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Abstract

The availability of high-throughput sequencing (HTS) has transformed our understanding of the
diversity of microbial eukaryotes (i.e. protists) across diverse habitats. Yet relating this
biodiversity to function remains a challenge, particularly in the context of microbial food webs.
Here we perform a set of microcosm experiments to evaluate the impact of changing predator
and prey concentrations on a marine protist community, focusing on SAR (Stramenopila,
Alveolata, and Rhizaria) lineages. We combine an estimate of taxonomic diversity through
analysis of SSU-rDNA amplicons with metatranscriptomics, a proxy for function. We assess
changes in a community sampled from New England waters with varying concentrations of
predators (copepods) and prey (phytoplankton less than 15um in size). The greatest impact
observed is on the diversity and function of the small plankton (2-10pm) community in the
presence of high prey abundance (i.e. bloom conditions). Many SAR taxa in the nanosized
fraction decrease with increasing phytoplankton abundance, while ciliates (from both nano- and
microsized fraction) increase. A large number of transcripts and function estimates in the
nanoplankton are downregulated during our simulated phytoplankton bloom. We also find
evidence of an interaction between increasing phytoplankton and copepods on the microsized
planktonic community, consistent with the hypothesis that phytoplankton and copepods exert
bottom-up control and top-down control on the microsized protists, respectively. Together our
analyses suggest community function (i.e. diversity of gene families) remains relatively stable,
while the function at the species level (i.e. transcript diversity within gene families) show a
substantial reduction of function under bloom conditions. Our study demonstrated that
interactions within plankton food webs are complex, and that the relationships between diversity
and function for marine microeukaryotes remain poorly understood.

Contribution to the field

The number of publications on plankton diversity has increased dramatically over the last
decade, but gaps remain in our understanding of why there is such great diversity, and how it
relates planktonic food webs. Our study analyzes community turnover within the eukaryotic
microbial communities in response to changing food resources (phytoplankton) and predators
(copepods). Using microcosms to assess the impact of these trophic pressures on ciliates and
other microbial eukaryotes, we characterize biodiversity through amplicon high-throughput
sequencing of SAR (Stramenopila, Alveolata, and Rhizaria) clade and function through
metatranscriptomics. One of the main results of our study is the surprising and strong impact of
simulated phytoplankton bloom on nanosize (2-10um) eukaryotes, and the absence of substantial
change among microplankton (10-80um). Our analyses also reveal a reduction of expression and
diversity of cytoskeletal genes for nanosize eukaryotes and an increase of photosynthesis with
high predation pressure. We also believe that the methods we developed will be of interest to
community ecologists as well as evolutionary biologists.
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1 Introduction

Microbes dominate biodiversity and are responsible for key ecosystem functions. They
can function as heterotrophs, autotrophs or mixotrophs, and they can be free-living, parasitic
(detrimental for host) or symbiotic (beneficial for host). Thus, microbes have critical roles for
other organisms including humans (e.g. microbiome including gut flora, human health), other
animals (e.g. coral), and plants (e.g. mycorrhiza). While we know that microbes are important,
we still have only limited knowledge about eukaryotic microbes and their functions (e.g., what
are the main factors driving their diversity). This contrasts to the many tools that have been
developed and used to explore the diversity and function of bacteria. Here, we use some of these
tools, including metatranscriptomics, and amplicon analyses, to look at the marine planktonic
food web.

In marine food webs, the importance of microbes for transfer of energy from bacteria to
higher trophic levels is well-established (reviewed in Azam et al., 1983; Edgcomb, 2016;
Fenchel, 1988; Menden-Deuer and Kierboe, 2016; Worden et al., 2015). Many recent studies
have characterized the marine plankton diversity on a large scale (e.g. Tara Ocean for plankton
in the photic zone and Malaspina for the aphotic zone and others; de Vargas et al., 2015; Irigoien
et al., 2004; Pernice et al., 2016) and show a geographical distribution related to oceanic basins.
Other studies have looked at patterns on a smaller scale (from meter to kilometer; e.g.
Grattepanche et al., 2014, 2016b, 2016a; Mousing et al., 2016) and find that distance alone does
not explain the patterns. One of the likely reasons for the mismatch is because these studies
assess different processes: studies at smaller scales tend to be more directly impacted by species-
specific interactions and functions expressed by each member of the community, while the larger
scale studies are designed to look at overall ecosystem processes such as the impact of climate
change.

Other studies have looked at species-specific relationships between prey and predators,
such as between microzooplankton and phytoplankton or between copepods and
microzooplankton. These studies show that microzooplankton such as ciliates and dinoflagellates
are efficient grazers of phytoplankton of small size (<10 pum for ciliates and <100um for
dinoflagellates; e.g. Calbet, 2008; Grattepanche et al., 2011b; Martinez et al., 2017; Schoener
and McManus, 2017). Microzooplankton have been described as a better food source for
copepods than phytoplankton (Berk et al., 1977; Calbet and Saiz, 2005). The fact that
microzooplankton are strongly controlled by copepods (and other mesozooplankton) is a possible
explanations for phytoplankton spring blooms as preferential grazing of microzooplankton by
copepods may allow dramatic increase in phytoplankton abundance (e.g. dilution-recoupling
hypothesis; Behrenfeld, 2010; Irigoien et al., 2005; Kuhn et al., 2015).

