

1 **Top-down and bottom-up controls on microeukaryotic diversity (i.e. amplicon analyses of
2 SAR lineages) and function (i.e. metatranscriptome analyses) assessed in microcosm
3 experiments.**

6 **Jean-David Grattepanche^{1,+} and Laura A. Katz^{1,2,*}**

7 ¹ Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA

8 ² Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst,
9 Massachusetts 01003, USA

10 ⁺ current address: Department of Biology, Temple University, Philadelphia, Pennsylvania 19122,
11 USA

13 *** Correspondence:**

14 Laura A. KATZ

15 Department of Biological Sciences, Smith College,
16 44 College Lane, Northampton, Massachusetts 01063, USA

17 Phone: +1 (413) 585-3825

18 Fax: +1 (413) 585-3786

19 Email: lkatz@smith.edu

21 **Running title:** microeukaryotic diversity and function

23 **Keywords:** protists, phytoplankton bloom, copepods, gene expression, nanoplankton,
24 microplankton.

26 **Abstract**

27 The availability of high-throughput sequencing (HTS) has transformed our understanding of the
28 diversity of microbial eukaryotes (i.e. protists) across diverse habitats. Yet relating this
29 biodiversity to function remains a challenge, particularly in the context of microbial food webs.
30 Here we perform a set of microcosm experiments to evaluate the impact of changing predator
31 and prey concentrations on a marine protist community, focusing on SAR (Stramenopila,
32 Alveolata, and Rhizaria) lineages. We combine an estimate of taxonomic diversity through
33 analysis of SSU-rDNA amplicons with metatranscriptomics, a proxy for function. We assess
34 changes in a community sampled from New England waters with varying concentrations of
35 predators (copepods) and prey (phytoplankton less than 15 μ m in size). The greatest impact
36 observed is on the diversity and function of the small plankton (2-10 μ m) community in the
37 presence of high prey abundance (i.e. bloom conditions). Many SAR taxa in the nanosized
38 fraction decrease with increasing phytoplankton abundance, while ciliates (from both nano- and
39 microsized fraction) increase. A large number of transcripts and function estimates in the
40 nanoplankton are downregulated during our simulated phytoplankton bloom. We also find
41 evidence of an interaction between increasing phytoplankton and copepods on the microsized
42 planktonic community, consistent with the hypothesis that phytoplankton and copepods exert
43 bottom-up control and top-down control on the microsized protists, respectively. Together our
44 analyses suggest community function (i.e. diversity of gene families) remains relatively stable,
45 while the function at the species level (i.e. transcript diversity within gene families) show a
46 substantial reduction of function under bloom conditions. Our study demonstrated that
47 interactions within plankton food webs are complex, and that the relationships between diversity
48 and function for marine microeukaryotes remain poorly understood.

49
50 **Contribution to the field**

51 The number of publications on plankton diversity has increased dramatically over the last
52 decade, but gaps remain in our understanding of why there is such great diversity, and how it
53 relates planktonic food webs. Our study analyzes community turnover within the eukaryotic
54 microbial communities in response to changing food resources (phytoplankton) and predators
55 (copepods). Using microcosms to assess the impact of these trophic pressures on ciliates and
56 other microbial eukaryotes, we characterize biodiversity through amplicon high-throughput
57 sequencing of SAR (Stramenopila, Alveolata, and Rhizaria) clade and function through
58 metatranscriptomics. One of the main results of our study is the surprising and strong impact of
59 simulated phytoplankton bloom on nanosize (2-10 μ m) eukaryotes, and the absence of substantial
60 change among microplankton (10-80 μ m). Our analyses also reveal a reduction of expression and
61 diversity of cytoskeletal genes for nanosize eukaryotes and an increase of photosynthesis with
62 high predation pressure. We also believe that the methods we developed will be of interest to
63 community ecologists as well as evolutionary biologists.

1 Introduction

65 Microbes dominate biodiversity and are responsible for key ecosystem functions. They
66 can function as heterotrophs, autotrophs or mixotrophs, and they can be free-living, parasitic
67 (detrimental for host) or symbiotic (beneficial for host). Thus, microbes have critical roles for
68 other organisms including humans (e.g. microbiome including gut flora, human health), other
69 animals (e.g. coral), and plants (e.g. mycorrhiza). While we know that microbes are important,
70 we still have only limited knowledge about eukaryotic microbes and their functions (e.g., what
71 are the main factors driving their diversity). This contrasts to the many tools that have been
72 developed and used to explore the diversity and function of bacteria. Here, we use some of these
73 tools, including metatranscriptomics, and amplicon analyses, to look at the marine planktonic
74 food web.

75 In marine food webs, the importance of microbes for transfer of energy from bacteria to
76 higher trophic levels is well-established (reviewed in Azam et al., 1983; Edgcomb, 2016;
77 Fenchel, 1988; Menden-Deuer and Kiørboe, 2016; Worden et al., 2015). Many recent studies
78 have characterized the marine plankton diversity on a large scale (e.g. Tara Ocean for plankton
79 in the photic zone and Malaspina for the aphotic zone and others; de Vargas et al., 2015; Irigoien
80 et al., 2004; Pernice et al., 2016) and show a geographical distribution related to oceanic basins.
81 Other studies have looked at patterns on a smaller scale (from meter to kilometer; e.g.
82 Grattepanche et al., 2014, 2016b, 2016a; Mousing et al., 2016) and find that distance alone does
83 not explain the patterns. One of the likely reasons for the mismatch is because these studies
84 assess different processes: studies at smaller scales tend to be more directly impacted by species-
85 specific interactions and functions expressed by each member of the community, while the larger
86 scale studies are designed to look at overall ecosystem processes such as the impact of climate
87 change.

88 Other studies have looked at species-specific relationships between prey and predators,
89 such as between microzooplankton and phytoplankton or between copepods and
90 microzooplankton. These studies show that microzooplankton such as ciliates and dinoflagellates
91 are efficient grazers of phytoplankton of small size (<10 μm for ciliates and <100 μm for
92 dinoflagellates; e.g. Calbet, 2008; Grattepanche et al., 2011b; Martínez et al., 2017; Schoener
93 and McManus, 2017). Microzooplankton have been described as a better food source for
94 copepods than phytoplankton (Berk et al., 1977; Calbet and Saiz, 2005). The fact that
95 microzooplankton are strongly controlled by copepods (and other mesozooplankton) is a possible
96 explanations for phytoplankton spring blooms as preferential grazing of microzooplankton by
97 copepods may allow dramatic increase in phytoplankton abundance (e.g. dilution-recoupling
98 hypothesis; Behrenfeld, 2010; Irigoien et al., 2005; Kuhn et al., 2015).

99 The impact of phytoplankton on microheterotrophs and other parts of the community has
100 been studied particularly during bloom events (Grattepanche et al., 2011a; Monchy et al., 2012;
101 Rosetta and McManus, 2003). Based on these analyses, microheterotrophs are assumed to be the
102 primary consumer of phytoplankton of small size, with bacteria playing a negligible role (García-
103 Martín et al., 2017). While still in discussion, the phytoplankton spring blooms have been
104 assumed to be linked to an excess in nutrients at the end of the winter (remineralization by
105 bacteria and upwelling), combined with a lack of control by predators including heterotrophic
106 protists and higher trophic levels. On the other hand, microheterotrophs are efficient grazers
107 when blooms start to decline (Archer et al., 2000; Laws et al., 1988). As such, questions remain
108 concerning how the community and function change in relation to increasing phytoplankton
109 abundance.

110 Metatranscriptomics has mainly been deployed to study bacterial functions such as the
111 microbiomes of organisms as diverse as humans (Franzosa et al., 2014) and termites (Tartar et
112 al., 2009), or in marine systems (Gifford et al., 2011) and in response to environmental changes
113 such as oil spills (Mason et al., 2012; Rivers et al., 2013). The studies looking at eukaryotic
114 metatranscriptome are rare. One reason is the paucity of databases of eukaryotic gene functions;
115 current databases contain mainly bacterial functions or functions related to diseases, which result
116 in the majority of the environmental eukaryotic transcripts not being annotated (sometimes more
117 than 80% of the transcripts cannot be annotated; Cooper et al., 2014; Damon et al., 2012;
118 Lesniewski et al., 2012). To study eukaryotic metatranscriptomes, given the paucity in available
119 microbial eukaryote genomes (reviewed in del Campo et al., 2014), authors have focused on
120 clades with reference genomes such as diatoms (Alexander et al., 2015) or fungi (Bailly et al.,
121 2007).

