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1 Introduction

The study of random spatial patterns, formally called stochastic geometry, has played
an important role in statistical physics. Some of the well known examples include
the study of percolation over both lattices and random sets of points, referred to as
point processes [ 1-4], as well as the characterization of the properties of tessellations
formed by point processes and random sets of lines called line processes [5, 6]. In
fact, as will be discussed shortly, the modern treatment of line processes was inspired
by the study of particle trajectories in a cloud-chamber experiment [7]. The Poisson
line process (PLP), which will be defined formally in Section 2, is often the preferred
choice for analysis in this line of work due to its tractability [8—10]. Given its rich
history, a lot is already known about the distributional properties of a PLP [11, 12].
However, there has been a growing interest in a doubly stochastic point process that
is constructed by defining a random set of points on each line of a PLP in R?, which
is relatively less understood and is the focus of this paper. Specifically, we focus
on the distribution of the shortest distance between two points of this point process
when traveling only along the random lines. This distance, which will henceforth be
referred to as the shortest path distance, has not been analytically characterized in
the literature yet. Before formulating the problem mathematically, it is instructive to
discuss the rich history of PLP and the context in which this new doubly stochastic
point process has emerged.

As mentioned earlier, the development of the theory of line process was inspired
by a problem suggested to S. Goudsmit by N. Bohr, which dealt with the chance of
intersection of the trajectories of the sub-atomic particles in a cloud-chamber experi-
ment [7]. This work has motivated a lot of research focused on the various properties
of line processes in the latter half of the twentieth century. In particular, R. E. Miles
authored a series of papers which explored the fundamental properties of the PLPs
and the random polygons generated by the lines of the PLP [12—14]. Some of the
other prominent works in the literature include the spectral analysis of line processes
presented by M. S. Bartlett in [15] and the study of higher order properties of station-
ary line processes by R. Davidson in [16].

Owing to its analytical tractability, the PLP has found applications in material
sciences [17], image processing [ 8], geology [19], telecommunication [20,21], and
localization networks [22]. In [17], the position of fibers in each layer of a fiber
membrane is modeled using PLP to analyze the strength of the membranes. In [20],
F. Baccelli proposed to model the road system by a PLP to study the handover behav-
ior in cellular networks. This spatial model was further used by V. Schmidt and his
co-authors in the analysis of urban telecommunication networks [21,23-25]. Model-
ing the obstacles in a cellular assisted localization network by a PLP, the blind spot
probability of the typical target node is explored in [22].

A Poisson line Cox process or a Cox process driven by PLP is a doubly stochas-
tic point process constructed by populating points on the lines of a PLP such that
the locations of points on each line form a 1D Poisson point process (PPP), which is
formally defined in the next section. The PLCP has recently been employed in sev-
eral works pertaining to the analysis of vehicular communication networks [26-30].
Unlike PLPs, the research on PLCPs is still in nascent stages as some of the funda-
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mental properties of the PLCP have only been explored very recently. For instance,
the distribution of various Euclidean distances between the points of the PLCP have
been derived in [26] to characterize the signal-to-interference plus noise ratio (SINR)-
based coverage probability of the typical vehicular node in the network. The Laplace
functional of the PLCP is provided in [30] and the asymptotic behavior of the PLCP
is studied in [27]. However, these works have only focused on the Euclidean distance
properties of the PLCP due to their impact on the network performance.

Although sparse, a few works in the literature have also explored the path distance
characteristics of the PLCP. The authors of [21] have analyzed the mean shortest path
length between a point of the PLCP and its closest point from another Cox process
on the same PLP in the sense of Euclidean distance. The asymptotic behavior of this
shortest path distance was investigated in [3 |]. However, the analytical characteriza-
tion of these path distances is still an open problem in the literature and is the main
contribution of this paper. For this purpose, we consider a special variant of the PLP
called Manhattan Poisson line process (MPLP), which will be discussed in detail in
the next section. For a stationary Cox process constructed on the MPLP, referred to
as MPLCP, we derive the exact CDF of the shortest path distance to the nearest point
of the MPLCP in the sense of path distance from two reference points: (i) the typi-
cal intersection of the MPLP, and (ii) the typical point of the MPLCP. To the best of
our knowledge, this is the first work to present the analytical characterization of path
distances in a MPLCP. We also discuss the utility of the path distance characteristics
of the MPLCP in providing useful insights in the areas of wireless communications,
transportation networks, urban planning, and personnel deployment.

2 Background and Notation

In this section, we present a brief introduction to line processes and some of its fun-
damental properties. While we discuss only those aspects of line processes that are
necessary for this paper, a detailed account of the theory can be found in [11].

2.1 Line process preliminaries

As the PPP is a primary building block in the construction of the MPLP considered
in our paper, we begin our discussion by defining it formally next.

Definition 1 (Poisson point process.) A random set of points @ C R with intensity
measure A is a PPP if it satisfies the following two properties:

e The number of points of & within any bounded Borel set A C R¢, denoted by
Ny (A), follows a Poisson distribution, i.e.

where A (A) is the average number of points of @ in A.
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e The number of points of & lying in n disjoint Borel sets form a set of n inde-
pendent random variables for arbitrary n, which is also termed the independent
scattering property.

A PPP is said to be homogeneous if it has a constant intensity A, which is the average
number of points per unit volume in R¢.

