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Abstract

Electric vehicles (EVs) are expected to be a major component of the smart grid. The rapid proliferation of EVs will introduce
an unprecedented load on the existing electric grid due to the charging/discharging behavior of the EVs, thus motivating
the need for novel approaches for routing EVs across the grid. In this paper, a novel distributed control framework based on
noncooperative game theory for routing of EVs within the smart grid is proposed. The goal of this framework is to control and
balance the electricity load in a distributed manner across the grid while taking into account the traffic congestion and the
waiting time at charging stations. The EV routing problem is formulated as a repeated game, and it is shown that the selfish
behavior of EVs will result in a pure-strategy Nash equilibrium with the price of anarchy upper bounded by the ratio of the
variance of the ground load to the total number of EVs in the grid. In particular, it is shown that any achieved Nash equilibrium
substantially improves the load balance across the grid. Moreover, the results are extended to capture the stochastic nature of
induced ground load as well as the subjective behavior of the EV owners using the behavioral framework of prospect theory.
Simulation results provide new insights on efficient energy pricing at charging stations and under realistic grid conditions.
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1 Introduction mechanism design that aligns EVs’ needs with the needs

Electric vehicles (EVs) are rapidly becoming a ma-
jor component of cities around the world. Based on
Bloomberg New Energy Finance, EVs are expected to
represent 35 percent of new car sales globally by 2040.
Greentech Media Research expects at least 11.4 million
electric vehicles (EVs) on the road only in the U.S. in
2025. Due to this rapid proliferation of EVs, an im-
portant challenge is to effectively manage and control
their integration within the electric power grid [1]. For
instance, if too many EVs simultaneously charge their
batteries at a charging station, it will substantially in-
crease the load at that station, which, in turn, will be
detrimental to other grid components. However, intel-
ligently routing EVs can turn this challenge into an
opportunity by viewing EVs as mobile storage devices
that charge/discharge their batteries at charging sta-
tions that have extra/shortage of energy to offer for
sale. This, in turn, requires introducing an appropriate
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of the power grid.

As more EVs join the grid, the waiting time in actual
road traffic and at charging stations will constitute a
major problem. Since EVs need to be charged more of-
ten than fossil-fueled vehicles [2], if there does not exist
enough charging stations, we may expect long queues at
the charging stations that can directly impact the com-
fort of EV owners. One way of handling this issue from
the system level is to build additional charging stations
to match the supply and demands. However, this is not
the most cost-effective solution, and yet, it does not elim-
inate the necessity of dynamic load balancing at charg-
ing stations (e.g., due to a dynamic shift of demands over
time). An alternative solution to this issue is to take ad-
vantage of the distributed nature of the power grid to
match supply and demands dynamically, and this is the
approach that we consider in this paper. Our solutions
provide a novel decentralized game-theoretic approach
to the control of EVs in smart grids, which captures
the effect of agents’ selfishness on the system outcome
and its efficiency. In particular, we provide a distributed
scheduling of EVs, which not only balances the distribu-
tion of the electricity load but also takes into account the
traffic congestion and waiting time at charging stations.

Related Work: There have been several recent works
that investigated the challenges of managing EVs in
the smart grid. In [3], the authors propose a vehicle-
to-aggregator interaction game and develop a pricing
policy and design a mechanism to achieve optimal fre-
quency regulation performance. The works in [4] and



[5] propose truthful online auction mechanisms in which
agents represent EV owners who bid for energy units
and also time slots in which an EV is available for charg-
ing/discharging. Similarly, the work in [6] considers a
consensus-based online mechanism design for EV charg-
ing with pre-commitment.

A real-time traffic routing system based on an incentive-
compatible mechanism design has been considered in [7].
In this system, a passenger first reports his maximum
accepted travel time, and the mechanism then assigns a
path that matches the passenger’s preference, given the
current traffic conditions. In [8] and [9], the authors pro-
pose a congestion game model to control the power de-
mand at peak hours, by using dynamic pricing. A similar
approach based on congestion games is proposed in [10]
for EV charging. A survey on utilizing artificial intelli-
gence techniques to manage EVs over the power grid can
be found in [1]. In [11], the authors consider a coupled
power and transportation network and provide an op-
timal pricing scheme to manage EVs over the network.
However, unlike our game-theoretic framework, the ap-
proach in [11] is based on individual optimization over
an extended network. While the earlier literature pro-
vides remarkable analytic results for managing EVs in
the grid, these works mainly focus on one aspect of smart
grid, (e.g., reducing the peak hour demand) without tak-
ing into account other important factors such as traffic
congestion or waiting time at charging stations which
are also crucial in affecting EVs’ decisions.

Meanwhile, there is a rich literature on routing games
where the traffic congestion is selfishly controlled by ve-
hicle owners who seek to minimize their travel costs [12—
16]. Depending on whether the traffic flow can be divided
among different paths one can distinguish unsplitable
and splitable routing games [15]. Moreover, whether each
user’s contribution to the overall traffic is negligible or
not, one can distinguish non-atomic and atomic routing
games [12]. In this regard, one of the widely used met-
rics in the literature which measures efficiency and the
extent to which a system degrades due to selfish behav-
ior of its agents is the price of anarchy (PoA) [13]. It has
been shown in [14] that, for a linear latency function, the
PoA of a nonatomic routing game is exactly %. This re-
sult has been extended later in [15] to a splittable routing
game with a slightly different bound on the PoA. Simi-
larly, the authors in [16] have studied the PoA of selfish
load balancing in atomic congestion games. Moreover,
the PoA of noncooperative demand-response in smart
grids with flexible loads/EVs has been studied in [17]
and [18]. Recently, in [19-21], a so-called “smoothness”
condition has been developed under which one can ob-
tain simple bounds on the PoA for a large class of conges-
tion games. However, smoothness requires decoupling in
arguments of the social cost function, which is not im-
mediately applicable to our model.

Moreover, there is strong evidence [22] that real-world,

human decision-makers do not make decisions based on
expected values of outcomes but rather based on their
perception of the potential value of losses and gains as-
sociated with an outcome. Since EVs are owned and op-
erated by humans, the subjective perceptions and deci-
sions of these human owners can substantially affect the
grid outcomes. This makes prospect theory (PT) [22] a
powerful framework that allows modeling real-life hu-
man choices, a natural choice for modeling EVs’ decision
making in smart grids under real behavioral consider-
ations. Applications of PT for energy management by
modifying consumers’ electricity demands have been ad-
dressed earlier in [23] and [24]. However, these works do
not capture the real-life decision-making processes in-
volved in the management of EVs in the smart grid. For
other relevant alternative approaches (other than PT)
to study risk, uncertainty, and behavioral decisions, we
refer to [21] and [25].

Contributions and Organization: To address the
challenges mentioned above, the main contribution of
this paper is to develop a comprehensive distributed
control framework for EV management in smart grids
which takes into account the traffic congestion costs,
the electricity price and availability, the distributed
nature of the system, and the selfishness or subjective
perceptions of the EV owners. Our work differs from
the prior art in several aspects: 1) It models the interac-
tions between EV using a routing game [12], by taking
into account the traffic congestion costs, 2) Factors in
the waiting time of EVs at charging stations, 3) Intro-
duces an energy pricing scheme to control and balance
the EV load across the grid, and 4) Incorporates real-
life decision behavior of EVs under uncertain energy
availability by using PT and studies its deviations from
conventional classical game theory (CGT). Our work is
motivated by the fact that EVs can be viewed as dy-
namic storage devices which can move around the grid
and balance the load across it. This mandates careful
grid designs (e.g., pricing electricity properly at charging
stations) that can align the energy needs of selfish EVs
with those of the smart grid. This approach can poten-
tially be applied to control other multi-agent network
systems where the system authority has limited direct
control of the agents’ decisions. Yet, it wants to design
a mechanism in the system level to control the agents
toward a particular objective (e.g., load balancing).