122 Here, we use a microcosm approach and high-throughput molecular tools, combining
123 amplicon and metatranscriptomic analyses, to assess the impact of phytoplankton (prey) and
124 copepods (predators) on the rest of the planktonic community. To study protist diversity, we use
125 primers designed to amplify the SAR (Stramenopila, Alveolata, Rhizaria; Grattepanche et al.,
126 2018; Sisson et al., 2018) community as this includes many major marine clades such as
127 dinoflagellates, diatoms, and ciliates. We added phytoplankton (i.e. prey) at three concentrations
128 (5×10^2 , 5×10^3 and 5×10^4 cell. mL⁻¹, which mimics marine bloom conditions) and copepods (i.e.
129 predators) at two abundances (5 and 10 copepod. L⁻¹). We predict that the microsized
130 heterotrophic plankton (microheterotrophs thereafter) will consume added phytoplankton,
131 resulting an increase of their contribution, and that copepods will regulate this increase. One part
132 of the community generally ignored in the phytoplankton-microheterotrophs-copepods link are the
133 nanosized plankton. We therefore specifically address the impact on small plankton (2-10 μ m)
134 and expect (1) strong competition as we add phytoplankton and (2) absence of impact of
135 copepods as nanosized plankton are too small to be captured.

136 2 Materials and methods

137 2.1 Starting materials: community, phytoplankton, copepods

138 The experiments conducted here used a community sample of microbes sampled in the open
139 water of the Long Island sound in front of University of Connecticut's Avery Point campus
140 (41.30°N, 72.06°W) on 15 March 2016. We collected *in situ* water in four 20L carboys, filtering
141 first through an 80 μ m mesh to remove predators and other large organisms, enabling us to focus
142 on the protist community.

143 To perform our microcosm experiment, we used four cultures: three phytoplankton (prey)
144 cultures *Tetraselmis chui*, *Isochrysis galbana*, and *Phaeodactylum tricornutum*; and a culture of
145 *Acartia tonsa* (copepod, predators). The species of phytoplankton used are common in
146 aquaculture application, represented various size, shape, pigment composition and lineages, and
147 has been used successfully in the past (Grattepanche et al., 2019; McManus et al., 2004, 2012)..
148 All phytoplankton were from the culture collection of the National Marine Fisheries Service
149 Laboratory in Milford CT (USA) and were grown in F/2 medium prior to experiments. The
150 copepods were picked from cultures maintained at the University of Connecticut Department of
151 Marine Sciences. In order to achieve the final concentration of phytoplankton for our microcosm
152 experiment, we concentrated the combined phytoplankton by centrifugation at 3,9g to create a

153 stock concentration of 5×10^7 cells. mL^{-1} with the three algae at the same order of magnitude (*P. tricornutum* was added at 1/5 of the concentration of the two other species).

155 2.2 Experimental set-up

156 We used dialysis tubing to perform our microcosm experiment and incubated samples in a sea
157 table with circulating water from collections sites to minimize impact of isolation, following the
158 approach of Grattepanche et al. (2019). The dialysis tubing is composed of a cellulose membrane
159 that is pervious to molecules $<12,000$ molecular weight (product D9402, Sigma), allowing for
160 exchange of nutrients during incubation in sea tables. Each microcosm (tied-off dialysis tubing)
161 contained one liter and was floated in a sea table with continuous *in situ* seawater circulation as
162 recommended by Capriulo (1982).

163 To test impact of varying levels of predators and food resources we pooled our four water
164 samples together, and then divided back into four carboys of 20L to which we added: 1) nothing
165 (control; p0), phytoplankton at 2) 5×10^2 cell. mL^{-1} (p1), 3) 5×10^3 cell. mL^{-1} (p2), and 4) 5×10^4
166 cell. mL^{-1} (p3) in final concentration. For each of the carboys, we filled 9 microcosms with 1L of
167 the seawater with (or without) phytoplankton added. For each of the phytoplankton abundance
168 conditions, including controls, we added zero (z0), 5 (z1) or 10 copepods (z2) to triplicate
169 microcosm for each treatment (3 sets of dialysis tubing per phytoplankton/zooplankton
170 combination). Based on insights from a preliminary study (Grattepanche et al., 2019), the
171 microcosms were incubated for 3 days and then the total contents of each bag were collected for
172 nucleic acids extractions. We used a three-day incubation to minimize cascade effect and
173 maximize nano- and microsized plankton impact based on insights from Grattepanche et al.
174 (2019). We also collected duplicates of the initial *in situ* water sample such as the *in situ* sample
175 plus high phytoplankton abundance added (t0p3) at the beginning of the experiment.

176 2.3 Sampling and nucleic acids extraction

177 We isolated organisms of whole content of each dialysis bag on polycarbonate filters after size-
178 selection, cut filters in two and isolated DNA and RNA using appropriate kits. Prior to isolation
179 of nucleic acids, each sample passed through serial filtration at $80 \mu\text{m}$ (to remove predators and
180 larger organisms to focus on small protists and avoid some PCR inhibitors) and collected on
181 $10 \mu\text{m}$ (i.e. microsized fraction) and $2 \mu\text{m}$ (i.e. nanosized fraction). The filters do not exactly line
182 up with current definitions of nano- and microplankton as some have argued picoplankton are up
183 to $3 \mu\text{m}$ in diameter (Vaulot et al., 2008) while nanoplankton can include species up to $20 \mu\text{m}$
184 (Sieburth et al., 1978). We use the terms ‘microsize’ and ‘nanosize’ as the bulk of the lineages
185 caught on our filters likely fall in these sizes classes, though the variation in the filters, the
186 differential flexibility of species and the irregularity of some body plans all confound the
187 efficiency of filtering.

188 For the nucleic acid extraction, we cut the resulting filters in half, storing one half for DNA
189 (DNA prep buffer; 100mM NaCl, Tris-EDTA at pH 8, and 0.5% of SDS) and the other half for
190 RNA (RLT lysis buffer [Qiagen, Germany] plus beta mercaptoethanol). DNA and RNA were
191 extracted using Zymo Research soil extraction kit (Zymo Research, CA) and Qiagen RNeasy
192 (Qiagen, Germany) kits following the manufacturer's instruction. For the RNA prep, residual
193 DNA was removed using the Turbo DNA-free kit (Invitrogen, CA). This approach (both
194 filtration and extraction) was tested on previous samples and resulted in good DNA/RNA quality
195 (Grattepanche et al., 2019; Sisson et al., 2018; Tucker et al., 2017).

196 **2.4 Amplicon sequencing for community composition**

197 The amplicon analyses followed protocols from Grattepanche et al. (2016b) and Sisson et al.
198 (2018). In sum, we used a primer set specific of the SSU-rDNA gene of the SAR lineages, which
199 amplified a 150 bp fragment of the hypervariable region V3, to amplify DNAs extracted from
200 filters. As discussed in Grattepanche et al. (2019), these primers amplify almost all known SAR
201 lineages, excepted the highly divergent Foraminifera, which are also removed by our
202 prescreening on 80 μ m). The amplification was done with the Q5 polymerase enzyme (NEB,
203 MA) following manufacture's protocol. PCR products were cleaned using Agencourt AMPure
204 XP beads (Beckam Coulter, CA) and sent to University of Rhode Island Genomics and
205 Sequencing Center for sequencing on an Illumina MiSeq sequencer (2x150 cycles). This resulted
206 in a dataset of 7,207,909 reads. The raw reads are available from NCBI under the BioProject
207 PRJNA550423 and the Sequence Read Archive SRP212194.

208 The Amplicon dataset was analyzed using a pipeline combining third party tools and
209 custom python scripts (Grattepanche et al., 2019; Sisson et al., 2018). We first generated paired-
210 end reads using Paired-End reAd mergeR (Zhang et al., 2013), refined the sequences (removed
211 unpaired sequences; sequences without primers), created an OTU library using SWARM (v
212 2.1.9; Mahe et al., 2015), refined the OTUs (removed chimeric OTUs, outgroup OTUs, and
213 OTUs with less than 10 reads), and then assigned taxonomy by tree using a curated SAR SSU-
214 rDNA gene database. The final step corresponds to the rarefaction i.e., subsampling a fixed
215 number of reads for each sample to enable comparison. This resulted in a total of 1,148 OTUs
216 corresponding to 3,400,000 rarefied reads (50,000 reads per sample).