The impact of phytoplankton on microheterotrophs and other parts of the community has
been studied particularly during bloom events (Grattepanche et al., 2011a; Monchy et al., 2012;
Rosetta and McManus, 2003). Based on these analyses, microheterotrophs are assumed to be the
primary consumer of phytoplankton of small size, with bacteria playing a negligible role (Garcia-
Martin et al., 2017). While still in discussion, the phytoplankton spring blooms have been
assumed to be linked to an excess in nutrients at the end of the winter (remineralization by
bacteria and upwelling), combined with a lack of control by predators including heterotrophic
protists and higher trophic levels. On the other hand, microheterotrophs are efficient grazers
when blooms start to decline (Archer et al., 2000; Laws et al., 1988). As such, questions remain
concerning how the community and function change in relation to increasing phytoplankton
abundance.
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Metatranscriptomics has mainly been deployed to study bacterial functions such as the
microbiomes of organisms as diverse as humans (Franzosa et al., 2014) and termites (Tartar et
al., 2009), or in marine systems (Gifford et al., 2011) and in response to environmental changes
such as oil spills (Mason et al., 2012; Rivers et al., 2013). The studies looking at eukaryotic
metatranscriptome are rare. One reason is the paucity of databases of eukaryotic gene functions;
current databases contain mainly bacterial functions or functions related to diseases, which result
in the majority of the environmental eukaryotic transcripts not being annotated (sometimes more
than 80% of the transcripts cannot be annotated; Cooper et al., 2014; Damon et al., 2012;
Lesniewski et al., 2012). To study eukaryotic metatranscriptomes, given the paucity in available
microbial eukaryote genomes (reviewed in del Campo et al., 2014), authors have focused on
clades with reference genomes such as diatoms (Alexander et al., 2015) or fungi (Bailly et al.,
2007).

Here, we use a microcosm approach and high-throughput molecular tools, combining
amplicon and metatranscriptomic analyses, to assess the impact of phytoplankton (prey) and
copepods (predators) on the rest of the planktonic community. To study protist diversity, we use
primers designed to amplify the SAR (Stramenopila, Alveolata, Rhizaria; Grattepanche et al.,
2018; Sisson et al., 2018) community as this includes many major marine clades such as
dinoflagellates, diatoms, and ciliates. We added phytoplankton (i.e. prey) at three concentrations
(5x102, 5x10% and 5x10%*cell. mL!, which mimics marine bloom conditions) and copepods (i.e.
predators) at two abundances (5 and 10 copepod. L™!). We predict that the microsized
heterotrophic plankton (microheterotrophs thereafter) will consume added phytoplankton,
resulting an increase of their contribution, and that copepods will regulate this increase. One part
of the community generally ignored in the phytoplankton-microheterophs-copepods link are the
nanosized plankton. We therefore specifically address the impact on small plankton (2-10um)
and expect (1) strong competition as we add phytoplankton and (2) absence of impact of
copepods as nanosized plankton are too small to be captured.

2 Materials and methods
2.1 Starting materials: community, phytoplankton, copepods

The experiments conducted here used a community sample of microbes sampled in the open
water of the Long Island sound in front of University of Connecticut’s Avery Point campus
(41.30 °N, 72.06° W) on 15 March 2016. We collected in situ water in four 20L carboys, filtering
first through an 80um mesh to remove predators and other large organisms, enabling us to focus
on the protist community.

To perform our microcosm experiment, we used four cultures: three phytoplankton (prey)
cultures Tetraselmis chui, Isochrysis galbana, and Phaeodactylum tricornutum; and a culture of
Acartia tonsa (copepod, predators). The species of phytoplankton used are common in
aquaculture application, represented various size, shape, pigment composition and lineages, and
has been used successfully in the past (Grattepanche et al., 2019; McManus et al., 2004, 2012)..
All phytoplankton were from the culture collection of the National Marine Fisheries Service
Laboratory in Milford CT (USA) and were grown in F/2 medium prior to experiments. The
copepods were picked from cultures maintained at the University of Connecticut Department of
Marine Sciences. In order to achieve the final concentration of phytoplankton for our microcosm
experiment, we concentrated the combined phytoplankton by centrifugation at 3,9¢g to create a
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stock concentration of 5x107 cells. mL! with the three algae at the same order of magnitude (P.
tricornutum was added at 1/5 of the concentration of the two other species).

2.2 Experimental set-up

We used dialysis tubing to perform our microcosm experiment and incubated samples in a sea
table with circulating water from collections sites to minimize impact of isolation, following the
approach of Grattepanche et al. (2019). The dialysis tubing is composed of a cellulose membrane
that is pervious to molecules <12,000 molecular weight (product D9402, Sigma), allowing for
exchange of nutrients during incubation in sea tables. Each microcosm (tied-off dialysis tubing)
contained one liter and was floated in a sea table with continuous in situ seawater circulation as
recommended by Capriulo (1982).

To test impact of varying levels of predators and food resources we pooled our four water
samples together, and then divided back into four carboys of 20L to which we added: 1) nothing
(control; p0), phytoplankton at 2) 5x10% cell. mL™! (p1), 3) 5x103 cell. mL! (p2), and 4) 5x10*
cell. mL™! (p3) in final concentration. For each of the carboys, we filled 9 microcosms with 1L of
the seawater with (or without) phytoplankton added. For each of the phytoplankton abundance
conditions, including controls, we added zero (z0), 5 (z1) or 10 copepods (z2) to triplicate
microcosm for each treatment (3 sets of dialysis tubing per phytoplankton/zooplankton
combination). Based on insights from a preliminary study (Grattepanche et al., 2019), the
microcosms were incubated for 3 days and then the total contents of each bag were collected for
nucleic acids extractions. We used a three-day incubation to minimize cascade effect and
maximize nano- and microsized plankton impact based on insights from Grattepanche et al.
(2019). We also collected duplicates of the initial in situ water sample such as the in situ sample
plus high phytoplankton abundance added (t0p3) at the beginning of the experiment.

