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Abstract

In this paper, a novel framework is proposed to enable a predictive deployment of unmanned aerial
vehicles (UAVs) as temporary base stations (BSs) to complement ground cellular systems in face of
downlink traffic overload. First, a novel learning approach, based on the weighted expectation maximiza-
tion (WEM) algorithm, is proposed to estimate the user distribution and the downlink traffic demand.
Next, to guarantee a truthful information exchange between the BS and UAVs, using the framework
of contract theory, an offload contract is developed, and the sufficient and necessary conditions for
having a feasible contract are analytically derived. Subsequently, an optimization problem is formulated
to deploy an optimal UAV onto the hotspot area in a way that the utility of the overloaded BS is
maximized. Simulation results show that the proposed WEM approach yields a prediction error of around
10%. Compared with the expectation maximization and k-mean approaches, the WEM method shows a
significant advantage on the prediction accuracy, as the traffic load in the cellular system becomes
spatially uneven. Furthermore, compared with two event-driven deployment schemes based on the
closest-distance and maximal-energy metrics, the proposed predictive approach enables UAV operators
to provide efficient communication service for hotspot users in terms of the downlink capacity, energy
consumption and service delay. Simulation results also show that the proposed method significantly

improves the revenues of both the BS and UAV networks, compared with two baseline schemes.
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I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) as flying base stations (BSs) has attracted growing
interest in the past few years [1]-[8]. UAVs can be deployed to complement the existing cellular
systems, by providing reliable wireless services for ground users, to potentially increase the
network capacity, eliminate coverage holes, and cope with the steep surge of communication
needs during hotspot events [1]. Compared with the terrestrial BSs that are deployed at a fixed
location for a long term, UAVs are more suitable for temporary on-demand service [3]. For
instance, UAVs can provide communication service for major events (e.g. sport or musical events)
during which the terrestrial network capacity is often strained [4]. Furthermore, UAVs can adjust
their positions and establish line-of-sight (LOS) communication links towards ground users, thus
improving network performance [5]. Due to their broad range of application domains and low
cost, UAVs is a promising solution to provide temporary connectivity for ground users [6].

However, the UAV deployment for on-demand cellular service faces several key challenges. For
instance, UAVs are strictly constrained by their on-board energy, which should be efficiently used
for communication. However, the on-demand deployment requires UAVs to continuously change
their positions to meet instant communication requests. Therefore, most of on-board energy
can be consumed by mobility, thus limiting their communication capabilities [1]. Moreover,
to effectively alleviate network congestion during a hotspot event, the deployed UAV must
have enough on-board power to satisfy the downlink communication demand. To allocate a
qualified UAV with sufficient energy, the network operator should estimate the required transmit
power, based on the real-time traffic load. These challenges, in turn, motivate the need for a
comprehensive prediction of cellular traffic, and a predictive approach for UAV deployment [9].
To this end, machine learning (ML) techniques can be applied to estimate the cellular traffic
demand within the target system. Given the predicted traffic load, each BS can detect hotspot
areas and request suitable UAVs to alleviate network congestion.

Another challenge of the on-demand deployment for aerial wireless service is to incentivize
cooperation between the ground BS and the UAV operators under the asymmetric information. As
shown in [10], the ground BSs and UAVs can belong to different operators who seek to selfishly
maximize their individual benefits. Hence, to request a UAV’s assistance, a ground BS must offer
an appropriate economic reward to the UAV operator for aerial wireless service. However, given

that the BS has no prior knowledge of each UAV, there is no guarantee that the requested UAV is



able to provide enough transmit power to satisfy the downlink demand. Therefore, designing an
incentive mechanism is necessary to ensure a truthful information exchange between the UAV

and BS systems, when the information among different network operators is asymmetric.

A. Related Works

The optimal deployment of UAVs for cellular service has been studied in [11]-[13]. In [11],
the authors studied the optimal locations and coverage areas of UAVs that minimizes the transmit
power. The work in [12] derived the minimum number of UAVs needed to satisfy the coverage
and capacity constraints. In [13], the authors jointly optimized the UAV trajectory and the network
resource allocation to maximize the throughput to ground users. The problem of traffic offloading
from an existing wireless network to UAVs has been addressed in [14]-[17]. In [14], the allocation
problem of UAVs to each geographic area was investigated to improve the spectral efficiency
and reduce the delay. In [15] and [16], the authors optimized the trajectory of UAVs to provide
wireless services to the cell-edge users. In [17], an unsupervised learning approach was presented
to solve the deployment of a fleet of UAVs for traffic offloading. However, most of the existing
works [11]-[17] assumed that the traffic demand of the cellular users is known a priori, which is
challenging to estimate in a practical network. Furthermore, the works [11]-[17] optimized the
performance of the cellular network in a centralized approach which assumes all UAVs belong to
the same entity. Given the fact that the UAVs can belong to multiple operators, a new framework
is needed to consider the individual utility of UAVs in the aerial communication service, while
optimizing the performance of the ground cellular networks.

Meanwhile, in [18]-[20], a number of ML approaches are proposed to predict the traffic
demands of cellular networks. In [18], a prediction framework is proposed to model the cellular
data in the temporal and spatial domains. The authors in [19] predicted the locations of users
during daily activities, based on pattern modeling. The work [20] provided surveys that focused
on the general use of ML algorithms in cellular networks. Furthermore, the prior art in [21]-[23]
studied the use of ML techniques to improve the performance of UAV-aided communications.
In [21], an ML framework based on liquid state machine is proposed to optimize the caching
content and resource allocation for each UAV. In [22], the authors investigated an ML approach
to construct a radio map for autonomous path planning of UAVs. In [23], ML algorithms are
applied to detect aerial users from the ground mobile users. However, most of the works in

[18]-[23] aim to build an ML model to predict regular traffic patterns, while hotspot events



are considered as an anomaly and excluded from these studies. In fact, none of the approaches
proposed in [18]-[23] can effectively identify the hotspot areas or accurately predict excessive
traffic load during the hotspot event. Thus, results of these prior works cannot enable a predictive

UAV deployment for on-demand cellular service to alleviate the traffic congestion.

B. Contributions

The main contribution of this paper is a novel framework for optimally deploying UAVs to
assist a ground cellular network in alleviating its downlink traffic congestion during hotspot
events. The proposed framework divides the deployment process into four, inter-related and
sequential stages: learning stage, association stage, movement stage, and service stage. For each
stage, we evaluate the performance of the proposed framework, using an open-source dataset in
[24]. Our main contributions include:

« A novel framework, based on the weighted expectation maximization (WEM) approach, is
proposed to predict the downlink traffic demand for each cellular system in the learning
stage. The proposed WEM method is a general version of the conventional expectation
maximization (EM) algorithm, which enables a variable weight at each data point in the
distribution modeling. In particular, the proposed approach identifies the user distribution,
predicts the cellular data demand, and pinpoints the hotspot areas within the cellular system.

o In the association stage, to employ a UAV with sufficient on-board energy to satisfy
the downlink demand, the framework of contract theory [25] is introduced, where each
overloaded BS can jointly design the transmit power and unit reward of the target UAV. We
analytically derive the sufficient and necessary conditions needed to guarantee a truthful
information exchange between the BS and UAV operators. The proposed contract approach
yields little communication overhead and exhibits a low computational complexity.

o Simulation results show that the mean relative error (MRE) of the proposed ML approach
is around 10%. Compared with two baselines, an EM scheme and a k-mean algorithm, the
proposed method yields a better prediction accuracy, particularly when the downlink traffic
load in the cellular system becomes spatially uneven. Furthermore, simulation results show
that the designed contract ensures a non-negative payoff of each UAV, and each UAV will
truthfully reveal its communication capability by accepting the contract designed for itself.

o We evaluate the performance of the proposed approach with two event-driven allocation

methods, based on the closest-distance and maximal-energy metrics, that deploy a target



UAV after the network congestion occurs, without traffic prediction and contract design.
Numerical results show that the proposed predictive method enables UAV operators to pro-
vide efficient downlink service for hotspot users, in terms of the downlink capacity, energy
consumption, and service delay. Moreover, the proposed method significantly improves the

economic revenues of both the BS and UAV networks, compared with two baseline schemes.