217 To compare the effect of experimental conditions on diversity (i.e. taxonomy), only the
218 OTUs present in two replicates of the same treatment and the same size fraction, and with more
219 than 5 reads were kept. The reported number of reads for each treatment and size corresponds to
220 the average of the read number among the three replicates, resulting in a total of 277 OTUs. We
221 used this set of OTUs to assess changes between the control and the treatments.

222 **2.5 Metatranscriptome for analyses of community function**

223 To characterize expressed eukaryotic genes (i.e., those with polyA tails) we constructed mRNA
224 libraries using TruSeq Stranded mRNA sample prep (Illumina, CA) following manufacturer
225 protocol. In summary, we isolated RNA using oligo-dT beads, fragmented the transcripts and
226 synthesized first and second strands of DNA (cDNA). The 3' end of the fragments was
227 adenylated to avoid ligation to another fragment, the adapters were ligated, and the fragments
228 were amplified using specific PCR (see TruSeq protocol). DNA purifications were performed
229 between each of these steps using Agencourt(r) AMPure XP beads (Beckam Coulter, CA). The
230 remainder of the protocol was performed at the University of Maryland, Baltimore Institute for
231 Genome Sciences. This included library quantification and quality checking with an Agilent
232 Technologies 2100 Bioanalyzer, pooling, and sequencing with an Illumina HiSeq 4000. We used
233 a similar depth of sequencing for all our samples. While this depth of sequencing does not allow
234 to access the lowly expressed transcripts, the use of similar depth of sequencing across samples
235 allowed us to compare these different samples. This resulted in a dataset of 783,472,526 reads,
236 which are available from NCBI under the BioProject PRJNA550423 and the Sequence Read
237 Archive SRP212194.

238 The metatranscriptome libraries were assembled using rnaSPAdes (version 3.10.1 with
239 default parameters; Bankevich et al., 2012). We assembled the libraries in 3 ways: (1) each
240 library independently (replicate set), (2) each triplicate by size fraction (nano- and microsized

241 fractions, separately; treatment set); and (3) all libraries together in order to create a reference
242 database for read number and RPKM calculation (Reads Per Kilobase Million = Reads Per
243 Kilobase of transcript, per Million mapped reads, which is a proxy for gene expression).

244 As the reference genomes of microbial eukaryotes are still rare (del Campo et al., 2014),
245 we look at the pattern of conserved gene families using both PhyloToL (Cerón-Romero et al.,
246 2019), which relies on the classification of gene families determined in OrthoMCL (Chen et al.,
247 2006; Li et al., 2003). The resulting 1,485,323 transcripts were then refined using the "gene
248 family assessment for taxa" part of the PhyloTOL pipeline (Cerón-Romero et al., 2018, 2019;
249 Maurer-Alcalá et al., 2018). In sum, we removed transcripts smaller than 200bp (77,230
250 transcripts smaller than 200 bp), ribosomal DNA (5,699 transcripts matching rDNA gene
251 references) and bacterial (38,305 transcripts matching reference bacterial genomes)
252 contamination, bin the remaining sequences in orthologous groups (hereafter OG; proxy for gene
253 families) using OrthoMCL (Chen et al., 2006; Li et al., 2003) as reference (990,632 transcripts
254 did not match our reference gene families).

255 At this stage, the dataset was composed of 373,457 transcripts. We consider only the
256 transcripts matching an OG with an E-value cutoff of $1e^{-50}$ and a coverage of 10 (coverage as
257 calculated by rnaSPAdes; 18,599 transcripts were discarded). This results in a reference dataset
258 composed of 86,951 transcripts representing 5,258 conserved eukaryotic gene families (i.e. OGs
259 from OrthoMCL; Chen et al., 2006) plus a large number of lineages-specific genes. We then
260 decided to remove transcripts from the phytoplankton we added. For this purpose, we isolated
261 transcripts from the added phytoplankton by removing transcripts absent from the *in situ* samples
262 without added phytoplankton (t0) from the *in situ* sample plus high phytoplankton abundance
263 (t0p3). By this way, we identified 5,159 transcripts from the phytoplankton we added. We also
264 removed the transcripts that were 10 times more expressed in t0p3 than in t0, leading to an
265 additional 158 transcripts. Of the original reference transcripts (generated by combining mRNAs
266 from all treatments), we removed 5,317 transcripts that represent genes expressed by the
267 phytoplankton added resulting in a finally reference dataset of 81,634 transcripts. We then use
268 BLAST2Go to assign Gene Ontology (GO; Conesa et al., 2005) and eggNOG (Huerta-Cepas et
269 al., 2018) to assign Clusters of Orthologous Groups (COG; Tatusov et al., 2000) and KEGG
270 (Kyoto Encyclopedia of Genes and Genomes) orthology (KO; Kanehisa et al., 2015).

271 To assess the gene expression for the two sets (replicate and treatment sets), we mapped
272 back the reads of each metatranscriptome to the refined reference (all libraries pooled together
273 and refine using PhyloTOL) using Seal (Sequence Expression AnaLyzer, version 35.92)
274 implemented in BBmap (Bushnell, 2016). In short, each read is mapped to our reference using a
275 Kmer of 31, and the count is transformed in Reads Per Kilobase Million (RPKM) to take in
276 account the depth of sequencing for each sample. This software and a custom python script
277 produce a table with the RPKM (read number or gene expression) of each reference transcript
278 present in each of our samples (similar to an 'OTU table').

280 2.6 Statistics

281 To assess the effect of each treatment on the community composition, we used the Unifrac
282 dissimilarity index (Hamady et al., 2009; Lozupone et al., 2011) and Principal Coordinates
283 Analysis (PCoA). The analyses were performed in R using the Phyloseq (McMurdie and
284 Holmes, 2013) and vegan packages (Oksanen et al., 2007, 2016). We tested the significance of
285 the PCoA axis and factor (phytoplankton or predators) using envfit implemented in vegan, in
286 which the data are randomly permuted 999 times (total of 1,000 datasets) and the random data

287 are compared to the data generated through a fitted regression model. Under the null hypothesis
288 of no relationship between the ordination "axis" scores and the environmental variable, the
289 observed R^2 value should be a value among the permuted R^2 values. However, if the observed R^2
290 is extreme compared to the permutation distribution of R^2 then we can reject the null hypothesis.
291 The proportion of times a randomized R^2 from the distribution is equal to or greater than the
292 observed R^2 is a value known as the permutation p value. The same analysis is performed for the
293 Metatranscriptomics data using Canberra dissimilarity index (Lance and Williams, 1967).

294 Differential gene expression was calculated as (1) difference of read number between
295 control and treatment or (2) ratio of RPKM between control and treatment. If the ratio was above
296 1, the transcript was upregulated in the treatment compared to the control. If the ratio was below
297 1, the transcript was downregulated, and we inverted the ratio (e.g. a ratio of 0.5 becomes -2). To
298 be conservative, we only consider up/downregulation when the ratio was larger (or smaller) than
299 2 (or -2 for downregulation). In addition, we also assessed the OTUs and transcripts significantly
300 up- or down-regulated (log2 fold change with $p < 0.05$) using DESeq2 package (Love et al.,
301 2014). The transcripts significantly up- and downregulated assessed with DESeq2 matched with
302 our estimates.

303 3 Results

304 3.1 Top-down and bottom-up impact on community composition

305 The diversity of SAR lineages remained relatively constant despite increasing predation pressure
306 and food availability (Figure 1, Supplementary Figure S1). Because the three replicates were
307 overall similar (Supplementary Figure S1), we pooled replicates to evaluate the impact of
308 treatment and considered only the OTUs (i.e. species) as described in the methods section. We
309 observed that abundant OTUs (i.e. OTUs with more than 10 reads) varied between 63 and 125
310 OTUs (Figure 1a), and up to 239 OTUs when including the rare OTUs (Figure 2). The richness
311 of abundant OTUs showed no clear pattern in response to phytoplankton abundance or copepods
312 density (Supplementary Figure S1). In other words, the perturbations (adding prey and/or
313 predators) did not have a strong impact on the overall diversity of SAR lineages.

314 While the overall diversity did not change within our microcosm, the community
315 composition did respond to the various treatments (i.e. food availability and predation pressure),
316 and size. Overall, up to 10% of the nanosized OTUs significantly decreased in read number with
317 increasing phytoplankton abundance, and up to 5% of the OTUs significantly increased in read
318 number with increasing predation pressure (copepods, Figure 2). By comparison, the microsized
319 plankton community showed a more neutral/stochastic response, with no clear relation with
320 increasing phytoplankton and/or copepods (Figure 2). We also observed that 81% of the
321 community variability is explained by differences between the nanosized and microsized
322 plankton ($R^2=0.7894$, $p < 0.0001$; Supplementary Figure S2).

