
Documenta Math. 1

Equivariant A-theory

Cary Malkiewich1 and Mona Merling2

Abstract. We give a new construction of the equivariant K-theory of group
actions (cf. Barwick et al.), producing an infinite loop G-space for each Wald-
hausen category with G-action, for a finite group G. On the category R(X) of
retractive spaces over a G-space X, this produces an equivariant lift of Wald-
hausen’s functor A(X), and we show that the H-fixed points are the bivariant
A-theory of the fibration XhH → BH. We then use the framework of spec-
tral Mackey functors to produce a second equivariant refinement AG(X) whose
fixed points have tom Dieck type splittings. We expect this second definition to
be suitable for an equivariant generalization of the parametrized h-cobordism
theorem.
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1 Introduction

Waldhausen’s celebrated A(X) construction, and the “parametrized h-cobordism” the-
orem relating it to the space of h-cobordisms H∞(X) on X, provides a critical link in
the chain of homotopy-theoretic constructions relating the behavior of compact mani-
folds to that of their underlying homotopy types [Wal78] [WJR13]. While the L-theory
assembly map provides the primary invariant that distinguishes the closed manifolds in
a given homotopy type, A(X) provides the secondary information that accesses the dif-
feomorphism and homeomorphism groups in a stable range [WW88]. And in the case of
compact manifolds up to stabilization, A(X) accounts for the entire difference between
the manifold and its underlying homotopy type with tangent information [DWW03].
As a consequence, calculations of A(X) have immediate consequences for the automor-
phism groups of high-dimensional closed manifolds, and of compact manifolds up to
stabilization.

When the manifolds in question have an action by a group G, there is a similar line
of attack for understanding the equivariant homeomorphisms and diffeomorphisms.
One expects to replace H∞(X) with an appropriate space H∞(X)G of G-isovariant
h-cobordisms on X, stabilized with respect to representations of G. The connected
components of such a space would be expected to coincide with the equivariant White-
head group of [Lüc89], which splits as

WhG(X) ∼=
⊕

(H)≤G

Wh(XH
hWH) (1)

where (H) ≤ G denotes conjugacy classes of subgroups. This splitting is reminiscent of
the tom Dieck splitting for genuine G-suspension spectra

(Σ∞GX+)G ∼=
∨

(H)≤G

Σ∞+ XH
hWH

and suggests that the variant of A-theory most directly applicable to manifolds will in
fact be a genuine G-spectrum, whose fixed points have a similar splitting.

In this paper we begin to realize this conjectural framework. We define an equivariant
generalization AG(X) of Waldhausen’s A-theory functor, when X is a space with an
action by a finite group G, whose fixed points have the desired tom Dieck style splitting.

Theorem 1.2 (Theorem 4.1). For G a finite group, there exists a functor AG from
G-spaces to genuine G-spectra with fixed points

AG(X)G '
∏

(H)≤G

A(XH
hWH),

and a similar formula for the fixed points of each subgroup H.
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To be more specific, the fixed points are the K-theory of the category RGhf (X) of finite
retractive G-cell complexes over X, with equivariant weak homotopy equivalences be-
tween them. The splitting of this K-theory is a known consequence of the additivity
theorem, and an explicit proof appears both in [BD17] and in earlier unpublished work
by John Rognes from the early 1990s. In fact, this earlier work by Rognes seems to be
the first place where the spectrum K(RGhf (X)) was studied, and it was motivated by a
possible variant of the Segal conjecture for A-theory.

In a subsequent paper, we plan to explain how AG(X) fits into a genuinely G-equivariant
generalization of Waldhausen’s parametrized h-cobordism theorem. The argument we
have in mind draws significantly from an analysis of the fixed points of our AG(X) carried
out by Badzioch and Dorabia la [BD17], and a forthcoming result of Goodwillie and Igusa
that defines H∞(X)G and gives a splitting that recovers (1). We emphasize that lifting
these theorems to genuine G-spectra permits the tools of equivariant stable homotopy
theory to be applied to the calculation of H∞(X)G, in addition to the linearization and
trace techniques that have been used so heavily in the nonequivariant case.

Most of the work in this paper is concerned with constructing equivariant spectra out of
category-theoretic data. One approach is to generalize classical delooping constructions
such as the operadic machine of May [May72] or the Γ-space machine of Segal [Seg74]
to allow for deloopings by representations of G. Using the equivariant generalization
of the operadic infinite loop space machine from [GM17], we show how this approach
generalizes to deloop Waldhausen G-categories.

The theory of Waldhausen categories with G-action is subtle. Even when the G-action
is through exact functors, the fixed points of such a category do not necessarily have
Waldhausen structure (Observation 2.1). Define EG be the category with objects the
elements of G and precisely one morphism between any two objects, whose classifying
space is EG. Let Cat(EG, C) be the category of all functors and all natural transfor-
mations with G acting by conjugation; we define the homotopy fixed points ChG of a
G-category C as the fixed point category Cat(EG, C)G, and we explain in §Section 2.3
how this category does have a Waldhausen structure.

The “equivariant K-theory of group actions” of Barwick, Glasman, and Shah produces
a genuine G-spectrum (using the framework of [Bar]) whose H-fixed points are K(ChH)
[BGS, §8]. We complement this with a result that shows the G-space |Cat(EG, C)| may
be directly, equivariantly delooped.

Theorem 1.3 (Theorem 2.21 and Proposition 2.23). If C is a Waldhausen G-category
then the K-theory space defined as KG(C) := Ω|wS qCat(EG, C)|, where S q is Wald-
hausen’s construction from [Wal85], is an equivariant infinite loop space. The H-fixed
points of the resulting Ω-G-spectrum are equivalent to the K-theory of the Waldhausen
category ChH for every subgroup H.

The downside of this approach is that one does not have much freedom to modify the
weak equivalences in the fixed point categories. Note that if X is a G-space, then
the category Rhf (X) of homotopy finite retractive spaces over X has a G-action. For
a retractive space Y , gY is defined by precomposing the inclusion map by g−1 and
postcomposing the retraction map by g. We can apply Theorem 1.3 to this category, and
the resulting theory Acoarse

G (X) has as its H-fixed points the K-theory of H-equivariant
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spaces over X, as we expect, but the weak equivalences are the H-maps which are
nonequivariant homotopy equivalences. Thus, Theorem Theorem 1.3 does not suffice to
prove Theorem Theorem 1.2.

Although Acoarse
G (X) does not match our expected input for the h-cobordism theorem,

it does have a surprising connection to the bivariant A-theory of Williams [Wil00]:

Theorem 1.4 (Proposition 3.8). There is a natural equivalence of spectra

Acoarse
G (X)H ' A(EG×H X −→ BH).

In a subsequent paper we will show that under this equivalence, the coassembly map for
bivariant A-theory agrees up to homotopy with the map from fixed points to homotopy
fixed points for Acoarse

G (X).

In order prove Theorem Theorem 1.2 it is necessary to modify the weak equivalences
in the fixed point categories giving Acoarse

G (X)H , and to do this we use the framework
of spectral Mackey functors. These are diagrams over a certain spectral variant of the
Burnside category, denoted GB. By celebrated work of Guillou and May, the homotopy
theory of GB-diagrams is equivalent to that of genuine G-spectra [GM]. Moreover, there
are by now a few different ways to pass from combinatorial, category-theoretic data
to diagrams of spectra over GB [Bar, BGS, BO15, BO]. In essence, one is allowed
to give separately for each H ≤ G some permutative category, Waldhausen category,
or symmetric monoidal or Waldhausen ∞-category RH whose algebraic K-theory will
become the H-fixed points. The rest of the glue that creates the G-spectrum is generated
by a large collection of exact functors giving the restrictions, transfers, and sums thereof,
between the categories {RH : H ≤ G}.

Barwick’s approach to managing this large collection of data is to define certain adjoint
pairs of functors between the categories RH , satisfying Beck-Chevalley isomorphisms
[Bar, §10]. These may then be “unfurled” to create suitably coherent actions of spans
on the categories RH , giving a spectral Mackey functor on the K-theory spectra K(RH).
In §Section 4.2, we describe concretely how spans act on the categories {ChH : H ≤ G}
– this is essentially the application of Barwick’s “unfurling” construction found in [BGS,
§8], but formulated for ordinary Waldhausen categories with a G-action. Our variant
of this construction is then a “Mackey functor of Waldhausen categories” in the sense
of Bohmann and Osorno [BO], which combined with the theorem of Guillou and May
[GM] gives a genuine G-spectrum. This in particular allows an alternative “spectral
Mackey functor” definition of Acoarse

G (X) when one plugs in the category R(X) with the
G-action described above.

However, as we pointed out, the categories RHhf (X) are not of the form ChH – they
have the same objects and maps as R(X)hH but more restricted weak equivalences. In
order to get the desired tom Dieck style splittings of the fixed points, in §Section 4.3,
we descend the action of spans on the categories R(X)hH to get a “Mackey functor of
Waldhausen categories” with values G/H 7→ RHhf (X), thereby proving Theorem The-
orem 1.2. Though we work in the framework of [GM] and [BO] to build AG(X), the
same constructions appear to also make RHhf (X) into a Mackey functor of Waldhausen
categories within Barwick’s framework.
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Remark 1.5. There is a “Cartan” map

AG(X) −→ Acoarse
G (X).

This becomes a map of genuine G-spectra if we define Acoarse
G (X) using the Mackey

structure on K(ChH). We believe that this Mackey structure gives the same G-spectrum
as the one produced by delooping the space KG(C) using Theorem Theorem 1.3, and
that more generally the K-theory of group actions from [BGS, §8] gives the same G-
spectrum as Theorem Theorem 1.3. The argument we have in mind for the former claim
depends on multifunctoriality properties of equivariant K-theory that have not yet been
carefully established.