Line process. As mentioned in Section 1, a line process is just a random collection
of lines. In order to define it more formally, first observe that any undirected line L
in R? can be uniquely parameterized by its signed perpendicular distance p from the
origin 0 = (0,0) and the angle 0 subtended by the line with respect to the positive
x-axis in counter clockwise direction, as shown in Fig. 1. The sign of p is negative
if the origin is to the right or above the line. Thus, the pair of parameters p and 6
can be represented as the coordinates of a point on the half-cylinder ¢ = [0,7) x R,
which is termed as the representation space, as illustrated in Fig. 1. Thus, a random
collection of lines in R? can be constructed from a set of points on €. Such a set of
lines generated by a PPP on ¥ is called a PLP.

As mentioned earlier, in this paper, we focus on the special case of PLP called
MPLP in which the orientations of the lines are restricted to {0, £/2}, thereby obtain-
ing a set of horizontal and vertical lines in R?, as depicted in Fig. 1. Thus, the MPLP
&, in R? can be constructed from two independent 1D PPPs ¥, and ¥, /2 along the
lines 6 = 0, and 6 = 7 /2, respectively, in the representation space &. Alternatively,
one can construct a MPLP by first populating points along the x and y-axes in R? ac-
cording to independent 1D PPPs Z, and X, and drawing vertical and horizontal lines
through those points, respectively. This interpretation is useful in visualizing some
of the basic properties of MPLP which will be discussed next. In this paper, we will
mainly follow this interpretation for the ease of clarity and exposition.

Stationarity. Analogous to a point process, a line process @ is stationary if the
distribution of lines is invariant to any translation 7{, gy, which corresponds to the
translation of the origin by a distance ¢ in a direction that makes an angle 8 with
respect to positive x-axis in counter clockwise direction. Upon applying a translation
T, p)» the representation of a line L in ¢’ changes from (p,8) to (p +¢sin(6 — 3),0).
Therefore, a MPLP @ is stationary if the 1D PPPs ‘¥, and ‘¥, are stationary or
alternatively, =y and Z are stationary.

Line density. The line density of a line process is defined as the mean line length
per unit area. The relationship between the line density and the density of the corre-
sponding point process is given by the following Lemma.

Lemma 1 For a stationary MPLP ®; constructed from independent and homoge-
neous 1D PPPs E, and E,, each with density A;, the line density | is given by
W =2A.

Proof Let us consider a ball of radius d centered at the origin b(0,d). We denote the
set of horizontal and vertical lines of &; by &y, and @y, respectively. The line density
L; can now be computed as

1
—E

“]:nd

Y v (Lﬂb(o,d))]

Led,
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Fig. 1: Illustration of the Manhattan Poisson line process in R? and the corresponding
point process in representation space ¢ = [0, 7) x R.
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where Vv (-) denotes the one dimensional Lebesgue measure and (a) follows from
Campbell’s theorem for sums over stationary 1D PPPs &, and x|, [32]. g

Lines intersecting a region. For a stationary MPLP &; with line density L, the
number of horizontal and vertical lines that intersect a convex region K C R? are
Poisson distributed with means y;v;(K,)/2 and p;vi(Ky)/2, respectively, where K,
and K, denote the projection of K onto x and y axis.

2.2 Spatial model and notation

We will now provide a detailed description of the spatial model and also introduce
the notation that will be followed in the paper. We consider a stationary MPLP
& = {Lyp,,Ly,,..., Ly,,Ly,,...} in RR? in which the vertical and horizontal lines are
generated by independent homogeneous 1D PPPs E, and X, each having density
A;. We denote the set of horizontal and vertical lines by @y, = {Ly,,Ly,,...} and
@), ={Ly,,Ly,,...}, respectively. We construct a MPLCP &, by populating points
on the lines of @; such that the locations of points on each line form a 1D PPP with
density A, as illustrated in Fig. 2. Note that the MPLCP & is also stationary due to
the stationarity of the underlying MPLP and the homogeneity of 1D PPP on each line
[30,33]. As mentioned earlier in Section 1, we will consider two types of reference
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Fig. 2: Illustration of the spatial model.

points with respect to which the path distance is measured: (i) the typical intersection
of the MPLP, and (ii) the typical point of the MPLCP. As will be evident from the
sequel, the treatment of the typical intersection case is relatively easier and will act
as a precursor for the typical point case, whose exact treatment is the most important
contribution of this paper.

For the typical intersection case, we measure the path distance of the nearest point
of the MPLCP in the path distance sense with respect to the typical intersection of
the MPLP, which can be placed at the origin o without loss of generality. Thus, a
horizontal line L, and a vertical line Ly, which are aligned along the x and y-axes,
respectively, pass through the typical intersection. In other words, both the homo-
geneous 1D PPPs E, and %), must now contain a point at the origin. By Slivnyak’s
theorem [32, 33], the conditioning on a point of the homogeneous PPP at the origin
is equivalent to adding a point at the origin. Therefore, under this conditioning (more
formally, under Palm probability), the resulting line process is @y, jn = P;U {L,, Ly}.
Thus, under the Palm probability of the intersection points, the resulting point pro-
cess @D, inc can be interpreted as the superposition of the point process &, and two
1D PPPs each with density A, along the lines L, and L, [26,29].