2.3 Sampling and nucleic acids extraction

We isolated organisms of whole content of each dialysis bag on polycarbonate filters after size-
selection, cut filters in two and isolated DNA and RNA using appropriate kits. Prior to isolation
of nucleic acids, each sample passed through serial filtration at 80um (to remove predators and
larger organisms to focus on small protists and avoid some PCR inhibitors) and collected on
10pm (i.e. microsized fraction) and 2um (i.e. nanosized fraction). The filters do not exactly line
up with current definitions of nano- and microplankton as some have argued picoplankton are up
to 3um in diameter (Vaulot et al., 2008) while nanoplankton can include species up to 20um
(Sieburth et al., 1978). We use the terms ‘microsize’ and ‘nanosize’ as the bulk of the lineages
caught on our filters likely fall in these sizes classes, though the variation in the filters, the
differential flexibility of species and the irregularity of some body plans all confound the
efficiency of filtering.

For the nucleic acid extraction, we cut the resulting filters in half, storing one half for DNA
(DNA prep buffer; 100mM NacCl, Tris-EDTA at pH 8, and 0.5% of SDS) and the other half for
RNA (RLT lysis buffer [Qiagen, Germany] plus beta mercaptoethanol). DNA and RNA were
extracted using Zymo Research soil extraction kit (Zymo Research, CA) and Qiagen RNeasy
(Qiagen, Germany) kits following the manufacturer's instruction. For the RNA prep, residual
DNA was removed using the Turbo DNA-free kit (Invitrogen, CA). This approach (both
filtration and extraction) was tested on previous samples and resulted in good DNA/RNA quality
(Grattepanche et al., 2019; Sisson et al., 2018; Tucker et al., 2017).
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2.4 Amplicon sequencing for community composition

The amplicon analyses followed protocols from Grattepanche et al. (2016b) and Sisson et al.
(2018). In sum, we used a primer set specific of the SSU-rDNA gene of the SAR lineages, which
amplified a 150 bp fragment of the hypervariable region V3, to amplify DNAs extracted from
filters. As discussed in Grattepanche et al. (2019), these primers amplify almost all known SAR
lineages, excepted the highly divergent Foraminifera, which are also removed by our
prescreening on 80um). The amplification was done with the Q5 polymerase enzyme (NEB,
MA) following manufacture's protocol. PCR products were cleaned using Agencourt AMPure
XP beads (Beckam Coulter, CA) and sent to University of Rhode Island Genomics and
Sequencing Center for sequencing on an Illumina MiSeq sequencer (2x150 cycles). This resulted
in a dataset of 7,207,909 reads. The raw reads are available from NCBI under the BioProject
PRINAS550423 and the Sequence Read Archive SRP212194.

The Amplicon dataset was analyzed using a pipeline combining third party tools and
custom python scripts (Grattepanche et al., 2019; Sisson et al., 2018). We first generated paired-
end reads using Paired-End reAd mergeR (Zhang et al., 2013), refined the sequences (removed
unpaired sequences; sequences without primers), created an OTU library using SWARM (v
2.1.9; Mahe et al., 2015), refined the OTUs (removed chimeric OTUs, outgroup OTUs, and
OTUs with less than 10 reads), and then assigned taxonomy by tree using a curated SAR SSU-
rDNA gene database. The final step corresponds to the rarefaction i.e., subsampling a fixed
number of reads for each sample to enable comparison. This resulted in a total of 1,148 OTUs
corresponding to 3,400,000 rarefied reads (50,000 reads per sample).

To compare the effect of experimental conditions on diversity (i.e. taxonomy), only the
OTUs present in two replicates of the same treatment and the same size fraction, and with more
than 5 reads were kept. The reported number of reads for each treatment and size corresponds to
the average of the read number among the three replicates, resulting in a total of 277 OTUs. We
used this set of OTUs to assess changes between the control and the treatments.

2.5 Metatranscriptome for analyses of community function

To characterize expressed eukaryotic genes (i.e., those with polyA tails) we constructed mRNA
libraries using TruSeq Stranded mRNA sample prep (Illumina, CA) following manufacturer
protocol. In summary, we isolated RNA using oligo-dT beads, fragmented the transcripts and
synthesized first and second strands of DNA (¢cDNA). The 3' end of the fragments was
adenylated to avoid ligation to another fragment, the adapters were ligated, and the fragments
were amplified using specific PCR (see TruSeq protocol). DNA purifications were performed
between each of these steps using Agencourt(r) AMPure XP beads (Beckam Coulter, CA). The
remainder of the protocol was performed at the University of Maryland, Baltimore Institute for
Genome Sciences. This included library quantification and quality checking with an Agilent
Technologies 2100 Bioanalyzer, pooling, and sequencing with an Illumina HiSeq 4000. We used
a similar depth of sequencing for all our samples. While this depth of sequencing does not allow
to access the lowly expressed transcripts, the use of similar depth of sequencing across samples
allowed us to compare these different samples. This resulted in a dataset of 783,472,526 reads,
which are available from NCBI under the BioProject PRINA550423 and the Sequence Read
Archive SRP212194.