323 Among the nanosized community, the contribution of ciliates relative to stramenopiles
324 increased with increasing phytoplankton (i.e. p0z0 vs. p1z0 vs. p2z0 vs. p3z0 showed an
325 increasing contribution of ciliates; Figure 1a and b). The pattern among microsized species was
326 more complex. For instance, ciliates, especially within Spiroticchea, increased with increasing
327 phytoplankton in the absence of predators (Figure 1). However, this effect appears buffered by
328 the increasing copepods as the ciliate contribution was almost constant when incubated with high
329 predation pressure (i.e. 10 copepods. L^{-1}) regardless of the concentration of phytoplankton
330 (Figure 1). This suggests that while microsized ciliates responded to the increase of food, the

331 copepods were able to keep them at a constant abundance. By comparison, we only observed a
332 slight impact of copepods on nanociliates (Figure 1). In addition, we observed a slight decrease
333 of phytoplankton (mainly Dictyochophyceae and Coscinodiscophyceae; Figure 1b) with
334 increasing phytoplankton and a more mixed response with increasing copepods (Figure 1,
335 Supplementary Material).

336 Only a few OTUs, our proxy for species, responded repeatedly to all treatments. The
337 control (no copepod and no phytoplankton added [p0z0]), the high predation pressure (high
338 copepod abundance and no phytoplankton added [p0z2]) and the phytoplankton bloom
339 incubations (high phytoplankton abundance and no copepods added [p3z0]) shared a quarter of
340 the total OTUs (56 of the 212 OTUs observed in p0z0, in p3z0 and in p0z2 ; Supplementary
341 Figure S3). The dominant OTUs did not show clear response to our treatment (see
342 Supplementary Material; Supplementary Figure S2). A few OTUs increased or decreased
343 significantly with food availability including OTU302 (closely related to the stramenopile
344 *Rhizochromulina*) and OTU74 (likely an oligotrich ciliates) or with both food availability and
345 predation pressure such as OTU94 (closely related to the euglyphid *Cyphoderia major*;
346 Supplementary Figure S4). In the same way, only a third of the OTUs are specific to a size
347 fraction and treatment (70 OTUs; Supplementary Figure S3), and these OTUs represented less
348 than 1% of the community based on read number.

349 To assess changes in the overall community, we used principal coordinate analysis
350 (PCoA) with UniFrac index, which considers phylogenetic relationship among OTUs. Overall,
351 these analyses indicate that predators impacted the microsized SAR community while the
352 phytoplankton changed the nanosized SAR community. Adding copepods significantly
353 impacted the microsized community (phytoplankton $R^2=0.3689$, $p=0.2238$; copepods $R^2=0.3726$,
354 $p < 0.05$ by envfit test, Figures 2B and 2D), while phytoplankton addition had a significant
355 impact on nanoplankton (phytoplankton $R^2=0.6446$ $p < 0.05$; copepods $R^2=0.2976$ $p=0.1638$;
356 Figures 2A and 2C). Looking at lower taxonomic levels, we observed that Ciliophora,
357 Stramenopila and within Stramenopila, Dictyochophyceae in the nanosized fraction showed a
358 significant response to phytoplankton treatments, while none of the microsized fraction showed
359 significant response with increasing phytoplankton (Table 1). The copepods seemed to have only
360 impacted the Bacillariophyceae from both nano- and microsized fractions (Table 1).

361 3.2 Community function by metatranscriptomics

362 Our metatranscriptomics analysis focused on a dataset composed of 81,634 transcripts that match
363 conserved eukaryotic gene families, and represent 13,029 GO terms, 5,176 conserved eukaryotic
364 gene families, and 3,699 KO terms. We evaluated the impact of our treatment on the community
365 function using the number of conserved gene families (GFs) and transcripts at three levels of
366 expression: present, expressed and highly expressed (>0 , >10 and $>1,000$ as gene expression
367 estimated by RPKM, respectively). The nano- and microsized fractions are composed of a
368 similar number of expressed transcripts (40,667 and 41,369 transcripts, respectively) with half
369 shared in both sizes (21,940 transcripts; see Supplementary Material).

370 Differential expression profiles showed a clear difference between the two size fractions,
371 and more intriguingly, a large number of transcripts are downregulated in the nanosized
372 community incubated with phytoplankton at bloom conditions (Figure 4). The nanosized
373 plankton showed up to 7 times more downregulated transcripts when incubated in phytoplankton
374 bloom conditions (Figure 4). In addition to transcript number, we also evaluated the impact of
375 our treatments on the community function using three metrics: the number of conserved gene
376 families (GFs), Gene Ontology (GO), and KEGG orthology (KO) terms associated with up- or

377 down-regulated transcripts (Figure 2 and Supplementary Figure S5). Using all of these
378 measures, we again saw a substantial change in nanosized plankton functions (up to 70% of
379 transcripts and conserved gene families are downregulated in bloom conditions; Figures 2, 4 and
380 Supplementary Figure S5), while the impact on microsized plankton is less marked (Figures 2
381 and 4 and Supplementary Figure S5).

382 In comparison to the impact of prey (i.e. phytoplankton), the impact of predators on
383 function is in agreement with our expectations: negligible for the nanosized fraction and leading
384 to an increase in upregulated function in the microsized fraction (Figures 2 and 4; Supplementary
385 Figure S5). Looking in detail at the interactions between phytoplankton bloom and high
386 predation pressure, the increase in copepods density tends to increase the proportion of
387 differentially expressed transcripts (Figures 2 and 4; Supplementary Figure S5). The copepods
388 also increased the number of upregulated functions in the microsized plankton (Figure 2;
389 Supplementary Figure S5). For both sizes, the copepods tend to reduce the proportion of
390 downregulated transcripts and GFs during the phytoplankton bloom incubations (Figures 4 and
391 2; Supplementary Figure S5). In other words, the impact of copepod counterbalanced the effect
392 of phytoplankton bloom on the community function and *vice-versa*.

393 Overall patterns of transcripts assessed by PCoA with a Canberra distance metric show
394 the same pattern as the SAR amplicon sequencing, i.e. samples group firstly by size fraction
395 (nano- and microsized) and then by phytoplankton abundance for the nanosized community
396 (35% of the variance expression; Figure 3). The expression within the microsized community is
397 similarly impacted by phytoplankton and copepods (18% vs 16% of the variance, Figure 3). This
398 again suggests that while the nanosized plankton is primarily impacted by the change in
399 phytoplankton abundance, the microsized plankton expression profile is a result of interactions
400 between phytoplankton and copepod abundances.

401 To further assess community function, we assigned transcripts into functional categories
402 using COG (Cluster of Orthologous Gene). One third of the gene expression (as measured by
403 RPKM) and one fifth of the number of transcripts are involved in translation (category COG J).
404 Another 40% of the transcript expression and transcript number is represented by transcripts
405 from post-translational modification and protein turnover (COG O), unknown function (COG S),
406 cytoskeleton (COG Z), energy production and conversion (COG C) and carbohydrate
407 metabolism and transport (COG G). The COG S includes transcripts related to Fucoxanthin
408 Chlorophyll a/c (55% of the reads for this study), Chlorophyll a/b binding proteins (6% of the
409 read) by similarity.

410 To evaluate the main functions impacted during our experiments, we pooled the
411 transcripts by COGs and estimate the differential expression in each treatment relative to the
412 control. We observed a downregulation in cytoskeleton mRNA (COG Z in Figure 5) and a slight
413 upregulation in mRNAs involved in translation in the nanosized communities incubated in
414 phytoplankton bloom condition (COG J in Figure 5). The microsized community incubated with
415 many copepods experienced an upregulation of transcripts of “unknown” function (mainly
416 transcripts related to Fucoxanthin chlorophyll a/c by similarity; COG S in Figure 5) and a
417 downregulation of transcripts involved in translation (COG J in Figure 5). The other treatments
418 showed only slight differences and no pattern was discernable between COG and incubation
419 condition.