In case of the typical point of the MPLCP, without loss of generality, we assume
that it is located on a horizontal line of the MPLP &. In this case, upon conditioning
on the location of the typical point at the origin and using the same argument as above,
the resulting line process is @ yp = @ U {L,}. Thus, the resulting point process
D, 1yp can be interpreted as the superposition of the point process @., an independent
1D PPP with density A. on the line L, aligned along the x-axis and an atom at the
origin.

Our main goal is to characterize the lengths of the shortest paths to the nearest
point of the MPLCP in the sense of path distance for both the cases mentioned above.
We formally define the shortest path distance between two points as follows.

Definition 2 (Shortest path distance.) The shortest path distance between two points
a(x;,y;) and b(xz,y7) is defined as the sum of lengths of the line segments that con-
stitute the shortest path P from a to b and is denoted by /(a,b).
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We denote the number of horizontal and vertical lines that intersect a region A C
R? by N, (A) and N, (A), respectively. We denote the number of points of the MPLCP
located in the set A by N,(A). In this paper, we will denote the random variables
by upper case letters and their corresponding realizations by lower case letters. For
example, W denotes a random variable, whereas w denotes its realization. We defer
the definition of other variables to later sections of the paper for better readability.

3 Analytical Results

In this section, we will first characterize the distribution of the shortest path distance
T, from the typical intersection of the MPLP to its nearest point of the MPLCP @ in
(under the palm distribution of the intersection points) in the sense of path distance.
This will reveal a mathematical structure that will be useful later in the analysis of
the shortest path distance measured with respect to the typical point of the MPLCP.

3.1 Shortest path distance from the typical intersection of the MPLP

In this case, the length of the shortest path to any point located at (x;,y;) is simply
given by z; = |x;| + |yi|, which is nothing but the first order Minkowski distance of
the point from the origin. If the closest point of the MPLCP to the typical intersection
(in the sense of path distance) is at a distance f,,, then there cannot be any point of
the MPLCP at a location (x,y) in R? such that |x| + |y| < t,,. Thus, as depicted in
Fig. 3, we obtain an exclusion zone By formed by the intersection of the half-planes
X4y <ty,—x+y<ty,—x—y<ty,and x—y < t,,. There can be no points on any of
the line segments inside the square region By. In addition to L, and Ly, we know that
there are a random number of lines that intersect the region By. From the construction
of MPLP, it follows that the number of horizontal and vertical lines that intersect By
are Poisson distributed with mean A;2¢,,. For a horizontal line located at a distance
i < ty, from the origin, the length of the line segment inside By is given by 24, — 2y;.
Similarly, for a vertical line at a distance x; < t,, from the origin, the length of the
line segment inside By is 2¢, — 2x;. Using these properties, we will now derive a
closed-form expression for the CDF of the shortest path distance 7, in the following
theorem.

Theorem 1 The CDF of the shortest path distance from the typical intersection to its
nearest point of the MPLCP in the sense of path distance is

Fr, (tm) = 1 —exp [—M,Ctm — 4Nt + 2%[ (1 - emft'")} . (2)

Proof The CDF of T, can be computed as
Fr, (tm) =1 =P(T,, > 1)
=1- P(Np(¢10’in[ﬂ30) = O)

@4 fIP’<N,, ({L:UD;}NBy) = O)P(Np({LyUd%}ﬁBo) = O)
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Fig. 3: Illustration of the exclusion zone for the typical intersection.
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Fig. 4: Tllustration of the CDF of the shortest path distance for the typical intersection
case presented in Theorem 1.

t)ﬂ
[ o [ 0] |
0

—1—exp [—Mtctm — Myt + 277” (1 — e%fm)} ,
where (a) follows from the fact that the distribution of horizontal and vertical lines
are independent, (b) follows from conditioning on the number of horizontal and ver-
tical lines intersecting the region By, (c) follows from the independent distribution of
points on the lines, and (d) follows from the Poisson distribution of the number of
lines intersecting By and the void probability of 1D PPP on each line. g

In Fig. 4, we plot the shortest path distance obtained from Theorem 1 for different
values of A; and A., and compare it with the results obtained using Monte Carlo
simulations. As expected, the CDF obtained from the analytical expression matches
exactly with the simulation results. From these results, it can be readily observed
that the shortest path distance decreases on average as we increase the line and point
densities, which is consistent with the intuition.

3.2 Shortest path distance from the typical point of the MPLCP

In this subsection, we derive the exact CDF of the shortest path distance R,, from the
typical point of the MPLCP located at the origin to its nearest neighbor (nearest point
of the MPLCP) in the sense of path distance.

Remark 1 The key difference between the spatial setup in this case and the previous
case is that there does not exist a line L, along the y-axis in this setup. More pre-
cisely, the point process is now viewed under the regular distribution of =, (which is
equivalent to its reduced Palm distribution) and the Palm distribution of Z,.
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Fig. 5: Tllustration of the scenario in which the shortest path to a point to the left of
the y-axis is the one that starts in the direction of positive x-axis.

We will now discuss the technical challenges involved in the characterization of
the shortest path distance in this setting as a result of the key difference highlighted
in Remark 1. First of all, the shortest path distance from the origin to some of the
points is greater than the first order Minkowski distance of the point. In particular,
these points are the ones that are located on the horizontal lines (excluding the line
L) between the nearest vertical lines to the origin on either side, as illustrated in Fig.
5. Further, in some scenarios, the shortest path to some of the points that are located
to the left of the y-axis is the one that starts in the direction of the positive x-axis and
vice versa. This is also illustrated in Fig. 5. We will address these challenges in our
analysis and derive the exact CDF of the shortest path distance. We will introduce
some key variables that will be used in our analysis next.