Our constructions are inspired by, but distinct from, the construction of Real algebraic
K-theory by Hesselholt and Madsen [HM13]. We consider Waldhausen categories with
(covariant) actions by G through exact functors, whereas the basic input for Real K-
theory is categories with a contravariant involution. We do not formulate an equivariant
version of S q here, but we consider this to be a problem of significant importance for
future work.
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2 Equivariant K-theory of Waldhausen G-categories

Let G be a finite group. In this first section we recall from [Mer15, §2] the construction
Cat(EG,−), and how it rectifies pseudo equivariant functors into equivariant ones. In
subsection Section 2.1 we expand this to a more general strictification result: we show
that there is a strictification 2-functor from G-categories, pseudo equivariant functors
and pseudo equivariant natural transformations to G-categories, equivariant functors
and equivariant natural transformations. In subsections Section 2.2 and Section 2.3
we give applications of this strictification result to rectifying symmetric monoidal and
Waldhausen categories with G-action. In subsections Section 2.4 and Section 2.5 we
show when and how one can deloop symmetric monoidal and Waldhausen categories
with G-action. In particular, we prove Theorem 1.3.
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2.1 Strictification of pseudo equivariance

Let GCat be the 2-category with 0-cells given by G-categories, 1-cells given by equivari-
ant functors, and 2-cells given by equivariant natural transformations. For G-categories
A and B, we define Cat(A,B) to be the category of all functors and natural transfor-
mations, with G acting by conjugation. More precisely, for F : A → B, g ∈ G, and A

either an object or a morphism of A, (gF )(A) = gF (g−1A). Similarly, for a natural
transformation η : E → F and an object A of A,

(gη)A = gηg−1A : gE(g−1A)→ gF (g−1A).

Therefore the fixed point category Cat(A,B)G is the category of equivariant functors
and equivariant natural transformations.

Definition 2.1. Define EG to be the G-groupoid with objects the elements of G and a
unique morphism between any two objects. The action of G on the object set G of EG
is by left translation, and this extends in a unique way to an action on the morphisms.
Up to G-isomorphism, EG is the translation category of G, and its classifying space is
the space EG.

Definition 2.2. Define the homotopy G-fixed points, ChG, of a G-category C as
Cat(EG, C)G.

Remark 2.3. For each H ≤ G, the natural map EH → EG induced by the inclu-
sion is an equivalence of H-categories, meaning it has an H-equivariant inverse, and
H-equivariant natural isomorphisms between both composites and the identity. So,
we can unambiguously up to equivalence define the homotopy H-fixed points ChH as
Cat(EG, C)H ' Cat(EH, C)H .

Recall from [Mer15, Prop. 2.12] the following explicit description of the homotopy fixed
point category Cat(EG, C)G. Its objects are objects of C together with isomorphisms
ψg : C

∼=−→ gC for all g ∈ G, such that ψe = idC and and the following cocycle condition
is satisfied:

ψgh = (gψh)ψg. (4)

A morphism is given by a morphism α : C → C ′ in C such that the following diagram
commutes for any g ∈ G :

C

α

��

ψg // gC

gα

��
C ′

ψ′g // gC ′.

We recall the following definition [Mer15, Def. 3.1.].

Definition 2.5. A pseudo equivariant functor between G-categories C andD is a functor
Θ: C −→ D, together with natural isomorphisms of functors θg for all g ∈ G

C
g· //

Θ
��

~� θg

C

Θ
��

D
g·

// D .
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such that θe = id and for g, h ∈ G we have an equality of natural transformations, where
on the left hand side we are considering the composite of natural transformations:

C h· //

Θ
��

~� θh

C

Θ
��

g· //

~� θg

C

Θ
��

D
h·

// D
g·

// D

= C
gh· //

Θ
��

~� θgh

C

Θ
��

D
gh·

// D .

Requiring this equality makes sense because the outer right down and down right com-
posites in the two diagrams are equal. Explicitly, for C an object of C, this means that
the following diagram commutes:

Θ(ghC)
θg(hC) //

θgh(C)

$$
gΘ(hC)

gθh(C) // ghΘ(C).

Remark 2.6. If θg are equalities for all g ∈ G, then Θ is actually an equivariant functor.

We may think of a G-category as a functor BG → Cat, where BG is the groupoid
with one object and morphism group G. Then an equivariant functor is just a natural
transformation between the corresponding functors BG → Cat, and a pseudo equivari-
ant functor is a normal pseudo natural transformation. Note that the composition of
pseudo equivariant functors Φ ◦Θ is again a pseudo equivariant functor with coherence
isomorphisms given by (φg ∗Θ) ◦ (Φ ∗ θg) where ∗ denotes whiskering. In other words,
at an object C, this is the composite

ΦΘgC
Φ(θg(C)) // ΦgΘC

φg(ΘC) // gΦΘC.

We check that this satisfies the required cocycle condition:

ΦΘghC
Φ(θg(hC)) //

Φ(θgh(C)) **

ΦgΘhC

Φg(θh(C))
��

φg(ΘhC) // gΦΘhC

gΦ(θh(C))
��

ΦghΘC
φg(hΘC) //

φgh(ΘC) **

gΦhΘC

g(φh(ΘC))
��

ghΦΘC.

We give a definition of pseudo equivariant natural transformations between pseudo
equivariant functors.

Definition 2.7. Let η : Θ⇒ Ψ be a natural transformation between pseudo equivariant
functors C → D. We say that η is pseudo equivariant if the following diagram commutes:
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Θ(gC)
ηgC //

θg(C) ∼=
��

Ψ(gC)

ψg(C)∼=
��

gΘ(C)
gηC

// gΨ(C).

In particular, if Θ and Ψ are equivariant functors, i.e., if θg and ψg are identities, then
η is an equivariant natural transformation. Note that the composite of two pseudo
equivariant natural transformations is also a pseudo equivariant natural transformation.

Definition 2.8. We define the 2-category GCatpseudo with

• 0-cells given by G-categories;

• 1-cells given by pseudo equivariant functors;

• 2-cells given by pseudo equivariant natural transformations.

Theorem 2.9. The assignment C 7→ Cat(EG, C) on 0-cells extends to a 2-functor
GCatpseudo → GCat.

We spend the rest of this section giving the necessary constructions of 1-cells and 2-cells
and proving this theorem. We recall the following construction and result from [Mer15],
which gives the construction of 1-cells of the strictification functor. Given a pseudo
equivariant functor Θ: C → D, we construct a functor

Θ̃ : Cat(EG, C)→ Cat(EG,D),

as follows: for a functor F : EG → C, the functor Θ̃(F ) : EG → D is defined on objects
by

Θ̃(F )(g) = gΘ((g−1F )(e)) = gΘ(g−1F (g)),

and on morphisms g → g′ it is defined as the composite

gΘ(g−1F (g))
θ−1

g (g−1F (g))
−−−−−−−−−→∼=

Θ(gg−1F (g)) Θ(F (g→g′))−−−−−−−−→ Θ(g′g′−1F (g′))
θg′ (g

′−1F (g′))
−−−−−−−−−→∼=

g′Θ(g′−1F (g′)).

For a morphism in Cat(EG, C), namely a natural transformation α : F ⇒ E, the com-
ponents of Θ̃(α) are defined as

Θ̃(α)g = gΘ(g−1αg).

It was checked in [Mer15, Prop. 3.3.] that this is indeed a natural transformation.

Proposition 2.10. ([Mer15, Prop. 3.3.]) For a pseudo equivariant functor Θ: C → D
the induced functor

Θ̃ : Cat(EG, C)→ Cat(EG,D),

as defined above, is on the nose equivariant.

Remark 2.11. Note that if Θ: C → D is equivariant and not only pseudoequivariant,
then Θ̃ : Cat(EG, C) → Cat(EG,D) is the functor induced by postcomposition. If Θ is
not equivariant but only pseudoequivariant, then the functor induced by postcomposi-
tion would not be equivariant.
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The induced map on homotopy fixed points Θ̃H : ChH → DhH takes an object C with
choices of isomorphisms ψg : C

∼=−→ gC to Θ(C) with isomorphisms Θ(C)
∼=−→ gΘ(C)

defined as the composites

Θ(C) Θ(ψg)−−−−→∼= Θ(gC) θg(C)−−−−→∼= gΘ(C).

It was checked explicitly in [Mer15] that these composites satisfy the required cocycle
condition.

We expand on Proposition 2.10 to 2-cells. Suppose η : Θ ⇒ Ψ is a pseudo equivariant
natural transformation between pseudo equivariant functors C → D. We define a natural
transformation η̃ : Θ̃⇒ Ψ̃ of functors Cat(EG, C)→ Cat(EG,D). Let F be an object in
Cat(EG, C). Define η̃F : Θ̃ → Ψ̃ to be the natural transformation of functors EG → D
with g component defined by

(η̃F )g : gΘ(g−1F (g))
gηg−1F (g)−−−−−−→ gΨ(g−1F (g)).

We note that this gives indeed a natural transformation, since for a map g → h in
EG, the following naturality diagram commutes—the upper and lower squares commute
because we assumed η is pseudoequivariant and the middle square is the naturality
square for η:

gΘ(g−1F (g))

θ−1
g (g−1F (g))

��

gηg−1F (g) // gΨ(g−1F (g))

ψ−1
g (g−1F (g))

��
Θ(F (g))

��

ηF (g) // Ψ(F (g))

��
Θ(F (h))

θh(h−1F (h))
��

ηF (h)
// Ψ(F (h))

ψh(h−1F (h))
��

hΘ(h−1F (h))
gηh−1F (h)

// hΨ(h−1F (h)).

Similarly, for a natural transformation α : F ⇒ E of functors EG → C, the necessary
naturality diagram of natural transformations of functors EG→ D

Θ̃(F )

Θ̃(α)
��

η̃F // Ψ̃(F )

Ψ̃(α)
��

Θ̃(E)
η̃E

// Ψ̃(E)

translates, on component g, to the following diagram

gΘ(g−1F (g))

gΘ(g−1αg)
��

θ−1
g (g−1F (g))

// Θ(F (g))

Θ(αg)
��

ηF (g) // Ψ(F (g))

Ψ(αg)
��

ψg(g−1F (g)) // gΨ(g−1F (g))

gΨ(g−1αg)
��

gΘ(g−1E(g))
θ−1

g (g−1E(g))
// Θ(E(g))

ηE(g)
// Ψ(E(g))

ψg(g−1E(g))
// gΨ(g−1E(g)).
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The outer squares commute by the naturality of the isomorphisms θg and ψg, and the
middle square commutes by the naturality of η.

Proposition 2.12. For a pseudo equivariant natural transformation η : Θ⇒ Ψ between
pseudo equivariant functors C → D, the natural transformation η̃ : Θ̃ ⇒ Ψ̃, as defined
above, is an equivariant natural transformation between equivariant functors.

Proof. We can see that the natural transformation η̃ : Θ̃⇒ Ψ̃ is on the nose equivariant:
we check that for any h ∈ G and F ∈ Cat(EG, C), we have an equality hη̃F = η̃hF . Note
that the g component

(hη̃F )g : h(Θ̃(F ))(g) −→ h(Ψ̃(F ))(g)

is equal to

hh−1gΘ((h−1g)−1F (h−1g))
hh−1gη(h−1g)−1F (h−1g)−−−−−−−−−−−−−−−−→ hh−1gΨ((h−1g)−1F (h−1g)).