The rest of this paper is organized as follows. In Section II, we present the system model.
The problem formulation is given in Section III. In Section IV, the ML approach is proposed
to predict downlink traffic demands. In Section V, the feasible contract is designed with the
optimal UAV being employed to offload the cellular traffic. Simulation results are presented in

Section VI. Finally, conclusions are drawn in Section VII.

II. SYSTEM MODEL

Consider a set Z of I cellular BSs providing downlink wireless service to a group of user
equipments (UEs) in a geographical area A. Each BS ¢ € 7 serves an area .4;, such that
UviezA; = A, and A; N A, = 0 for any 7 # k € Z. The spatial distribution of the served UEs
for each BS i is denoted by f;(y), where fyeAi fily)dy = 1. A set J of J flying UAVs can
provide additional cellular service, if the hotspot events happen in the ground cellular network.
We assume that the group BSs and UAVs belong to different network operators, and different
frequency bands are used for the ground and aerial downlink transmissions, separately. A single
antenna is equipped at each UE that can receive signals from both the ground BS and the UAV.
Initially, a UE will connect to one of the ground BSs. However, as shown in Fig. 1, if a ground
BS ¢ € 7 is overloaded in the downlink, BS ¢ can request the assistant of a UAV to offload
the service of some UEs. We assume that a UAV only serves the UEs of a single BS at each
time, while each BS can employ multiple UAVs, based on the cellular traffic demand. In this
regard, if the downlink traffic demand at the level of a given BS is excessive, such that no single
UAV is capable to alleviate traffic congestion, then the BS will divide the offloaded UEs into
multiple spatially-disjoint sets, and request an individual UAV for each UE set, independently.
Meanwhile, each UAV is equipped with a directional antenna array that enables beamforming

transmissions [26]. As a result, interference between different UAV networks is negligible.



Fig. 1: The red BSs are having excessive traffic load in the downlink, thus each red BS requests a UAV to offload

a part of UEs to the aerial cellular system.

A. Air-to-ground downlink communications

The path loss of the air-to-ground communication link from a typical UAV located at € R3

to a typical ground UE that is located at y € R? can be given by [27]:

hldB) (. y) = 20log (M) + € y). ()

where f. is the carrier frequency of UAV downlink communications, ||z — y|| is the UAV-UE
distance, ¢ is the speed of light, and {(x,y) is the additional path loss of the air-to-ground
channel, compared with the free space propagation. The value of £(x,y) can be modeled as a
Gaussian distribution with different parameters (uros, 02os) and (pnLos, O os) for the LOS and
non-line-of-sight (NLOS) links, respectively. Then, the achievable data rate from a UAV j € J
located at x; to a UE located at y € A; is

9(333', y)Pj ) )

rij(x;,y,p;) = wlog, (1 + h(@,,y)wne

where w is the downlink bandwidth of each UAV, g(x;, y) is the antenna gain of UAV j towards

the UE located at y, p; is the transmit power of UAV j, h(azj, y) is the path loss in linear scale,

and n is the average noise power spectrum density at the UE. The probability of having a LOS

link between UAV j located at x; and the UE located at y is given by [28]:
1

T+ aexp(—b[ (@), y) — a])

where a and b are constant values that depend on the communication environment, ¢(x;,y) =

PLos(iL'j, y) 3)

sin_l(llmf—_jy”) is the elevation angle, and H; is the altitude of UAV j. Consequently, the average

downlink rate between a UAV j and a UE at y € A; will be:

7ij (25, y.p;) = Pros(x;,y) - 11> (x5, y,p;) + (1 — Pos(;, y)) - riy (x5, 9.p5). 4



TABLE I: Summary of our notations

Notation | Description Notation | Description

I,J Number of BSs and number of UAVs tij Movement time of UAV j to the service location of BS ¢

T Interval of the UAV’s offloading service Tij Average rate of UAV j to each hotspot user of BS i

Y Location of a ground user Cij Average rate of UAV j to all hotspot users of BS 7

T, mfj Current location of UAV j, and service location of UAV B;; Amount of data that UAV j provides to all hotspot users
7 associated with BS 1 of BS ¢ within one T

fi, Si User distribution and data demand distribution of BS ¢ Pi» P Average rate demand per user/ hotspot user of BS 4

A;, A$ | Service area and hotspot area of BS 4 Ui Utility of BS 4 by employing UAV j

Qi, QF | Number of all users and number of hotspot users of BS ¢ R;; Utility of UAV j by providing offloading service to BS 7

d; Data demand of hotspot users within one 7" of BS ¢ 05 Type of UAV j with respect to BS ¢

D; Transmit power of UAV j w, T Weight vectors in the user and demand distribution models

Uj Unit payment of BS 7 2 Mean and covariance of Gaussian distribution

In order to serve multiple downlink UEs, each UAV applies a time-division-multiple-access
(TDMA) technique' that divides the time resource evenly among all served UEs, and all band-
width will be allocated to one single UE during each time slot [29]. By using suitable uplink
control signals, the UAV-UE channel can be accurately measured, and thus, the beamforming of
UAV’s antennas can be properly optimized towards the served UE. Consequently, the average
rate that UAV j can provide to the hotspot UEs from BS ¢ will be

Cij(zj,pj) = /AC rij(xj,y,p;) [ (y) dy, ®)

K3

where AS C A; is the hotspot area, ff(y) is the normalized spatial distribution of UEs within
A¢, and [ e [ (y)dy = 1. When downlink congestion occurs, BS i detects the congested area
A¢ and offloads the UEs within A{ to the target UAV.

B. UAV deployment process

Given the average downlink rate of each UAV in (5), the next step is to deploy suitable UAVs
to offload the traffic and alleviate the downlink congestion in the ground cellular network. To
facilitate the analysis, we assume that the service interval of each UAV a constant 7. As shown
in Fig. 2, the deployment process has four sequential stages: learning stage, association stage,

movement stage, and service stage. The details of each stage are given as next:

'The focus of this work is on the deployment stage and, hence, we do not optimize the multiple access scheme type or

operation. Optimizing multiple access can be done post-deployment and will be subject to future work.
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Fig. 2: Flowchart of the proposed UAV predictive deployment process for each BS (left) and each UAV (right).

1) Learning stage: For each BS ¢ € Z, once the downlink traffic exceeds its network capacity,
a learning stage with a fixed duration 7 starts. During 7, BS ¢ collects the transmission record
S; = {(s,y,t)|ly € A;,t € [At,2A¢t,--- 7]}, where s is the data rate that BS i provides to
the UE located at y at time ¢, and At is the time slot during which the downlink rate can
be considered to be constant. Given that the hotspot area AS and the UE distribution f;(y) is
unknown, a learning stage is necessary for BS 7 to estimate the spatial distribution of UEs and the
traffic demand of the on-going hotspot event. Considering common events, such as sport games
and outdoor concerts, where mobile users are often confined to seat or geographically constrained
spaces, the mobility of hotspot UEs is scarce. Thus, we assume that the UE distribution f;(y)
during one 7' is time-invariant. Furthermore, to estimate the traffic demand within the congested
area, a spatial density function S;(y) is proposed to evaluate the average data rate per UE at each
location y € A;. The proposed approach for estimating the UE distribution and traffic demand
will be discussed in Section IV. Consequently, the total data demand d; from a hotspot area A§
during a time interval 7" will be given by:

t+T
d; =/ / Si(y) dydt:T/ Si(y) dy. (6)
t yeAS

YeAS
Next, the BS will estimate the necessary number of UAVs to alleviate downlink congestion

and calculate the optimal service location of each target UAV. Following from [2, equation (42)]



and [11, equations (10) and (11)], given the UE distribution f{(y) and the hotspot area A¢, the