In the studied model, we consider a set of EVs that are
traveling from an origin to a destination. Each EV may
or may not stop at one of the charging stations along
with its origin-destination path to charge/discharge its
battery. Moreover, once joining a station, an EV can
decide on the amount of energy to charge/discharge at
that station. Here, the energy price charged at each sta-
tion for buying or selling depends on the total energy
demand at that station, a station-specific pricing func-
tion, as well as the ground load, which is induced by
other grid components such as residential or industrial



users. Therefore, each EV chooses a route, a charging
station along that route, and the amount of energy to
charge/discharge at that station. We formulate the in-
teractions between EVs as a repeated noncooperative
game in which each EV seeks to minimize the tradeoff
between travel time and energy price. We show that such
a game admits a pure-strategy Nash equilibrium (NE),
and we show that the PoA of this NE is upper bounded
by the ratio of the variance of the ground load to the to-
tal number of EVs in the grid. Hence, for a large number
of EVs, although each EV selfishly and independently
minimizes its own cost, the social cost of all EVs will
still be close to its optimal value, i.e., when a central grid
authority optimally manages all the EVs. Furthermore,
we show that any NE achieved as a result of the EVs’ in-
teractions will indeed improve the load balancing across
the grid. We then take into account the uncertainty of
the ground load and provide a bound on the number of
EVs, which guarantees a low PoA with high probabil-
ity. In particular, we extend our model by incorporating
the subjective behavior of EVs and study its deviations
from CGT. Our simulation results provide new insights
on energy pricing at different stations to keep the overall
performance of the grid, which is measured in terms of
the social cost, close to its optimal under more realistic
scenarios.

The paper is organized as follows. In Section 2, we in-
troduce our system model. In Section 3, we establish the
existence of pure NE points. We analyze the efficiency
of NE points in terms of social cost and load balance
in Section 4. We extend our results to a stochastic set-
ting with PT in Section 5. Simulation results are given
in Section 6, and conclusions are drawn in Section 7.

2 System Model and Problem Formulation

Consider a traffic network modeled as a directed graph
G = (V,€&), where each node in V represents a traffic
intersection and each edge e € & represents a road be-
tween two intersections. This network has a total of n
EVs (players) in the set V. We let n, € Z=° be the total
number of EVs on road e. We denote the level of battery
charge of vehicle i by b; € [b;, b;], where b; and b; denote,
respectively, the minimum level of battery charge for EV
i to operate, and the maximum capacity of EV ¢’s bat-
tery (note that 0 < b; < b;). In this network, we have
a total of m charging stations in the set M that are lo-
cated over possibly different roads of the network. Each
charging station j € M can serve its EVs with a rate of
o; > 0. 1 We denote the set of all EVs associated with
station j by Q;. We assume that each station j measures
its excess/shortage energy with respect to an internal
nominal reference point. However, due to malfunction-
ing of the operating grid, stochasticity of the generated
solar/wind energy at station j, or other uncertain loads

! o, is the number of served EVs per time unit at station j.

Fig. 1. An illustrative example where each EV wants to move
from its origin s; to its destination ¢;. The thickness of an
edge depicts the higher traffic congestion on that road. The
blue bar next to each station shows that the station has extra
energy to offer, while the red bar shows that the station is
operating below its nominal value. Given the current state
of the network, it seems most reasonable for EV i to choose
the route P; and stop by station ¢; to charge [; energy units.

which are induced by nearby components, we denote the
difference between the current energy level at station j
and its nominal reference point by g; € R. Therefore,
g; > 0 means that station j is willing to offer its ex-
cess energy for sale while g; < 0 means that station j
demands for extra energy. Note that ideally, station j
wants to have g; = 0 to keep its current energy level
equal to its nominal value.

We assume that each EV wants to go from its current lo-
cation s; € V toits destination t; € V over a path (route)
P;. During this route, it can choose to charge/discharge
its battery by some amount I; € [b, — b;, b; — b;], at some
intermediate station ¢; € M along that route.? Here,
l; > 0 means that EV ¢ charges its battery by [; units
of energy, while [; < 0 means it discharges its battery.
Therefore, we can denote the action of an EV (player)
i by a; := (P;,q;,l;), where P; is the path chosen by
player i from its source to its destination, ¢; is the se-
lected charging station along P;, and [; is the amount of
electricity that player ¢ decides to charge or discharge
at station ¢; (Figure 1). Finally, denoting the players’
actions by (a;,a_;), we can define the cost of EV i as:

b;
Cilasa-) = 3l + o0+ v (57)
ecp; qi

(fqz Zl = 9q.) = fai( Z lj = 9q: )

JGQ% Jegql\{ i}
(1)

where ¢, (+) is a latency function that captures the traffic
congestion as a function of the total number of EVs over
road e € &, and fy,(-) is the energy pricing function at
station ¢; which is determined by the power grid. In (1),
the first term captures the waiting cost of EV i due to
traffic congestion, and the second term is the waiting cost
for joining station ¢; which is proportional to the num-
ber of vehicles at station ¢;. The third term is the risk

2 See Remark 1 for if an EV decides not to join any station.



of having an empty battery, which overgrows as the bat-
tery level decreases.® Finally, the last term in (1) is the
energy expense/income for choosing to charge/discharge
l; units of electricity at station ¢;. In this formulation,
the energy price for EV ¢ equals its marginal energy con-
tribution to station ¢; (see, Remark 2). Note that the
last term in (1) can also be negative, which means that
EV i can be paid by the system depending on the aggre-
gate load of EVs and ground energy in station g;. This
incentivizes EVs who have extra energy in their batter-
ies to join station ¢; and discharge their batteries, thus
balancing the load at that station. The first two terms
in (1) are in the form of delay cost while the last two
terms are in terms of energy cost. However, it is implic-
itly assumed that these two costs can be translated to
each other using a tradeoff parameter, which is already
absorbed in the latency functions and processing rates.

As it can be seen from the definition of EVs’ cost func-
tions (1), the incurred cost by an EV depends not only
on its own action, but also on the other EVs’ decisions.
This naturally defines a noncooperative game among
the EVs having the following key components: A set N/
of EVs (players). Each player ¢ € AN has an action set
A; :=P; xS; x [b; — bi, b; — b;], where P; is the set of all
paths between s; to t;, and S; is the set of all stations
along the chosen path by player i. Each player i € N
takes an action a; € A; and incurs a cost Ci(a;, a—_;)
given by (1). In this game, each EV in the grid seeks to
select an action which minimizes its own cost.

Remark 1 The cost function given in (1) is fairly gen-
eral and can incorporate additional constraints into the
model. For instance, a situation in which some EVs pre-
fer not to join any station (e.g., due to charging at home
or workplace) can be handled by adding to each road
e € & a virtual station j (i.e., a station which physically
does not exist, and it is only for the sake of analysis).
We let all the virtual stations have an infinite speed of
0; = oo and zero pricing function f; = 0. As a result,
each EV 7 has the option of joining an actual station, in
which case everything remains as before, or it will join
a virtual station which translates to saying that EV ¢
will not to join any actual station. Therefore, all the re-
sults will continue to hold for this new setting except
that we now have m + |£| stations. In particular, this
model already captures the effect of non-EVs in the sys-
tem (non-EVs can be viewed as EVs that decide not to
join any station and hence only incur/contribute to the
traffic congestion cost).

Remark 2 The rationale behind using marginal pric-
ing is that when the load in a station is high (e.g., due
to EV congestion in that station), marginal pricing be-
comes effective and sets a higher price in that station.