On the other hand, the g component

(η̃hF )g : gΘ(g−1(hF )(g))→ gΨ(g−1(hF )(g))

is equal to
gΘ(g−1hF (h−1g))

gηg−1(hF )(g)−−−−−−−−→ gΨ(g−1hF (h−1g)).

Thus (hη̃F )g = (η̃hF )g.

In order to show that we have defined a 2-functor GCatpseudo → GCat and thus com-
plete the proof of Theorem 2.9, we need to show that composition of functors, identity
functors, identity natural transformations, and both horizontal and vertical composition
of natural transformations is strictly preserved. We leave the straightforward check that
Θ̃ ◦Ψ = Θ̃ ◦ Ψ̃, η̃1 ∗ η2 = η̃1 ∗ η̃2, η̃1 ◦ η2 = η̃1 ◦ η̃2, and that ĩd = id both on functors
and natural transformations to the reader.

2.2 Rectification of symmetric monoidal G-categories

One application of Theorem 2.9 is to strictify G-actions on symmetric monoidal cat-
egories. Suppose C is a symmetric monoidal category, with a G-action that preserves
the symmetric monoidal structure ⊕ up to coherent isomorphism. In other words, C is
a functor BG → Sym Catstrong from BG to the category of strict symmetric monoidal
categories and strong monoidal functors. Then the symmetric monoidal structure map

C × C ⊕−→ C

is pseudoequivariant, where the G-action on C × C is diagonal. In addition, we get
coherent isomorphisms gI ∼= I for every g ∈ G, where I is the unit object of C.

If C is such a symmetric monoidal category, then Cat(EG, C) is a symmetric monoidal
category whose sum and unit are strictly G-equivariant. This is because Proposition 2.10
gives an on the nose equivariant functor

⊕ : Cat(EG, C × C) ∼= Cat(EG, C)× Cat(EG, C) −→ Cat(EG, C)
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which we take as the sum in Cat(EG, C). The unit is the functor FI : EG −→ C defined
by FI(g) = gI, where I is the unit of C. Explicitly, F1 ⊕ F2 in Cat(EG, C) is defined on
objects as

(F1 ⊕ F2)(g) = g
(
g−1F1(g)⊕ g−1F2(g)

)
,

which, of course, is the same as F1(g) ⊕ F2(g) when the G-action on C preserves ⊕
strictly, and a morphism g → g′, it is defined as

(F1 ⊕ F2)(g)
∼=−→ F1(g)⊕ F2(g) F1(g→g′)⊕F2(g→g′)−−−−−−−−−−−−−→ F1(g′)⊕ F2(g′)

∼=−→ (F1 ⊕ F2)(g′).

These sum formulas motivate our definition of transfers on ChH in §Section 4.2 below.

When we take the K-theory of C below, we will actually want to strictify C in two ways:
we will want to make the G-action commute with the sum strictly, but we will also want
to strictify the symmetric monoidal category C to a monoidally G-equivalent permutative
category with G-action. We give the details in the discussion before Proposition 2.18.

2.3 Rectification of Waldhausen G-categories

Now suppose that C is a Waldhausen category with G-action through exact functors.
In other words, for each g ∈ G the functor g· : C → C preserves cofibrations, weak
equivalences, the zero object, and pushouts along cofibrations. (In fact, the last two
are automatic since g· is an isomorphism of categories.) However, we emphasize that g·
preserves the zero object and pushouts only up to unique isomorphism, and not on the
nose.

Observation 2.1. In general, the fixed point category CH is not a Waldhausen category,
because it is not closed under pushouts. A pushout diagram in CH has a pushout in C,
but it is only preserved by the H-action up to isomorphism, and so in general it does
not lie in CH .

We will get around this by showing that the homotopy fixed points ChH form a Wald-
hausen category (Theorem 2.15). First we check that Cat(EG, C) is a Waldhausen G-
category, by defining the cofibrations and weak equivalences pointwise. More precisely,
for F1, F2 ∈ Cat(EG, C) ,

F1
η−→ F2

is a cofibration or a weak equivalence if for every g ∈ EG, the map F1(g) → F2(g) is a
cofibration or a weak equivalence, respectively, in C. If we define the zero object and
pushouts in a pointwise manner, they will not be fixed, so we show a little more care:

Lemma 2.13. There is a zero object in Cat(EG, C), which is G-fixed.

Proof. Consider the functor Z : ∗ −→ C from the one object category ∗ to C, which picks
out the zero object 0 of C. Note that this functor is not equivariant since 0 6= g · 0, but
for every g we have a unique isomorphism θg : 0

∼=−→ g · 0. Since these isomorphisms are
unique, it must be that the isomorphisms 0 θg−→ g · 0 gθh−−→ (gh) · 0 and 0 θgh−−→ (gh) · 0
coincide, and therefore Z is pseudo equivariant.
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By Proposition 2.10, since Z is pseudo equivariant, there is an induced on the nose
equivariant functor ∗ ∼= (EG, ∗) −→ (EG, C), which sends the one object of ∗ to the
functor F0 ∈ Cat(EG, C) defined on objects by F0(g) = g · 0, and defined on the unique
morphism from g to h by composing the unique isomorphisms 0 ∼= g · 0 and 0 ∼= h · 0
to get an isomorphism g · 0

∼=−→ h · 0 in C. Since the functor ∗ −→ (EG, C) with value
F0 is equivariant by Proposition 2.10, the object F0 of (EG, C) lies in the G-fixed point
subcategory. It is easy to check that this is a zero object in Cat(EG, C).

Lemma 2.14. There exist pushouts along cofibrations in Cat(EG, C), so that pushouts
of H-fixed diagrams are H-fixed.

Proof. The same argument as in the previous proof applies: if one considers the category
of P(C) pushout diagrams along cofibrations, and a functor P(C) −→ C which assigns
to each pushout diagram along a cofibration

A

��

// // B

C

a choice P of pushout B qA C, this functor is not equivariant. However, the canonical
isomorphisms g · (BqAC) ∼= (g ·B)

∐
(g·A)(g ·C) that exist for any pushout in C and any

g ∈ G since we are assuming g· is an exact functor, ensure that the functor P(C) −→ C is
pseudo equivariant. Therefore by Proposition 2.10, we get the nose equivariant functor

P(Cat(EG, C)) ∼= Cat(EG,P(C)) −→ Cat(EG, C)

Since pushouts of functors are defined objectwise, this assigns to each diagram in
Cat(EG, C) a pushout, and if the diagram is H-fixed then the pushout is H-fixed as
well.

From the construction of the corresponding equivariant functor from a pseudo equiv-
ariant functor in the proof of Proposition 2.10, we get an explicit description for the
pushouts in Cat(EG, C). For a diagram

F1

��

// // F2

F3

in Cat(EG, C), the pushout P : EG→ C is defined on objects by

P(g) = g · (g−1F3(g)
∐

g−1F1(g)

g−1F2(g)).

If the pushout diagram is G-fixed, then the pushout P is defined by P(e) = P , where
P is a pushout of the above diagram evaluated at e, and P(g) = g · P. On morphisms,
P(g, g′) is the composite of the unique isomorphisms P ∼= g · P and P ∼= g′ · P .
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Theorem 2.15. Let C be a G-equivariant Waldhausen category, and let H be a subgroup
of G. Then ChH is a Waldhausen category with cofibrations and weak equivalences the
H-fixed cofibrations and weak equivalences in Cat(EG, C).

Proof. Note that composition of H-fixed maps is H-fixed, thus the classes of cofibrations
and weak equivalences in Cat(EG, C)H are closed under composition, and an H-fixed
isomorphism is in particular a H-fixed cofibration and weak equivalence.

By Lemma 2.13, there is a zero object F0 in Cat(EG, C)H . Moreover, for any functor
F in Cat(EG, C), each map F0(g) � F (g) is a cofibration since it is the composite of
g · 0 ∼= 0 and the unique map 0 � F (g), which are both cofibrations. Thus the map
F0 � F is by definition a cofibration.

By Lemma 2.14, for a pushout diagram along a cofibration in Cat(EG, C)H , there exists
a pushout in this fixed point subcategory. The gluing axiom for weak equivalences is
inherited from C.

Note that the equivalence from Remark 2.3 Cat(EG, C)H ' Cat(EH, C)H is an equiva-
lence of Waldhausen categories.

2.4 Delooping symmetric monoidal G-categories

Classical operadic infinite loop space theory [May72] gives a machine for constructing,
from a space X with an action by an E∞ operad, an Ω-spectrum whose zeroth space
is the group completion of X. If in addition X has an action of a finite group G

through E∞ maps, then the resulting spectrum has a G-action, namely it is a näıve
Ω-G-spectrum. By definition, “näıve” means that the deloopings are only for spheres
with trivial G-action.

In order to get deloopings by representation spheres SV for all finite-dimensional repre-
sentations V of G, the G-space X needs to be an algebra over a genuine E∞-G-operad.
The difference between a näıve and a genuine E∞ operad O lies in the fixed points of
the G× Σn-space O(n) for each n. For each subgroup Λ ≤ G× Σn we have:

(Λ ∩ Σn) 6= {1} (Λ ∩ Σn) = {1} (Λ ∩ Σn) = {1}
Λ ∩G = {1} Λ ∩G 6= {1}

näıve E∞ operad O(n)Λ = ∅ O(n)Λ = ∅ O(n)Λ ' ∗
genuine E∞ operad O(n)Λ = ∅ O(n)Λ ' ∗ O(n)Λ ' ∗

Remark 2.16. In a näıve E∞ operad O, the spaces O(n) are the total spaces of uni-
versal principal Σn-bundles with G-action, whereas in a genuine E∞ operad OG, the
spaces OG(n) are the total spaces of equivariant universal principal G-Σn-bundles. For
a thorough discussion of equivariant bundle theory, see [May96, Ch.VII].

There are a few different machines that produce these equivariant deloopings, though
they are all equivalent [MMO]. We will focus on the machine of Guillou and May [GM17].
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Consider the categorical Barratt-Eccles operad O(j) = EΣj , and apply Cat(EG,−)
levelwise. Since Cat(EG,−) preserves products, this gives an operad

OG(j) = Cat(EG, EΣj)

in G-categories. Guillou and May show that the levelwise realizations |OG(j)| then form
a genuine E∞-operad in unbased G-spaces.

Theorem 2.17 ([GM17]). There is a functor KG(−) from |OG|-algebras X to orthogonal
G-spectra, whose output is an Ω-G-spectrum in the sense that the maps

KG(X)(V )→ ΩW−VKG(X)(W )

are equivariant equivalences. There is a natural equivariant group completion map

X −→ KG(X)(0)

and a natural weak equivalence of nonequivariant orthogonal spectra

K(XH)→ (KGX)H

for all subgroups H of G.

