the category of retractive
spaces

X5HyLx ri=id

with weak equivalences given by the weak homotopy equivalences and cofibrations
given by maps that have the fiberwise homotopy extension property (FHEP). The
category R(X) has a G-action through exact functors induced by conjugation from
the G-action on X [Malkiewich and Merling 2019, §3.1]. For taking K -theory, we
restrict to the subcategory Rj¢(X) € R(X) of retractive spaces that are homotopy
finite. These are the spaces that, in the homotopy category of retractive spaces, are
a retract of a finite cell complex relative to X. We note the action respects this
condition.
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For each subgroup H < G, the homotopy fixed points are defined as
Ry (X)" 1= Cat(€G, Ry (X)),

where €G is the G-category with one object for each element of G and a unique
morphism between any two objects, and Cat(€G, R;r(X)) is the category of all
functors and natural transformations, with G acting by conjugation [Malkiewich
and Merling 2019, Definition 2.2].

The homotopy fixed point category Ry (X )" is equivalent to the Waldhausen
category whose objects are H-spaces Y containing X as an H-equivariant retract,
whose underlying space is homotopy finite [Malkiewich and Merling 2019, Propo-
sition 3.1]. The morphisms are the H-equivariant maps of retractive spaces ¥ — Y’.
The cofibrations are the H-equivariant maps which are nonequivariantly cofibra-
tions and the weak equivalences are the H-equivariant maps which are nonequiv-
ariantly weak equivalences.

We define A5""°(X) to be the naive G-spectrum obtained by applying S, to the
Waldhausen G-category Cat(€G, Ry,r(X)). This is equivalent to the underlying
naive G-spectrum of a genuine 2-G-spectrum [Malkiewich and Merling 2019,
Theorem 2.21].

For a Hurewicz fibration p : E — B, the bivariant A-theory A(p) is defined to be
the K-theory of the Waldhausen category of retractive spaces X over E, with the
property that X — B is a fibration, and the map of fibers E, — X}, is a retract up
to homotopy of a relative finite complex. See [Williams 2000; Raptis and Steimle
2014].

In the present section we extend the following result of [Malkiewich and Merling
2019] to the coassembly map.

Proposition 4.1. There is a natural equivalence of symmetric spectra
ALe(xV ~ A(EG xy X — BH).
The equivalence is induced by the functor
hH p
(DZRhf(X) —>Rhf(EGXHX—>BH)

that applies EG x g — to the retractive space (Y, iy, py) over X, obtaining a re-
tractive space over EG x g X:

i G
EG xpy X 29 EG iy ¥ 28 EG xy X.

To define the coassembly map, we observe that while bivariant A-theory is a
functor of fibrations, it can be regarded as a contravariant functor on Up in the
following way. Fix a fibration p : E — B. Then Up is equivalent to the category
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whose objects are pullback squares
E —— E
p’l lp
B'—— B
and whose maps are commuting squares (necessarily pullback squares)
E// E/
p,/l l p,
B// N Bl
Along this equivalence, bivariant A-theory is a reduced homotopy functor from ouj;p
to spectra, so it has a coassembly map
ca: A(E' S B = Aq(E' 5 B).

We emphasize that the coassembly map depends on the choice of fibration E 5B
and map B’ — B. Different choices give rise to different coassembly maps.
Fix the fibration EG x g X — B H and the pullback square

EGxyX ——EGxyX
p| L
BH — BH
and consider the resulting coassembly map. Our last remaining goal is to prove:

Theorem 4.2. In the stable homotopy category, the map from fixed points to homo-
topy fixed points is isomorphic to the coassembly map for bivariant A-theory:

A(é?arse(X)H A(é)arse(X)hH

A(EG xy X —> BH) -5 Aq(EG xy X — BH)

Furthermore the left-hand map in the above diagram can be taken to be the equiv-
alence of Proposition 4. 1.

5. Proof of Theorem B

Note that without loss of generality we may take H = G. Since G is finite, we may
ignore issues of enrichment. By Theorem 3.6, the coassembly map for bivariant A-
theory is equivalent to the homotopy limit map for the diagram on C(%G) given by
bivariant A-theory on EG and BG. So it remains to compare the resulting diagram
on C(BG) to the one defined by coarse A-theory.
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Proposition 5.1. The equivalence of Proposition 4.1 can be extended to an equiv-
alence of diagrams of symmetric spectra over C(RBG).

We expect it is possible to compare these two as diagrams over O(G)°P, but this
raises additional coherence issues, and is not necessary to prove Theorem 4.2.