420 3.3 Function and taxonomy

421 Phylogenomic analyses indicate that transcripts strongly impacted in our microcosm are from
422 SAR lineages and other phytoplankton (e.g. chlorophyte, cryptophyte, haptophyte). We

423 generated phylogenies for eleven exemplar genes that showed high diversity and/or high
424 expression (e.g. three ribosomal proteins, α and β tubulins, actin, HSP70, chlorophyll a/b binding
425 proteins, and glyceraldehyde 3-phosphate dehydrogenase; Supplementary Figure S6). For each
426 of these genes, SAR represents almost 70% of the transcripts; Stramenopila, Alveolata and
427 Rhizaria representing approximately 45%, 40%, and 10% of the highly expressed transcripts,
428 respectively. Other algae (e.g. chlorophytes, haptophytes, cryptophytes) comprise ~25% of the
429 highly expressed transcripts and Opisthokonta, Amoebozoa and Excavata are represented by less
430 than 6% of the highly expressed genes (Supplementary Figure S6).

431 While ciliates clearly responded to increased phytoplankton in amplicon analyses (Figure
432 1), our taxonomic analyses of some gene families did not find evidence of their impact on the
433 community function. Ciliates contributed up to 30% to some genes including eEF1 α
434 (Supplementary Figure S6). However, ciliates did not show any strong response to treatments for
435 this set of genes except a more important contribution to the actin expression in our
436 phytoplankton bloom treatment (Supplementary Figure S6). Other cytoskeleton proteins, such as
437 α -tubulin and β -tubulin, did not show this pattern. We looked at other genes involved in
438 phagosome formation such as ARP complex and RAC as a proxy of phagotrophy (Yutin et al.,
439 2009) and the protein identify by Burns et al (2018), but again we did not observe a clear pattern
440 across treatments (Supplementary Figure S7). While this is surprising, it is important to
441 remember that many transcripts (almost 1 million) are not considered here as they are not
442 annotated in databases and instead might represent lineage-specific genes. In other words, the
443 impact of ciliates on the community may be through lineage-specific genes that lack annotated
444 homologs in current databases.

445 4 Discussion

446 Contrary to our expectation that increasing phytoplankton would have the greatest impact
447 on the microsized heterotrophs (i.e. the potential predators of added phytoplankton), the
448 nanosized community showed the greatest response to bloom levels: we observed an increase of
449 ciliate community members with increasing phytoplankton abundance (Figure 1) and a decrease
450 in community function (i.e. transcript number and expression levels) among the nanosized
451 plankton incubated in bloom condition (Figure 4). The microsized community did respond as
452 predicted, ciliates increased with increasing phytoplankton abundance (i.e. bottom-up control)
453 and the microsized plankton were impacted by increasing copepods (i.e. top-down control). We
454 also demonstrate the power of combining amplicon and metatranscriptomics in microcosm
455 experiments to characterize changes in microeukaryotic communities in response to
456 environmental changes.

457 4.1 Bloom of phytoplankton and impact on other small plankton

458 The nanosized plankton (i.e. 2-10 μ m) response to increasing phytoplankton (three species
459 ranging in size from 4-15 μ m) was unexpected. We added small sized phytoplankton expecting
460 to see an impact on their predators within the microsized (i.e. 10-80 μ m) heterotrophs and saw a
461 small increase of microsized ciliates with increasing phytoplankton (Figure 1). In other *in situ*
462 studies, microheterotroph biomass increased with phytoplankton and nanoplankton were
463 responding to bacteria (Grattepance et al., 2011a; Irigoien et al., 2005). So, we did not expect to
464 observe an increase of nanosized lineages, assessed by SAR amplicon analyses, incubated in
465 bloom conditions (Figure 1). This suggests that either nanosized lineages (i.e. ciliates) were able
466 to consume prey of the same size or that their response is indirect. For example, it is possible that

467 phytoplankton exudate caused increased growth of bacteria, which are in turn grazed by
468 nanosized ciliates (i.e. more food, more abundant) (Fenchel, 1987). Another possibility is that
469 nanosized ciliate predators fed on the same size phytoplankton, and therefore relieved predation
470 pressure on these small ciliates (i.e. less predators, more abundant).

471 We evaluate the possibility of lineage-specific changes in predation among nanosized
472 community members by looking at genes involved in phagocytosis. While we observed an
473 upregulation of actin for the nanosized ciliates in bloom condition (Supplementary Figure S6),
474 we did not see an increase in expression for phagotrophic genes such as the ARP complex and
475 RAC gene family identified by Yutin et al (2009) and a longer list of genes identified in two
476 other studies (Burns et al., 2018; McKie-Krisberg et al., 2018; Supplementary Figure S7). These
477 analyses are consistent with an indirect response of nanosized ciliates rather than an increase in
478 grazing in response to added phytoplankton. However, this conclusion needs to be taken with
479 caution as the mechanism of phagotrophy for microbial eukaryotes is still poorly understood
480 (Yutin et al., 2009) and many lineage-specific gene families are likely missing from our database
481 (Cerón-Romero et al., 2019).

482 **4.2 Phytoplankton blooms reduce community function**

483 The transcript number and expression levels for communities incubated in the bloom conditions
484 strongly decreased for the nanosized fraction (Figure 4 and Supplementary Figure S5). A
485 decrease of functional diversity is expected when just a few species dominate the ecosystem (i.e.
486 in bloom conditions), but the observed impact on nanosized and not on the microsized plankton
487 is surprising. One possibility is that changes in ecological niche (abiotic, and biotic factors) in
488 the phytoplankton bloom conditions might have selected for only a subset of the nanosized
489 species present at the beginning of incubation, resulting in a decrease of expressed function. A
490 decrease of diversity and function has been documented for bacterioplankton (Teeling et al.,
491 2012; Wemheuer et al., 2014), but not yet for eukaryotes.

492 We did see patterns in changes of genes related to photosynthesis and stress. For
493 example, we saw a reduction expression of transcripts related to photosynthesis (COG S, Figure
494 5; Chlorophyll a/b binding protein; Supplementary Figure S6). In addition, stress-related
495 proteins (e.g. HPS90, HSP70), particularly of phytoplankton groups (e.g. Archaeplastida,
496 Supplementary Figure S6), did increased with increased phytoplankton. This suggests a stress
497 among phytoplankton in response to bloom conditions and is consistent with the observed
498 decrease of SAR phytoplankton (mainly Dictyochophyceae and Coscinodiscophyceae) observed
499 with increasing phytoplankton (Figure 1).

500 The addition of varying levels of phytoplankton impacted the diversity and function of
501 both the nanoplankton and, to a lesser extent, the microsized plankton. As expected for bloom
502 conditions, we observed an amplification of changes in both up- and downregulated transcripts
503 with increasing phytoplankton (Figure 2). However, none of these genes are directly related to
504 phytoplankton blooms based on findings in previous studies (e.g. proteins involved in nutrient
505 metabolism or carbohydrate metabolism; Zhang et al., 2019). We hypothesize that the change in
506 community function is related to changes in metabolism during the extreme conditions generated
507 by the bloom.

508 **4.3 Phytoplankton bloom is enhanced by copepods**

509 The composition (i.e. OTUs) of the microsized community was impacted by top-down control
510 but not the functions of the microsized community. We had expected microsized ciliates to
511 increase with phytoplankton concentration as we selected three phytoplankton species

512 (*Tetraselmis chui*, *Isochrysis galbana*, and *Phaeodactylum tricornutum*) considered to be ‘good’
513 food resources for ciliates (Christaki and Van Wambeke, 1995; McManus et al., 2012; Schoener
514 and McManus, 2012; Stoecker et al., 1988; Verity and Villareal, 1986). Instead, we only
515 observed top-down control of ciliates by copepods, as ciliates represent a superior food resource
516 for copepods and may be selectively grazed (Calbet and Saiz, 2005). Our data are a direct
517 illustration that copepod grazing on microheterotrophs (i.e. ciliates) reduced top-down controls,
518 allowing phytoplankton to increase (Behrenfeld, 2010; Irigoien et al., 2005; Kuhn et al., 2015).
519 While this has been hypothesized from microscopic observations of *in situ* samples (Irigoien et
520 al., 2005; Leising et al., 2005), here we showed, in our closed system, that ciliates were not able
521 to control the amplitude of a phytoplankton bloom because of the predation pressure from
522 zooplankton (copepods).

523 Copepods did have a significant impact on microsized phytoplankton community
524 function as photosynthetic activities (e.g. chlorophyll a/b binding proteins) increased with
525 increasing copepod abundance (Figure 5; Supplementary Figure S6). Copepods have been
526 reported to release dissolved organic carbon and inorganic nutrients through sloppy feeding and
527 fecal pellets (Saba et al., 2011), which may increase phytoplankton production. Together these
528 factors (increase in nutrients and release of predation pressure by feeding on microciliates) may
529 explain the functional changes in microsized community members observed across our
530 experiments.