Let us denote the distance to the nearest vertical line (or the nearest intersection)
to the right and the left of the origin by S, and §;, respectively. From the construction
of the MPLP, the PDFs of S;, i € {/,r}, are given by

fs, = Arexp(—Azsi), 0 <s; <eo. 3)

We denote the distance of the closer and the farther of the two nearest intersections
on either side of the origin by X; and X, respectively. Without loss of generality,
we consider the closer intersection to be on the positive direction of the x-axis for
the rest of our discussion. We denote the location of the nearest intersection to the
right and left of the origin by x; and x,, respectively. As X; = min{S,,S;} and X, =
max{S,,S;}, their marginal PDFs are given by

Ix, (x1) = 224, exp(—22x1), “4)
Ix, (x2) =24 exp(—Ax2) (1 —exp(—Aix2)). )

The joint PDF of X; and X5 is given by

fX] X (xl ,Xz) = 2112 exp(—l[(xl —|-JC2)), 0<x; <xp<oo, (6)



Shortest Path Distance in Manhattan Poisson Line Cox Process 11

We now denote the distance of the nearest point of the MPLCP on L, from the origin
in the direction of X; and X; by D; and D;, respectively. The CDF and PDF of D,
je{1,2}, are

Fp, = 1—exp(—Acd;), (N
ij(dj) = xce7(F)(_)Lcdj')- ()

Based on these random distances, there are now four possibilities: (i) D < Xj,
Dy > X5, (i1) D < X1, Dy < X, (iil) Dy > Xy, Dy > X5, and (iv) D1 > X1, Dy < X>.
We denote these four events by &7, &3, &3, and &y, respectively. We will now compute
the CDF of R,, conditioned on each of these events and the distances X; and X,. We
will then obtain the overall CDF of R,, using the law of total probability and taking
expectation w.r.t. X; and X5 in the last step.

3.2.1 Conditioned on &

The occurrence of the event &1 implies that the distance of the closest point on L,
to the right of the origin is smaller than the distance to the nearest intersection in
that direction and also the distance of the nearest point of the MPLCP on Ly in the
negative direction of the x-axis is greater than the distance of the nearest intersection
in that direction. Thus, the probability of occurrence of the event &] conditioned on
X1 and X; can be computed as

P(éal |X1,X2) = P(Dl <x1,D; >)C2|X1,X2)

WD, < x))P(Ds > x2)

= (1 —eXp(—lel))eXp(—QLsz), 9

where (a) follows from the fact that D and D, are independent of each other and are
also independent of X; and X>.

Conditioned on the occurrence of the event &7, the shortest path distance from
the origin is equal to the distance of the nearest point of the MPLCP on L, in the
direction of the positive x-axis, i.e. R,, = D;. Thus, the CDF of R,, conditioned on
&1, X1, and X; can be computed as

Fr,, (rm|é1,x1,02) = 1 =P (Ry > rm|61,X1,X2)
1

= 1 - mp (Rm > rnhéol |X13X2)
1

=1 pam ) (P> m D < 21.D2 > 0lXi,X)
1

= l—mﬁp(m <Dy <x1)P(Dy > x)

-1 (exp(—Acrim) —exp(—Acx1)) exp (—Acx2)

(1 —exp(—=2Acx1)) exp(—Acxa)

: _exp(_lcrm)7 Ogrm S-xh
={ 1—exp(—Acx1) (10)
1, X1 < rpy.
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3.2.2 Conditioned on &

The occurrence of &> means that the distance of the nearest points of the MPLCP
on L, on either side of the origin are smaller than the distances to the corresponding
intersections. Thus, we obtain the probability of occurrence of &, conditioned on X;
and X, as

P(&1X1,X2) =P (D1 <x1,D2 < x2|X1,X0)
P(D <)C1) (Dz SXZ)
(1 —exp(—2cx1))(1 —exp(—Acx2)). (1n

Following the same procedure as in Section 3.2.1, the CDF of R,, conditioned on
&>, X1, and X, can be obtained as

Fr, (rm|&2,x1,%2) = 1 =P (Rip > rin| 62, X1,X2)

1
e PRy > r, &)X, X0
PG ) %)
1
= ——— _P(min{Dy, D5} > 1y, Dy < x1,D5 < x2|X1, X,
P& X) (min{Dy, D2} > 1, D1 < x1,D2 < %2[X1,X2)
1
=1l-—P <D; <x))P <Dy <
P (&% X2) (rm <Dy <x1)P(rm < D2 < x2)

(exp(—Acrm) —exp(—Acx1)) (exp(—Acrin) — exp(—Acx2))
(1= exp(—Acr1)) (1 — exp(—Ac12))
1— 6721(.rm _ (1 _ eflcrm)(eflgxl _'_eflcxz)
_ (1= o) (1 —ehem) ’
I, X1 < Ipy.
(12)

=1-

0<r,<x

3.2.3 Conditioned on &

In this case, the closest points of the MPLCP on the line L, on either side of the
origin are farther than locations of the nearest intersections. Thus, the probability of
occurrence of &3 conditioned on X| and X, can be computed as