Proof. We start by describing the O(G)°P-action on bivariant A-theory. To each
map of G-sets f : G/H — G/K and G-space X we assign the pullback square

B(x,G,G xgX) —— B(x,G,G xg X)

Lo,

EG
B, G,G/H) — =L B(x, G, G/K)
The vertical maps collapse X to a point, and the top horizontal map
GxgpX—>GxgX

sends (y, x) to (yg~!, gx), where g is any element such that f(eH) =g ' K. Note
that this formula is well defined because g is unique up to left multiplication by K.
It is easy to check that these formulas give a functor from O(G) into the category
of pullbacks of the fibration EG xg X — BG, and therefore define the action of
0(G)®P on the bivariant A-theory spectra A(EG xg X — EG/H). This action is
strict by functoriality of bivariant A-theory [Raptis and Steimle 2014, Remark 3.5].

Now we restrict to C(BG), where we wish to prove that the functor & of
Proposition 4.1 gives a map of C(BG) diagrams, in other words that the two
squares below commute:

A(é)arse(X)G % A(EG xg X - EG/G)

includel linclude

A?arse(x){e} % A(EGx X — EG)

gl lg.

Acoarse(x)e] —® JA(EGxX— EG)

This turns out to be false, but only because the relevant functors of Waldhausen
categories agree up to canonical isomorphism, rather than strictly. We therefore
replace our two diagrams over C(BG) by equivalent ones on which the map ¢
strictly commutes with the C(BG) action.

First we make the following reduction. We first show that in order to get a
strictly commuting zig-zag of equivalences of C(#BG)-diagrams, it is enough to
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define a square of G-equivariant functors

¢
Il
D — D
",
such that 6 and %’ have trivial G-action, and such that the square commutes up to
a G-fixed natural isomorphism 7. Given such a square, we may replace & by the
category 9; defined as follows:

« the objects %9, are ob € L1 ob %, and

« the morphisms are given by 9;(d, d") =%, d"), 9;(d, ¢) =%(d, Ic), and
%By(c,d)=D(Ic,d) if c is an object of 6 and d, d’ are objects of 9.

We define a new functor @; — %' using F, on the full subcategory on ob %, I' o Fy
on the full subcategory on ob“6, and on each morphism f between ¢ € ob ¢ and
d € ob %, the composite

I'o Fi(¢c) < Fyol(c) «—s Fy(d).
n F(f)

It is easy to check this is indeed a functor and is G-equivariant. It is then straight-
forward to define the rest of the following diagram so that every functor is equi-
variant and every square of functors commutes strictly, giving a zig-zag of C(BG)-
diagrams of categories

Note that if € and 9 are Waldhausen categories and all functors I, I’, Fy, F, are
exact, then the resulting diagram above is also a diagram of Waldhausen categories,
where %; has the Waldhausen structure inherited from computing maps in %. With
this reduction in hand, it is enough to make a square of functors of Waldhausen
G-categories, in which the top row has trivial G-action, that commutes up to a
G-fixed natural isomorphism. We will construct the square

Cat(€G, Ry (X))¢ —>— Ry (EG x¢ X — BG)

lq*

1 Rhf(EGXX—) EG)

lCOHSt

Cat(€G, Rys (X)) —— Cat(€G, Rys(EG x X — EG))
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The map @ along the top is the one from Proposition 4.1 that applies EG x g — to
the retractive space (Y, iy, py) over X, obtaining a retractive space over EG x g X.

The left-hand vertical map / includes the fixed points into the whole category,
i.e., takes a retractive G-space (Y, i, p) to the G-tuple of retractive spaces (Y, i o g~}
g o p) with isomorphisms of retractive spaces

’

hlg.—
¢g,h:(Y,iog_],gop)—g> (Y,ioh™' hop)

over the identity map of X. Along the right-hand edge, the first functor pulls back
along the quotient map

q:EGxX— EG x¢ X.
The left action of g € G on the target is by pullback along the map

Caxe—l._
pg:EGxXLEGxX

and note that g* lands in the G-fixed points because the composite function g o pg
is equal to g. The second functor on the right-hand edge pulls back along the map
of categories €G — *. To define the functor on the bottom, first form the functor