3 Here, the choice of a logarithmic function is one way of
modeling this risk which is mainly motivated by the log
barrier function frequently used in convex optimization [26].

This disincentivizes more EVs to join that station. It is
worth noting that the use of marginal pricing is not spe-
cific to our work and has been extensively justified in
economics [5,27], modeling of EVs [5,7], and engineer-
ing applications [28,7]. For instance, [5] and [7] utilize
marginal payment strategy to design truthful mecha-
nisms for EV charging. We note that many pricing poli-
cies can be implemented as a special case of marginal
pricing. For instance, a fixed pricing policy that charges
an EV a constant amount of ¢ per unit of electricity us-
age can be implemented using the linear pricing function

flz) =ca.

Example 1 Given aroad e € £, anatural choice for the
latency function is the linear latency c.(x) := a.x + b,
where b, can be thought as the length of that road. This
means that the travel time depends on the length of
road e and linearly increases in terms of the number of
other vehicles using that road. In particular, we may
assume that the electricity cost of traveling over road e
is implicitly captured into this cost function. Otherwise,
if an EV incurs a/z + b, amount of electricity cost due
to travel on road e with congestion z, then by defining
Ce(x) := (ae + Aa.)x + (be + Aa,) we can capture both
delay and energy cost with A being a tradeoff parameter.

3 Existence of Pure Nash Equilibrium

Our first goal is to see whether the EVs’ game will yield
a stable outcome, as captured by the notion of a NE:

Definition 1 An action profile (a;, a_;) is called a pure-
strategy Nash equilibrium (NE) for the EVs’ interaction
game if Ci(a;,a_;) < Ci(al,a_;),Vi € N and al; € A;.

Next, we show that the EVs interaction game admits a
pure-strategy NE, meaning that although each EV aims
to minimize its own cost, they collectively will converge
to a stable outcome where every EV is satisfied as long
as others do not deviate.

Theorem 1 The EVs’ game admits a pure-strategy NE.

Proof. We show that the EVs’ game is a potential
game, and hence, it admits a pure NE. Let

Dasa_) = Y3 aln+ Y 2L

L

ecf x=1 /=1
¢1(as,a_y) ¢2(ai,a—;)
l; — \ I ).(2
+ fz(z j ge)+z n(bj+lj> (2)
£=1 JEQ, j=1
#3(ai, a—q)

We will show that for any two actions a; = (P, ¢, 1;)
and a} = (P/,q.,1}), we have ®(a;,a_;) — ®(a;,a_;) =
Ci(a;,a_;) — Ci(al,a_;). To show this, first we note



that the traffic congestion cost in C;(al, a_;) is equal to
ZeeP{ﬂPi ce(ne) +Ze€P;\Pi ce(ne+1). This is because if
EV i changes its path from P; to P/, then the number of
vehicles n. in all the roads e € P;N P/ remains as before.
However, the number of vehicles in roads e € P} \ P;
increases by exactly 1 (as now vehicle ¢ has joined these
roads). Similarly, if vehicle ¢ leaves station ¢; to join

station ¢/, its new waiting cost will change from ‘2—"'
Q. \{i}+1
0 %
9q!

. Following the same argument for the cost

i
associated with the marginal energy price, we can write

Cl(a'{” a—i) = Z Ce(ne) + Z Ce(ng + 1)
EEPi/ﬂPi SGP{\Pi
Qu\{i}| +1 b;
+| o \{i}| +1n( b /)
og! b; + ll-
F L (Y Al = gg)—fo (Y 1= gq)-
7€Qq\{i} J€Qq\{i}

By subtracting C;(a},a_;) from the cost function

Ci(a;,a_;) given in (1), we obtain
Ci(aia a—i) - Ci(aé, a—i)
= Z ce(ne) — Z ce(ne+1)
ecP;\ P/ e€P/\P;
) Q. \{i}| +1 ) /
|Qq1,‘ | ql\{ }| —|—ln<bl+ll)
Oq; Uqé bl + ll
(fql Zl = 9¢:)— fa.( Z l.j_g(h‘))
J€Qq; 7€Qq; \{i}

~(F = a1y (X L - ).

7€Qq\i} jEQy\i}

Next we consider the change in the potential function
due to an action change of player i. We can write:

(bl(azv ) d)l( ): Z Ce(ne) _Z Ce(ne+1)a

e€Pi\Fy e€P/\P;
; Qu\{i}| +1
¢2(a‘i7a—i) - ¢2(a27a_i) = |Qq"| — | ql\{ }| ,
Ogq; O'qg
Bi Bi
d3(ai,a;) — ¢s(a; )_1“(bi+zi)‘1“(bi+z;)

(fql Zl — 9q:) + for( Zl ~ 9q; )

J€Qy, jeQ 1/\{z}
- (flh(z lj - glh‘) "‘fq{( Z lj +l; _gqé))'
7EQu\i} jeQ,Ai}

Summing all the above inequalities and noting that

®(a) - ®(a},a_;) = 3 _[én(a) - di(aj, a—;)], we get
®(a) — fb(a a_;) =Ci(a) — Ci(a;,a_;). n

Theorem 1 shows that a pure-strategy NE exists even
though the actions of the players can take both discrete
and continuous quantities, or they can be highly coupled
(e.g., choosing what station to join highly depends on
what route to choose). Even though this theorem does
not characterize uniqueness or efficiency of the equilib-
rium points, as we will show in Theorem 2, for a large
number of EVs and specific choices of latency and pric-
ing functions, all the equilibrium points will be almost
equally efficient in terms of the social cost. In particular,
we will show that for a large number of EVs, the social
cost of any NE is at most a small constant factor worse
than the optimal social cost.

It is worth noting that the result of Theorem 1 is strong
in the sense that not only it guarantees the existence of
a pure NE, but also it shows that any sequence of uni-
lateral updates by the EVs will eventually converge to a
NE. This allows us to implement the EV game as a re-
peated game between EV owners who will, daily, travel
the distance between their home (origin) to their work
(destination). The information that the EVs require to
compute their optimal strategies (e.g., road congestion
or charging station loads) can be broadcast using a data
platform or directly can be sent to the GPS devices of
the EVs. This allows each EV to have access to the most
updated information of the grid state before taking its
action. As a result, if EV i first takes its action, this up-
date will change the state of the entire grid whose infor-
mation will be immediately available to all others. Now,
if a new player takes its action by best responding to the
newly updated state, and this process continuous again
and again, then the grid state will eventually converge
to an NE (whose efficiency in terms of social cost and
load balancing is established in Theorems 2 and 4).

4 Price of Anarchy and Load Balancement

In this section, we analyze the efficiency of the NE points
in the EVs’ game in terms of the price of anarchy (PoA)
and load balance. We first start by analyzing the price of
anarchy of the EVs’ game, which is an important mea-
sure to capture how much the selfish behavior of the EVs
can influence the overall optimality of the grid [13].

Definition 2 For the EVs’ interaction game, the PoA
is defined as the ratio of the maximum social cost for all
Nash equilibria over the minimum (optimal) social cost,

PoA . MaXace Yo,
t.e, Po ming Z C’ (a)

Here, optimality is measured in terms of EVs’ social
cost, assuming that a network authority with complete
information manages the EVs and seeks to minimize the
overall social cost. Since EVs are selfish entities whose
actions cannot be centrally controlled, modeling EVs’
interactions as a game that yields a small PoA is very im-
portant. Interestingly, the following theorem shows that



for linear latency and quadratic energy pricing, the PoA
remains small, assuming a large number of vehicles in the
grid. It is worth noting that the choice of linear latency is
not specific to our work only, and it has been frequently
used in the game theory literature [12,14]. This is be-
cause, despite its simplicity, linear latency function can
still capture two main features of travel costs, namely
lengths of the roads b. and traffic congestion costs a.x.
On the other hand, quadratic pricing is only one way
of pricing to assure improved load balance (Theorem 3)
while still result in a small PoA. However, to avoid case-
dependent analysis, in this section, we only develop our
analysis for the case of linear latency and quadratic pric-
ing functions (with a potential to be generalized in parts
to more general functions). We will complete these re-
sults by providing numerical simulations in Section 6 to
illustrated the tradeoff between PoA and load balancing
for other choices of latency /pricing functions.