531 **5 Conclusions**

532 This work combines experimental microcosms and ‘omics approaches (both amplicon and
533 metatranscriptomics) to reveal: (1) phytoplankton blooms strongly decrease gene expression
534 within the nanosized community; and (2) copepods control microsized heterotrophs when
535 phytoplankton abundance is low, reducing predation pressure on phytoplankton. We
536 acknowledge a major caveat in interpreting function within these communities: of the 1.5 million
537 transcripts, we were able to assign taxonomy and function to less than 25% because of the lack
538 of knowledge about eukaryotic microorganisms. Hence, we anticipate that future studies will be
539 able to further refine insights on functional responses through analyses of specific genes.
540 Nevertheless, the strong decrease of transcript diversity showed the impact of phytoplankton
541 blooms and zooplankton grazing at the species level, while the overall community functions (i.e.
542 number of GFs, KO, and GO) remained unchanged. This illustrates the resilience of the
543 community in maintaining ecosystem functions. Finally, these analyses show the power of
544 combining amplicon and metatranscriptomics approaches to better understand processes driving
545 microeukaryotic diversity and function in marine systems.

546 **6 Conflict of Interest Statement**

547 The authors declare that the research was conducted in the absence of any commercial or
548 financial relationships that could be construed as a potential conflict of interest.

549 **7 Author contributions**

550 Conceived and designed the experiments: JDG LAK. Performed the experiments: JDG.
551 Analyzed the data: JDG LAK. Wrote the paper: JDG LAK.

552 **8 Acknowledgements**

553 We thank the University of Rhode Island Genomics and Sequencing and the IGS Genome
554 Resource Center at the University of Maryland for MiSeq and HiSeq4000 sequencing; the
555 National Marine Fisheries Service Lab (NOAA) in Milford CT, for algal cultures, and the Dam
556 lab at UCONN for copepods. We also thank George B. McManus (University of Connecticut)
557 for the help with the experimental setup. This work was supported by the National Science
558 Foundation [OCE-1436003 and DEB-1541511 to LAK], Blakeslee funds at Smith College.
559

560 **9 References**

561 Alexander, H., Jenkins, B. D., Rynearson, T. A., and Dyhrman, S. T. (2015). Metatranscriptome
562 analyses indicate resource partitioning between diatoms in the field. *Proc. Natl. Acad. Sci.*
563 *U. S. A.* 112, E2182–E2190. doi:10.1073/pnas.1421993112.

564 Archer, S. D., Verity, P. G., and Stefels, J. (2000). Impact of microzooplankton on the
565 progression and fate of the spring bloom in fjords of northern Norway. *Aquat. Microb. Ecol.*
566 22, 27–42.

567 Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyerreil, L. A., and Thingstad, F. (1983). The
568 Ecological Role of Water-Column Microbes in the Sea. *Mar. Ecol. Prog. Ser.* 10, 257–263.
569 doi:Doi 10.3354/Meps010257.

570 Bailly, J., Fraissinet-Tachet, L., Verner, M.-C. C., Debaud, J.-C. C., Lemaire, M., Wésolowski-
571 Louvel, M., et al. (2007). Soil eukaryotic functional diversity, a metatranscriptomic
572 approach. *Isme J.* 1, 632–642. doi:10.1038/ismej.2007.68.

573 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al.
574 (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell
575 sequencing. *J. Comput. Biol.* 19, 455–477.

576 Behrenfeld, M. J. (2010). Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton
577 blooms. *Ecology* 91, 977–989. doi:10.1890/09-1207.1.

578 Berk, S. G., Brownlee, D. C., Heinle, D. R., Kling, H. J., and Colwell, R. R. (1977). Ciliates as a
579 food source for marine planktonic copepods. *Microb. Ecol.* 4, 27–40.
580 doi:10.1007/bf02010427.

581 Burns, J. A., Pittis, A. A., and Kim, E. (2018). Gene-based predictive models of trophic modes
582 suggest Asgard archaea are not phagocytotic. *Nat. Ecol. Evol.* 2, 697.

583 Bushnell, B. (2016). BBMap short read aligner. Available at:
584 <http://sourceforge.net/projects/bbmap>.

585 Calbet, A. (2008). The trophic roles of microzooplankton in marine systems. *Ices J. Mar. Sci.* 65,
586 325–331. doi:10.1093/icesjms/fsn013.

587 Calbet, A., and Saiz, E. (2005). The ciliate-copepod link in marine ecosystems. *Aquat. Microb.*
588 *Ecol.* 38, 157–167.

589 Capriulo, G. M. (1982). Feeding of field collected tintinnid micro-zooplankton on natural food.
590 *Mar. Bio.* 71, 73–86.

591 Cerón-Romero, M. A., Maurer-Alcalá, X. X., Grattepanche, J.-D., Yan, Y., Fonseca, M. M., and
592 Katz, L. A. (2019). PhyloToL: A taxon/gene-rich phylogenomic pipeline to explore genome
593 evolution of diverse eukaryotes. *Mol. Biol. Evol.*, msz103. Available at:
594 <http://doi.org/10.1093/molbev/msz103>.

595 Cerón-Romero, M. A., Nwaka, E., Owoade, Z., and Katz, L. A. (2018). PhyloChromoMap, a
596 tool for mapping phylogenomic history along chromosomes, reveals the dynamic nature of
597 karyotype evolution in *Plasmodium falciparum*. *Genome Biol Evol* 10, 553–561.
598 doi:10.1093/gbe/evy017.

599 Chen, F., Mackey, A. J., Stoeckert, C. J., and Roos, D. S. (2006). OrthoMCL-DB: querying a
600 comprehensive multi-species collection of ortholog groups. *NAR* 34, D363–D368.
601 doi:10.1093/nar/gkj123.

602 Christaki, U., and Van Wambeke, F. (1995). Simulated phytoplankton bloom input in top-down
603 manipulated microcosms: comparative effect of zooflagellates, ciliates and copepods.
604 *Aquat. Microb. Ecol.* 9, 137–147.

605 Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., and Robles, M. (2005).
606 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics
607 research. *Bioinformatics* 21, 3674–3676. doi:Doi 10.1093/Bioinformatics/Bti610.

608 Cooper, E. D., Bentlage, B., Gibbons, T. R., Bachvaroff, T. R., and Delwiche, C. F. (2014).
609 Metatranscriptome profiling of a harmful algal bloom. *Harmful Algae* 37, 75–83.

610 Damon, C., Lehembre, F., Oger-Desfeux, C., Luis, P., Ranger, J., Fraissinet-Tachet, L., et al.
611 (2012). Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest
612 soils. *PLoS One* 7, e28967.

613 de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., et al. (2015). Eukaryotic
614 plankton diversity in the sunlit ocean. *Science (80-)* 348. doi:10.1126/science.1261605.

615 del Campo, J., Sieracki, M. E., Molestina, R., Keeling, P., Massana, R., and Ruiz-Trillo, I.
616 (2014). The others: our biased perspective of eukaryotic genomes. *Trends Ecol. Evol.* 29,
617 252–259.

618 Edgcomb, V. P. (2016). Marine protist associations and environmental impacts across trophic
619 levels in the twilight zone and below. *Curr. Opin. Microbiol.* 31, 169–175.
620 doi:<https://doi.org/10.1016/j.mib.2016.04.001>.

621 Fenchel, T. (1987). *Ecology of Protozoa*. Berlin: Springer-Verlag.

622 Fenchel, T. (1988). Marine plankton food chains. *Annu. Rev. Ecol. Syst. Biodivers.* 19, 19–38.

623 Franzosa, E. A., Morgan, X. C., Segata, N., Waldron, L., Reyes, J., Earl, A. M., et al. (2014).
624 Relating the metatranscriptome and metagenome of the human gut. *Proc. Natl. Acad. Sci.*
625 *U. S. A.* 111, E2329–E2338. doi:10.1073/pnas.1319284111.

626 García-Martín, E. E., Daniels, C. J., Davidson, K., Lozano, J., Mayers, K. M. J., McNeill, S., et
627 al. (2017). Plankton community respiration and bacterial metabolism in a North Atlantic
628 Shelf Sea during spring bloom development (April 2015). *Prog. Oceanogr.*

629 Gifford, S. M., Sharma, S., Rinta-Kanto, J. M., and Moran, M. A. (2011). Quantitative analysis
630 of a deeply sequenced marine microbial metatranscriptome. *ISME J.* 5, 461.