()

optimal location x;; of a target UAV j in serving BS ¢ can be derived in a way to minimize
the transmit power p;;(x];, pf), while satisfying the average rate requirement p§ per UE. The

average rate per UE is defined by the ratio of the sum data rate within the hotspot area A over

_ _d;
= 705

target UAV can be calculated by BS i, prior to the UAV’s deployment. We define pp.x to be

the total number of hotspot UEs ()¢, where pf Thus, the optimal service location of the
the maximum transmit power of each UAV, which is limited by the antennas’ hardware, and
n € (0,1) to be the ratio of efficient transmission time to the service time 7, due to the signal
overhead and the channel measurement process. If d; > nTCij(a:;f‘j, Pmax)> then even though a
UAV is located at the optimal service point x;; and it applies the maximum transmit power
Pmax, the downlink demand d; cannot be satisfied. In this case, using a single UAV j € J is
no longer sufficient to offload the hotspot traffic. Therefore, BS ¢ will evenly divide the hotspot
area A¢, based on the downlink data demand, into N disjoint areas {A$(n)},—1.. n, where

fy €A (n) Si(y)dy = %, and N is the smallest integer needed to guarantee that, for each subset

n=1,---, N, the following requirement holds:
d; .
dz(n) = N < nTCij(wij(n)apmax)- (7)
For each n = 1,--- | N, BS 7 will deploy a UAV onto the service point z;;(n) to offload the

downlink traffic with the subarea .4;(n). The requests of multiple UAVs to different subareas
are sequential and independent at each round n =1,--- , N.
2) Association stage : In the association stage, each overloaded BS i requests the assistance

of a UAV, by broadcasting a signal with the downlink demand d;(n) and the service location

x;;(n) for each subset n. A first-call-first-serve scheme is applied, and each BS i € Z will listen
to the broadcast channel before sending the signal. If the channel is occupied by another BS,
then BS ¢ will wait until the on-going association is completed. For each BS ¢, the goal is to
request a UAV that has enough on-board power to meet the downlink demand d; of UEs within
AS. The optimal UAV association to each overloaded BS will be studied in Section V.

3) Movement stage: After the association stage, the selected UAV j starts to move from its
current location x; to the service point «;; of its target BS 7. The duration ¢;; of the movement
stage depends on the distance |x; — ;|| and the average speed v; of UAV j.

4) Service stage: Once it reaches the service point, UAV j will provide downlink communica-

tions to its group of associated UEs for a time period 7'—t;;. Note that, during the movement and



service stages, the employed UAV is fully dedicated to its associated BS. Thus, the UAV cannot
be requested by any other BSs until the end of its current service. Furthermore, to guarantee
a sufficient service time, the maximum travel time of UAV j is limited by ¢;; < x;7T, where
ki € (0,1). If the travel time exceeds «;7’, UAV j is not a potential choice for BS i.

After the service stage ends, the BS-UAV association will end. Then, UAV j; will listen to
the broadcast channel, if its remaining on-board energy F; can support another service period
T'; otherwise, the UAV will move to a nearby recharging station. We assume that a number
of recharging stations are deployed, such that a UAV can access a recharging station within a
short flight time from any location in A. Thus, the movement energy to a recharging station is
negligible to effect the BS-UAV association results. In order to optimally associate UAVs to each
overloaded BS, we first define a utility function that each BS aims to maximize when selecting
a UAV to offload cellular traffic in Section II-C. Next, the UAV’s utility function is given in

Section II-D that defines its economic payoff from serving a ground BS.

C. Utility function of a ground BS

In TDMA downlink transmissions, the employed UAV j evenly divides the service time T —1;;
to each hotspot UE. Therefore, based on the average downlink rate in (5), the achievable data

amount that UAV j can provide to the UEs of BS 7 is

Bij(p;) = n(T" — ti;)Ci;(p;)- (®)
Note that, the movement duration ¢;; and the transmit power p; are private information for UAV

J, and, thus, BS ¢ cannot know their values during the service request process. Then, the utility

of BS 7, by employing UAV j to offload the excess cellular traffic, will be:

Uij(ui, pj, di) = BBij(p;) — ud;, )
where (3 is the payment from UEs to BS ¢ (per bit of downlink data), and wu; is the unit payment
that BS 7 gives to UAV j (per bit of aerial data service). Thus, the first term in (9) represents

the reward that BS 7 gets from its UEs by employing UAV j to provide aerial cellular service,

and the second term is the total payment that BS 7 gives to UAV j.

D. Energy model and utility function of a UAV

In the considered problem, the power consumption of each UAV consists of three main

components: the transmit power p;, the propulsion power m, and the hovering power pj,. For



tractability and as done in [30], we ignore the acceleration and deceleration stages during the
UAV’s movement, and the propulsion power m is considered as a constant for a fixed flying
speed. Then, the travel time ¢;; can be uniquely determined based on the moving distance
|z; — xj;||. During the service stage, the maximum available power that UAV j can use for
max _ Ej—mtij—pn(T—ti;)

downlink transmissions will be pii** = g
ij

, where mt;; is the energy consumed
during the UAV’s movement, and p;, (7" — t;;) is the hovering energy during the service stage.
Therefore, we have the transmit power p; € [pi;(;, pf), min{pji*™, Pmax }], Where pj;(x;;, pf) is
the minimum required power to satisfy the downlink data demand, and p,.x is the maximum
transmit power. Without loss of generality, we assume that p;;(x};, pf) < min{pJi™, pmax} holds.
Otherwise, UAV j is not a potential option for BS 7. Consequently, the utility that a UAV j € J

can achieve from providing the aerial cellular service to the UEs of BS ¢ will be:
Rij(ui, pj, di) = uid; — ap;j(T — tiz) + pr(T — ti5) +mtij), (10)

where « is a unit cost per Joule of UAV’s on-board energy. The first term in (10) is the reward

that UAV j obtains from BS ¢, and the second term is the energy cost.

III. PROBLEM FORMULATION

The objective of an overloaded BS is to employ a suitable UAV with sufficient on-board power
to offload excessive cellular traffic, while maximizing the utility function in (9). Meanwhile, the
goal of each UAV is to optimize its utility in (10). However, by comparing (9) and (10), we realize
that arg max,, ;. U;; = arg min,, ;. R;; and argmax,, ,. R;; = argmin,, ;. U;. Therefore, each
BS-UAV pair has conflicting interests. Given that the BSs and UAVs belong to different operators,
each will maximize its own utility. The conflict between each BS and each UAV is irreconcilable.

Meanwhile, since the values of the unit payment u; and the data demand d; will be broadcast
by BS ¢ during the association stage, each UAV j has all necessary information to determine
its utility. However, BS i cannot easily acquire some private information of each UAYV, such as
its current location and onboard energy, which causes the asymmetric information. Since private
information of each UAV determines its travel time to a BS and the downlink communication
capacity, it is essential for the BS to have accurate information to evaluate the service performance
of each UAV. In order to guarantee a truthful information exchange, each BS ¢ can jointly design
(ui, pj) to ensure mutual benefit for both the BS and UAV operators, so that the conflict of interest

can be properly resolved. Therefore, we let ¢;; = (u;,p;) be a traffic offload contract, which



captures the values of p; and u; if BS ¢ employs UAV j to offload its hotspot UEs. In order to
understand the relationship between the unit payment u; and the transmit power p;, we divide
both sides of (10) by a(7" — t;;) and rewrite the utility of UAV j as follows:

Rij(uiapja di) = ]

e el — Dh,
O((T-tw) J T—t” (11)

= Oiju; — p; — My,

and M;; = "l 4 p, are determined for each BS-UAV pair.

where the values of 0;; = T
ij

d;
OL(T—tij)
Since ¢;; determines the sensitivity of [7;; to the increase of w; and p; in (11), its value is

essential for the joint design of (u;,p;). Therefore, we define 6,; as the rype of UAV j with

di d;
aT? a(l—k;)T

respect to BS 4, where 0;; € O; = | |. Note that, due to the privacy of ¢;;, the type
¢;; of each UAV j € J is unknown for BS . In order to design the contract without knowing
each UAV’s type, before broadcasting the request signal, BS ¢ will design a set of contracts
®;(0:) = {¢4(0:)V0;;} = {(ui(03;),p;(05))[V0;;} for all UAV types 6;; € ©;, where u;(0;)
represents the payment that BS 7 pays to UAV j per bit of data, given that UAV j is of type
6;;, and p;(0;;) is the transmit power that UAV j of type 6;; provides to serve BS i. Then, (11)
becomes R(0;;) = 0;;u;(6;;) — p;(0:;) — M;;. Meanwhile, to ensure that a UAV will accept the
contract of its own type, two constraints, based on contract theory [25], must be considered,

which are individual rationality (IR) condition and incentive compatibility (IC) condition.