Recall that an equivariant group completion is a map that is a group completion on
the H-fixed points for all subgroups H of G. In particular, if the fixed points XH are
connected for all subgroups H, then the map X −→ KG(X)(0) is an equivalence.

Since realization is a symmetric monoidal functor, if C is a G-category with an action
of OG, its classifying space |C| is an algebra over |OG| in G-spaces. We are therefore
interested in constructing examples of OG-algebras C. We first recall that a category
C with an action of the Barratt-Eccles operad O in Cat is a permutative category,
i.e. it is symmetric monoidal with strict unit and strict associativity [May78]. Any
symmetric monoidal category C can be rectified to an equivalent permutative cate-
gory by a well known trick of MacLane [ML98]. The MacLane strictification functor
(−)str : Sym Catstrong → Sym Catstrict, from the category of symmetric monoidal cat-
egories and strong symmetric monoidal functors to the category of strict symmetric
monoidal categories and strict symmetric monoidal functors, is the left adjoint of the
forgetful map U. The category Cstr has as objects lists (c1, . . . , cn) of objects in C with
sum given by concatenation, and morphisms between (c1, . . . , cn) and (d1, . . . , dm) are
given by morphisms c1⊕ . . .⊕cn → d1⊕ . . . dm in C, where iterated uses of the monoidal
product are parenthensized to the left.

If C has a coherent G-action as in §Section 2.2, then the composition BG →
Sym Catstrong → Sym Catstrict describes Cstr as a category with a G-action that com-
mutes with the symmetric monoidal product strictly. This action is defined on objects
by g(c1, . . . , cn) = (gc1, . . . , gcn), and on morphisms by

gc1 ⊕ . . .⊕ gcn ∼= g(c1 ⊕ . . .⊕ cn)→ g(d1 ⊕ . . .⊕ dm) ∼= (gd1 ⊕ . . .⊕ gdm).

The components of the unit of the adjunction η : C → UCstr are strong symmetric
monoidal equivalences of symmetric monoidal categories with inverses η−1 sending the
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list (c1, . . . , cn) to c1 ⊕ . . . ⊕ cn. We have observed in [Mer15] that the equivalence of
C and Cstr is through G-equivariant functors, when the action on C commutes with ⊕
strictly. However, now we are assuming that g commutes with ⊕ only up to coherent
isomorphism. In this case, η is still equivariant, but the inverse equivalence η−1 is only
pseudo-equivariant. After applying Cat(EG,−), we conclude by Theorem 2.9 that η and
η−1 give a G-equivariant monoidal equivalence of categories

Cat(EG, C) ' Cat(EG, Cstr).

We summarize this discussion in the next proposition.

Proposition 2.18. Let C be a symmetric monoidal category with G-action given through
strong monoidal endofunctors. Then the symmetric monoidal G-category Cat(EG, C) is
G-equivalent to the OG-algebra Cat(EG, Cstr).

We may therefore deloop the classifying space |Cat(EG, C)| by representations, simply
by applying Theorem 2.17 to the equivalent classifying space |Cat(EG, Cstr)|.

2.5 Delooping Waldhausen G-categories

Recall that the algebraic K-theory space of the Waldhausen category C is defined as
Ω|wS qC|, where S qC is the simplicial Waldhausen category constructed in [Wal85]. The
w means that we restrict to the subcategory of weak equivalences when we take the
nerves of the categories wSnC for varying n, before taking the realization of the resulting
bisimplicial set wN qS qC.
This is an infinite loop space whose deloopings are given by iterations of the S q-
construction. However Waldhausen remarks that it is enough to apply S q once, which
has the effect of splitting the exact sequences, and then to use an alternate infinite loop
space machine with the group completion property on the space |wS qC|. Waldhausen
notes that the comparison can be achieved by fitting the two resulting spectra into a
bispectrum, and a detailed proof of this result is written down in [Mal15]. We will use
this idea to produce equivariant deloopings of Waldhausen G-categories.

Suppose that C is a Waldhausen category, with an action of G through exact func-
tors. We give Cat(EG, C) the Waldhausen category structure defined in §Section 2.3.
The G-action on Cat(EG, C) induces a G-action on the simplicial Waldhausen category
S qCat(EG, C), which commutes with fixed points:

(S qCat(EG, C))H ∼= S q(Cat(EG, C)H).

Remark 2.19. It does not make sense to ask whether S q commutes with fixed points
in general, because the fixed point categories CH do not in general have Waldhausen
structure.

Definition 2.20. We define the algebraic K-theory G-space of a Waldhausen G-
category C as

KG(C) := Ω|wS qCat(EG, C)|
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From the above discussion, the H-fixed points of this space coincide with the algebraic
K-theory space of the Waldhausen category ChH .

Theorem 2.21. The space KG(C) is an infinite loop G-space.

Proof. As in the proof of Lemma 2.14, we make a choice of coproduct for any pair of
objects in C. By forgetting structure, each Waldhausen G-category C is a symmetric
monoidal G-category under the coproduct ∨. The G-coherence is automatic because
each g acts by exact endomorphisms of the category, and therefore preserves coproducts
up to canonical isomorphism.

By Proposition 2.18 we obtain an OG-algebra Cat(EG, Cstr) that is monoidally G-
equivalent to C. Since we have an actual G- equivalence of categories between

Cat(EG, C)� Cat(EG, Cstr),

Cat(EG, Cstr) has Waldhausen structure obtained by transporting the Waldhausen struc-
ture of Cat(EG, C) along the equivalence, so that the functors in the equivalence are ex-
act. By applying S q, we obtain a simplicial OG-algebra S qCat(EG, Cstr). By the gluing
lemma, a coproduct of weak equivalences is also a weak equivalence, so the subcategories
of weak equivalences wS qCat(EG, Cstr) also form a simplicial OG-algebra.

Since the nerve and geometric realization functors are symmetric monoidal, the space
|wS qCat(EG, Cstr)| is an |OG|-algebra, and we have an equivalence of G-spaces

|wS qCat(EG, C)| ' |wS qCat(EG, Cstr)|.

Furthermore, since geometric realization and S q commute with taking fixed points of
Cat(EG, C), we get a homeomorphism

|wS qCat(EG,C)|H ∼= |wS qCat(EG,C)H |.

These spaces are all connected, so the G-space |wS qCat(EG,C)| is already group com-
plete in the equivariant sense. By Theorem 2.17 it is therefore an infinite loop G-
space.

Definition 2.22. For a Waldhausen G-category C, define KG(C) as the orthogonal Ω-
G-spectrum with zeroth space KG(C) obtained by looping once the spectrum given by
applying Theorem 2.17.

Proposition 2.23. For every subgroup H of G, the orthogonal fixed point spectrum
KG(C)H is equivalent to the prolongation to orthogonal spectra of the Waldhausen K-
theory symmetric spectrum of ChH defined by iterating the S q-construction.

Proof. By Theorem 2.17, we get that

KG(C)H ' ΩK(|wS qChH |),
where K is the nonequivariant operadic infinite loop space machine landing in orthog-
onal spectra. By [Mal15, Thm 3.11.], the orthogonal spectrum above is equivalent to
the prolongation of the symmetric spectrum of ChH defined by Ω|wS(n)q ChH |, which is
Waldhausen’s K-theory spectrum of the Waldhausen category ChH .
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Remark 2.24. The argument [Mal15, Thm 3.11.] applies verbatim for a Waldhausen
category with G-action to give an equivalence of näıve G-spectra. In particular, by ap-
plying the argument to the category with G-action Cat(EG, C), we can conclude that the
underlying näıve orthogonal G-spectrum of KG(C) is G-equivalent to the prolongation
of the symmetric spectrum with G-action Ω|wS(n)q Cat(EG, C)|. On fixed points ChH ,
the equivalences are obtained by repeating the nonequivariant argument for each H,
since S q commutes with taking fixed points of Cat(EG, C).

3 The Waldhausen G-category of retractive spaces R(X)

Let G be a finite group and let X be an unbased space with a continuous left G-action.
Let R(X) be the category of non-equivariant retractive spaces over X. That is, an object
of R(X) is an unbased space Y and two maps

X
iY−→ Y

pY−→ X

which compose to the identity on X. A morphism f in R(X) is given by the following
commutative diagram:

Y
pY

&&
f

��
X

iY
88

iY ′ &&

X.

Y ′
pY ′

88

3.1 Action of G on R(X)

The category R(X) inherits a left action by G, which we describe explicitly. For any
g ∈ G, the functor g : R(X)→ R(X) sends an object

X
iY−→ Y

pY−→ X

to the object
X

g−1

−→ X
iY−→ Y

pY−→ X
g−→ X.

For a map f : (Y, iY , pY )→ (Y ′, iY ′ , pY ′), the map gf is defined by the diagram

Y
g◦pY

&&
f

��
X

iY ◦g−1 88

iY ′◦g
−1 &&

X

Y ′
g◦pY ′

88

which clearly also commutes.

We take the weak equivalences in R(X) to be the weak homotopy equivalences, and
the cofibrations to be the the maps that have the fiberwise homotopy extension prop-
erty (FHEP). In [MS06], these are called the f -cofibrations. Then the subcategory of
cofibrant objects is a Waldhausen category. By abuse of notation, we will also call this
subcategory R(X). It is easy to check that the G-action we defined above is through
exact functors.
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3.2 Homotopy fixed points of R(X)

Recall that the fixed point categories R(X)H may not be Waldhausen (Observation 2.1).
In fact, if X has a nontrivial G-action, the category R(X)G is empty and hence fails to
contain a zero object.

However by Theorem 2.15, the homotopy fixed point categories R(X)hH have a Wald-
hausen category structure. In this case, they admit a more explicit description.

Proposition 3.1. The Waldhausen category R(X)hH is equivalent to the Waldhausen
category with:

• objects, the H-equivariant retractive spaces over X, i.e. the space Y has a left
action by H, the maps iY and pY are equivariant;

• morphisms, the H-equivariant maps of retractive spaces Y → Y ′;

• cofibrations, the H-equivariant maps which are nonequivariantly cofibrations;

• weak equivalences, the H-equivariant maps which are nonequivariantly weak equiv-
alences.

Proof. By Remark 2.3, it is enough to prove the result for H = G. The objects of
the homotopy fixed point category R(X)hG = Cat(EG,R(X))G are retractive spaces
(Y, iY , pY ) together with isomorphisms ψg : Y

∼=−→ Y for all g making the following
diagram commute:

X
iY //

g−1

��

Y

ψg

��

pY // X

X
iY // Y

pY // X

g

OO

We define the left G-action on Y by having g−1 act by ψg. The commutativity of the
above diagram implies that iY and pY are equivariant. It is then clear that the maps in
R(X)hG are the G-equivariant maps.