]P)(53|X1 ,Xz) = P(D] > x1,Dp > xz‘Xl ,Xz)
=P(D; > x1)P(Dy > x2)
=exp(—Ac(x1 +x2)). (13)

Recall that the key challenge in our analysis is the characterization of the shortest
path distance for some of the points located to the left of the y-axis whose shortest
path starts towards the positive x-axis and vice versa. This problem can be addressed
by partitioning the points of the MPLCP into two sets based on the direction in which
the shortest path to those points start from the origin. Conditioning on X; and X», we
now divide the space into two half-planes using an auxiliary vertical line M which
is at a distance (xy — x) to the left of the origin, as illustrated in Fig. 6. Let us now
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Fig. 6: Illustration of the auxiliary line M and the path distances from the origin to
the intersection points of M with the horizontal lines (except Ly).

examine the shortest path to the points of intersection of this auxiliary line with the
horizontal lines (excluding the line L,). It can be observed that the path distances to
these points obtained by starting to the right and the left of the origin are the same.
For example, let us consider the intersection point A shown in Fig. 6. Upon starting to
the right of the origin, the shortest path distance to this point A is oP| +P P> + PA =
X1+ y1 +x>. Similarly, upon starting to the left of the origin, the shortest path distance
to the point A is 0Q; + Q1 02 + 02A = x, +y1 + x|, which is equal to the shortest path
distance when starting to the right of the origin. Therefore, the shortest path distances
from the origin to the intersection points of the auxiliary line M and the horizontal
lines (except L,) obtained by starting to the right and the left of the origin are the
same. So, for all the points to the right of the line M, the shortest path from the origin
starts to the right and likewise, for all the points to the left of this line, the shortest
path starts towards the left of the origin.

Based on the above construction, we now partition the points of the MPLCP into
two sets based on the auxiliary line M instead of the y-axis. So, we denote the shortest
path distance to the origin upon starting to the right of the origin by Ry = X; + Wy,
where W is the shortest path distance to the points located to the right of the auxiliary
line M from the intersection at x;. Similarly, we denote the shortest path distance
by starting to the left of the origin by R, = X, + W,, where W, is the shortest path
distance from the intersection at X, to the points located to the left of the auxiliary
line M. Now, in order to compute the CDF of the overall shortest path distance, we
need to determine the conditional CDFs of W; and W>, which will be discussed next.

The conditioning on &3 already implies that there does not exist any point between
the two intersections. This additional information about the distribution of points in
the interval (—x,x;) on L, must be included in the computation of the conditional
CDF of Wj. Similar to the procedure followed in the derivation of Theorem 1, we will
consider an exclusion zone B formed by the intersection of the half-planes (x —x;) +
y<wi, —(x—x1)+y<wi, —(x—x1)—y <wip, (x—x1) —y < wi, and x > 0. Note
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Fig. 7: Ilustration of the exclusion zone for the case w; < x».

that the shape of the exclusion region B depends on the values of w; with respect
to xp. While B is a square for w; < xp, it is a pentagon for w; > xo, as shown in
Figs. 7 and 8§, respectively. So, we will derive the conditional CDF of W for the two
cases wi < xp and wy > x, separately. We know that there cannot be any point on
any of the line segments inside B. In addition to L,, there exists a random number of
horizontal lines above and below the line L, that intersect the region B. Likewise, in
addition to the vertical line of the intersection L, there exists a random number of
vertical lines that intersect the region B. However, conditioned on the event &3, the
distribution of vertical lines to the left of L, is not the same as the distribution of lines
to the right of L. Since the first intersection to the right of the origin is at a distance
x1, there cannot be any vertical line that intersects L, in the interval (—xz,x), as
shown in Fig. 7. So, we just need to focus on the set of vertical lines that intersect
the region Bxl+ = BN {x > x; }. Due to symmetry, we obtain similar conditions for the
computation of conditional CDF of W, as well. We will now derive the closed form
expression for the conditional CDFs of W and W; in the following Lemma.

Lemma 2 The CDFs of Wi and W, conditioned on &3, X1, and X, are given by

Fy, 1(wi]&3,x1,x2), 0<w; <xo,
w1 (w1]&3,x1,x2) 1 <X (14)

Fy, (w1|&3,x1,x2) =
w, (Wi[63,x1,x2) {FWl_yz(w1|o‘°‘3,x1,x2)’ w1 > Xz,

where

32
Fiy, 1(w1|&3,x1,x2) = 1 —exp [—37LcW1 —3Mwi + 27»1 (1 —Eu"wlﬂ ,  (15)

and

FWI 72(W1 |£’3,X1 ,x2) =1—exp l 3(7LC Jrll)w]
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M:(xz_x1)

Fig. 8: Illustration of the exclusion zone for the case w; > x;.