Theorem 2 For linear latency c.(x) = aex + be, and
quadratic energy pricing functions f;(z) = 2% Vj, as-
sume that each player incurs at least a unit of cost. Then,

2
PoA < c+ 4.5(-?777191), where n is number of EVs, g;
is the ground load at station j, and c is a constant.

Proof. Let {a; = (P;,qi,1;)}~, denote an ar-
bitrary Nash equilibrium, and {af = (P/, ¢, 17)}
be the social optimal solution. Moreover, let NE :
i, Cila;,a_;) and OPT := 3" | C’zv(a;“7 a* ;) be the
social cost of this equilibrium and the optimal social
cost. By definition of Nash equilibrium, for any i € [n],

Ci(ai,a_;) < Ci(aj,a_;)

= Z Ce(ne +1) + Z Ce(ne)

eGP:\Pi e€eP*NP;
+| a; \{i}| +ln( b )
Og; b; + l;k
* 2 2
+<Zlk+li_9q§) _(Zlk_glﬁ)
k€Qqx\{i} keQg«\{i}

Summing all the above inequalities for i € [n] we obtain

NE S En:CZ-(a;‘,a,i)

i=1

fZ( Z Ce(ne +1) + Z ce(ne))

i=1 ecPr\P; e€P NP,

n

3o (52
Sl Zwr—gq;f—( > b-gi)’]- ®)

=1 keQ,x\(i} keQgx\{1}

*Z |Qg; \{Z [+1

Next we upper bound each of the three summands in
(3). To this end, let OPT; and NE; denote the traffic
congestion costs in the optimal solution and the NE,
assuming a linear latency function ¢, (z) = aex + be, i.€.,

OPT, := ZZCE Zn (aen} + be),
1=1 e€P] ecé
NE,:= Z Z Ce(ne) = Zne(aene + be)v

i=1e€P; ecé

where n. and n} denote the number of vehicles on edge
e € £ due to the Nash equilibrium and the optimal so-
lution. Using a similar method as in [15] we can bound
the first summand in (3) as follows:

En:( > e+ 1)+ Y clne)

i=1 eePr\P; e€PNP;

§Z Z Ce(ne+1)

=1 e€ Pi*

= Z aenpne + Z ns(ae + be)

ecf ec&

\/ZaerLQZae —|—Zn aeny + be)

< ¢Z<aenz 503 (e (n2)? + be)
—&—Znﬁ(amﬁ + be)
:\/NE1XOPT1+OPT1. (4)

where the first inequality is obtained by upper bounding
ce(ne) by ce(ne+1) for each e € PN P;, the first equality
holds by the definition of linear latency function, and the
second inequality is due to Cauchy-Schwartz inequality
and the fact that nf(a. + b.) < n¥(a.nk + b.), Ve.

To upper bound the second summand in (3), let us define
OPT,; and NFEs to be the total waiting cost at all the
stations in the NE and the optimal solution, respectively,

1o
-1 a

Following identical argument as above in which roads
e € & are replaced by charging stations 7 € M, and
the quantities (ne,n’,ae,be),e € & are replaced by
(1951, 1951, 6%.70)73' € M, we obtain,

19|

OPTy:=Y fq
4q;

i=1

Z\Qq \{}\+1<\/m+opn (5)

=1 9



Finally, to bound the last summand in (3), let us define
OPT; and N Ej3 to be the total energy cost induced by
the optimal solution and the NE, respectively, i.e,

OPTy=3"|(Y 1 =g4)*~ (O li—g0)*+1n (=7 |.
=1 keo;, keQ;\(i} o

]\7E/‘3:Z|:(Zlk*gqZ Zlk gth +1n(b Z:_l ):|
i=1 k€Qg, keQq;\{i}

It is shown in the Appendix (Lemma 1) that,

SOt =g = (3 b4

i=1 keQ,\{i} keQ,\{i}
+6(\/7+ NE3 + /v + OPT3) + (6% + 4nb?, ),
Z] ng

where byay :=max; b;, 6% := 5 and y:= =0%4nb? .
Substituting this relation together with (4) and (5) into
(3), we can write

i (5= z;f)]

NE <+OPT, x NE, + VOPT, x NE,
++/(v+ NE3) (y + OPT3) + (OPTy + OPTy + OPT3)
+0(\/y + NE3 + /v + OPT3) + 6> + 4nbl, oy

< /(7 + OPTy + OPT, + OPT3)(y + NE1 + NE, + NEs)
+ OPT +6(/7 + NEs + /7 + OPT3) + 62 + dnb? .,
= /(v +OPT)(v + NE) + OPT
+6(\/7 + NEs + /7 + OPT3) + 62 + 4nb2,y
<+/(y+OPT)(y+ NE) + OPT
+0(\/7+ NE + /7 + OPT) + 6% + 4nb%,,, (6)

where the first inequality holds because for any four pos-
itive numbers a1, as, as, aq, we have \/ajas + Jazas <
V(a1 +a3)(az + aq). Also, the last inequality stems
from the fact that NE3 < NE, and OPT3; < OPT.
Dividing both sides of (6) by OPT (note that by the

assumption OPT > n)* and setting z = %, we get

52
z< (%+1)(% )+ (14— 44

+\jﬁ(\/2+x+\/z+1). (7)

This in view of Lemma 2 (Appendix A) shows that z <

™ g2
c+4. 5(]7“) where ¢ := 3+ 1252

max

is a constant. W

4 For instance, this assumption can be satisfied by charging
each EV a toll of unit cost for using the system.

Typically, in real grids, one can assume that each player
incurs a unit cost in the system (for example, we charge
each EV $1 as a toll of using roads or other grid facilities).
Then, as a result of Theorem 2, if there are many EVs in
the grid (i.e., n is large), although every EV minimizes
its own cost, the entire grid will still operate close to its
optimal state and within only a small constant factor c.
This allows us to align the selfish EVs’ needs with those
of the grid and achieve nearly the same optimal social
cost when a central grid authority dictates decisions to
EVs. It is worth noting that Theorem 2 does not imply
that, for a large number of EVs, the players’ costs are
less (clearly, for a higher number of EVs, the traffic con-
gestion and waiting time at charging stations is high).
However, it shows that, for a large number of EVs, there
is no way to substantially reduce the aggregate cost of all
the EVs more than what it is already achieved at a NE.

Finally, we show that any NE achieved by the EVs will
indeed improve the load balance in the grid. For this
purpose, let us first consider the following definition:

Definition 3 Let by = min; b;. We refer to a station j

as a good station if |g;| < 2;[ Otherwise, we refer to it

as a bad station. We denote the set of bad stations by B.

Based on this definition, the load imbalance of a good
station is very small and close to 0, which eliminates the
necessity of load balancing in that station. Consider the
initial load imbalance of the grid determined by the vari-
ance of the initial ground loads at all the bad stations
Vo = Ejes g]?. Now if we let g;-\IE be the aggregate load
induced by a NE at station j, we can express the improve-
ment of load balancing at that NE by V) — Vg, where
Wi = E:JEB(‘(];-\IE)2 denotes the load variance of the
bad stations at that achieved NE. The following result
shows that any achieved NE improves the load balance
in the bad stations without hurting the good stations.