The metatranscriptome libraries were assembled using rnaSPAdes (version 3.10.1 with
default parameters; Bankevich et al., 2012). We assembled the libraries in 3 ways: (1) each
library independently (replicate set), (2) each triplicate by size fraction (nano- and microsized
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fractions, separately; treatment set); and (3) all libraries together in order to create a reference
database for read number and RPKM calculation (Reads Per Kilobase Million = Reads Per
Kilobase of transcript, per Million mapped reads, which is a proxy for gene expression).

As the reference genomes of microbial eukaryotes are still rare (del Campo et al., 2014),
we looks at the pattern of conserved gene families using both PhyloToL (Cerén-Romero et al.,
2019), which relies on the classification of gene families determined in OrthoMCL (Chen et al.,
2006; Li et al., 2003). The resulting 1,485,323 transcripts were then refined using the "gene
family assessment for taxa" part of the PhyloTOL pipeline (Ceréon-Romero et al., 2018, 2019;
Maurer-Alcala et al., 2018). In sum, we removed transcripts smaller than 200bp (77,230
transcripts smaller than 200 bp), ribosomal DNA (5,699 transcripts matching rDNA gene
references) and bacterial (38,305 transcripts matching reference bacterial genomes)
contamination, bin the remaining sequences in orthologous groups (hereafter OG; proxy for gene
families) using OrthoMCL (Chen et al., 2006; Li et al., 2003) as reference (990,632 transcripts
did not match our reference gene families).

At this stage, the dataset was composed of 373,457 transcripts. We consider only the
transcripts matching an OG with an E-value cutoff of 1e° and a coverage of 10 (coverage as
calculated by rnaSPAdes; 18,599 transcripts were discarded). This results in a reference dataset
composed of 86,951 transcripts representing 5,258 conserved eukaryotic gene families (i.e. OGs
from OrthoMCL; Chen et al., 2006) plus a large number of lineages-specific genes. We then
decided to remove transcripts from the phytoplankton we added. For this purpose, we isolated
transcripts from the added phytoplankton by removing transcripts absent from the in situ samples
without added phytoplankton (t0) from the in situ sample plus high phytoplankton abundance
(tOp3). By this way, we identified 5,159 transcripts from the phytoplankton we added. We also
removed the transcripts that were 10 times more expressed in tOp3 than in t0, leading to an
additional 158 transcripts. Of the original reference transcripts (generated by combining mRNAs
from all treatments), we removed 5,317 transcripts that represent genes expressed by the
phytoplankton added resulting in a finally reference dataset of 81,634 transcripts. We then use
BLAST2Go to assign Gene Ontology (GO; Conesa et al., 2005) and eggNOG (Huerta-Cepas et
al., 2018) to assign Clusters of Orthologous Groups (COG; Tatusov et al., 2000) and KEGG
(Kyoto Encyclopedia of Genes and Genomes) orthology (KO; Kanehisa et al., 2015).

To assess the gene expression for the two sets (replicate and treatment sets), we mapped
back the reads of each metatranscriptome to the refined reference (all libraries pooled together
and refine using PhyloTOL) using Seal (Sequence Expression AnaLyzer, version 35.92)
implemented in BBmap (Bushnell, 2016). In short, each read is mapped to our reference using a
Kmer of 31, and the count is transformed in Reads Per Kilobase Million (RPKM) to take in
account the depth of sequencing for each sample. This software and a custom python script
produce a table with the RPKM (read number or gene expression) of each reference transcript
present in each of our samples (similar to an ‘OTU table”).

2.6 Statistics

To assess the effect of each treatment on the community composition, we used the Unifrac
dissimilarity index (Hamady et al., 2009; Lozupone et al., 2011) and Principal Coordinates
Analysis (PCoA). The analyses were performed in R using the Phyloseq (McMurdie and
Holmes, 2013) and vegan packages (Oksanen et al., 2007, 2016). We tested the significance of
the PCoA axis and factor (phytoplankton or predators) using envfit implemented in vegan, in
which the data are randomly permuted 999 times (total of 1,000 datasets) and the random data
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are compared to the data generated through a fitted regression model. Under the null hypothesis
of no relationship between the ordination "axis" scores and the environmental variable, the
observed R? value should be a value among the permuted R? values. However, if the observed R?
is extreme compared to the permutation distribution of R? then we can reject the null hypothesis.
The proportion of times a randomized R? from the distribution is equal to or greater than the
observed R? is a value known as the permutation p value. The same analysis is performed for the
Metatranscriptomics data using Canberra dissimilarity index (Lance and Williams, 1967).

Differential gene expression was calculated as (1) difference of read number between
control and treatment or (2) ratio of RPKM between control and treatment. If the ratio was above
1, the transcript was upregulated in the treatment compared to the control. If the ratio was below
1, the transcript was downregulated, and we inverted the ratio (e.g. a ratio of 0.5 becomes -2). To
be conservative, we only consider up/downregulation when the ratio was larger (or smaller) than
2 (or -2 for downregulation). In addition, we also assessed the OTUs and transcripts significantly
up- or down-regulated (log2 fold change with p<0.05) using DESeq?2 package (Love et al.,
2014). The transcripts significantly up- and downregulated assessed with DESeq2 matched with
our estimates.