+ ﬂ (3 +2672},sz _ elecwl _4elc(x2+w1))] ,

2Ac
(16)
F Wg,x,X,OSWva
Fy, (W2]&3,x1,x2) = w1 (w2, x1,02) 2= (17)
Fy, 2(w2|&3,x1,X%2), wa > xp,

where

Fw, 1 (W2|g3,X1,X2) =1—exp| —3Aw; — 34wy + 34 (1 _e—2l[,w2) , (18)
2A¢

and

FW272(W2|(§}3,X1,X2) =1—exp [— 3(2@ +A41)W2

+ ﬂ (3 42 2hext _ g 2hews _ g Ae(x +W2)) )
22
19)
Proof The conditional CDF of W| can be computed as
Fy, (wi|63,x1,x2) = 1 =P(W; > w1|63,X1,X>)
=1—-P(N,(B) =0|&3,X1,X2). (20)

As we had discussed earlier, the shape of the exclusion zone B is different for the two
cases w; < xp and w; > xp and hence we will handle these two cases separately. We
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will first consider the case wy < x,. In this case, B is a square region and we now need
to determine the probability that there are no points inside this square region centered
at an intersection, as shown in Fig. 7. By expressing the conditional void probability
in (20) as the product of void probabilities of independent individual components, as
in the proof of Theorem 1, we obtain

P(N,(B) = 0|63, X1,X>)

=P(Ny(L:NB) = 053,X1,X2)[ i P(Nu(B\ L) = np|63,X1,X2)

np=0

X P(Np (45[;[ ﬂB) = O|Nh(B\LX) = n/117(503,X1,X2):|

X P(N,(Ly, NB) = 0|&3,X1,X2) [ Y, P(Nu(By) = nulé3,X1,X:)
}’lv]:O
xP (N, (@108, ) =0IN(B,;) = nw%,xl,xz)}
< B, (La1B) = 062, 132)| T PGB\ L) = )
nh[=0
X ]P’( (@, NB) = 0[Ny (B\ L) = nh,)}
x P(N,(Ly, NB) [ )| Y P(Vo(Bt) =nu)

ny = =0

X ]P’(Np (¢lvaxl+) = 0|Nv(3xl+) = nvl)]

I=

]P’(NP(LXQB) 0|&3,X1,X7)

i P(Ni(B\ Lx) = nu)

<ﬁp( (Ly, NB) ] »(Ly, NB) = 0)
[l no)

nyy 0 k=1
o -2
© 2w [ y e P (20w )"

|
=0 "thi-

x( [ ewrm -2 L ) 1%”

y [ 5 G (/o exp (—c (21 —20)) if)]

|
1y =0 ny:

_ |:e7LCW] e*Zl]W} exp |:2)~l /.Wl 62AC(le)dy:|:|
0
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« [e—Zlcwle—l,wl exp |:)Ll /Wl e_zlc(wl—x)dx:|:|
0

=exp |:—37LCW1 — 34w + ;il (1 —encwlﬂ , 21

where (a) follows from the fact that the distribution of points on the random horizontal
lines, random vertical lines intersecting B, +, and the line L, is independent of &3, X4,

and X, (b) follows from the independent distribution of points over different lines,
and (c) follows from the Poisson distribution of lines and the void probability of
1D PPPs on those lines. Substituting (21) in (20), we obtain the expression for the
conditional CDF of W for the case w; < x;.

We will now consider the case w; > x», where the exclusion region B is a pentagon
as depicted in Fig. 8. The length of the horizontal line segment inside B depends on
the distance of the line from the origin. For a horizontal line L; which intercepts
the y-axis at y;, such that |y,| < w; — xp, the length of the line segment inside B
is given by x +wj — |y;|. On the other hand, if |y,| > w; — x2, then the length of
line segment inside B is 2(w; — |ya|). So, we partition the set of horizontal lines
that intersect B into two sets: (i) the set of horizontal lines that intersect the region
By, = BN {]y| <wi —x2}, and (ii) the set of horizontal lines that intersect the region
By, = BN {|y| > w1 —x2}. As By, is composed of two non-contiguous regions B;{z =
BN{y=w;—x2} and B, =BN{y < —(wi —x2)}, we will handle them separately
in our analysis. Thus, the conditional void probability for the case w; > x» can be
computed as

P(N,(B) =0|83,X1,X>)

=P(N,(L:NB) =0|537X1,X2)[ Z P(Nh(Bhl \ Ly) =nh1|537X1,X2)

nh1:0
x P<NP (¢]h mBh]) = O‘Nh(B/u \LX) = np, 76037X17X2):|

X [ Z P(Nh(B;;) :nh2|(9@3,X1,X2)

nhz =0

x IP’(NP (@lhmB,jz) = O|NA(B},) = nhz,é‘é,Xl,Xz)

< Y ]P)(Nh(B;z) :"h3|537X1,X2)

}’lh3=0
<P (N, (@unBy, ) = 0INy(B;,) = nh3,£3,xl,xz)]

X P(NP(LVO mB) = 0|(§37X17X2) |: Z ]P(NV(B);T) = nvl|éa37X17X2)
nL,Z:O

X P(Np (ngVmeT) = O‘NV<BXT> = nvz,é";g,Xl,Xz)]

9 BN, (LN B) = 0|83, X1, X2)P(N, (L, N B) = 0)
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=0

X [ Z P(Nh(Bhl \Lx) = np, ‘XlaX2>
nhl

X P( (PN Bp,) = O[Ny(By, \ Ly) = np, . X 7Xz>}

X [ Y P(Nh(BZ;) :”h2|X1,X2>

nhz =0

XP( (‘I’zh ﬂB+) = 0[N, (B;,) :nhz,Xl,Xz)

X ZOP(Nh (B;z) = Np, |X17X2)

nh3 =

X P(Np (¢lh ﬂB;Z) = 0|Nh(B;2) = nh3,X1,X2)]