Theorem 3 Given the quadratic pricing function, let us
assume for simplicity that all EVs have the same initial
battery level b; = b,Vi. Then, for any NE, all the good
stations will remain good while the bad stations become
more balanced. In particular, VNg < VO_Z]’GB ,u?, where

‘le(bmin ) Zf 95> (2|Q]|_ )( mm_b)_ 2bx1nin’
%gj else,

and |Q;| denotes the number of EVs at station j at NE.

Proof. Consider an arbitrary but fixed station j.
Note that for any NE {(F;, i, ;) }ienr, the load compo-
nents of all the players who join station j, i.e., {l; : i €
Q,} must form a NE if the players’ costs are restricted
to only the load portion of their costs. In other words,



for every i € Q;, if we consider |Q;| players with costs

Cil, 1) =01 — g;)?

ORI iy)

Jj€Q; JGQ]\{}
b
2 / max
=12 - —Hn(bﬁ—l’-)’
J€Q;\{i} ‘

then, {l; : i € Q;} must be a NE for this restricted
game 5 Since, for every i,k € Q; we have 8‘2[, C, =2+

(b+l EE and arr al, C; = 2, the restricted game with cost
functions C; (15, 1";) is a strictly convex game and admits
a unique pure NE [29, Theorem 2], that is {l; : i € Q,}.
In addition, since by assumption b; = b, Vi, all the play-
ers have the same cost function. As a result the restricted
game is a symmetric convex game which means that its
unique equilibrium is symmetric [30, Theorem 3]. Thus
l; =1,Vi € Qj, for some | € [bmin — b, bmax — b]. As a re-
sult, the load costs for all the players i € Q; at the NE
are the same and equal to

A bmax
ci(z):(2|Qj|—1)z2_zzgj+1n(b+l). 8)

In particular, the equilibrium load ! must be the unique
minimizer of (8) in the feasible range [bumin — b, bmax — b],
which is given by

b) — 5t

bmin — b if g; LI

< (2|Qj| - 1)(bmin -

1= bmax — b if g; >

29, =V +/ P2 +4]Q;[ -2
4[Q;]-2

otherwise,

where ¥ := (2|Q,| —1)b+g,. For each of the above three
possibilities, we compute the equilibrium load reduction
at station j given by (¢9;7)? — g7 = (1Q;|l — g;)* — g5

Case I: If g; < (2|Q;| — 1)(bmin — b) — ﬁ, we have
Q4171 — 21Q4llg; = (1Q4](bmin — ))* — 2/ Q5| (bmin — b)g;
Q' brnin —-b
< (SBQ)f* + 210D (b — )? + 22l Omin =)
< (=31Q51” +2/Q51) (bmin — b)* < ~Qj1* (bmin — b)*,

where the first inequality is by the upper bound on g;,
and the second inequality is because by, — b < 0.

Case II: If g;

> (2|Q]| - 1)(bmax - b) + ﬁ, we have

1Q; 171 — 2|1Q;llg; = (1Q;](bmax — b)) — 2|Q;|(bmax — b)g;
< (=310, + 2|0, ) (bmax — b)? — 1Qsl(Bmax =)

bmax
< (=31Q51* + 21Q5]) (bmax — b)* < =] Q)| (bmax — b)?,

5 Note that this property only holds for a fixed charging
station and not necessarily across different stations.

(2|Qj| - 1)(bmax - b) - ﬁ7

where the first inequality is by the lower bound on g;.

Case III: If g; does not belong to Cases I and II, then

| 295 =Y/ V0,2
- 49;1-2

derivative of (8), and hence it satisfies | = m(gj +

, which is the unique root of the

1 .
m). Therefore, we can write

1Q; %1% — 2] Q5 lg;

o 195 e, 2 2|9 1
_(2\9j|—1) (9J+2(b+l)) 219, —1 2(b+l))
1951 2 2 2 9 1 1
= (==L )2 _g2(3— - )+— .

G146 g -3¢ |Qj\) i)
Now, one can easily see that, if [g;| > 7=, then either
g; > b+l org; < b_H,and the quadratic eXpI‘ebblOIl inside
of the above brackets is always less than fgjz». Thus,

1

gi(g9; +

(957)* — g7 = 19,1 - 2|Q;lg;

1951 2 2
< (2|QJ|71)9 <

On the other hand, if |g;| < ﬁ, then the quadratic
expression inside of the above brackets can be at most

(2‘\%!?1) TR (31 - )7Wh1Ch implies that
J

min

(97 ") —g7 = Q1> —2|Q;]lg;

1
<
— 2 — 2
4bmln(3 - \Q”) 4bmln

Thus (gé.\IE)2 < 4b§,
mains to be a good station in the NE.

, which means that station j re-

Finally, from all the above cases we have (g;")? — g7 <

—/LJ,VJ € B, with the p; as given in the statement of
the theorem. Summing this inequality over all the bad
stations j € B completes the proof. [ ]

As aresult of Theorem 3, the players charging/discharging
strategies at a NE always improves the load balance in
the grid. In fact, in practice, such load balancing can be
very effective as shown through simulations in Section 6.

Remark 3 In general, assigning the EVs optimally to
balance the load in a centralized manner is computa-
tionally very expensive as it requires solving a mixed
nonlinear integer program with the objective function
Yi, Ci(a) to find the optimal paths, charging stations,
and the charge/discharge energy units. However, The-
orems 2 and 3 suggest that for a large number of EVs,
the optimal assignment can be approximated within a
constant factor by a solution where each EV selfishly
minimizes its own cost. This can be done much more ef-
ficiently as now each EV minimizes its cost over only its
own actions.



5 Stochastic Ground Load with Prospect EVs

In this section, we consider the EVs’ interaction game
under a more realistic grid scenario with an uncertain
ground load environment and study the effect of EVs’
behavioral decisions on the overall performance of the
smart grid. Toward this goal, we assume that the in-
duced ground load at each station g;, 7 € M, which
is due to industrial, residential, or commercial users, is
a random variable with some unknown distribution G .
Indeed, in a smart grid, a good portion of the energy
generated and injected into the grid will stem from re-
newable resources such as wind turbines or solar panels.
Since the amount of such renewable energy highly de-
pends on the environment, such as weather conditions,
which is a stochastic phenomenon, the induced renew-
able energy also changes stochastically at various loca-
tions [31]. On the other hand, the energy consumption
of residential or industrial users typically follow certain
stochastic patterns during specific time slots of a day
(e.g., more consumption during early evening hours and
less after midnight). Since the ground loads at different
stations are mainly influenced by the grid components
within their vicinity, for sufficiently distant stations, we
may assume that the induced ground loads are stochas-
tically independent. Under this independency assump-
tion, we study the optimality of the EVs’ game under
stochastic ground load.

It is worth noting that, in general, the PoA of the EVs
game is a function of its underlying parameters such as
ground loads or the number of EVs. Therefore, in the
presence of stochastic ground loads, the PoA will also be
a random variable. As it was proposed in [32], the grid
authority can use EVs to balance the load on the grid
by charging when demand is low and selling power back
to the grid (discharging) when demand is high. To this
end, the following theorem provides an estimate on the
required number of EVs to be added into the network
to keep the social cost within a constant factor of its
optimal value (i.e., a low PoA) with high probability.