3 Results
3.1 Top-down and bottom-up impact on community composition

The diversity of SAR lineages remained relatively constant despite increasing predation pressure
and food availability (Figure 1, Supplementary Figure S1). Because the three replicates were
overall similar (Supplementary Figure S1), we pooled replicates to evaluate the impact of
treatment and considered only the OTUs (i.e. species) as described in the methods section. We
observed that abundant OTUs (i.e. OTUs with more than 10 reads) varied between 63 and 125
OTUs (Figure 1a), and up to 239 OTUs when including the rare OTUs (Figure 2). The richness
of abundant OTUs showed no clear pattern in response to phytoplankton abundance or copepods
density (Supplementary Figure S1). In other words, the perturbations (adding prey and/or
predators) did not have a strong impact on the overall diversity of SAR lineages.

While the overall diversity did not change within our microcosm, the community
composition did respond to the various treatments (i.e. food availability and predation pressure),
and size. Overall, up to 10% of the nanosized OTUs significantly decreased in read number with
increasing phytoplankton abundance, and up to 5% of the OTUs significantly increased in read
number with increasing predation pressure (copepods, Figure 2). By comparison, the microsized
plankton community showed a more neutral/stochastic response, with no clear relation with
increasing phytoplankton and/or copepods (Figure 2). We also observed that 81% of the
community variability is explained by differences between the nanosized and microsized
plankton (R?=0.7894, p<0.0001; Supplementary Figure S2).

Among the nanosized community, the contribution of ciliates relative to stramenopiles
increased with increasing phytoplankton (i.e. p0z0 vs. p1z0 vs. p2z0 vs. p3z0 showed an
increasing contribution of ciliates; Figure 1a and b). The pattern among microsized species was
more complex. For instance, ciliates, especially within Spirotrichea, increased with increasing
phytoplankton in the absence of predators (Figure 1). However, this effect appears buffered by
the increasing copepods as the ciliate contribution was almost constant when incubated with high
predation pressure (i.e. 10 copepods. L) regardless of the concentration of phytoplankton
(Figure 1). This suggests that while microsized ciliates responded to the increase of food, the



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

copepods were able to keep them at a constant abundance. By comparison, we only observed a
slight impact of copepods on nanociliates (Figure 1). In addition, we observed a slight decrease
of phytoplankton (mainly Dictyochophyceae and Coscinodiscophyceae; Figure 1b) with
increasing phytoplankton and a more mixed response with increasing copepods (Figure 1,
Supplementary Material).

Only a few OTUs, our proxy for species, responded repeatedly to all treatments. The
control (no copepod and no phytoplankton added [p0z0]), the high predation pressure (high
copepod abundance and no phytoplankton added [p0z2]) and the phytoplankton bloom
incubations (high phytoplankton abundance and no copepods added [p3z0]) shared a quarter of
the total OTUs (56 of the 212 OTUs observed in p0z0, in p3z0 and in p0z2 ; Supplementary
Figure S3). The dominant OTUs did not show clear response to our treatment (see
Supplementary Material; Supplementary Figure S2). A few OTUs increased or decreased
significantly with food availability including OTU302 (closely related to the stramenopile
Rhizochromulina) and OTU74 (likely an oligotrich ciliates) or with both food availability and
predation pressure such as OTU94 (closely related to the euglyphid Cyphoderia major;
Supplementary Figure S4). In the same way, only a third of the OTUs are specific to a size
fraction and treatment (70 OTUs; Supplementary Figure S3), and these OTUs represented less
than 1% of the community based on read number.

To assess changes in the overall community, we used principal coordinate analysis
(PCoA) with UniFrac index, which considers phylogenetic relationship among OTUs. Overall,
these analyses indicate that predators impacted the microsized SAR community while the
phytoplankton changed the nanosized SAR community. Adding copepods significantly
impacted the microsized community (phytoplankton R?>=0.3689, p=0.2238; copepods R>=0.3726,
p < 0.05 by envfit test, Figures 2B and 2D), while phytoplankton addition had a significant
impact on nanoplankton (phytoplankton R?>=0.6446 p<0.05; copepods R*=0.2976 p=0.1638;
Figures 2A and 2C). Looking at lower taxonomic levels, we observed that Ciliophora,
Stramenopila and within Stramenopila, Dictyochophyceae in the nanosized fraction showed a
significant response to phytoplankton treatments, while none of the microsized fraction showed
significant response with increasing phytoplankton (Table 1). The copepods seemed to have only
impacted the Bacillariophyceae from both nano- and microsized fractions (Table 1).

3.2 Community function by metatranscriptomics

Our metatranscriptomics analysis focused on a dataset composed of 81,634 transcripts that match
conserved eukaryotic gene families, and represent 13,029 GO terms, 5,176 conserved eukaryotic
gene families, and 3,699 KO terms. We evaluated the impact of our treatment on the community
function using the number of conserved gene families (GFs) and transcripts at three levels of
expression: present, expressed and highly expressed (>0, >10 and >1,000 as gene expression
estimated by RPKM, respectively). The nano- and microsized fractions are composed of a
similar number of expressed transcripts (40,667 and 41,369 transcripts, respectively) with half
shared in both sizes (21,940 transcripts; see Supplementary Material).

Differential expression profiles showed a clear difference between the two size fractions,
and more intriguingly, a large number of transcripts are downregulated in the nanosized
community incubated with phytoplankton at bloom conditions (Figure 4). The nanosized
plankton showed up to 7 times more downregulated transcripts when incubated in phytoplankton
bloom conditions (Figure 4). In addition to transcript number, we also evaluated the impact of
our treatments on the community function using three metrics: the number of conserved gene
families (GFs), Gene Ontology (GO), and KEGG orthology (KO) terms associated with up- or
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down-regulated transcripts (Figure 2 and Supplementary Figure S5). Using all of these
measures, we again saw a substantial change in nanosized plankton functions (up to 70% of
transcripts and conserved gene families are downregulated in bloom conditions; Figures 2, 4 and
Supplementary Figure S5), while the impact on microsized plankton is less marked (Figures 2
and 4 and Supplementary Figure S5).