631 Grattepanche, J.-D., Breton, E., Brylinski, J.-M., Lecuyer, E., and Christaki, U. (2011a).
632 Succession of primary producers and micrograzers in a coastal ecosystem dominated by
633 *Phaeocystis globosa* blooms. *J. Plankton Res.* 33. doi:10.1093/plankt/fbq097.

634 Grattepanche, J.-D., Juarez, D. L., Wood, C. C., McManus, G. B., and Katz, L. A. (2019).
635 Incubation and grazing effects on spirotrich ciliate diversity inferred from molecular
636 analyses of microcosm experiments. *PLoS One* 14, e0215872. Available at:
637 <https://doi.org/10.1371/journal.pone.0215872>.

638 Grattepanche, J.-D., McManus, G. B., and Katz, L. A. (2016a). Patchiness of ciliate communities

639 sampled at varying spatial scales along the New England shelf. *PLoS One* 11.
640 doi:10.1371/journal.pone.0167659.

641 Grattepanche, J.-D., Santoferrara, L. F., Andrade, J., Oliverio, A. M., McManus, G. B., and Katz,
642 L. A. (2014). Distribution and diversity of Oligotrich and choreotrich ciliates assessed by
643 morphology and DGGE in temperate coastal waters. *Aquat. Microb. Ecol.* 71.
644 doi:10.3354/ame01675.

645 Grattepanche, J.-D., Santoferrara, L. F., McManus, G. B., and Katz, L. A. (2016b). Unexpected
646 biodiversity of ciliates in marine samples from below the photic zone. *Mol. Ecol.* 25.
647 doi:10.1111/mec.13745.

648 Grattepanche, J.-D., Vincent, D., Breton, E., and Christaki, U. (2011b). Microzooplankton
649 herbivory during the diatom-*Phaeocystis* spring succession in the eastern English Channel.
650 *J. Exp. Mar. Bio. Ecol.* 404, 87–97. doi:10.1016/j.jembe.2011.04.004.

651 Grattepanche, J.-D., Walker, L. M., Ott, B. M., Paim Pinto, D. L., Delwiche, C. F., Lane, C. E.,
652 et al. (2018). Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness
653 Between Morphology and Molecular Data. *BioEssays* 40. doi:10.1002/bies.201700198.

654 Hamady, M., Lozupone, C., and Knight, R. (2009). Fast UniFrac: facilitating high-throughput
655 phylogenetic analyses of microbial communities including analysis of pyrosequencing and
656 PhyloChip data. *ISME J.* 4, 17–27. doi:10.1038/ismej.2009.97.

657 Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forsslund, S. K., Cook, H., et
658 al. (2018). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated
659 orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.*

660 Irigoién, X., Flynn, K. J., and Harris, R. P. (2005). Phytoplankton blooms: a ‘loophole’ in
661 microzooplankton grazing impact? *J. Plankton Res.* 27, 313–321.

662 Irigoién, X., Huisman, J., and Harris, R. P. (2004). Global biodiversity patterns of marine
663 phytoplankton and zooplankton. *Nature* 429, 863–867. doi:Doi 10.1038/Nature02593.

664 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2015). KEGG as a
665 reference resource for gene and protein annotation. *Nucleic Acids Res.* 44, D457–D462.

666 Kuhn, A. M., Fennel, K., and Mattern, J. P. (2015). Model investigations of the North Atlantic
667 spring bloom initiation. *Prog. Oceanogr.* 138, 176–193.
668 doi:<https://doi.org/10.1016/j.pocean.2015.07.004>.

669 Lance, G. N., and Williams, W. T. (1967). Mixed-Data Classificatory Programs I -
670 Agglomerative Systems. *Aust. Comput. J.* 1, 15–20.

671 Laws, E. A., Bienfang, P. K., Zieman, D. A., and Conquest, L. D. (1988). Phytoplankton
672 population dynamics and the fate of production during the spring bloom in Auke Bay,
673 Alaska 1. *Limnol. Oceanogr.* 33, 57–67.

674 Leising, A. W., Pierson, J. J., Halsband-Lenk, C., Horner, R., and Postel, J. (2005). Copepod
675 grazing during spring blooms: can *Pseudocalanus newmani* induce trophic cascades? *Prog.*
676 *Oceanogr.* 67, 406–421.

677 Lesniewski, R. A., Jain, S., Anantharaman, K., Schloss, P. D., and Dick, G. J. (2012). The
678 metatranscriptome of a deep-sea hydrothermal plume is dominated by water column

679 methanotrophs and lithotrophs. *ISME J.* 6, 2257.

680 Li, L., Stoeckert Jr., C. J., and Roos, D. S. (2003). OrthoMCL: Identification of Ortholog
681 Groups for Eukaryotic Genomes. *Genome Res.* 10.1101/gr.1224503 13, 2178–2189.
682 Available at: <http://www.genome.org/cgi/content/abstract/13/9/2178>.

683 Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
684 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 550.

685 Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R. (2011). UniFrac: an
686 effective distance metric for microbial community comparison. *ISME J.* 5, 169.

687 Mahe, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2015). Swarm v2: highly-
688 scalable and high-resolution amplicon clustering. *PeerJ* 3, e1420. doi:10.7717/peerj.1420.

689 Martínez, R. A., Calbet, A., and Saiz, E. (2017). Effects of small-scale turbulence on growth and
690 grazing of marine microzooplankton. *Aquat. Sci.* 80, 2. doi:10.1007/s00027-017-0558-8.

691 Mason, O. U., Hazen, T. C., Borglin, S., Chain, P. S. G., Dubinsky, E. A., Fortney, J. L., et al.
692 (2012). Metagenome, metatranscriptome and single-cell sequencing reveal microbial
693 response to Deepwater Horizon oil spill. *ISME J.* 6, 1715. doi:10.1038/ismej.2012.59.

694 Maurer-Alcalá, X. X., Yan, Y., Pilling, O., Knight, R., and Katz, L. A. (2018). “Twisted Tales:
695 Insights into Genome Diversity of Ciliates Using Single-Cell 'omics.’’ *Genome Biol Evol.*
696 doi:10.1093/gbe/evy133.

697 McKie-Krisberg, Z. M., Sanders, R. W., and Gast, R. J. (2018). Evaluation of Mixotrophy-
698 Associated Gene Expression in Two Species of Polar Marine Algae. *Front. Mar. Sci.* 5, 1–
699 12. doi:10.3389/fmars.2018.00273.

700 McManus, G. B., Schoener, D., and Haberlandt, K. (2012). Chloroplast symbiosis in a marine
701 ciliate: ecophysiology and the risks and rewards of hosting foreign organelles. *Front.*
702 *Microbiol.* 3, 321.

703 McManus, G. B., Zhang, H., and Lin, S. J. (2004). Marine planktonic ciliates that prey on
704 macroalgae and enslave their chloroplasts. *Limnol. Oceanogr.* 49, 308–313.

705 McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive
706 analysis and graphics of microbiome census data. *PLoS One* 8, e61217.

707 Menden-Deuer, S., and Kiørboe, T. (2016). Small bugs with a big impact: linking plankton
708 ecology with ecosystem processes. *J. Plankton Res.* 38, 1036–1043.

709 Monchy, S., Grattepanche, J.-D., Breton, E., Meloni, D., Sanciu, G., Chabé, M., et al. (2012).
710 Microplanktonic community structure in a coastal system relative to a *Phaeocystis* bloom
711 inferred from morphological and tag pyrosequencing methods. *PLoS One* 7.
712 doi:10.1371/journal.pone.0039924.

713 Mousing, E. A., Richardson, K., Bendtsen, J., Cetinić, I., and Perry, M. J. (2016). Evidence of
714 small-scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean.
715 *J. Ecol.* 104, 1682–1695. doi:10.1111/1365-2745.12634.

716 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., and O’hara, R. B. (2016).
717 vegan: Community Ecology Package. R package version 2.3-4 [WWW document].

718 Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H., Oksanen, M. J., et al.

719 (2007). The vegan package. *Community Ecol. Packag.* 10, 631–637.

720 Pernice, M. C., Giner, C. R., Logares, R., Perera-Bel, J., Acinas, S. G., Duarte, C. M., et al.
721 (2016). Large variability of bathypelagic microbial eukaryotic communities across the
722 world's oceans. *ISME J.* 10, 945–958.

723 Rivers, A. R., Sharma, S., Tringe, S. G., Martin, J., Joye, S. B., and Moran, M. A. (2013).
724 Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon
725 oil spill. *ISME J.* 7, 2315.