Remark 3.2. Note that the proof of Proposition 3.1 actually gives an isomorphism
of categories when H = G, but when H < G we only get an equivalence in light of
the equivalence of Waldhausen categories Cat(EG,R(X))H ' Cat(EH,R(X))H from
Remark 2.3.

Before taking K-theory, we will restrict to a subcategory of finite objects. Let Rhf (X) ⊆
R(X) denote the subcategory of retractive spaces that are homotopy finite, i.e., a retract
in the homotopy category of an actual finite relative cell complex over X.

Clearly the action of G on R(X) respects this condition, and so restricts to a G-action
on Rhf (X). The proof of Proposition 3.1 applies verbatim to give us that Rhf (X)hH =
Cat(EG,Rhf (X))H is the Waldhausen category of retractive H-equivariant spaces over
X whose underlying space is homotopy finite.

Remark 3.3. By Waldhausen’s approximation theorem, if we restrict to the subcat-
egory of spaces that are homotopy equivalent to cell complexes, with the homotopy
equivalences on the total space and the HEP cofibrations, we get equivalent K-theory.
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3.3 Definition of Acoarse
G (X)

Applying 2.20 and Theorem 2.21 to the category of retractive spaces Rhf (X) provides
our first equivariant generalization of Waldhausen’s functor.

Definition 3.4. We define the G-space Acoarse
G (X) := Ω|wS qCat(EG,Rhf (X))|.

Corollary 3.5. The G-space Acoarse
G (X) is the zeroth space of a Ω-G-spectrum

Acoarse
G (X).

The upper script “coarse” indicates that the H-fixed point spectrum is the nonequivari-
ant K-theory of the category of H-equivariant retractive spaces over X with the coarse
equivalences. We will proceed to explain how this fixed point spectrum is related to
Williams’s bivariant A-theory functor A(E → B).

3.4 Relation to bivariant A-theory

For each fibration p : E → B into a cell complex B, form a Waldhausen category
Rhf (E p→ B) whose objects are retractive spaces

E
iY−→ Y

pY−→ E
p−→ B

for which p◦pY is a fibration, and over each point b ∈ B the retractive space Yb over the
fiber Eb is homotopy finite. The weak equivalences are the maps giving weak homotopy
equivalences on Y . The cofibrations are the maps with the fiberwise homotopy extension
property (FHEP) over E.

Definition 3.6. The bivariant A-theory of a fibration p is defined as

A(E p→ B) := K(Rhf (E p→ B)).

Each pullback square of fibrations is assigned to a map

E′ //

p′

��

E

p

��
B′ // B

 A(E p→ B)→ A(E′ p
′

→ B′)

using the exact functor that pulls back each space Y along E′ → E. This makes A into
a contravariant functor (see [RS14, Rmk 3.5]).

Note that A contains as a special case both Waldhausen’s A(X) = A(X → ∗) and the
contravariant analog A(X) = A(X id→ X).

Remark 3.7. This definition of bivariant A-theory is equivalent to the one given in
[RS14] by an application of the approximation property. Their cofibrations are the
maps having the homotopy extension property (HEP) on each fiber separately.

We may now prove Theorem 1.4. We regard Acoarse
G (X) as a symmetric spectrum ob-

tained by iteration of the S q-construction, with G-action induced by the G-action on
R(X). We are therefore only considering its underlying näıve G-spectrum.

Documenta Mathematica 24 (2019) 1–5



20

Proposition 3.8. There is a natural equivalence of symmetric spectra

Acoarse
G (X)H ' A(EG×H X → BH)

In particular,
Acoarse
G (X){e} ' A(X), Acoarse

G (∗)H ' A(BH)

Proof. From Proposition 2.23, the fixed points Acoarse
G (X)H are given by the Waldhausen

K-theory of the category Rhf (X)hH , which we identify with the category of retractive H-
equivariant spaces over X with underlying homotopy finite space, as in Proposition 3.1.
As explained in Remark Remark 3.3, we may restrict Rhf (X) to the spaces with the
homotopy type of relative cell complexes, with strong homotopy equivalences and HEP
cofibrations. We do so in this proof.

We adopt the shorthand

E = EG×H X = B(∗, G,G×H X), B = BH = B(∗, G,G/H)

In particular, we consider EG to be a right G-space, not a left one as we did when
defining the category EG. We freely use the result that for a well-based topological group
H the map B(∗, H,H) → B(∗, H, ∗) is a principal H-bundle [May75, Cor 8.3]. This
implies that B(∗, H,X) → B(∗, H, ∗) is a fiber bundle with fiber X. Since realization
of simplicial spaces commutes with strict pullbacks, our desired map p : E → B is a
pullback of this fiber bundle, hence also a fiber bundle.

The equivalence of K-theory spectra will be induced by the functor

Φ: Rhf (X)hH −→ Rhf (EG×H X
p→ BH)

that applies EG×H − to the retractive space (Y, iY , pY ) over X, obtaining a retractive
space over EG×H X:

EG×H X
EG×H iY // EG×H Y

EG×HpY // EG×H X

The composite map EG×H Y → BH is a fiber bundle with fiber Y , which is assumed
to be a homotopy finite retractive space over X. Therefore Φ indeed lands in the
Waldhausen category Rhf (EG ×H X

p→ BH). It is elementary to check that weak
equivalences and cofibrations are preserved, and therefore Φ induces a map on K-theory.

To prove that this map is an equivalence we verify the approximation property from
[Wal85]. We observe that the category Cat(EH,Rhf (X))H has a tensoring with unbased
simplicial sets sending the H-space Y over X and a simplicial set K to the external smash
product Y ∧ |K|+. This has the pushout-product property, by the usual formula for an
NDR-pair structure on a product of NDR-pairs. Therefore Cat(EH,Rhf (X))H has a
cylinder functor.

For the first part of the approximation property, note that the map of bundles EG×H
Y → EG×HY ′ is an equivalence if and only if the map of fibers Y → Y ′ is an equivalence.
For the second part of the approximation property, we use the right adjoint F (EG,−)
of the functor Φ when regarded as a functor from H-equivariant spaces under X to
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spaces under Φ(X) = EG×H X. Given a cofibrant retractive H-space Y and a map of
retractive Φ(X)-spaces Φ(Y )→ Z, we factor the adjoint into a mapping cylinder

Y // Y ′ = Y ∧ I+ ∪Y×1 FBH(EG,Z) ∼ // FBH(EG,Z) // F (EG,Z)

The map Y → Y ′ is a cofibration of spaces under X and over F (EG,EG ×H X)
by the pushout-product property. Pushing Y ′ back through the adjunction, we get a
factorization of retractive spaces over Φ(X)

Φ(Y ) // Φ(Y ′) ∼ // Z

The map Φ(Y ′)→ Z is an equivalence because it is a map of fibrations whose induced
map of fibers is measured by the equivalence Y ′ → FBH(EG,Z) from above. This
finishes the proof.

4 Transfers on Waldhausen G-categories

In this section, we give the construction of AG(X) and prove the following main theorem
(Theorem 1.2 from the Introduction.)

Theorem 4.1. For G a finite group, there exists a functor AG from G-spaces to genuine
G-spectra with the property that on G-fixed points,

AG(X)G '
∏

(H)≤G

A(XH
hWH),

and a similar formula for the fixed points of each subgroup H.

We construct AG(X) as a spectral Mackey functor because we need the flexibility to
refine the weak equivalences in each of the homotopy fixed point categories Rhf (X)hH .
We describe the framework of spectral Mackey functors as models of G-spectra, de-
veloped by Guillou and May in [GM], followed by the work of Bohmann and Osorno
[BO], which constructs categorical input that directly feeds into their theorem. We then
construct this categorical input by a 1-categorical variant of a general construction due
to Barwick, Glasman and Shah. In particular, our Proposition 4.11 can be viewed as a
reinterpretation of [BGS, 8.1]. Finally, we construct AG(X) by descending the structure
to the Waldhausen categories with refined weak equivalences for each H ⊆ G.

4.1 Review of spectral Mackey functors

We start with a description of the framework in broad strokes. By a general result of
Schwede and Shipley [SS03b], if C is a stable model category with a finite set of generators
{X1, . . . , Xn}, then the derived mapping spectra C(Xi, Xj) form a spectrally enriched
category B(C) on the objects {X1, . . . , Xn}. Thinking of such a spectral category as the
many-objects version of a ring spectrum, and spectrally-enriched functors into spectra
as modules over that ring, there is a model categoryModB(C) of modules over B(C) and
a Quillen equivalence ModB(C) ' C given by coend with {Xi} and its right adjoint:

L({Mi}) = {Xi} ∧B(C) {Mi}, R(Y )i = C(Xi, Y ).
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This is the spectral analog of classical Morita theory. When R is a ring and M a
perfect R-module generator, this construction gives an equivalence between R-modules
and EndR(M)-modules.

Taking C to be the category of orthogonal G-spectra for a finite group G, C is generated
by the suspension spectra Σ∞+ G/H for conjugacy classes of subgroups (H) ≤ G. By the
self-duality of the orbits Σ∞+ G/H, the mapping spectrum from G/H to G/K may be
written as the genuine fixed points of a suspension spectrum

(Σ∞+ G/H ×G/K)G

and the compositions are given by stable G-maps

G/H ×G/L×G/L×G/K −→ G/H ×G/L×G/K −→ G/H ×G/K

which collapse away the complement of the diagonal of G/L and then fold that diagonal
to a single point. This gives a category enriched in orthogonal spectra, or symmetric
spectra by neglect of structure.

Guillou and May prove that this category is equivalent to a spectral version of the
Burnside category, namely a category GB enriched in symmetric spectra, with objects
G/H and morphism symmetric spectra GB(G/H,G/K) given by the K-theory of the
permutative category of finite equivariant spans from G/H to G/K. The composition
is by pullback of spans, which can be made strictly associative by using a skeleton of
the category of finite G-sets and by picking explicit models for pullbacks of spans (cf.
[GM]).

Theorem 4.2 (Guillou-May). There is a string of Quillen equivalences between GB-
modules {MH} in symmetric spectra and genuine orthogonal G-spectra X. The under-
lying symmetric spectrum of the fixed points XH is equivalent to the spectrum MH for
every subgroup H.