Theorem 4 Let G;,j = 1,...,m be stochastically in-
dependent ground loads with support in [—K, K] such
that B[G}] = i, and Var|G;] = o3 . Then, participating
n> 4.5[2?:1(11? +07)+K | /mIn(L)] EVs in the grid as-
sures that PoA < 44 12b2

max’

with high probability 1 — €.
Proof. The proof can be found in Appendix A. B

5.1 Prospect-Theoretic Analysis of the EVs’ Game

In this section, we take into account the subjective be-
havior of EV owners under uncertain energy availability.
In this regard, there is a strong evidence [22] that, in
the real-world, human decision-makers do not make de-
cisions based on expected values of outcomes evaluated

by actual probabilities, but rather based on their percep-
tion on the potential value of losses and gains associated
with an outcome. Indeed, using PT, the authors in [22]
showed that human individuals, such as EV owners, will
often overestimate low probability outcomes and under-
estimate high probability outcomes. This phenomenon,
known as weighting effect in PT, reflects the fact that
EV owners usually have subjective views on uncertain
outcomes such as energy availability at the charging sta-
tions. Moreover, there is evidence that in reality, humans
perceive and frame their losses or gains with respect to a
reference point using their own, individual, and subjec-
tive value function. As an example, risk-averse EV own-
ers consider any energy price higher than that when the
grid operated in its balanced condition as a loss and over-
estimate it. This is a consequence of the so-called loss
aversion behavior, which leads different EVs to select
different reference points and evaluate their gains/losses
according to them. Such reference-dependent loss aver-
sion behavior can be explained under the framing effect
in PT, which differs from CGT that assumes players
are rational agents who aim to minimize their ezpected
losses.

In fact, PT has been successfully applied in many prob-
lems with applications both in engineering and eco-
nomics. For instance, the authors in [33] study humans’
behavioral decisions in the presence of failure risk in a
common-pool resource game. It has been shown in [31]
that taking into account the subjective behavior of pro-
sumers (joint prosumer-consumer) in the smart grid can
substantially change the energy management and distri-
bution pattern compared to the conventional expected
utility methods. We refer to [34] and [35] for a compre-
hensive survey and recent results on PT in economics
and other fields. Therefore, to capture such behavioral
decisions, we use the following definition from PT [22]:

Definition 4 Any EV i has a reference point 2! and
two corresponding functions w; [0,1] — R and
vi(z,28) : R? — R, known as weighting and valuation
functions. The expected prospect of a random variable Z
with outcomes 21, 29, ..., 2k, and corresponding proba-
bilities p1, po, . .., Pk, for electric vehicle i is given by

k

E [Z]:= Zwi(m)vi(%zi)'

{=1

In general, the value function that passes through the ref-
erence point is S-shaped and asymmetrical. This means
that the value function is steeper for losses than gains
indicating that losses outweight gains. Two of the widely
used weighting and valuation functions in the PT litera-
ture are known as Prelec weighting function and Twersky



valuation function defined by [36,37],

vilz, 2l) = {(z —2)%

—Ca(z — 2)®

: i
if 2> 2,
if z<2,

9)

where 0 < ¢ < 1 is a constant denoting the distor-
tion between subjective and objective probability. Here,
¢1,c3 € (0,1) determine the curvature of the value func-
tion in gains and losses, respectively, and capture hu-
mans behaviour as risk-averse in gains and risk-seeking
in losses justified by behavioral economics [38,37,35]. On
the other hand, loss aversion is typically captured by
the parameter co > 1 which reflects the fact that human
usually perceive losses much more than gains and out-
weight them.® Moreover, we assume that the reference
energy price for EV i is given by

(> 1) -

J€Qq;

w;(p) = exp(—(—Inp)°),

!

7€Qq; \ {4}

(10)

which is the price that EV i expects to pay in station g;
given that this station operates in its complete balanced
condition (i.e., g4, = 0). In particular, anything above
or below this reference price is considered as loss or gain
for that EV and is measured by value function v(z, 2%).

To formulate the EVs’ interaction game using PT, we
assume that the ground load at station j € M follows
a discrete distribution G; with zero mean and a proba-
bility mass function h;(-). Let Z be the random variable
Z = f(Zjquilj —Gy,) - f(zjegqi\{i}lj — Gy,), and
z(0) be the realization of Z when the ground load at
station g; is 6. Therefore, by Definition 4, the perceived
prospect gain/loss by EV i equals

2] = wilhg,(0))
0

On the other hand, as it has been shown in [39], that
gains and losses are not all that EVs care about. In other
words, not only the sensation of gain or avoided loss does
affect the payoff function for an EV 4, but so does the
actual energy price that EV i pays to satisfy its need.
Therefore, in contrast to the prior formulation based on
a value function defined solely over gains and losses, we
take preferences also into the cost functions by assuming
that the overall cost to EV i with reference point 2! is
given by

vi(2(0), 2%).

»~r

(11)

CPT (a;,a Zce (ne)+ ‘Q% +In (bbma); )
e€P; i i Tl
+24+E (2], (12)

5 The behavior under ¢z € (0,1) is called gain seeking [35].
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where z¢ and E™ [Z] are given by (10) and (11), respec-
tively. Here, each EV ¢ aims to minimize its own prospect
cost given by (12) by choosing an appropriate action a;.
The following result shows that despite extra nonlineari-
ties introduced by the weighting and reference functions,
the EVs’ game under PT still admits a pure NE.

Theorem 5 For the quadratic pricing f(x) = x2, the
EVs’ game under PT admits a pure-strategy NE. In par-
ticular, the best response dynamics converge to one of
such NE points.

Proof. For the quadratic pricing function we have

(L= = (X =02z =

J€Qq; 7€Qq; \{i}

2(0) — 2 = 1;0.

Substituting this relation into (12), we obtain

Z Ce(ne |QLIL

ecP; Tqi

+ 2, +Zwl i (

C’PT(O,)

tln (bbri?)

b:(1:0),

CiMai,a_;) =

where 0;(z) = 2 if > 0, and 0;(x) = —ca|x|3, other-
wise. Now consider the function ¥(-) defined by

=33 i)+ (2D

eef =1

+Zln(b“fz)
+Zsz ai

U(a)

|Qe|+1)
20’@

+Z(Z 1;)?

=1 j€Qy

V(a;, a

b:(1:0) .

We argue that this function is an exact potential function
for the EVs’ game under PT. In fact, if we did not have
the prospect terms CTT(a) and ¥(a) in the structure of
CPT(a) and ¥(a), the proof would immediately follow
by the same lines of argument as in the proof of Theo-
rem 1. However, for the quadratic pricing, since the term
> o wi(hg, (8))0;(1;0) is a player specific function which
only depends on action of player ¢ and is uncorrelated
from a_;, we easily get C*T(a;,a_;) — C*T(a},a_;) =
UPT(a;,a_;) — ¥PT(a), a_;). This shows that ¥(.) is
indeed an exact potential function for the EVs’ game
under PT and quadratic pricing. As a result, any mini-
mizer of ¥(-) is a pure-strategy NE of the EVs’ game. In
particular, since the action sets of players are compact in
their own ambient space, this immediately implies that
the sequence of best responses of EVs will converge to a
pure-strategy NE [40]. n



Here, we should mention that if we use different pricing
functions or assume other sources of uncertainty such
as randomness in players’ actions, then the EVs’ game
under PT will not necessarily admit a pure-strategy NE.
One of the challenges of analyzing the proposed EV game
under PT is the additional nonlinearities in the players’
cost functions, which stem from weighting and framing
effects. This further complicates the analysis of the PoA
under PT. For instance, as opposed to CGT, the PoA of
the game with prospect cost functions will now depend
on the specific choice of weighting functions and varying
reference points. In the next section, we provide some
numerical results to study the PoA of the EVs’ game
under both CGT and PT.