Definition 1 (Individual Rationality). A contract designed by BS i satisfies the IR constraint,
if a UAV of any type 0;; € ©; will receive a non-negative payoff from BS i by accepting the
contract item for type 0;;, i.e. 0;;u;(0;;) — p;(0;;) — M;; > 0, Vb,; € ©,.

A contract satisfying the IR condition guarantees that the reward that each UAV j € J can
obtain from serving BS i is great than or equal to zero. Compared with the non-employed state in
which the payoff is always zero, each UAV is willing to accept the contract from the requesting

BS, as long as its contract satisfies the IR condition.

Definition 2 (Incentive Compatibility). A contract designed by BS 1 satisfies the IC constraint,
if a UAV of type 0;; will get the highest utility from BS i by accepting the contract designed
for its own type 0,;, compared with all the other types 0 in ©,, i.e. 0;;u;(0;;) — pj(0;;) — M;; >
0;5u;(0) — p;(8) — M;;, VO € ©,.



A contract satisfying IC condition guarantees that each UAV j will only accept the contract
designed for its own type 6;;, since accepting the contract of any other type 6 € ©; will result in
a lower or the same reward. A contract satisfying both IR and IC conditions is called a feasible
contract, which ensures the UAV will accept and only accept the contract designed for its type.

Consequently, for each overloaded BS ¢ € Z, the objective is to maximize its utility in (9),
by estimating the downlink data demand d; within the hotspot area .A{, designing the contract
set ®; for each UAV of any type in ©;, and determining an optimal UAV j € J to offload the

excessive cellular service. We formulate this predictive UAV deployment problem as follows,

PO /i IO (ui(0i;), p; (05), i), (12a)
s.t. Ry(6;) >0, (12b)

Ry;(0,) > Ry;(6),¥0 € O, (12¢)

pij(xi;, p7) < pj(0i5) < min{pj}™, pmax}, (12d)

by < KT, (12¢)

d; > 0,u;(0;;) > 0. (12f)

The objective function (12a) is the utility that BS ¢ obtains from employing UAV j of type 0;;.
(12b) and (12c) are the IR and IC constraints, respectively. (12d) is the constraint on the transmit
power, and (12e) limits the maximum travel time. (12f) imposes a positive downlink demand
within A¢, and a positive unit payment. Here, (12c) itself is an optimization problem, which must
be first addressed to satisfy the IC condition. Since the selection of 6;; will jointly determine
the values of the objective function and all constraints in (12), ¢;; becomes the key variable to
find the optimal association result. To simplify the optimization problem (12), we first derive
the necessary and sufficient conditions for IC and IR constraints, based on the UAV type 0;;,
which essentially reduces to the problem of designing a feasible contract. Consequently, to solve
the predictive UAV deployment problem in (12), first, a learning-based approach is proposed to
predict the downlink demand d; in Section IV. Next, the traffic offload contract ®; is developed
in Section V, with the optimal UAV being selected to maximize the utility of BS 1.

IV. LEARNING STAGE: ESTIMATION OF CELLULAR TRAFFIC DEMAND

In this section, our goal is to estimate the UE distribution and the downlink data demand during

a hotspot event. This estimation is necessary to solve (12) because the data demand d; is needed



to determine the type ¢;; of each UAV j with respect to BS . To enable an accurate modeling, BS
1 collects the downlink transmission records during the learning stage. For notation simplicity,
let N be the total number of records, and S; can be rewritten as {(s,,y,,,t,)n =1,--- N}
In Section IV-A, we extract the spatial distribution f;(y) of the downlink UEs, and then, in
Section IV-B the downlink data rate S;(y) is modeled and the hotspot area A is determined.
Consequently, the downlink data demand d; can be given by (6).

A. Estimation of the UE distribution

Given S;, BS ¢ can model the UE distribution, using the location information ) = {y,, -+ ,yy}-
We assume that each UE’s location follows a latent distribution f;(y), and each y, is an
independent sample from this distribution. A Gaussian mixture model (GMM), which is the

weighted sum of multiple Gaussian distributions, can model the UE’s distribution, as follows:

L
Fiy) =) wN (yl, Z), (13)

=1
where L is the number of Gaussian distributions, and w; € (0,1), p;, and X, are the weight,
mean and variance of the [-th Gaussian, respectively, with >, w; = 1. The value of w; represents
the probability that the data point y is generated by the [-th distribution. GMM has been widely
applied in [31]-[33] to model the distribution of a latent variable based the sampled data. Due
to its special feature of multiple clusters, GMM is particularly appropriate to model the UE
distribution in the congested area, where each hotspot area corresponds to a Gaussian center.
Given the location record ), the expectation-maximization (EM) algorithm [33] is applied to
optimize the parameters {wy, pt;, £ }—1... £ in (13) via an iterative approach, which maximizes a
log-likelihood function Inp(Y|w, p, £) = In IV, (Zle wiN (| s 2,)) . After initialization,
the EM algorithm alternates between the E and M steps. First, in the E step, the posterior

probability that y,, is generated by the [-th Gaussian is calculated by

Uy = wl'/\/(yn“’l’l? El) . (14)

2521 wN(y,|p., 2:)
Then, in the M step, the parameters are updated using the posterior probability (14) by

_ _ T
= 2 Unt¥n gy D Ut~ )Y = ) X Vet 1s)
Zn Uni Zn Unl N

After each EM iteration, the updated parameters will result in an increase of the log-likelihood

function, and the algorithm is guaranteed to converge to a local optimum [33].



B. Estimation of the downlink data rate

In order to predict the downlink demand d;, each BS 7 needs to capture the spatial feature of the
cellular traffic. Based on the assumption of the time-invariant data demand, we define the traffic
density S;(y) at each location y € A; as the time-average downlink rate at y during the learning
stage, where S;(y) = 1 3, ,1.)es, SnAt. In order to generate a continuous model S;(y) that
captures the spatial features of the downlink traffic density, a Gaussian mixture function (GMF)

is proposed as follow,

Sz<y) _ Zﬂ-kexp <_<y_:u‘k)TEI; (y_.u‘k)) : (16)

2

where K is the number of basis functions, and 7, p;, and 3 are the coefficient, mean and
variance of the k-th Gaussian function. Thus, the traffic density at location y is modeled by the
sum of K Gaussian functions with coefficient {mj}i—1.. k.

Note that, the GMF in (16) is different from the GMM in (13). First, a GMM has a probabilistic
interpretation, while a GMF is a deterministic function that calculates the traffic density at each
location y by adding the values of K Gaussian functions with different coefficients. Second,
the sum of each coefficient 7, in GMF represents the total volume of downlink traffic demand.
Thus, it is always greater than one, which make a difference from the unit weight-sum in GMM.

To properly model the downlink traffic density S;, the parameters {7, fy,, Xk fr=1,.. x in (16)
need to be optimized. Since the EM method associates the same weight to all data points, it is
not suitable to the traffic density modeling, because each data point y,, can have a different traffic
density S;(y,,). In order to adapt the weight of each location y,, in determining the parameter
values according to the traffic density S;(y,,), as well as to capture the spatial diversity of the
traffic load within the cellular network, a weighted expectation maximization (WEM) algorithm
is proposed to optimize the parameters in the traffic density model S;(y).