Therefore, by Theorem 4.2, to create a G-spectrum whose H-fixed points are
K(RHhf (X)), it is enough to show that the symmetric spectra K(RHhf (X)) form a mod-
ule over the “ring on many objects” GB. The spectral category GB from [GM] is built
using permutative categories; following [BO], we give an alternate version GBWald using
Waldhausen categories.

Definition 4.3. For each pair of subgroups H,K ≤ G let SH,K denote the category of
finite G-sets containing G/H×G/K as a retract. Such sets are of the form Sq (G/H×
G/K), which we abbreviate to S+ when H and K are understood. This is a Waldhausen
category in which the weak equivalences are isomorphisms and the cofibrations are
injective maps. Of course, the coproduct is disjoint union along G/H ×G/K. The zero
object is the retractive G-set G/H × G/K, namely ∅+. We note that it is precisely in
order to have a zero object and thus a Waldhausen structure, that we need to consider
retractive G-sets over G/H ×G/K instead of just spans.

We adopt the conventions of [GM, §1.1], assuming that each of the G-sets S is one of
the standard sets {1, . . . , n} with a G-action given by some homomorphism G −→ Σn,
so that the coproduct, product, and pullback are given by specific formulas that make
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them associative on the nose. In particular, the pullback is defined by taking a subset
of the product, ordered lexicographically.

Define a pairing
∗ : SH,L × SL,K −→ SH,K

by sending each pair of composable spans S+ = Sq(G/H×G/L) and T+ = T q(G/L×
G/K) to the span (S ∗ T )+ = (S ∗ T ) q (G/H × G/K), where (S ∗ T ) is the pullback
span

(S ∗ T )
p3

zz
q3

$$
S

p1

||
q1

$$

T
p2

zz
q2

##
G/H G/L G/K.

Notice that (S ∗ T )+ with the basepoint section is a quotient of the pullback of S+
and T+. This allows us to define for each f : S+ → S′+ and g : T+ → T ′+ a map
f ∗ g : (S ∗T )+ → (S′ ∗T ′)+ by the universal property of the pullback and the quotient.
This pairing is biexact and strictly associative by our adopted conventions.

Remark 4.1. As discussed in [GM, §1.1], the chosen model for the pullback of G-sets
has the slight defect that the unit span (G/H)+ = G/H q (G/H ×G/H) with identity
projections

G/H
id
zz

id
$$

G/H G/H

is not a strict unit on both sides of the horizontal composition ∗, but only a unit up to
canonical isomorphism on the left side. In order to rectify this, one whiskers the category
of spans with a new object 1G/H and a unique isomorphism 1G/H ∼= (G/H)+, and then
declares that 1G/H acts as a strict unit for ∗. The structure we defined above extends
to 1G/H . This follows from the coherence condition that the canonical isomorphisms
(G/H)+ ∗ S ∼= S and S ∼= S ∗ (G/K)+ are natural in S, that the two resulting maps
from S ∗ T to (G/H)+ ∗ S ∗ T must coincide, and a similar statement relating S ∗ T to
S ∗ (G/K)+ ∗ T and to S ∗ T ∗ (G/L)+.

Definition 4.4. Let GBWald be the spectrally-enriched category on the objects G/H,
(H) ≤ G whose mapping spectra are the Waldhausen K-theory spectra K(SH,K).

We use the following formulation of a hard and technical result of Bohmann-Osorno,
which will appear in [BO], in order to translate Theorem Theorem 4.2 into something
that interacts more readily with Waldhausen categories.

Theorem 4.5 (Bohmann-Osorno). There is an equivalence of spectrally enriched cate-
gories GB and GBWald.

Since equivalences of spectral categories induce Quillen equivalences on their module
categories [SS03a, 6.1], by Theorem 4.5, it is now enough to show that the spectra
K(RHhf (X)) form a module over GBWald. This will follow if we define a “right action”
map of spans on the categories RH ,

∗ : RH × SH,K −→ RK
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such that the action map is a bi-exact functor, and the action is associative and unital.
We will now spell out more explicit categorical conditions that will imply this.

Proposition 4.6. Suppose we are given

1. a Waldhausen category RH for each H ≤ G,

2. an exact functor (− ∗ S) : RH → RK for each retractive span S+ in the category
SH,K ,

3. a natural transformation of functors f : (−∗S)⇒ (−∗S′) for each map of retractive
spans f : S+ → S′+,

subject to the conditions

4. for fixed A ∈ RH , the assignment S+ 7→ A ∗ S defines a functor SH,K → RK ,

5. we have A ∗ ∅ ∼= ∗ and (A ∗ S) ∨ (A ∗ T )→ A ∗ (S q T ) is an isomorphism in RK

for all spans S+, T+ ,

6. the unit span action (− ∗ 1G/H) : RH → RH is the identity,

7. if (S ∗ T ) is the horizontal composition of S and T as above then (− ∗ (S ∗ T )) =
((−∗S) ∗ T ) as functors RH → RK , and for maps f : S+ → S′+ and g : T+ → T ′+,
we have an equality (φ ∗ f) ∗ g = φ ∗ (f ∗ g). Here, for f : S+ → S′+, and for a map
φ : Y → Y ′ in RH , the map φ ∗ f is defined to be either composite Y ∗S → Y ′ ∗S′
in the commuting diagram we get from point 3 above:

Y ∗ S
φ∗S

��

fY // Y ∗ S′

φ∗S′

��
Y ′ ∗ S

fY ′ // Y ′ ∗ S′.

Then the spectra K(RH) form a module over GBWald, and therefore, also over GB.

Proof. By (5) the functor S+ 7→ A∗S preserves all sums. Observe that every cofibration
S+ → T+ is a coproduct of the identity of S+ and the map ∅+ → (T − S)+. Therefore
A ∗ S → A ∗ T is isomorphic to a sum of the identity of A ∗ S and the inclusion of the
zero object 0 → A ∗ (T − S) which is a cofibration. Of course, equivalences of spans are
isomorphisms, which go to isomorphisms in RK . Therefore the pairing RH×SH,K → RK

is exact in the span variable, and it is exact in the RH variable by condition 2.

To complete the verification of biexactness, note given an inclusion S+ → T+ and a
cofibration A→ B in RH , the map A ∗ T ∪A∗S B ∗ S → B ∗ T is a pushout of the map
A ∗ (T − S) → B ∗ (T − S), which is a cofibration because (T − S) acts by an exact
functor.

Therefore we have biexact pairings ∗ : RH × SH,K → RK with strict associativity and
unit. We choose distinguished zero objects 0 for each of the categories RH and SH,K and
apply Waldhausen K-theory. We then modify the pairings ∗ to strictly preserve these
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distinguished zero objects: we set A ∗ 0 = 0 = 0 ∗ A and observe that there is a unique
way of extending this modified definition to morphisms, preserving the bifunctoriality
of the pairing ∗ along with its strict associativity and unit. By the multifunctoriality
of Waldhausen K-theory (cf. [Zak14, 6.2], [BM11, 2.6]), these modified pairings then
make the spectra K(RH) into a module over GBWald.

In the next section we show how to give such data for ChH when C is any Waldhausen
G-category.

4.2 Categorical transfer maps

Suppose that C is a G-category with a chosen sum bifunctor ⊕ isomorphic to the cate-
gorical coproduct q. Since G acts through isomorphisms of categories, it preserves ⊕ up
to canonical isomorphism. Let f : S −→ T be a map of finite G-sets. As in the previous
section, we assume all of our finite G-sets come with a total ordering, which does not
have to be preserved by f .Note that a finite G-set S can be regarded as a category with
objects the elements of S and only identity morphisms, so the functor category Cat(S, C)
is isomorphic to the S-indexed product

∏
S C. We can define a functor

f! : Cat(S, C)→ Cat(T, C),

on objects by
(f!F )(t) : =

⊕
i∈f−1(t)

F (i),

or equivalently,
f! :

∏
S

C →
∏
T

C

(c1, . . . , cj) 7→

 ⊕
i∈f−1(1)

ci, . . . ,
⊕

i∈f−1(k)

ci

 ,

where j = |S| and k = |T |. The action of f! on morphisms F ⇒ F ′ is clear because⊕
is a functor. Note that each set f−1(t) inherits a total ordering, which we use to

define the above sum, although changing the ordering would only change the sum up
to a canonical isomorphism. Note also that if f−1(t) is empty, then (f!F )(t) is a zero
object in C.

The functor f! is not on the nose equivariant, even if the sum ⊕ in C commutes with
the G-action strictly. It is only pseudo-equivariant. When we apply the Cat(EG,−), by
Proposition 2.10, we get an on the nose equivariant functor

f! : Cat(S × EG, C) ∼= Cat(EG,Cat(S, C)) −→ Cat(EG,Cat(T, C)) ∼= Cat(T × EG, C),

which upon taking G-fixed points gives a transfer (or pushforward map) along the map
of G-sets f : S −→ T . We make this more explicit in the following definition.

Definition 4.7. Let C be a G-category with coproduct ⊕, and let f : S −→ T be a map
of unbased finite G-sets. Define a pullback (restriction) functor

f∗ : Cat(T × EG, C)G −→ Cat(S × EG, C)G
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on objects F : T × EG→ C by the formulas

(f∗F )(s, g) = F (f(s), g)

(f∗F )(s, g −→ h) = F (f(s), g −→ h)

and on maps α : F ⇒ F ′ by the formula

(f∗F )(s, g) = F (f(s), g) α→ F ′(f(s), g) = (f∗F ′)(s, g).

Define a pushforward (transfer) functor

f! : Cat(S × EG, C)G −→ Cat(T × EG, C)G

on objects by

(f!F )(t, g) := g

 ⊕
i∈f−1(g−1t)

F (i, 1)

 .

To finish defining it on objects and morphisms, we use the canonical isomorphism

g

 ⊕
i∈f−1(g−1t)

F (i, 1)

 ∼= ⊕
i∈f−1(g−1t)

F (gi, g) ∼=
⊕

j∈f−1(t)

F (j, g).

Under this isomorphism, the morphism (f!F )(t, g −→ h) is chosen to be the coproduct⊕
j∈f−1(t)

F (j, g −→ h)

and the morphism (f!F )(t, g) → (f!F
′)(t, g) induced by a map α : F ⇒ F ′ is chosen to

be the coproduct ⊕
j∈f−1(t)

(
F (j, g) α→ F ′(j, g)

)
.

Remark 4.2. We note the following properties of f! which we will use later on:

1. If f is an isomorphism, then f! = (f−1)∗;

2. If f = id, then id! = id;

3. if f and h are composable maps of G-sets, (hf)! ∼= f!h!.

Remark 4.3. In the special case where H is a subgroup of K and f : G/H −→ G/K is
the quotient map, f! defines a transfer map

ChH −→ ChK .