D: Ry (X) = Rpp(EG x X — EG),
O(Z,i,p)=EGx(Z,i,p)=(EG x Z,id x i, 1id x p).
Then pick the isomorphisms
O,: Pog—> god,
EG x (Z,iog™'.,gop)— pi(EG x (Z.i, p))

arising from the commuting diagram

—1
2.7
EGx X p—) EGx X
g
id,iog™! id, i
-g,id
EGxZ——EGXxZ
id,gop id,p

. 71-
EGx X 5 EGx X
8

We check the cocycle condition g6, o 6, = ¢4, which reduces to the equality
(—-8)-h=—-(gh) as self-maps of EG x Z, and pj, 0 pg = pgj as self-maps of
EG x X. Therefore by [Malkiewich and Merling 2019, Definition 2.5], the iso-
morphisms 6, make ® a pseudoequivariant functor. By [Malkiewich and Merling
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2019, Proposition 2.10], after applying Cat(€G, —) we get a strictly equivariant
functor ®.

The top route through our diagram of functors takes a retractive G-space Y
over X to the functor €G — R;,r(EG x X — EG) with values

g+ q"(EG x¢g (Y,i,p)), (g—h) > id.
The bottom route produces the functor with values
g > p(EG x (Y, 1, p)).

To describe the maps, let us represent the space p,(EG x (Y, i, p)) by drawing the
span along which we take the pullback to get it:

id, 2,871 .
EGxY A EGx X &2 " EGx X PH(EG x (Y, i, p)).
Pg

Then our functor out of €G assigns the map g — & to the composite of the following
isomorphisms:

" et
EGxYl—p>EGxX<%EGxX P(EG x (Y.i, p))
8
g7 hid Lgl,g' 0!
id,go
EGxY R EGx X —— EG x X EGx (Y,iog™', gop)
id,h g ‘ id,(h~"g) ()
id,ho
EGxY "R EGx X —— EG x X EGx (Y,ioh™', hop)
-h,id hh L On
id, p okl .
EGxY—>EGxX<p—IEGxX P (EG x (Y,i, p))

Now we will define a natural isomorphism 7 from the bottom route to the top route.
Continuing to use this span notation, for each g € €G we define an isomorphism 7,
by the map of spans

"
EGxY —L  EGx X 2 EGx X PI(EG x (Y, i, p))
id,idl Jrq H lng

"
EGxgY T EGxgX + 2~ EGx X G (EG x (Y, i, p))

This commutes with the maps g — & of €G because the composite of the three
maps of spans from (x) commutes with the map of spans just above. Naturality
follows because each G-equivariant map ¥ — Y’ induces maps on the source and
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target of n, that commute with n, for each g. Finally we check that 7 is a G-fixed
natural transformation. The map yn,-1, := p;n, -1, comes from the map of spans

Pg
id, — _
EGxY 2P EGx X —— EGxX = EGxX  pipt, (EGX(Y,i,p))

Py—lg 4
P

“
EGxgY 5 EGxGX ¢~ EGxX {~EGxX  piq*(EGxg(Y.i,p))
v

q

which is indeed the same map of spans that defines n,. This finishes the con-
struction of the square of equivariant functors that commutes up to equivariant
isomorphism. In summary, using the reduction cited earlier in the proof, we have
now constructed a strictly commuting zig-zag of C(BG)-diagrams of Waldhausen
categories

Cat(éG, Rys (X)) ————— Cat(éG, Ryr (X))

H ~

Cat(éG, Rys (X)) ————— Cat(éG, Rus(X))s

|

Rpf(EG xg X - BG) —— Cat(€éG, Ry (EG x X — EG))

constog ™

const | ~

Rif(EG xG X = BG) ———— Ryy(EG x X — EG)
q

Now we apply the K -theory functor to this diagram. By Proposition 4.1, the left
map & induces an equivalence in K -theory. The right maps labeled ~ are G-maps
which are nonequivariant equivalences. It remains to show that the remaining ver-
tical map gives an equivalence on K -theory. In general, for any pseudoequivariant
functor ® : € — %, we have a commutative diagram of nonequivariant categories

Cat(€G, €) —2— Cat(€G, @)
@— g
[}

where the vertical maps are nonequivariant equivalences. (Note that the diagram
with those equivalences reversed doesn’t commute.) Since ® induces an equivalence
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on K -theory, so does ®. Now use the factorization

Cat(€G, Ryf (X)) — Cat(€G, Ry (X)); —> Cat(€G, Ryf(EG x X — EG))

\//‘

to conclude that the remaining functor
Cat(€G, Ryp (X)) — Cat(€G, Ryr (EG x X — EG))

also gives an equivalence in K-theory. Thus we get a strictly commuting zig zag
of equivalences of C(®BG) diagrams in spectra. U
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