In comparison to the impact of prey (i.e. phytoplankton), the impact of predators on
function is in agreement with our expectations: negligible for the nanosized fraction and leading
to an increase in upregulated function in the microsized fraction (Figures 2 and 4; Supplementary
Figure S5). Looking in detail at the interactions between phytoplankton bloom and high
predation pressure, the increase in copepods density tends to increase the proportion of
differentially expressed transcripts (Figures 2 and 4; Supplementary Figure S5). The copepods
also increased the number of upregulated functions in the microsized plankton (Figure 2;
Supplementary Figure S5). For both sizes, the copepods tend to reduce the proportion of
downregulated transcripts and GFs during the phytoplankton bloom incubations (Figures 4 and
2; Supplementary Figure S5). In other words, the impact of copepod counterbalanced the effect
of phytoplankton bloom on the community function and vice-versa.

Overall patterns of transcripts assessed by PCoA with a Canberra distance metric show
the same pattern as the SAR amplicon sequencing, i.e. samples group firstly by size fraction
(nano- and microsized) and then by phytoplankton abundance for the nanosized community
(35% of the variance expression; Figure 3). The expression within the microsized community is
similarly impacted by phytoplankton and copepods (18% vs 16% of the variance, Figure 3). This
again suggests that while the nanosized plankton is primarily impacted by the change in
phytoplankton abundance, the microsized plankton expression profile is a result of interactions
between phytoplankton and copepod abundances.

To further assess community function, we assigned transcripts into functional categories
using COG (Cluster of Orthologous Gene). One third of the gene expression (as measured by
RPKM) and one fifth of the number of transcripts are involved in translation (category COG J).
Another 40% of the transcript expression and transcript number is represented by transcripts
from post-translational modification and protein turnover (COG O), unknown function (COG S),
cytoskeleton (COG Z), energy production and conversion (COG C) and carbohydrate
metabolism and transport (COG G). The COG S includes transcripts related to Fucoxanthin
Chlorophyll a/c (55% of the reads for this study), Chlorophyll a/b binding proteins (6% of the
read) by similarity.

To evaluate the main functions impacted during our experiments, we pooled the
transcripts by COGs and estimate the differential expression in each treatment relative to the
control. We observed a downregulation in cytoskeleton mRNA (COG Z in Figure 5) and a slight
upregulation in mRNAs involved in translation in the nanosized communities incubated in
phytoplankton bloom condition (COG J in Figure 5). The microsized community incubated with
many copepods experienced an upregulation of transcripts of “unknown” function (mainly
transcripts related to Fucoxanthin chlorophyll a/c by similarity; COG S in Figure 5) and a
downregulation of transcripts involved in translation (COG J in Figure 5). The other treatments
showed only slight differences and no pattern was discernable between COG and incubation
condition.

3.3 Function and taxonomy

Phylogenomic analyses indicate that transcripts strongly impacted in our microcosm are from
SAR lineages and other phytoplankton (e.g. chlorophyte, cryptophyte, haptophyte). We

10



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

445

446
447
448
449
450
451
452
453
454
455
456

457

458
459
460
461
462
463
464
465
466

generated phylogenies for eleven exemplar genes that showed high diversity and/or high
expression (e.g. three ribosomal proteins, a and B tubulins, actin, HSP70, chlorophyll a/b binding
proteins, and glyceraldehyde 3-phosphate dehydrogenase; Supplementary Figure S6). For each
of these genes, SAR represents almost 70% of the transcripts; Stramenopila, Alveolata and
Rhizaria representing approximately 45%, 40%, and 10% of the highly expressed transcripts,
respectively. Other algae (e.g. chlorophytes, haptophytes, crytpophytes) comprise ~25% of the
highly expressed transcripts and Opisthokonta, Amoebozoa and Excavata are represented by less
than 6% of the highly expressed genes (Supplementary Figure S6).

While ciliates clearly responded to increased phytoplankton in amplicon analyses (Figure
1), our taxonomic analyses of some gene families did not find evidence of their impact on the
community function. Ciliates contributed up to 30% to some genes including eEFla
(Supplementary Figure S6). However, ciliates did not show any strong response to treatments for
this set of genes except a more important contribution to the actin expression in our
phytoplankton bloom treatment (Supplementary Figure S6). Other cytoskeleton proteins, such as
a-tubulin and B-tubulin, did not show this pattern. We looked at other genes involved in
phagosome formation such as ARP complex and RAC as a proxy of phagotrophy (Yutin et al.,
2009) and the protein identify by Burns et al (2018), but again we did not observe a clear pattern
across treatments (Supplementary Figure S7). While this is surprising, it is important to
remember that many transcripts (almost 1 million) are not considered here as they are not
annotated in databases and instead might represent lineage-specific genes. In other words, the
impact of ciliates on the community may be through lineage-specific genes that lack annotated
homologs in current databases.