More generally, for a span
S

p

||
q

""
G/H G/K

one can define a functor (−)∗S : ChH → ChK by q!p
∗. To prove that ∗ defines a bifunctor

that respects compositions of spans, one needs the following formal properties of f! and
f∗ (cf. [Bar, §10]).
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Proposition 4.8. For each equivariant map f : S → T of finite G-sets, the functors
(f!, f

∗) form an adjoint pair.

Proof. Let F : S × EG → C and F ′ : T × EG → C. Under the canonical isomorphism
from the above definition, each transformation f!F ⇒ F ′ is given by the data of maps⊕

s∈f−1(t)

F (s, g) −→ F ′(t, g)

for each t ∈ T and g ∈ G. The universal property of ⊕ gives a bijection between such
collections of maps and collections of maps

F (s, g) −→ F ′(f(s), g)

for each s ∈ S and g ∈ G. This gives the bijection between transformations f!F ⇒ F ′

and F ⇒ f∗F ′.

Proposition 4.9. Given a pullback square of finite G-sets

A
k //

h ��

B
f��

C
j

// D

there is a “Beck-Chevalley” isomorphism

Cat(B × EG, C)G
h!k
∗

--

j∗f!

11
⇓BC Cat(C × EG, C)G

defined as the composite of unit and counit maps

h!k
∗ η // j∗j!h!k

∗ ∼= // j∗f!k!k
∗ ε // j∗f!.

Proof. Unwinding the definitions gives a natural transformation between the two func-
tors on C × EG defined by

h!k
∗F (c, g) = g

 ⊕
a∈h−1(g−1c)

F (k(a), 1)

 , j∗f!F (c, g) = g

 ⊕
b∈f−1(g−1j(c))

F (b, 1)

 .

that sends each F (k(a), 1) to the F (b, 1) where b = k(a), by an identity map. Since the
square is a pullback, k defines a bijection h−1(c)→ f−1(j(c)) for all c ∈ C, so this is a
natural isomorphism.

Proposition 4.10. Each diagram of G-sets

Sp

xx
q

&&
f

��
U V

T
r

ff
s

88

induces a natural transformation f] : q!p
∗ −→ s!r

∗. These natural transformations de-
pend in a functorial way on the maps f .
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Proof.

Cat(S × EG, C)G
33p∗ q!

++
f!




Cat(U × EG, C)G Cat(V × EG, C)G.

Cat(T × EG, C)G
++

r∗ s!

33
f∗

JJ

The identities p = rf , q = sf and the counit of (f!, f
∗) gives a natural transformation

q!p
∗ ∼= s!f!f

∗r∗
ε−→ s!r

∗

which we take as the definition of f]. Functoriality follows from an easy diagram chase.

We conclude this section by checking that for each Waldhausen G-category C, the action
of spans on the categories ChH extends to an action of the categories of retractive
spans SH,K , giving a spectral Mackey functor in the sense of the previous section. As
mentioned earlier, this argument is a strictified analog of the unfurling construction of
[Bar, §11].

Proposition 4.11. (cf. [BGS, 8.1]) Let C be a Waldhausen G-category. Then the
collection of spectra K(ChH) may be modified up to equivalence to form a module over
GB.

Proof. By Proposition 4.6, it suffices to check the following seven points.

1. Set RH = Cat(G/H × EG, C)G ∼= ChH . Recall that this is a Waldhausen category
by Theorem 2.15. In order to make the action of spans strictly associative and unital
in steps 6 and 7, we need to thicken this category in the following way. Define a new
category RH whose objects are triples (J, Y, (S+, p, q)), where J ≤ G, Y is an object
of RJ = Cat(G/J × EG, C)G, and S+ is a retractive span from G/J to G/H (though
we exclude the unit 1G/H). To each such triple (J, Y, S+) we can assign the object
Y ∗ S = q!p

∗Y of RH . Then we define the morphisms in RH as

RH((J, Y, S+), (J ′, Y ′, S′+)) : = RH(Y ∗ S, Y ′ ∗ S′).

There is an essentially surjective functor RH → RH which sends an object
(J, Y, (S+, p, q)) to Y ∗ S. By definition of the morphisms in RH , this functor is
full and faithful, thus RH → RH is an equivalence of categories. We lift the Waldhausen
structure of RH to RH along this equivalence.

2. Each span T+ ∈ SH,K with maps G/H r← T
s→ G/K defines a functor (−)∗T : RH →

RK by s!r
∗. Exactness of (−) ∗ T follows because the coproduct ⊕ in C commutes

with colimits and preserves both cofibrations and weak equivalences. On the thickened
categories, we define the action map (−) ∗ T : RH → RK on objects by

(J, Y, S+) ∗ T+ : = (J, Y, (S ∗ T )+).
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In order to extend this definition of the action map on morphisms, recall that the
Beck-Chevalley isomorphism for the pullback square in the diagram below gives an
isomorphism Y ∗ (S ∗ T ) ∼= (Y ∗ S) ∗ T of objects of RK :

S ∗ T
{{ ##

S
p

||
q

""

T
r
{{

s
##

G/J G/H G/K.

Using these isomorphisms and the isomorphisms from Remark 4.2, part (3), we define
the action of T on a morphism in RH . Each morphism φ : (J, Y, S+) → (J ′, Y ′, S′+) is
represented by a morphism φ : Y ∗ S → Y ′ ∗ S′ in RH . We take it to the composite

Y ∗ (S ∗ T )
∼= // (Y ∗ S) ∗ T

φ∗T=s!r
∗(φ)

��
Y ′ ∗ (S′ ∗ T )

∼= // (Y ′ ∗ S′) ∗ T.

(12)

By definition this gives a morphism

φ ∗ T : (J, Y, (S ∗ T )+)→ (J ′, Y ′, (S′ ∗ T )+).

By pasting two diagrams of the form (12) together, we see this respects composition
and units, and so defines a functor RH → RK . Finally, when H = K we define 1G/H
to act as the identity functor of RH . Note that by construction, the diagram

RH

��

(−)∗T // RK

��
RH

(−)∗T
// RK

commutes up to natural isomorphism. Moreover, the top map is exact because the
bottom one is.

3. Given a map of retractive spans

T q (G/H ×G/K)
rqπ1

ss
sqπ2

++
f

��
G/H G/K

T ′ q (G/H ×G/K)
r′qπ1

kk

s′qπ2

33

we recognize canonical isomorphisms

(sq π2)!(r q π1)∗ ∼= s!r
∗ ∨ (π2)!π

∗
1 .

We can then define the component of the natural transformation fY : Y ∗ T → Y ∗ T ′
to be the summand of f] from Proposition 4.10 taking s!r

∗ to s′!r′∗. Note that because
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f restricts to the identity of G/H ×G/K, we have the commuting diagram

(π2)!π
∗
1

// s!r
∗ ∨ (π2)!π

∗
1

//

f]

��

s!r
∗

f

��
(π2)!π

∗
1

// s′!r
′∗ ∨ (π2)!π

∗
1

// s′!r
′∗.

For each (J, Y, S+) in the thickening RH , this defines a map in RK from (Y ∗ S) ∗ T to
(Y ∗ S) ∗ T ′. We use the Beck-Chevalley isomorphisms as in (12) to lift this to a map
f in RK . The verification that f is a natural transformation of functors RH → RK

quickly reduces to RH → RK , which can be proven using the diagram just above.

To handle the case where one of T or T ′ is the unit 1G/H , we use the canonical
isomorphism Y ∗ S ∼= (Y ∗ S) ∗G/H in the place of the Beck-Chevalley isomorphism in
the diagram (12).

4. As in the previous point, the claim that the maps f respect composition on the
categories RH quickly reduces to the categories RH . Given two maps of spans

S q (G/H ×G/K)
pqπ1

tt

qqπ2

**
f

��
G/H T q (G/H ×G/K)rqπ1oo sqπ2 //

h
��

G/K,

U q (G/H ×G/K)
mqπ1

jj

nqπ2

44

Proposition 4.10 tells us that (hf)] = h]f]. A simple chase of the diagram below confirms
that hf = h ◦ f :

q!p
∗ ∨ (π2)!π

∗
1

//

f]

��
(hf)]

%%

q!p
∗

f

��
s!r
∗ ∨ (π2)!π

∗
1

//

h]

��

s!r
∗

h

��
m!n

∗ ∨ (π2)!π
∗
1

// m!n
∗.

5. Again the claim is equally true for RH and RH . If ι is the inclusion of the empty
set then ι! always gives a zero object. The isomorphism A ∗ S ∨A ∗ T → A ∗ (S q T ) is
immediate from the definition of the transfer q!.

6. This is automatic from the definition in point 2 above.

7. We note that this property holds only for RH , not RH ; the action of SH,K on
the objects of RH is not strictly associative. However, the action of the objects of
SH,K on the objects of RH is associative because we chose a model for spans whose
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compositions were strictly associative. The morphisms are more subtle. If we have
φ : (J, Y, S+) → (J ′, Y ′, S′+) and maps of spans f : T → T ′ and g : U → U ′, we need to
show that we have an equality of maps

(φ ∗ f) ∗ g = φ ∗ (f ∗ g) : (J, Y, (S ∗ T ∗ U)+) −→ (J ′, Y ′, (S′ ∗ T ′ ∗ U ′)+).

Once we prove this, associativity on morphisms will also hold automatically in the case
where one or more of T , T ′, U , or U ′ is a strict unit 1G/−.

S ∗ T ∗ U
zz $$

S ∗ T
zz $$

T ∗ U
zz $$

S

zz $$

T

zz $$

U

zz $$
G/J G/H G/K G/L

Consider the diagram below, in which the horizontal maps are Beck-Chevalley isomor-
phisms arising from the pullback squares in the diagram above.

Y ∗ (S ∗ T ∗ U)
∼= //

��

(Y ∗ (S ∗ T )) ∗ U
∼= // ((Y ∗ S) ∗ T ) ∗ U

(φ∗f)∗g
��

(Y ∗ S) ∗ (T ∗ U)
∼=oo

φ∗(f∗g)
��

Y ′ ∗ (S′ ∗ T ′ ∗ U ′)
∼= // (Y ′ ∗ (S′ ∗ T ′)) ∗ U ′

∼= // ((Y ′ ∗ S′) ∗ T ′) ∗ U ′ (Y ′ ∗ S′) ∗ (T ′ ∗ U ′)
∼=oo

If the dotted map is chosen to make the left-hand rectangle commute, then it defines
(φ ∗ f) ∗ g. The composite along the entire top row is a Beck-Chevalley map, by the
standard fact that they agree along pasting pullback squares. Therefore if the dotted
map is chosen to make the outside rectangle commute it defines φ ∗ (f ∗ g).