In the proposed WEM method, the initial value of each Gaussian center pu, is the location y,
that has the k-th highest traffic density in S;(y). The initial variance 3, equals the identity matrix
with the equal weight 7, = + >y Si(y). Then, the WEM algorithm updates {7z, oy, Z¢ br=1... k0

via an iterative approach. In the E step, the percentage that each Gaussian function % contributes

: . : : _ N(Ypltte,Ek) .
to the traffic density at location is evaluated via v, = —p—Ynllk . Next, in the M
y Yn nk Sreq N (Y g S

step, the parameters of each Gaussian function will be updated in a weighted approach, where



the mean p,, is recalculated via

F vanksz(yn) ’

which is a sum of all locations y,, € ), weighted by the posterior probability v, and the traffic

7)

density S;(y,,). Thus, a location y,, with a higher traffic density S;(y,,) will have a higher weight
in determining the value of p;, and the center of Gaussian k£ will gradually be driven closer
to the high-density locations. Similarly, the variance 3, and the linear coefficient m; of each

Gaussian function is also updated, with weights S;(y,,), by

> Uk (Y — 1) (Y, — )" Si(y,) > UnkSi(Y,,)

Y= = , T = = .

Furthermore, similar to the EM approach, a WEM method will converge to a local optimum,

(18)

which maximizes the weighted conditional log-likelihood function [1].

Although the EM and WEM methods have similar mathematical expressions, the physical
meaning and iterative process are fundamentally different. First, different from the unit sum-
weight in (13), the weight-sum of the WEM method represents the total volume of the downlink
data demand, which can be any positive value. Second, when updating the Gaussian parameters,
the proposed WEM method considers the traffic density at each location and assigns a higher
weight to the location with higher demand in the density model. In contrast, EM method
associates each point with an equal weight. Thus, the spatial diversity of the traffic load cannot
be properly captured. Therefore, the proposed WEM approach expands the application range of
the EM scheme, and can be seen as a general version of EM, which models the distribution with
a variable weight at each data point.

The hotspot area A is a location set in which the traffic destiny is much higher than other
locations in A;. Given the traffic density model S;, the average traffic density in 4; is given
by §; = ﬁ fy 4, i(y) dy, where [A;| denotes the area of A;. Then, by calculating the traffic
density at each Gaussian center {pt; }r—1.. r, the mean pj with the highest traffic density is
chosen, and its neighborhood area, where the traffic density is higher than 5; forms the hotspot
area A{. The downlink UEs within A will be offloaded to the aerial cellular network. Based
on the traffic density model S;(y) and the hotspot area A, the predicted data amount d; for a
time interval I’ can be calculated based on (6).

Given the downlink traffic demand d; and the UE distribution f;(y), all variables in (12) have

determined values, except for the unit payment u; and the transmit power p;. Next, in order



to to solve (12), we will jointly decide the value of (u;,p;), by designing the feasible contract

between an overloaded BS ¢ with each UAV j € [J.

V. ASSOCIATION STAGE: CONTRACT DESIGN AND UAV ALLOCATION
A. Contract design

Given the predicted traffic demand d;, a BS ¢ € Z can request UAVs to offload the UEs
within the hotspot area A, so that the future downlink congestion can be alleviated. However,
to employ a qualified UAV to meet the downlink demand, each BS needs to carefully design
the contract ®; = {(u;(0;;),p;(6i;))|Vb;; € ©;} for UAVs of any type 6,;. The feasible contract
satisfying the IR and IC conditions can guarantee that each UAV j € J will accept the contract
designed for its own type and provide the required downlink transmissions. To develop a feasible
contract set, we first analyze the sufficient and necessary conditions for a feasible contract.

!

13’

Proposition 1. [Necessary Condition] For any 0;;, G;j €0, ifb,; >0
and p;(0;;) > p;(0;)-

then u;(0;;) > ul(Q;j)

Proof. See Appendix A. 0

Proposition 1 shows that for a typical UAV j, if its type with respect to a typical BS 7 increases

from H;j to 6;;, then it will receive a higher unit payment u;(6;;) > ui(egj), and in return, it

d;
a(Tftij) ’

should provide a larger transmit power p;(6;;) > pj(Q;j). Given that 0,; = a higher type
¢;; indicates either a higher downlink demand d;, or a longer travel time ¢;;. In the first case, if
the downlink demand is higher, the employed UAV must increase the transmit power to satisfy
the larger traffic needs. Thus, p;(6;;) will increase. On the other hand, if UAV j travels for a long
time ¢;;, it consumes more energy on movement, which requires a higher unit payment wu;(6;;)
to compensate for the energy cost. Therefore, a UAV of a higher type is required to provide
more transmit power, and will be given a higher unit payment. The conclusion in Proposition 1

will lead to the necessary and sufficient conditions of a feasible contract, as shown next.

Theorem 1. A contract set ®; = {(u;(6;5),p;(0i;))|V0:;} satisfies IR and IC constraints, if and
only if all the following three conditions hold: (a) %ﬁ?j) > 0 and %f;j) >0, (b) 0™ (™) —

min dp; (0ij du; (045
pi(6"") — Mij > 0, (¢) Lt — g, S,

Proof. See Appendix B. 0



Theorem 1 gives the necessary and sufficient conditions for a contract set ®; to jointly satisfy
the IC constraint in (12¢) and the IR constraint in (12b). Therefore, each feasible solution of
Theorem 1 can guarantee that a UAV only accepts the contract designed for its own type, and
provides the required transmit power to meet the downlink demand. Here, we note that Theorem
1 results in a loose solution set. In essence, all of contracts from this solution set meet the
necessary and sufficient conditions of the IC and IR requirements, and, thus, they are optimal
in the contract-theoretic problem. Meanwhile, Theorem 1 provides each BS with more freedom
to choose the feasible contract based on its real-time communication need. In order to minimize
the communication overhead in the association stage, we aim to propose a contract with the
lowest complexity and the least broadcast overhead. Therefore, to enable an efficient BS-UAV

duz (07 )

association, we propose the best contract with = ; > 0. Consequently, the feasible

contract that is proposed by BS ¢ is given as follows.

d“l( Z])

Lemma 1. Under the condition that = ;, the feasible contract between BS 1 and a UAV

202T2py,

J of type by is ¢ij = (ui, p;) = (Vibij, 7ib; /2) where 7y; = &2

Proof. Based on M = ; and condition (c) of Theorem 1, we have u; = v;0;;, p; = %Q?j /2,

db;;
and condition (a) holds naturally. For BS i, the minimal UAV type is ™" = dT, when ¢;; = 0.
Therefore, condition (b) becomes v; > anvi; = %. Therefore, we set ~; = 2a djfph. O]

Therefore, for each overloaded BS i, the designed contract is (u;,p;) = (vibi;,7i05;/2) with
Vi = 2”2& for each UAV in J with any type 0;;.

i

B. The optimal UAV association under the feasible contract

Given the feasible contract set {(v;0;;,7:0;;/2)|V0;;}, the utility R;;(6;;) of each candidate
UAV j € J and the utility U;;(6;;) of the requesting BS 7 can be jointly determined. Then, the

optimization problem in (12) becomes

max Ui (6;5), (19a)
s. L. pij (w;‘ky plc) S p](em) S min{pzr]ldxapmax} (19b)
tij S KiT. (19C)

Therefore, BS ¢ aims to find a UAV of the optimal type 6;; that maximizes its utility in (19a),

while satisfying (19b) and (19c). In the association stage, after BS ¢ sends the request signal,



Algorithm 1 Proposed process for the UAV predictive deployment

For each BS ¢ € Z, once downlink communication exceeds the network capacity, do:
1. Learning stage:
(a) BS i collects S; to model the UE distribution f;(y), estimate the downlink traffic density S;(y), and detect
the hotspot area .A{ based on the WEM approaches proposed in Section IV.
(b) BS 7 calculates the downlink demand d; of the offloaded UEs via (6), estimates the number N of required
UAVs through (7), and computes the service point x;; for each target UAV j, based on the solution in [11].
2. Association stage: forn=1,--- | N:

(a) BS 7 listens to the broadcast channel. If the channel is occupied, wait; otherwise, BS 4 broadcasts the

20°T>py, .
dz (n)z )

(b) Each UAV j € 7 listens the broadcast channel. After receiving the request from BS 7, each UAV calculates

request signal with d;(n), };(n), ki, and ®;(n) = {7ifi;, 5-67;|v6;;}, where v; =
the movement time ¢;;, its UAV type 6;; with respect to BS 4, and the available transmit power p;;™* after
arriving at a:;‘j. If p;‘}“ > %9% and t;; < k;T, UAV j replies 0;; to BS ¢; otherwise, ignore.
(c) BS 1 identifies the feasible UAV set ;, and employs the optimal UAV j* = arg minjey, 0;;.
(d) If n = N, BS ¢ releases the broadcast channel; otherwise, go back to 2(a).
3. Movement stage: The employed UAV j* starts to move towards the service point of the requesting BS +.
4. Service stage:
(a) BS ¢ pays 7,0,;-d;, and offloads the UEs within A{ to UAV j*.
(b) UAV j* provides the downlink service with a transmit power p;- = % 07,. for a service time T" — t;;-.

2
End

each UAV j will respond with its type 0;;. Based on the derivation w#(j”‘)

< 0, the optimal
UAV is j* = argmaxjey, U(f;;) = argminjey, 0y, where Ji = {jlpi;(z5;, pf) < 367 <
min{p?;ax, Pmax }> tij < #;1'}. Thus, the qualified UAV with a smallest type is the optimal solution.
The complete process of the predictive UAV deployment is summarized in Algorithm 1.
Compared with conventional UAV deployment, the contract-based optimization has three
advantages. First, the proposed method not only reveals that the closest UAV is the optimal
solution, but it also optimally determines the amount of the payment that the BS should offer
the UAV, such that the utility of the BS can be maximized and the utility of the UAV is
non-negative. Second, based on IC constraint, each UAV will receive the highest utility by
accepting the contract designed for its real type. Thus, the use of contract theory allows us
to capture the economic incentive of each UAV, forcing it to truthfully tell the requesting BS

with its actual type, which is unknown to the BS a priori. Therefore, the proposed contract

approach guarantees a truthful information exchange between the BS and UAV operators, which
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the traditional optimization method cannot achieve. In the end, the proposed algorithm is more
efficient for practical implementation, due to less information exchange in the association stage.
In contrast, conventional optimization techniques will require all necessary information from
all UAVs for solving the centralized association problem. Hence, compared with traditional
optimization methods, our proposed algorithm reduces the communications overhead, exhibits
a lower communication overhead, and ensure a truthful information exchange between the BS

and UAV operators.

VI. SIMULATION RESULTS AND ANALYSIS
A. Simulation parameters

For our simulations, we consider a UAV-assisted wireless network in a dense urban environ-
ment, operating at the 2 GHz frequency with a downlink bandwidth of 20 MHz. The parameters
in the LOS probability model are a = 9.6 and b = 0.28 [28]. The Gaussian parameters of
the additional air-to-ground path loss are jios = 1.6 and o os = 8.41 for the LOS link while
pnLos = 23 and onLos = 33.78 for the NLOS case [27]. For the UAV parameters, based on
the specifications in [34], we set the mobility power m = 20 W with an average moving speed
of 5 m/s, and the hovering power is p, = 16 W. The maximal on-board energy of each UAV
is 25 Wh, and the battery recharge takes 10 minutes. The maximum downlink transmit power
1S Pmax = 20 W, and the unit cost for on-board energy is o = 1.2. For each UE, the noise
power spectral density is —174 dBm/Hz, and the data service per bit is 5 = 10~". For the UAV
deployment process, we set AT = 1 second, the learning duration 7 = 2 minutes, and the service
time 7" = 18 minutes. The ratio of efficient transmission in each time slot is 7 = 90%, and the

maximum ratio of the UAV’s movement duration over the time interval is «; = 0.1.

B. Dataset description and preprocessing

An open-source dataset “city-cellular-traffic-map” in [24] is used for the modeling, training,
and testing of the proposed UAV deployment framework. The dataset collects HTTP traffic data
through the cellular networks during each hour within a middle-sized city of China from August
19 to August 26, 2012. The dataset consist of two parts. One lists the identification number
(ID) and the location in longitude and latitude of each BS, and the other collects the number
of UEs, packets and traffic data that each BS transmits to downlink UEs during each hour. In

order to identify hotspot events in the dataset, we apply the discrete wavelet transform (DWT)
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(a) Two-level DWT components. (b) Normal traffic states and potential congestion events.

Fig. 3: Two-level DWT is applied to detect the cellular traffic congestion from a city level.

to the hourly cellular traffic in the city level. As shown in the upper figure of Fig. 3, the cellular
traffic within the city area presents a conspicuously periodic pattern, with several sudden and
erratic surges. DWT processes the time-serial data by analyzing both the value and frequency
components, where the lower-frequency component defines the long term trend, and the higher-
frequency component represents the small-scale rapid variation. A hotspot event usually causes
a steep surge in the traffic amount. Therefore, such rapid change can be captured by DWT in
the higher frequency domain. As shown in Fig. 3a, a two-level DWT is applied to detect the
frequency change of cellular traffic, and the gray bars mark the time points when the traffic
amount has a sudden increase. Based on the result, the dataset is separated into the normal
traffic data and the potential congested traffic, as given in Fig. 3b. Here, we find a time window
from 42 to 47, which is 18 to 23 p.m. on August 20, that shows a continuously high cellular
traffic amount, and the hotspot event is highly likely to happen during this period. Therefore, the
traffic data from 42 to 47 are used for the predictive UAV deployment in the following analysis.

However, the data in [24] does not include the location information of each UE, or the service
area of each BS. To identify the UE distribution and the traffic density, the location and time
labels are generated and attached to each transmission record via the following approach. First,
the service area A; of each BS i is partitioned, based on the closest-distance principle. Next, we
use the total packet number to denote the number of downlink transmissions. Furthermore, we
note that the original time label ¢ in [24] is based on one hour, which is too coarse to enable
our analysis. To extract the estimated data with a desired duration, a new label with a finer time
grain of one second is randomly generated and attached to each traffic record. Then, given 7 = 2

and 7" = 18, we divide each hour evenly into three intervals, such that the cellular data during
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Fig. 4: Statistical results and prediction errors in the learning stage.

first two minutes of each interval is used to model the UE distribution and downlink traffic, and
data from the following 18 minutes is used to estimate the UAV’s transmission performance.
Eventually, the location label y,, of each traffic record is generated by a GMM with random
parameters to which we add a zero-mean Gaussian noise with a standard deviation of three

meters. With additional location and time labels, the dataset is suitable for the studied problem.

C. Performance of the cellular traffic prediction

Fig. 4a shows that over 70% UEs receive, on average, one packet within every two minutes.
Thus, the transmission record S; that is collected during the learning stage (7 = 2 minutes) is
a representative training datase. In this simulation, the proposed WEM approach is applied to
predict the data demand d;, while the actual traffic demand d“¥ is calculated by summing up
the real transmission amount within .A¢. Here, the mean relative error (MRE) is the metric to
evaluate the prediction performance, where dyrg = Ei’t[m";—lzzual‘]. Meanwhile, we introduce the
EM and k-mean methods as baselines. First, the EM meth(;d has been used in Section IV-A for
modeling the UE distribution f;(y). Here, to predict the traffic demand using the EM method,
we have &M =T E,(s,) [, e Ji(y) dy. where B, (s,) = M is the time-average data rate
of all UEs, and fy e A fi(y) dy is the percentage of UEs within the hotspot area. Note that, this
is a commonly-used approach to estimate cellular data demand using the UE distribution and
the average rate requirement per UE in the cellular network [6]. The k-mean method predicts
the traffic density by averaging the local traffic density from k closest neighbors.