4 Discussion

Contrary to our expectation that increasing phytoplankton would have the greatest impact
on the microsized heterotrophs (i.e. the potential predators of added phytoplankton), the
nanosized community showed the greatest response to bloom levels: we observed an increase of
ciliate community members with increasing phytoplankton abundance (Figure 1) and a decrease
in community function (i.e. transcript number and expression levels) among the nanosized
plankton incubated in bloom condition (Figure 4). The microsized community did respond as
predicted, ciliates increased with increasing phytoplankton abundance (i.e. bottom-up control)
and the microsized plankton were impacted by increasing copepods (i.e. top-down control). We
also demonstrate the power of combining amplicon and metatranscriptomics in microcosm
experiments to characterize changes in microeukaryotic communities in response to
environmental changes.

4.1 Bloom of phytoplankton and impact on other small plankton

The nanosized plankton (i.e. 2-10 pm) response to increasing phytoplankton (three species
ranging in size from 4-15 um) was unexpected. We added small sized phytoplankton expecting
to see an impact on their predators within the microsized (i.e. 10-80 um) heterotrophs and saw a
small increase of microsized ciliates with increasing phytoplankton (Figure 1). In other in situ
studies, microheterotroph biomass increased with phytoplankton and nanoplankton were
responding to bacteria (Grattepanche et al., 2011a; Irigoien et al., 2005). So, we did not expect to
observe an increase of nanosized lineages, assessed by SAR amplicon analyses, incubated in
bloom conditions (Figure 1). This suggests that either nanosized lineages (i.e. ciliates) were able
to consume prey of the same size or that their response is indirect. For example, it is possible that
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phytoplankton exudate caused increased growth of bacteria, which are in turn grazed by
nanosized ciliates (i.e. more food, more abundant) (Fenchel, 1987). Another possibility is that
nanosized ciliate predators fed on the same size phytoplankton, and therefore relieved predation
pressure on these small ciliates (i.e. less predators, more abundant).

We evaluate the possibility of lineage-specific changes in predation among nanosized
community members by looking at genes involved in phagocytosis. While we observed an
upregulation of actin for the nanosized ciliates in bloom condition (Supplementary Figure S6),
we did not see an increase in expression for phagotrophic genes such as the ARP complex and
RAC gene family identified by Yutin et al (2009) and a longer list of genes identified in two
other studies (Burns et al., 2018; McKie-Krisberg et al., 2018; Supplementary FigureS7). These
analyses are consistent with an indirect response of nanosized ciliates rather than an increase in
grazing in response to added phytoplankton. However, this conclusion needs to be taken with
caution as the mechanism of phagotrophy for microbial eukaryotes is still poorly understood
(Yutin et al., 2009) and many lineage-specific gene families are likely missing from our database
(Ceron-Romero et al., 2019).

4.2 Phytoplankton blooms reduce community function

The transcript number and expression levels for communities incubated in the bloom conditions
strongly decreased for the nanosized fraction (Figure 4 and Supplementary Figure S5). A
decrease of functional diversity is expected when just a few species dominate the ecosystem (i.e.
in bloom conditions), but the observed impact on nanosized and not on the microsized plankton
is surprising. One possibility is that changes in ecological niche (abiotic, and biotic factors) in
the phytoplankton bloom conditions might have selected for only a subset of the nanosized
species present at the beginning of incubation, resulting in a decrease of expressed function. A
decrease of diversity and function has been documented for bacterioplankton (Teeling et al.,
2012; Wembheuer et al., 2014), but not yet for eukaryotes.

We did see patterns in changes of genes related to photosynthesis and stress. For
example, we saw a reduction expression of transcripts related to photosynthesis (COG S, Figure
5; Chlorophyll a/b binding protein; Supplementary Figure S6). In addition, stress-related
proteins (e.g. HPS90, HSP70), particularly of phytoplankton groups (e.g. Archaeplastida,
Supplementary Figure S6), did increased with increased phytoplankton. This suggests a stress
among phytoplankton in response to bloom conditions and is consistent with the observed
decrease of SAR phytoplankton (mainly Dictyochophyceae and Coscinodiscophyceae) observed
with increasing phytoplankton (Figure 1).

The addition of varying levels of phytoplankton impacted the diversity and function of
both the nanoplankton and, to a lesser extent, the microsized plankton. As expected for bloom
conditions, we observed an amplification of changes in both up- and downregulated transcripts
with increasing phytoplankton (Figure 2). However, none of these genes are directly related to
phytoplankton blooms based on findings in previous studies (e.g. proteins involved in nutrient
metabolism or carbohydrate metabolism; Zhang et al., 2019). We hypothesize that the change in
community function is related to changes in metabolism during the extreme conditions generated
by the bloom.

4.3 Phytoplankton bloom is enhanced by copepods

The composition (i.e. OTUs) of the microsized community was impacted by top-down control
but not the functions of the microsized community. We had expected microsized ciliates to
increase with phytoplankton concentration as we selected three phytoplankton species
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(Tetraselmis chui, Isochrysis galbana, and Phaeodactylum tricornutum) considered to be ‘good’
food resources for ciliates (Christaki and Van Wambeke, 1995; McManus et al., 2012; Schoener
and McManus, 2012; Stoecker et al., 1988; Verity and Villareal, 1986). Instead, we only
observed top-down control of ciliates by copepods, as ciliates represent a superior food resource
for copepods and may be selectively grazed (Calbet and Saiz, 2005). Our data are a direct
illustration that copepod grazing on microheterotrophs (i.e. ciliates) reduced top-down controls,
allowing phytoplankton to increase (Behrenfeld, 2010; Irigoien et al., 2005; Kuhn et al., 2015).
While this has been hypothesized from microscopic observations of in situ samples (Irigoien et
al., 2005; Leising et al., 2005), here we showed, in our closed system, that ciliates were not able
to control the amplitude of a phytoplankton bloom because of the predation pressure from
zooplankton (copepods).