It therefore suffices to prove that the right-hand square commutes. We expand it in the
following way, where X = Y ∗S, X ′ = Y ′ ∗S′, and the vertical maps are Beck-Chevalley
isomorphisms:

X ∗ (T ∗ U)
φ∗(T∗U) //

∼=
��

X ′ ∗ (T ∗ U)

(f∗g)X′

--

(1∗g)X′

//

∼=
��

X ′ ∗ (T ∗ U ′)
∼=

��

(f∗1)X′

// X ′ ∗ (T ′ ∗ U ′)
∼=

��
(X ∗ T ) ∗ U

(φ∗T )∗U
// (X ′ ∗ T ) ∗ U

g(X′∗T )

// (X ′ ∗ T ) ∗ U ′
fX′∗U

′
// (X ′ ∗ T ′) ∗ U ′

The left-hand square commutes by the naturality of the Beck-Chevalley isomorphism.
Each of the last squares is proven formally by a long diagram-chase, or more easily by
writing the explicit formula for the two natural transformations and verifying that they
are the same direct sum of identity maps and zero maps.

4.3 Construction of AG(X)

By the previous section, the spectra K(Rhf (X)hH) form a spectral Mackey functor. To
construct AG(X) we simply need to check that the structure thus defined on Rhf (X)hH
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respects the subcategory of retractive H-cell complexes and the equivariant weak equiv-
alences and cofibrations between them.

Definition 4.13. Let RH(X) be the category of H-equivariant retractive spaces Y over
X with H-equivariant inclusion iY and retraction pY . The morphisms are H-equivariant
maps between these. The weak equivalences are those inducing weak equivalences rel X
on the fixed points for all subgroups of H. The cofibrations are the maps Y −→ Z with
the H-equivariant FHEP: there is an H-equivariant, fiberwise retract

Z × I −→ Y × I ∪Y×1 Z × 1.

In particular, when L ≤ H, the L-fixed points of a cofibration are a cofibration in
R(XL). Finally, let RHhf (X) be the subcategory of objects which are retracts in the
homotopy category of RH(X) of finite relative H-cell complexes X −→ Y .

Remark 4.4. As categories, we have an equivalence RH(X) ' R(X)hH by Proposi-
tion 3.1. But RH(X) has fewer cofibrations and weak equivalences. The subcategories
RHhf (X) and Rhf (X)hH are also distinct – the first one is defined using finite H-cell
complexes, the second defined using spaces whose underlying nonequivariant space is a
finite cell complex. These differences are the reason why AG(X) and Acoarse

G (X) are not
equivalent.

We want to define an action of spans on RHhf (X). From the previous section, each span S
over G/H and G/K already acts on the larger category R(X)hH . It therefore suffices to
check that these actions are exact with respect to the more refined Waldhausen structure
coming from RH(X), and preserve the more restrictive finiteness condition that defines
RHhf (X).

Proposition 4.14. The functor (− ∗ S) : R(X)hH → R(X)hK restricts to an exact
functor RHhf (X)→ RKhf (X).

Proof. Let
S

p

||
q

""
G/H G/K

be a given span. From the definition of q!p
∗ it is clear that up to isomorphism the

resulting retractive space over X is a coproduct of the spaces one would get from con-
sidering each orbit of S separately. Therefore, without loss of generality, we assume
S ∼= G/L. Recall that the G-maps p : G/L → G/H and q : G/L → G/K exist if and
only if L is subconjugate to H and K, i.e., they are composites of subgroup inclusions
and isomorphisms. Also, recall from Remark 4.2 (1) that if f is an isomorphism, then
f! = (f−1)∗. So it is enough to show:

1. if L ≤ H is a subgroup, the pullback of p : G/L → G/H gives an exact functor
p∗ : RHhf (X) −→ RLhf (X),

2. if L and L′ are conjugate by L′ = gLg−1 the pullback of the isomorphism
f : G/L

∼=−→ G/L′ gives and exact functor f∗ : RL′hf (X) −→ RLhf (X),
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3. if L ≤ K is a subgroup, the pushforward of q : G/L→ G/K gives an exact functor
q! : RLhf (X) −→ RKhf (X).

To show (1), suppose L ≤ H, and let p : G/L → G/H be the map gL 7→ gH. It will
suffice to describe a functor p∗ : RH(X)→ RL(X) making the square of functors

RH(X)
OO

∼

p∗ // RL(X)
OO
∼

Cat(G/H × EG,R(X))G p∗ // Cat(G/L× EG,R(X))G

commute up to isomorphism, and show that this p∗ is exact and preserves the finite
complexes. An H-equivariant retractive space (Y, iY , pY ) in the top-left comes from a
G-equivariant functor F : G/H × EG→ R(X) for which F (eH, e) = (Y, iY , pY ) and φh
is the action of h−1. When this is restricted to G/L×EG, it sends (eL, e) to (Y, iY , pY )
and φ` is the action of `−1. Clearly, we can set p∗ to be the functor that restricts the
H-action to the action of L, and this makes the above square commute (on the nose).
Now we can easily see that this preserves the cofibrations and weak equivalences in
RH . Since all groups are finite, it also preserves finite complexes, so it respects the
subcategories RHhf (X) and RLhf (X).

For (2) consider L′ = gLg−1, where we fix a choice of such g from all the choices related
by conjugation in L. Let f : G/L

∼=−→ G/L′ be the isomorphism of G-sets given by
hL 7→ hg−1L′. As before, we choose a functor f∗ making the diagram

RL
′(X)
OO

∼

f∗ // RL(X)
OO

∼

Cat(G/L′ × EG,R(X))G f∗ // Cat(G/L× EG,R(X))G

commute up to isomorphism. We choose the functor that sends the L′-equivariant
retractive space (Y, iY , pY ) to the retractive space (Y, iY ◦g, g−1◦pY ), with each element
` ∈ L acting on Y by the given action of g`g−1 ∈ L′. The commuting diagram

X
g //

`

��

X
iY //

g`g−1

��

Y
pY //

g`g−1

��

X
g−1

//

g`g−1

��

X

`

��
X

g
// X

iY
// Y

pY

// X
g−1

// X

demonstrates that this action indeed respects the existing action of L ≤ G on X. This
clearly gives a functor that preserves cofibrations, weak equivalences and finite cell
complexes.

It suffices to show that this definition of f∗ agrees with the original one along the
above equivalences of categories. To do this we first modify the original f∗ up to
isomorphism. We observe that the map −g−1 : EG −→ EG that multiplies on the right
by g−1 is a G-equivariant isomorphism of categories, and that any G-equivariant functor
Φ: EG −→ C is G-equivariantly isomorphic to Φ̄ = Φ ◦ −g−1. The components of the
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natural transformation that give the isomorphism Φ ⇒ Φ̄ are just Φ applied to the
unique isomorphisms g0

∼=−→ g0g
−1 in EG.

Replace the original f∗ by the composition of this operation and f∗. Then, if we start
with a functor F ∈ Cat(G/L′ × EG,R(X))G whose image in RL

′(X) is (Y, iY , pY ), this
modified pullback of F gives the retractive space

(f∗F̄ )(eL, e) = (f∗F )(eL, g−1) = F (g−1L′, g−1) = g−1F (eL′, e).

which is precisely (Y, iY ◦ g, g−1 ◦ pY ). The action of ` ∈ L given by the morphism

(f∗F̄ )(eL, ` −→ e) = (f∗F )(eL, `g−1 −→ g−1) = F (g−1L′, `g−1 −→ g−1)

= g−1F (eL′, g`g−1 −→ e).

Recalling that the g−1 on the outside acts trivially on the map on Y , this morphism
must be φ−1

g`g−1 , in other words the original action of g`g−1 on Y . Therefore our square
of functors relating the two definitions of f∗ commutes strictly (after we modified the
bottom map up to isomorphism). Note that different choices of g in this argument
produce isomorphic functors, so f∗ is isomorphic to any of the exact functors obtained
by any initial choice of g with the property that L′ = gLg−1.

Finally, for (3) consider L ≤ K. Since the pushforward along q : G/L −→ G/K is the
left adjoint to the pullback, and left adjoints are unique up to natural isomorphism, it
must induce on RL(X) −→ RK(X) the left adjoint to the forgetful functor q∗ which
restricts the group action from K to L. On each retractive L-equivariant space Y , this
left adjoint q!Y is naturally isomorphic to the pushout

K ×L Y // q!Y

K ×L X //

OO

X.

OO

We recall that if H ≤ K then the H-fixed points of K ×L Y can be computed as

(K ×L Y )H ∼=
∐

{kL∈K/L | k−1Hk ≤ L}

Y k
−1Hk.

Since fixed points commute with pushouts along a closed inclusion, we get the pushout
square ∐

{kL∈K/L | k−1Hk ≤ L} Y
k−1Hk // (q!Y )H

∐
{kL∈K/L | k−1Hk ≤ L}X

k−1Hk //

OO

XH .

OO

From this it is clear that if Y −→ Z is a map of L-spaces giving an equivalence on
all fixed points, it induces an equivalence of pushouts. Similarly, these constructions
all commute up to isomorphism with mapping cylinder, so this construction preserves
cofibrations. Finally we check that it preserves finite complexes by an induction on
the number of cells. For the base case, we observe that if N ≤ L is any subgroup,
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X q (L/N ×Dn) is sent to X q (K/N ×Dn), and similarly with Sn−1 in the place of
Dn. Therefore cells are sent to cells. For the inductive step, we observe that each cell
attaching diagram is sent to a cell attaching diagram, because by exactness the pushouts
along cofibrations are preserved. Thus the pushforward of G/L→ G/K gives an exact
functor q! : RLhf (X) −→ RKhf (X).

This establishes the first two conditions from Proposition 4.6. The remaining five con-
ditions automatically descend from R(X)hH to any full subcategory with the same
coproducts. Therefore the spectra K(RHhf (X)) form a spectral Mackey functor, so there
exists a G-spectrum AG(X) whose fixed points are AG(X)H ' K(RHhf (X)). It has been
long known that the K-theory of the Waldhausen category RHhf (X) has a splitting

K(RHhf (X)) '
∏

(H)≤G

A(XH
hWH).

A proof of this can be found in [BD17]. Therefore, we can conclude that the fixed points
of the genuine G-spectrum AG(X) have a tom Dieck type splitting:

AG(X)H '
∏

(H)≤G

A(XH
hWH),

This finishes the proof of Theorem 4.1.
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