Fig. 4b shows the prediction MRE of the WEM, EM, and k-mean methods, where £ = 1, 3 and

10, as the average data demand pf of the hotspot UEs increases. Note that, pf = Qi yeAe Si(y)dy
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Qi JyeA;

rate demand of all UEs within the cellular network. When % = 1, each hotspot UE will have

is the average data rate per UE within the hotspot area, and p; = S;i(y) dy is the average
the same data demand as the other UEs. In this case, the WEM and EM approaches yield a
similar prediction accuracy with an MRE of 11%, and the prediction errors of k-mean methods
are between 12% and 12.5%. Note that, a prediction error of 11% yields lower than 0.1 W
of deviation on the value of p;(xj;, p;). Clearly, this is a very small value compared to the
hovering and transmit powers of a typical UAV. When the traffic load within different regions
of the cellular network becomes more uneven, the prediction error of WEM remains the same,
while the errors of the EM and k-mean methods gradually increase above 15.5%. Clearly, for
Z—f_ > 1, the proposed WEM approach outperforms all other baselines.

In the WEM approach, the traffic density S;(y) of each location y is considered when
optimizing the prediction parameters. Therefore, the spatial feature of downlink transmissions can
be accurately captured, and the performance of WEM does not decrease when the traffic load
in the cellular system becomes uneven. However, the EM model only considers the location
information, but ignores the downlink rate of each transmission. Therefore, when the traffic
demand shows distinct patterns in different regions, the EM method fails to capture the spatial
diversity, and its prediction error increases significantly. Given that the k£-mean method predicts
the cellular traffic by averaging data from £ closest neighbors, it captures the traffic spatial
difference from local information. However, as the cellular traffic becomes more uneven, the
local information is more sensitive to the noise, and thus, the prediction errors of k-mean
methods increase, as p§ increases. By comparing different k-mean algorithms, we find that 3-
mean achieves the worst performance, because information from three neighbors is not sufficient
to cancel out the noise. The simulation results also show that 10-mean yields the best performance

among all k-mean methods.

D. The Impact of the UAV type on the utilities

In this section, we investigate the impact of the UAV type on the utilities. The contract is
designed based on Lemma 1 by a BS with ID 7939, using the data from time 42 in [24]. Fig.
Sa shows the relationship between the UAV type and the reward, cost, as well as the overall
utilities of the requesting BS and the deployed UAV, respectively. First, as the UAV type 0;;
becomes larger, the BS’s reward $B;;(p;) from the downlink UEs will decrease. Although the

transmit power p;(6;;)(;;) becomes higher given a larger 6;;, a UAV with a higher type must
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Fig. 5: As the UAV type increases, the transmit power and the unit payment both increase. However, the overall

utilities of the associated BS and UAV will decrease.

travel for a longer time ¢;; before its service. Thus, the downlink data transmission of the UAV

dB;; (85;)
deij

becomes lower for a larger ¢;;. Meanwhile, based on (8), we have < 0. Therefore, a
higher UAV type 6;; leads to a lower BS’s reward. Furthermore, a higher UAV type increases
the payment w;(6;;)d; from BS i to UAV j, and, thus, the utility of BS ¢ will be lower. For the
deployed UAV j, a larger 6;; results in a higher reward u;(6;;)d; from BS i, and the increase
of the UAV’s reward is faster than the energy cost. Therefore, as shown in Fig. 5a, the utility
of the deployed UAV will increase, as its type ¢;; becomes larger. Meanwhile, Fig. 5a shows
that the UAV’s utility is always non-negative. Therefore, the IR condition holds in the designed
contract. Fig. 5b investigates the impact of the contract type on the UAV’s utility. The utilities of
three UAVs, where their actual types are 1 x 10° (type-1), 1.25 x 10° (type-1.25), and 1.5 x 10°
(type-1.5), is given, when they accept different kinds of contracts from BS 7939. As shown in
Fig. 5b, the maximum utility of each UAV is achieved when the accepted contract is of its own
type. Thus, simulation results show that the IC condition holds in the designed contract set.
An interesting observation on the utility function is that the prediction error of d; does not cause
small fluctuations on the utility value of the BS or the employed UAV. Given the transmit power as
pj = %-9%/2 = % and the total payment from BS ¢ to UAV j as u;d; = v;0,;d; = 2(;’3—22”
d; no longer appears in the utility formulas, and, thus, an inaccuracy in d; will not impact the

utility functions in (9) and (10). The main effect of d; in the predictive UAV deployment is

to determine the minimum required transmit power p;;(x;;, p). If the predicted demand d; is
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much lower than the real data demand, then p;;(x;;, pf) will be smaller. In consequence, some
UAVs without enough energy may be inappropriately considered to be a qualified choice, and
might be employed. On the other hand, if d; is much higher than the actual demand, some
qualified UAVs with enough power may be excluded from the candidate set /;. Both cases can
lead to a suboptimal solution to (12). However, as long as the error on d; causes no change to
the association result, the utilities of the BS and UAV will always be accurate. Based on this

observation, the proposed approach is highly robust to prediction errors.

E. Evaluation of the predictive UAV deployment

In this section, we evaluate the performance of the proposed UAV deployment method with
four metrics, which are the downlink capacity, energy consumption, service delay of the employed
UAVs, and the utilities of the BS and UAV operators. Meanwhile, for comparison purposes, an
event-driven deployment of the closest UAV and an event-driven deployment of a UAV with
the maximal on-board energy are introduced as two baselines. In both baseline approaches, the
target UAV is requested by the overloaded BS and deployed, after the downlink congestion
occurs, without the prediction on traffic demand. The optimal location of the deployed UAV is
determined after the UAV arrives at the service area, so as to maximize its downlink transmission
rate [11]. Meanwhile, in both baseline approaches, there is no contract design to determine the
cost and payment between the BS to its employed UAV. Instead, the employed UAV j provides
the downlink service to the best of its power ability, where p; = min{p;;(x};, pi), Pi}**; Pmax }»
and the unit payment u; from BS i to the employed UAV is a fixed price 3, which equals to
the unit payment from the UEs to the BS per bit of data service.

In Fig. 6, we compare the performance of the proposed predictive UAV deployment with two
baselines, in terms of the total downlink capacity, average energy consumption, and average
service delay of the employed UAVs. First, in Fig. 6a, as the number of UAVs within the
cellular network increases, the total downlink capacity that the employed UAVs provide to the
downlink UEs increases in all three schemes. For a larger number of UAVs, the average movement
distance between each overloaded BS and its employed UAV will decrease. Therefore, less
energy is consumed during the mobility stage, and more power can be reserved for the downlink
transmission service. In consequence, the downlink capacity of all three methods increases.
However, in the closest-UAV approach, without the data demand prediction, the deployed closest

UAV may not have enough on-board energy to satisfy the downlink data demand. Therefore, the
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service for the proposed predicted UAV deployment and two baselines.

downlink capacity in the closest-UAV baseline is lower than the proposed approach. In the max-
energy deployment, the distance between the employed UAV and the service area is usually
larger, compared to two other methods. Although the employed UAV has the largest amount
of available onboard energy, due to a longer travel distance, most of the onboard energy will
be consumed on mobility, and the transmit power may be insufficient. Thus, the max-energy
deployment yields the lowest capacity performance among all three schemes. Moreover, the
proposed approach improves the downlink capacity by over four-fold and five-fold, compared
to the closest-UAV and the max-energy baselines, respectively.