Copepods did have a significant impact on microsized phytoplankton community
function as photosynthetic activities (e.g. chlorophyll a/b binding proteins) increased with
increasing copepod abundance (Figure 5; Supplementary Figure S6). Copepods have been
reported to release dissolved organic carbon and inorganic nutrients through sloppy feeding and
fecal pellets (Saba et al., 2011), which may increase phytoplankton production. Together these
factors (increase in nutrients and release of predation pressure by feeding on microciliates) may
explain the functional changes in microsized community members observed across our
experiments.

5 Conclusions

This work combines experimental microcosms and ‘omics approaches (both amplicon and
metatranscriptomics) to reveal: (1) phytoplankton blooms strongly decrease gene expression
within the nanosized community; and (2) copepods control microsized heterotrophs when
phytoplankton abundance is low, reducing predation pressure on phytoplankton. We
acknowledge a major caveat in interpreting function within these communities: of the 1.5 million
transcripts, we were able to assign taxonomy and function to less than 25% because of the lack
of knowledge about eukaryotic microorganisms. Hence, we anticipate that future studies will be
able to further refine insights on functional responses through analyses of specific genes.
Nevertheless, the strong decrease of transcript diversity showed the impact of phytoplankton
blooms and zooplankton grazing at the species level, while the overall community functions (i.e.
number of GFs, KO, and GO) remained unchanged. This illustrates the resilience of the
community in maintaining ecosystem functions. Finally, these analyses show the power of
combining amplicon and metatranscriptomics approaches to better understand processes driving
microeukaryotic diversity and function in marine systems.
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10 Tables

Table 1. Correlation analyses show a significant impact of phytoplankton on nanosized
community, while Copepods impacted microsized plankton, and the Bacillariophyceae
(significant correlation are in bold: * p <0.05; ** p <0.01):

phytoplankton Copepods
nanosized  microsized  nanosized  microsized

SAR 0.65* 0.37 0.3 0.37*
Alveolata 0.46 0.29 0.36 0.33
Ciliophora 0.62* 0.25 0.19 0.16
Stramenopila 0.60* 0.37 0.21 0.27

Bacillariophyceae 0.15 0.17 0.54** 0.70%*
Dictyochophyceae 0.71%* 0.45 0.16 0.27
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11 Figure legends

Figure 1 Comparison of community composition based on amplicon analyses (a, b) across
treatments within our microcosms. a) reads and abundant OTUs (>10 reads) distributions of
SAR (Stramenopila, Alveolata, and Rhizaria) lineages within each treatment show a dominance
in different stramenopiles lineages by size fraction (Dictyochophyceae in the nanosize and
Bacillaryophyceae in the microsize) and ciliates in both sizes and . b) and increase of spirotrich
ciliates with phytoplankton bloom. For all panels, the letter ‘p’ in the sample label represent the
abundance of phytoplankton added: none for p0 [white] , 5.10% cell. mL"! for p1 [yellow-green];
5.10° cell. mL! for p2 [light green], and 5.10* cell. mL"! in final concentration for p3 [green].
The letter z’ in the label represent the number of copepods added: none for z0 [white], 5 per liter
for z1 [light brown] and 10 per liter for z2 [dark brown]. For example, p0z0 has no copepods and
no phytoplankton added and represents our control; p3z0 was incubated without copepods but in
phytoplankton bloom condition.

Figure 2 Proportion of OTUs, transcripts, and conserved gene families (GFs) significantly
increasing (up) or decreasing (down) in response to the incubation conditions show a large
proportion of transcripts and GFs downregulated (up to 70% of the transcripts and GFs) in the
nanoplankton with phytoplankton bloom treatment. OTU, transcripts and GFs were identified
with DESeq2 (Love et al., 2014). The number represent the total number of OTUs, transcripts,
and GFs in the samples.

Figure 3 Principal coordinates analysis by size fractions of the impact of phytoplankton and
copepods abundance on community composition (i.e. OTUs) and on function (i.e. transcripts)
show the strongest impact of phytoplankton added on nanosized community. An exception is the
microsize community composition, which shows an absence of clear response to the abundance
of the phytoplankton we added. UniFrac dissimilarity index was used for the OTUs and the
Canberra dissimilarity index for the metatranscriptome data.

Figure 4 Heatmap of differential gene expression for each of the 81,634 transcripts matching
gene families (rows) across treatments (columns) shows highest downregulation in nanosized
communities in phytoplankton bloom conditions. The clustering of the samples is based on
Euclidean distance and WardD algorithm. The bar graph at the bottom show the number of
transcripts up or down-regulated (absolute difference to the control higher than log2). See Figure
1 for details about sample labels.

Figure 5 Heatmap of differential gene expression of the transcripts grouped by Clusters of
Orthologous Groups (COG) indicates downregulation of transcript expression related to
translation (GOG J) in the microsized plankton incubated with copepods, while nanosized
plankton show a downregulation of cytoskeleton (COG Z) function incubated with
phytoplankton bloom. The microsized plankton show an upregulation of protein with unknown
function (COG S, almost all involved in fucoxanthin chlorophyll a/c pathway in our data). The
clustering of the samples is based on Euclidean distance and WardD algorithm. See Figure 1 for
details about sample labels.
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