[ Z ]P’ B - —nvl‘Xl,Xz)
ny = =0

><IP’< (P B,) O|NV(BXl+)nv1,X1,X2)}

© BN, (LN B) = 0|83, X1, X2)P(N, (L, N B) = 0)

o ny,
Y P(Nu(Bp, \ L) = np |X1,X2) (H]P’ »(Ly; N By,) = 0|X1,X2)>

ny, =0

nh2
P(Nu(By,) = nn, |X1,X2) (HP< (Ln; N By, ):0|X1,X2)>

o0 Ny
x Y P(Nu(By,) = mys|X1, Xa) (H]P’( »(Li,NBy,) = 0|X1,X2)>

nh% =0

X Z ]P) —nvl (HP( L ﬂB ) 0))]

Ly = =0
(;) e*l(-W| efz)LcWI

" i e 2M(wi—x2) (24 (w1 —x2))"m (/Wl ele (24w Y)dy)nhl]
_ﬂhl:(] nh[! 0 (Wl 7x2)
[ ) l My w1 d iy

of § el (e aan @)
L, =0 Nhy ! wi—x 2

) — ) n,
" Z e M2 (Qyxp) s /Wlell;(2w12y)dy> i
nh3 ! w1 —Xx2 .x2

l’lh3 =0



Shortest Path Distance in Manhattan Poisson Line Cox Process 19

fad 7/’L1W1 (a’ )nvl "W dx nyj
e W1 —Ae(2wy—2x) X
x l Z ny! </() ¢ I w1 )

nyy :0
A
22,

= exp l— 3(Ae+ Wi + oo (3427 A2 g7 Hewn 4eM"2+wl>)1 , (22)

where (a) follows from the fact that the distribution of points on the random hori-
zontal lines, vertical lines intersecting Bx]+ and the line L,, are independent of &3, (b)
follows from the independent distribution of points over lines, and (c) follows from
the Poisson distribution of lines and the void probability of 1D PPPs on each of those
lines. Substituting (22) in (20), we obtain the expression for the conditional CDF of
W, for the case wy > xp. The CDF of W, conditioned on &3, X;, and X, can be ob-
tained by following the same procedure. This completes the proof. a

Having determined all the components required to compute the CDF of R; and
R, conditioned on &3, X1, and X», the conditional CDF of R,, can now be computed
as

Fr,, (rm|&3,x1,%2) = 1 =P (Ry > 1| 63,X1,X2)
=1—P(min{R,R2} > rm|83,X1,X2)
=1 =P (x; +Wi > rm,x2 +Wa > 1|83, X1, X2)
=1—(1—Fy, (rm —x1]63,x1,x2)) (1 — F, (rm — x2|&3,x1,X2))
Fw, (rm — x1|63,x1,x2), 0<x1 <y <,
= < Fy, (rm — x1|63,x1,x2) + Fw, (rm — x2| 63, X1, X2)
—Fw, (rm — x1|83,%1,%2) B, (i — x2|63,x1,%2),  x0 <1y < 00
Fi, 1 (rm — x1|63,x1,x2), 0<x; <rp<x,
Fiw, 1 (rm — x1|63,x1,X2) + Fw, 1 (rm — x2| 63, x1,x2)
= —Fw, 1 (rm —x1|83,x1,%2) Fy 1 (i — X2| 3, X1,%2), X2 < 1y < X1 +X2,
Fw, 2(rm —x1|63,x1,%2) + Fiw, 2 (rm — x2| 63, X1, %2)

—Fw, 2(rm —x1|83,x1,%2) Finy 2 (rim — X2|3,x1,%2), X1 4+x2 < 1y < 0.
(23)

3.2.4 Conditioned on &

In this case, the nearest point on L, on the right side of the origin is farther than
the corresponding intersection x|, whereas the nearest point on L, to the left of the
origin is closer than the corresponding intersection x,. Thus, the probability of &4
conditioned on X; and X, is

P(&4|1X1,X2) =P (D1 > x1,D2 < x2|X1,X2)
=P(D; > x1)P(D; < x3)
=exp(—Ax1) (1 —exp(—Acx2)) . 24)
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Similar to the previous case, conditioned on &, X, and X5, the shortest path
distance from the origin upon starting to the right is Ry = x| + Z;, where Z; is the
shortest path distance from the intersection x;. Note that the conditional CDF of Z,
is the same as that of W; given in Lemma 2, i.e.,

Fz, 1(z1|64,x1,x2), 0<z1 <xa,
Fz, (21]64,%1,x2) = { v (25)

Fz,2(21|64,x1,x2), 21 > X2,

where

3A
Fz7,.1(z1]é4,x1,x) =1 —exp [—3)»611 —3Mz1 + 211 (1 —e—Mcm) ] 7 (26)
C

and

Fz,2(21|64,x1,x2) = 1 —exp l— 3(Ac+ Az

‘Ll —2Acx —22¢ —Ae(x0+
+—AC(3—|—2e 2 g2t _ g el Z‘)) .

However, the shortest path distance upon starting to the left is D,. Therefore, the
shortest path distance is R,, = min{R;,D;} and its CDF can be computed as

FRy, (rm|&4,x1,x2) = 1 =P (R > rin| €4, X1,X2)
=1—P(min{Ry,D2} > ry|€1,X1,X>)
=1 —P(xl +2Z1 > rmléi;,Xl,Xz)P(Dz > rm|54,X1,X2)

(Fp, (x2) = Fp, (rm)) (1 — Fp, (x1))
P(54|X1,X2)

=1—(1—Fz (rm—x1))

1 _exp(_kcrm)
1 —exp(—Acx2)’

= 1— (1 —ley1(}’m _xl)) (e*lcrm . e,;ch2>

OSrmel;

X1 <rp<x
1 —exp(—2A.x2) ’ b=tm =2

17 X2 S Ty < oo,
(28)
Using the results derived thus far, we now present the CDF of the overall shortest

path distance Ry, in the following theorem.