6 Simulation Results

For our simulations, we choose the traffic network to
be as in Figure 2 with 5 directed roads, and 3 charging
stations. We assume i.i.d Gaussian distributions G; ~
N(0,10) for the ground load at different stations. Also,
for simplicity, we assume that all the EVs are identical
with bpax = 5, bmin = 0.1, and b; = 3, Vi, who want to
travel from the origin s to the destination t.

6.1 PoA under Classical Game Theory

In Figure 3, we illustrate how the PoA under CGT
changes as more EVs join the grid and compare the
outcomes for different choices of pricing and latency
functions. Here, we let the number of EVs increase from
n =2ton =9, and compute the PoA when the nonlin-
earity of the pricing function increases from f(x) = x2/3
to f(z) = x%3. Moreover, we consider the effect of
linear latency function c.(x) = 5z + 10 and quadratic
latency function c.(x) = 5z% + 10 on the PoA. As it can
be seen, joining more EVs reduces the PoA as was ex-
pected by Theorem 2 for the case of linear latency and
quadratic pricing functions. However, it turns out that
the PoA generally increases as the nonlinearities of the
pricing and latency functions increase. In particular,
the mismatch between the degree of nonlinearity of the
pricing and latency functions degrades PoA. Hence, to
achieve a high grid performance in terms of social cost,
the grid authority should relatively match the energy
price with the latency costs.

Figure 4 illustrates the IX)/ rcentage of load balance im-
provement (i.e., 100%2 “522%) for the worst achieved
NE correspondlng to each of the cases in Figure 3. It
is interesting to see that there is a tradeoff between the
PoA and the load balance. For instance, for the linear
latency function c.(z) = 5z + 10, the pricing function
f(z) = 2?/3 (ved dashed line in both figures) achieves
the best PoA and the worst load balancing performance.
In fact, for the linear latency function, it can be seen that
the quadratic pricing f(z) = 22 (dashed black curve)
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Fig. 3. PoA under CGT for different number of EVs, pricing
functions, and latency functions.

performs very well both in terms of PoA and load bal-
ancing. However, it should be noted that the best perfor-
mance among the above cases is achieved for the pricing
rule f(z) = 2*/3 (solid blue curve).

In Table 1 we have listed the worst NE strategies and
social cost, as well as the optimal social cost for n = 9
vehicles. As an example the NE strategy for player 1 is
to take the route P> = (e, e5), join station 3, and charge
its battery by I3 = 0.46 energy units. In this table, the
initial realized random ground loads at stations Q1, @2,
and @3 are g1 = 0.937, go = —11.223, and g3 = 3.061,
respectively. Therefore, the initial load imbalance equals
Vo = 136.207, while the ground loads at the NE at these
stations are given by ¢gI'® = 0.123, ¢5® = —5.007, and
giF = —1.229. As aresult, the load imbalance at this NE
equals Vxg = 26.60 which is substantially lower than the
initial load imbalance Vj = 136.207 (84% improvement).

6.2 PoA under Prospect Theory

Here, we evaluate the effect of PT on the PoA and load
balancing. We set c.(z) = 5z + 10 and f(z) = 22,
and consider n = 6 EVs over the network of figure 2.
Moreover, we assume that all the EVs have the same
weighting and valuation functions given by (9) with pa-
rameters (¢, ¢y, ¢a, c3). Figure 5 illustrates the effect of
probability distortion parameter ¢ for fixed values of
(c1,c2,c3) = (0.88,2.25,0.88) which are estimated based
on experimental studies on human subjects [38]. As can
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Table 1
Pure NE for n = 9 EVs, three paths Pi = (e1,e4), Po» =
(62, 65), Ps = (62, €3, 64), and three stations Ql, QQ, and Qg.
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be seen from the top figure, the PoA has a complicated
nonlinear relation with the distortion probability param-
eter. One possible reason is that for mid-ranges of the
probability distortion parameter, the system has a large
number of NEs, which results in worse performance in
terms of PoA. However, the induced load in the grid sta-
tions monotonically decreases as EVs become more ra-
tional (i.e., ¢ approaches to 1). In particular, for small
values of ¢, the EVs start to charge or discharge more ag-
gressively, which will fully imbalance the station loads.
This is because, for very low ranges of ¢, the EVs behave
fully irrational and start to make a profit by completely
ignoring their travel costs and joining the profitable sta-
tions to buy/sell energy at a very low /high price.

Finally, in Figure 6 we have illustrated the effect
of different PT parameters (c,ci,ca,c3) estimated
from experimental studies [38] on the PoA and to-
tal NE induced load in the stations.” Here, we set
A = (0.75,0.68,2.54,0.74), B = (0.75,0.81,1.07,0.8),
C = (0.75,0.71,1.38,0.72), D = (0.75,0.86, 1.61, 1.06),
and E = (0.75,0.88,2.25,0.88). In particular, the last
bar corresponds to the selection of (c¢,ci,co,c3) =
(1,1,1,1) which is for the case of risk neutral EVs. As

" In Figure 6, Vag is scaled down by a factor of 0.01.

12

PoA: price of anarchy
i
T
~
1
I
\
|

=

I I . I
0.75 0.8 0.85 0.9
c= PT probability weighting parameter

Vyg: |,norm of induced load at NE
/

0.6 0‘65 0‘7 0‘75 CI‘B 0‘85 0‘9
c= PT probability weighting parameter
Fig. 5. The red curve illustrates the PoA for different values
of the PT probability weighting parameter c. The blue curve
depicts the l2-norm of the induced load at the worst NE (i.e.,
VNE =) (95'®)?) versus the PT weighting parameter c.

E (1,1,1,1)

Fig. 6. PoA (blue bar) and total induced load at the worst
NE (yellow bar) for different set of PT parameters estimated
from behavioral studies.

it can be seen, for the above set of parameters, the
grid benefits the most (both in terms of PoA and load
balance) when the EVs are risk neutral (as it was the
underlying assumption in modeling the EVs interac-
tion game). The worst-case situations occur for the EV
owners whose subjective valuation lie in group parame-
ters D and E. This suggest that for such type of EVs,
one must modify the pricing rules in order to take into
account the negative effects of EVs behavioral decisions.

7 Conclusions

In this paper, we have studied the interaction of self-
ish electric vehicles in smart grids. We have formulated
a noncooperative game between the EVs and, then, we
have shown that the game admits a pure-strategy NE.
We have shown that the PoA is upper bounded by the
“variance” of the ground load divided by the total num-
ber of vehicles. As a result, for a large number of EVs in
the grid, the entire system operates close to its optimal
condition with the minimum social cost, even though
EVs are selfish identities. In particular, we have shown
that any achieved NE balances the load further across



the grid. We have extended our results to the case where
the ground load is stochastic and incorporated the sub-
jective behavior of EVs using PT into our model. Simu-
lation results showed that, under realistic grid scenarios
with subjective EVs, quadratic pricing is more suitable
for a large number of EVs, while for fewer EVs, expo-
nential pricing would be a better choice.

Discussion and Future Directions: In this work, we
have considered the EVs’ game with a basic cost struc-
ture, which can potentially be extended to more gen-
eral settings. For instance, we have only considered the
case where an EV can join at most one station during
its trip. This can be relaxed further to the case where
each EV can join up to at most £ € Z stations. For
this purpose, one can extend the action space of EV i
from (P;, qi, ;) to (Pi, {qi, }e_;, {l;, }£_,), and augment

its cost function (1) by adding the terms Zk 190, and

r=1 oy,
i

Srilfan(Cieay, b =90, ~Fu, (Ciea, vy b —9a:,))
In this case, one can again use the same potential func-
tion as in (2) to show the existence of pure Nash equi-
librium and obtain similar PoA bounds (with possibly
an additional factor in terms of k). However, in this ex-
tended formulation, each EV must solve a more complex
optimization problem to find its optimal action.