726 Rosetta, C. H., and McManus, G. B. (2003). Feeding by ciliates on two harmful algal bloom
727 species, *Prymnesium parvum* and *Prorocentrum minimum*. *Harmful Algae* 2, 109–126.
728 doi:Doi 10.1016/S1568-9883(03)00019-2.

729 Saba, G. K., Steinberg, D. K., and Bronk, D. A. (2011). The relative importance of sloppy
730 feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen
731 by *Acartia tonsa* copepods. *J. Exp. Mar. Bio. Ecol.* 404, 47–56.

732 Schoener, D. M., and McManus, G. B. (2012). Plastid retention, use, and replacement in a
733 kleptoplastidic ciliate. *Aquat. Microb. Ecol.* 67, 177–187.

734 Schoener, D. M., and McManus, G. B. (2017). Growth, grazing, and inorganic C and N uptake in
735 a mixotrophic and a heterotrophic ciliate. *J. Plankton Res.* 39, 379–391.
736 doi:10.1093/plankt/fbx014.

737 Sieburth, J. M., Smetacek, V., and Lenz, J. (1978). Pelagic ecosystem structure: Heterotrophic
738 compartments of the plankton and their relationship to plankton size fractions 1. *Limnol.*
739 *Oceanogr.* 23, 1256–1263.

740 Sisson, C., Gulla-Devaney, B., Katz, L. A., and Grattepanche, J.-D. (2018). Seed bank and
741 seasonal patterns of the eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a
742 New England vernal pool. *J. Plankton Res.* 40, 376–390. doi:10.1093/plankt/fby020.

743 Stoecker, D. K., Silver, M. W., Michaels, A. E., and Davis, L. H. (1988). Obligate mixotrophy in
744 *Laboea strobila*, a ciliate which retains chloroplasts. *Mar. Biol.* 99, 415–423.

745 Tartar, A., Wheeler, M. M., Zhou, X., Coy, M. R., Boucias, D. G., and Scharf, M. E. (2009).
746 Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the
747 termite *Reticulitermes flavipes*. *Biotechnol. Biofuels* 2, 25.

748 Tatusov, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V (2000). The COG database: a
749 tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res* 28,
750 33–36. Available at:
751 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10592175.

753 Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C. M., et al.
754 (2012). Substrate-controlled succession of marine bacterioplankton populations induced by
755 a phytoplankton bloom. *Science (80-.).* 336, 608–611.

756 Tucker, S. J., McManus, G. B., Katz, L. A., and Grattepanche, J.-D. (2017). Distribution of
757 abundant and active planktonic ciliates in coastal and slope waters off New England. *Front.*
758 *Microbiol.* 8. doi:10.3389/fmicb.2017.02178.

759 Vaulot, D., Eikrem, W., Viprey, M., and Moreau, H. (2008). The diversity of small eukaryotic
760 phytoplankton ($\leq 3 \mu\text{m}$) in marine ecosystems. *FEMS Microbiol. Rev.* 32, 795–820.

761 Verity, P. G., and Villareal, T. A. (1986). The relative food value of diatoms, dinoflagellates,
762 flagellates, and cyanobacteria for tintinnid ciliates. *Arch. für Protistenkd.* 131, 71–84.

763 Wemheuer, B., Güllert, S., Billerbeck, S., Giebel, H.-A., Voget, S., Simon, M., et al. (2014).
764 Impact of a phytoplankton bloom on the diversity of the active bacterial community in the
765 southern North Sea as revealed by metatranscriptomic approaches. *FEMS Microbiol. Ecol.*
766 87, 378–389. Available at: <http://dx.doi.org/10.1111/1574-6941.12230>.

767 Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A. E., and Keeling, P.
768 J. (2015). Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of
769 microbes. *Science* (80-.). 347, 1257594. doi:10.1126/science.1257594 %J Science.

770 Yutin, N., Wolf, M. Y., Wolf, Y. I., and Koonin, E. V. (2009). The origins of phagocytosis and
771 eukaryogenesis. *Biol. Direct* 4, 9. doi:10.1186/1745-6150-4-9.

772 Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2013). PEAR: a fast and accurate Illumina
773 Paired-End reAd mergeR. *Bioinformatics* 30, 614–620.

774 Zhang, Y., Lin, X., Shi, X., Lin, L., Luo, H., Li, L., et al. (2019). Metatranscriptomic signatures
775 associated with phytoplankton regime shift from diatom dominance to a dinoflagellate
776 bloom. *Front. Microbiol.* 10, 590.

777

778

10 Tables

779

780 **Table 1.** Correlation analyses show a significant impact of phytoplankton on nanosized
 781 community, while Copepods impacted microsized plankton, and the Bacillariophyceae
 782 (significant correlation are in bold: * p < 0.05; ** p < 0.01):

783

	phytoplankton		Copepods	
	nanosized	microsized	nanosized	microsized
SAR	0.65*	0.37	0.3	0.37*
Alveolata	0.46	0.29	0.36	0.33
Ciliophora	0.62*	0.25	0.19	0.16
Stramenopila	0.60*	0.37	0.21	0.27
Bacillariophyceae	0.15	0.17	0.54**	0.70**
Dictyochophyceae	0.71**	0.45	0.16	0.27

784

785

786

787 **11 Figure legends**

788
789 **Figure 1** Comparison of community composition based on amplicon analyses (a, b) across
790 treatments within our microcosms. a) reads and abundant OTUs (>10 reads) distributions of
791 SAR (Stramenopila, Alveolata, and Rhizaria) lineages within each treatment show a dominance
792 in different stramenopiles lineages by size fraction (Dictyochophyceae in the nanosize and
793 Bacillaryophyceae in the microsize) and ciliates in both sizes and . b) and increase of spirotrich
794 ciliates with phytoplankton bloom. For all panels, the letter ‘p’ in the sample label represent the
795 abundance of phytoplankton added: none for p0 [white] , 5.10^2 cell. mL⁻¹ for p1 [yellow-green];
796 5.10^3 cell. mL⁻¹ for p2 [light green], and 5.10^4 cell. mL⁻¹ in final concentration for p3 [green].
797 The letter ‘z’ in the label represent the number of copepods added: none for z0 [white], 5 per liter
798 for z1 [light brown] and 10 per liter for z2 [dark brown]. For example, p0z0 has no copepods and
799 no phytoplankton added and represents our control; p3z0 was incubated without copepods but in
800 phytoplankton bloom condition.

801
802 **Figure 2** Proportion of OTUs, transcripts, and conserved gene families (GFs) significantly
803 increasing (up) or decreasing (down) in response to the incubation conditions show a large
804 proportion of transcripts and GFs downregulated (up to 70% of the transcripts and GFs) in the
805 nanoplankton with phytoplankton bloom treatment. OTU, transcripts and GFs were identified
806 with DESeq2 (Love et al., 2014). The number represent the total number of OTUs, transcripts,
807 and GFs in the samples.

808
809 **Figure 3** Principal coordinates analysis by size fractions of the impact of phytoplankton and
810 copepods abundance on community composition (i.e. OTUs) and on function (i.e. transcripts)
811 show the strongest impact of phytoplankton added on nanosized community. An exception is the
812 microsize community composition, which shows an absence of clear response to the abundance
813 of the phytoplankton we added. UniFrac dissimilarity index was used for the OTUs and the
814 Canberra dissimilarity index for the metatranscriptome data.

815
816 **Figure 4** Heatmap of differential gene expression for each of the 81,634 transcripts matching
817 gene families (rows) across treatments (columns) shows highest downregulation in nanosized
818 communities in phytoplankton bloom conditions. The clustering of the samples is based on
819 Euclidean distance and WardD algorithm. The bar graph at the bottom show the number of
820 transcripts up or down-regulated (absolute difference to the control higher than log2). See Figure
821 for details about sample labels.

822
823 **Figure 5** Heatmap of differential gene expression of the transcripts grouped by Clusters of
824 Orthologous Groups (COG) indicates downregulation of transcript expression related to
825 translation (GOG J) in the microsized plankton incubated with copepods, while nanosized
826 plankton show a downregulation of cytoskeleton (COG Z) function incubated with
827 phytoplankton bloom. The microsized plankton show an upregulation of protein with unknown
828 function (COG S, almost all involved in fucoxanthin chlorophyll a/c pathway in our data). The
829 clustering of the samples is based on Euclidean distance and WardD algorithm. See Figure 1 for
830 details about sample labels.