Fig. 6b and Fig. 6¢ show the average energy consumption and service delay of each employed
UAV, respectively, as the number of available UAVs in the network increases. First, we can see
that the closest-UAV scheme yields the least energy cost and service delay, due to its shortest
movement distance. In the proposed approach, the energy consumption and movement duration
are relatively higher, because the selection criteria balances between the distance of the UAV

(which determines the movement energy) and the availability of sufficient on-board energy to
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meet the predicted data demand. Meanwhile, the max-energy deployment results in the highest
energy and time cost, due to the largest travel distance during the mobility stage. Next, for a
higher number of UAVs, the energy consumption and service delay of the proposed method
both drop, while the performance of the baselines remains nearly constant. In particular, as the
number of UAVs increases, the performance of the proposed approach improves exponentially,
and the gap between the proposed approach and the closest-UAV scheme becomes much smaller.
In the proposed method, having more UAVs reduces the average distance between any employed
UAV and its service point, and, hence, decreases the energy and time cost. However, in the two
baselines, the number of available UAVs does not effect the travel distance during mobility.
Thus, the energy consumption and service delay of two baselines remain nearly constant with
the increase in the number of UAVs.

In Fig. 7, we compared the utilities of the BS and UAV operators in three schemes. First, in
Fig. 7a, for a larger number of UAVs, the average utility per BS increases in all three schemes,
and the proposed approach yields the highest utility. In the proposed method, by having more
UAVs, the average distance between an employed UAV to its service becomes smaller, and, thus,
the type 0;; of the employed UAV j with respect to the requesting BS 7 decreases, which yields
a higher utility of BS . For the closest-UAV and max-energy schemes, since the employed UAV
cannot always satisfy the data demand of its downlink UEs, the utilities of each BS for both
baselines are lower, compared the proposed method.

In Fig. 7b, we can see that, as the number of UAVs increases, the total utility of the employed
UAVs becomes higher in the proposed approach, while the UAVs’ utilities resulting from both
baseline schemes are much lower than the proposed method. As shown in Figs. 6a and 6b, by
having more UAVs, the average energy cost per UAV resulting from the proposed approach
will decrease, while the downlink transmission capacity of the UAV networks increases, which
yields a higher income. As a result, the overall utility of the UAV operator in the proposed
method will become higher for a larger number of UAVs. For the closest-UAV scheme, its lower
energy consumption and shorter service delay yield a smaller deployment cost, compared with
the proposed method. However, the lower downlink capacity results in less payment from the BS.
Thus, the total utility of the UAV operator in the closest-UAV scheme is less than the proposed
method. Moreover, based on Figs. 6a, 6b, and 6¢, we can see that the max-energy scheme yields
the lowest transmission rate, the highest energy cost, and the longest service delay. Therefore, the

utility of the UAV operators in the max-energy scheme is the lowest among all three methods. In
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consequence, based on Fig. 4 and Fig. 5, we can conclude that the proposed method enables an
efficient UAV deployment to alleviate communication congestion in the cellular networks, and
shows a significant advantage on the economical revenues of both the BS and UAV operators,

compared with two baseline, event-driven approaches.

VII. CONCLUSION

In this paper, we have proposed a novel approach for predictive deployment of UAVs to
complement the ground cellular system in face of the hotspot events. In particular, four inter-
related and sequential stages have been proposed to enable the ground BS to optimally employ a
UAV to offload the excess traffic. First, a novel framework, based on the EM and WEM methods,
has been proposed to estimate the UE distribution and the downlink traffic demand. Next, to
guarantee a truthful information exchange between the BS and UAV operators, a traffic offload
contract have been developed, and the sufficient and necessary conditions for having a feasible
contract have been analytically derived. Then, an optimization problem have been formulated to
deploy the optimal UAV onto the hotspot area in a way that the utility of each overloaded ground
BS is maximized. Simulation results show that the proposed WEM approach yields a prediction
error around 10%, and compared with the EM and k-mean schemes, the WEM algorithm yields
a higher prediction accuracy, particularly when the traffic load in the cellular system becomes
spatially uneven. Furthermore, compared with two event-driven schemes based on the closest-
distance and maximal-energy metrics, the proposed predictive deployment approach enables UAV
operators to provide efficient downlink service for hotspot users, and significantly improves the

revenues of both the BS and UAV networks.
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APPENDIX A

PROOF OF PROPOSITION 1

We first use contradiction to prove the proposition that if 6;; > 0;;, then u;(0;;) > ul(é’;])

Suppose that there exists u;(6;;) < uZ(Q;J) but 6,; > H;j. Then, we have
On the other hand, from IC condition, we have

Oi5ui(0:5) — pi(053) > Oijui(0;) — 0 (05,),  Oui(0;;) — pi(05;) > O5ui(055) — pi(635).  (21)
By adding the inequations in (21), we have 6;;u;(6;;) +9;jui(9;j) > Hijui(egj) +9;jui(9ij), which
contradicts to (20). This completes the first part of the proof.

Next, we prove that if u;(6;;) > uZ(Q;]) p;(6i5) > pj(Q;j). From the IC condition, we have
0;ui(035) — 03 (05;) = Oyui(0i;) — p(035), ie. p;(035) — pi(03;) = 05 (wi(0sy) — wi(6;5)). Since
uz(gm) > ul(Q;j), we conclude Dj (9”) —pJ(Q;J) 2 9;] (Ul(el]) — U,(Q;J)) Z 0, and thus p](Ol]) Z
pj(ng). This completes the proof.

APPENDIX B

PROOF OF THEOREM 1

For notation simplicity, in this section, we denote w;, p;, 0;;, M,; as u, P, 0, M respectively.

A. Proof for necessary conditions

Given the IR and IC conditions, we prove Theorem 1 in this section. First, as shown in
Proposition 1, for any 6,6 € ©;, once 6 > 6, then u() > u(6') and P(0) > P(#'). Therefore,
condition (a) of Theorem 1 is proved by Proposition 1. Second, condition (b) of Theorem 1
is supported by the IR condition, where R;;(#) > 0 for all # in ©;, which naturally includes
6™ Next, we prove condition (c). Let A = § — 6. According to the IC condition, for any
A € [fmin — gmax 0) U (0, 0™ — gmin] we have: 0 - u(0) — P(0) > 0 - u(0 + A0) — P(0 + A9),
ie., 0-[ud) —u(@+ Af)] > P(8) — P(0 + Af). If Af > 0, then according to Proposition 1,
u(0+A0) > u(f) and P(0+Af) > P(0). Here, we exclude the situation where u(0+A0) = u(6)
and P(6+ Af) = P(0) in the following discussion of this proof, because condition (c) naturally
holds in this case. Therefore, for any A € (0, ™ — g™], we have

PO+ A9) — P(O)
O T A0 — o)

(22)
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If A0 < 0, then u(0 + Af) < u(f) and P(0 + Af) < P(6). Thus, for any Af € [f™ — g™ (),
P(0+ Af) — P(6)
— u(f+ Af) —u(f)

% = 6, which proves condition

(23)

Combing (22) and (23), we have 94&/% = limag_,o

a0
(c) of Theorem 1.

B. Proof for sufficient conditions

From Theorem 1, we will prove the IR and IC conditions in this section. First, we prove the
IR condition. According to condition (b) of Theorem 1, ™" satisfies the IR condition. Then,
we prove that for any 6 € (6™ §™*], the IR condition holds. From condition (c¢) of Theorem

1, we have the following inequalities, DO)-PE™) <40, ie.,

(9) (emln
P(O™) > P(0) — 0 - [u(0) — u(6™™)]. (24)
From condition (b), we have
O™ . (™) — P(™™) — M > 0. (25)

By combing (24) and (25), we have 6 - u(0) — P(0) — M > (6 — 6™") - w(6™") > 0. Thus, for
any 0 € ©;, the IR condition holds.

’

In the end, we prove the IC condition. Let h = §-u(0)— P(0) — M —[0-u(0')— P(§') — M]. And

we prove that i > 0. From condition (c), we have, if § > 6, then % > min{6,6'} = 6.

ie., P(0)—P(0) > 0-[u(d)—u(h)). Therefore, h = 0-[u(0) —u(8 )]+ P(0') — P(#) > 0. On the

other hand, if #" < 6, then % <max{,0} =0.ie., P(§) — PO) <0-[u(®) —u(@).

Therefore, h > 0. Consequently, the IC condition holds.
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