This work opens several avenues for future research:

e One can consider implementing the EVs’ game under
incomplete information. Perhaps, one way of model-
ing incomplete information into our model is to use
the framework of Bayesian games with EVs grouped
into different types based on their origin-destination,
where each EV aims to minimize its own expected cost
having access to only a prior distribution of other EVs’
types. In particular, we did not explore the effect of
information structure on the game outcome and as-
sumed that the data platform provides all the infor-
mation truthfully to the EVs. However, it is interest-
ing to see how the platform can leverage the informa-
tion structure to bring the system to a more efficient
and “load-balanced” equilibrium.

e One can consider an online optimization version of
our setting in which the number of EVs is not fixed,
and the vehicles sequentially join the system by best
responding to the current state of the system. In that
regard, the results of [41] seem to be a good starting
point.

e One can extend our model to the case in which there
is a capacity constraint on the stations. While this can
be remedied up to some extent by assuming that the
rate of process of each station is proportional to its
capacity, however, full analysis of the EV game under
hard capacity constraint is an interesting direction of
research.

e Finally, studying the EVs’ behavioral decisions in
the presence of mixed-strategies is very interesting.
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In such scenarios, uncertainty will stem, not only
from ground loads but also from EVs’ probabilistic
decisions. Therefore, one would expect to observe
more deviations between PT and CGT, as it has been
shown in [31] for a different grid setting.
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A Appendix

Lemma 1 Let OPT5 and N Ej3 be the energy terms as
defined in the proof of Theorem 2. Then

n

i=1 keQ,-\{i} k€Qgx\{1}
+8(\/7 + NEs + /7 + OPTs) + (6% + 4nb?,),

2
Zg % , and y:= 6% +nb?

max*

where bmax = max; b;, 62:=

Proof. let L} := ZkGQ; I7 be the aggregate load



induced by the optimal solution at station j. We have
OPT; — Z In ( bi )
° b + 1}

ﬁfﬁz:&—g@f—<

i=1 keQr,
7

Z Iy — gq;‘)z}

keQr\ (i}

(2 +2:( 2 - aa7))

keQr \{i}

=3 (1)

keQj

> (203 1)’

keQj

where the last inequality is by CauchySchwarz in-
equality. Now since for every ¢ we have [J < bpax and

In (bBT) > 0, using the above relation we obtain,
0PTy > 23" (5~ 2, 3o 3L —
j=1 j=1  j=1

Defining A := /> (L%)?, we can rewrite the above

inequality as A% — /Z 2A 2(nbZ,+OPT3) <0.

As this quadratic polynomlal is nonpositive, its discrim-
inant must be nonnegative. Thus

m
=>4
j=1

+2(nb?,,, + OPT3) = 2y + 20PTs > 0,

In particular, solving this quadratic inequality for A, we

obtain A < %(, /Z}":l gj? + v A*), or equivalently

(A.2)

where L; := Zkegj I, is the aggregate load induced by
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the NE at station j, and A := 2y + 2N E3. Now we have

S St hai) +§:m(b+ﬁﬂ

i=1 keQ,r\(i} keQ-\(i}

231 Y lk+Z(lf)2—2qu;lf+Zln (be)
i=1 i=1 L

=1 keQ \{i} =1

zzzn:z;ﬂ sz—Qiz; > I+ 0PTy

i=1 keng\{i} i=1 kGQ;f\{i}
=230 (Ly;
i=1
=2 I
=1

<4nbl,. +2> LiL;+OPT;
j=1

—lilyg=qry — (Lgr — l:-‘)) + OPTy

P = lilig—qsy) + 2 Li(L; — L}) + OPT;
j=1

<Anbl. +2,| > (L5)?Y L3+ OPTs
j=1 j=1

ng—i—\/A* ) + OPT;

< 4nb?

max

= OPT; + = \/@4’(5\/ \/

where the first 1nequahty is by 17, l; < bmax, Vi, the sec-
ond inequality is by Cauchy—Schwartz inequality, and
the last inequality is due to (A.1) and (A.2). Finally, by
substituting A = 2y + 2N E3 and A* = 2y 4+ 20PT5 in
the last expression above, and simplifying the terms, we
obtain the desired bound. [ |

)+ anb?, . + 62,

max

m 2

Lemma 2 Let §2:= aflf

and v:= 6% +nb2 . If

v Bl 0% 2
<4 /(= +1)(= 14+ — +4bZ,
r < JC a0+ S 4,
o | g
- - +1 A3
then we must have x < 3+ 12b2  + 9%.
— s
Proof. Let ¢ := 1 + ® 4 4%+ T,/% +1,
and p := /L +1+ f Then we can rewrite (A.3) as

r —q < py/7+ + x. Squaring both sides and solving for
x we obtain

1 Y
< S0 20+ py [P+ g+ 4.

(A4)
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Asp® +4q+42 < (p+ ?‘1 + p—l) , we can upper bound
(A.4) by z < p® +2¢ + L. Replacing the expressions for
p and q into this relation and simplifying we obtain

<3+ 8b2, + +4— 1+ +2f (A.5)

Finally, using 1 % + b2, into (A.5) and noting that

1+1< (% + bi’#‘/ﬁ)% we obtain the desired result. m
A.1 Proof of Theorem

Since {G;, j € M} are independent, so are their squares
{G?}, and we have E[3_7", G3] = 37", (113 + 073). Us-
ing Hoeffding bound for independent and non-identical
random variables we have

m m

{ZGQ Zu]+a)>mt}§exp(—

j=1

2mit>
).

Since PoA < ¢ + 4. 5(2;
E

), where ¢ = 3 + 1202

max’
(HJ +03) .
, we can write

(Z5)
n

by choosing ¢ =

P{PoA > ¢+ 1} <P

{Z’” Z V(13 4 07) + mt
n n
2mit?

W)' (A.6)

<exp (-

Now in order the probability in (A.6) to be less than

€, we need to have t > K ( ) . Finally, replacing the

expression for ¢ in this 1nequahty and solving for n, we
obtain the desired bound.

A.2 An Upper Bound for the Price of Stability

Here we use the potential function method as in [42,
Theorem 19.13] to derive an upper bound for the price
of stability (PoS) of the EV game, which compares the
social cost of the “best” NE over the optimal cost, i.e.,

mingene Y, Ci(a)

PoS =
05 ming Y ; Ci(a)

Proposition 6 For the linear latency and quadratic
pricing function, the PoS of the EVs’ interaction game

s 2ty

is upper bounded by PoS < 2(1 + b2

m a.X

}
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Proof. We show that the social cost C(a)
>~; Ci(a) has nearly the same structure as the potential
function ®(a). Using the linear latency function c.(x) =
acx+b., and the quadratic energy pricing f;(z) = 2,V
in the potential function (2), we get

P(a) = EZ (aen? + (ac + 2be)ne)+z 1951(1951+1)

2 2Jj

e j=1 i
bzl?lili)7

Y GEY L -2Y gL+ Y (5
j=1 j=1 j=1 i=1
(A7)

where L; := Zkegj lx. On the other hand, we have

Comparing (A.7) and (A.8), we can write

L@ < v < Cla)+ Y Y zz+zgj

j=1keQ;

+Zgg

+ nb?

max

< C(a)

Now let @ be the NE which minimizes the potential func-
tion ®(+), and a* be the optimal action profile. Then,

+Zgy

)+ nb?

C(a) < 2®(a) < 2®(a”) < 2(C(a” max

Therefore, dividing both sides by C(a*) > n, we get
C(a)

PoS < Clar)

<2(1+b2 Z;gf.).

max