Theorem 2 The CDF of the shortest path distance from the typical point of the
MPLCP to its nearest neighbor in the sense of path distance is

Fr,(rm) =1 — o2+ Ae)rm

m
_ 2)”6_(2'1‘5'2@)"/" / (1 _ FW1 1 (rm —x |éa37x1 ’X2))e_(ll+lc>xl d)Cl
0
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_ZAIZﬁmg*(lﬁlc)xz(l—FW271(rm—x2\éo3,x],x2))

2

293
X / (l —leyl(}’m—)C1|éa3,xl,)CQ))ei(}LhLlc)xldxldXQ

m—X2
T'm Fm—X2
2 ~ (WA
=24 /,m e Mt “)xz/o (1= By 2(rm —x1|63,x1,%2))
2

X (1 _FWZ,Z(rm —x2|é”3,x1 ,XQ))€7(7LI+7L">X'dX1de

'm

m o
,ulz/ 2 e_(kz—ch)Xz/ (1= Fw, 2(rm — x1]63,x1,%2))
0 0

X (1= By 2 (rm — 2| 83,x1,30) e~ A d dy, (29)

where Fy, 1 (- | &3,x1,x2), Fiy, 2(- | 63,x1,X2), Fiw, 1 (- | 63,x1,%2), and Fyy, 5 (- | &3,x1,x2)
are given in (15), (16), (18), and (19), respectively.

Proof Using law of total probability, the CDF of R,, conditioned on X; and X, can
be computed as

4
FR,-,, (rm|x1 ;XZ) = ZFRm (rm‘(giaxl ;XZ)]P(&|X17X2)7 (30)
i=1

where the expressions for Fg,, (r,|&;,X1,X2) are given in (10), (12), (23), (28), and
P(&;|X1,X,) are given in (9), (11), (13), (24), respectively. The overall CDF of R,
can now be obtained by computing the expectation of the above expression w.r.t. X;
and X, as

oo X)
FRm(’"m):/O /0 Fr,, (rm|X1,X2) fx, x, (x1,%2)dx1dxz, 3D

where fx, x, (x1,x2) is given in (6). Upon substituting the corresponding expressions
and solving the resulting integrals, we obtain the expression given in (29). a

In Fig. 9, we plot the CDF of the shortest path distance for the typical point of the
MPLCP evaluated using the expression in Theorem 2 along with the empirical CDF
obtained from Monte Carlo simulations for different values of A4; and A.. As expected,
the CDF obtained from analytical expressions match exactly with the simulation re-
sults. Also, similar to the results in Fig. 4, it can be observed that the shortest path
distance in this case increases as the line density and point density decreases.

4 Applications

In this section, we will briefly discuss some of the applications of these analytical
results in transportation networks, infrastructure planning, and wireless networks.
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Fig. 9: Tllustration of the CDF of the shortest path distance for the typical point of the
MPLCP presented in Theorem 2.

4.1 Wireless communication

As we have mentioned in Section 1, the MPLCP can be used to model the locations
of vehicular nodes and roadside units (RSUs) in a vehicular network and analyze key
performance metrics such as coverage and rate by leveraging the Euclidean distance
properties. However, in the case of millimeter wave communications in an urban en-
vironment, the high frequency radio signals suffer from severe attenuation upon prop-
agating through the buildings and the dominant component of the signal is often the
one that travels along the roads with diffractions around the corners at intersections
[34]. As a result, the analytical techniques developed in this paper can be leveraged
to characterize the propagation delays and the received power of such signals. This
is quite useful in deriving the power-delay profile of the wireless channel which is an
important exercise in the performance analysis of wireless networks.

4.2 Transportation systems and infrastructure planning

In transportation networks, the spatial layout of roads can be modeled by MPLP and
the various places of interest such as gas stations or charging stations for electric ve-
hicles can be modeled by a MPLCP. Thus, the length of the shortest path studied in
the paper can be viewed as the shortest distance that needs to be traveled by a ve-
hicular user to reach the nearest destination of a certain type. Building further on the
results presented in this paper, it is possible to analytically characterize the distance-
dependent cost metrics that are of interest in transportation systems such as minimum
travel time and fuel consumption. These results can be useful in characterizing the re-
sponse time of medical or police personnel to arrive at the site of an emergency. Such
analyses can also provide macroscopic insights into urban planning and design.
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5 Conclusion

In this paper, we focused on the analytical characterization of the shortest path dis-
tance in a stationary MPLCP. In particular, for this spatial model, we derived the exact
CDF of the shortest path distance to the nearest point of the MPLCP in the sense of
path distance from the typical intersection of the MPLP and the typical point of the
MPLCP. We then discussed some useful applications of our results in wireless com-
munication networks, transportation networks, infrastructure planning and personnel
deployment.

This work has several extensions. First of all, the spatial model considered in the
paper can be used to study other useful metrics such as route-length efficiency statistic
which is defined as a function of the ratio of the shortest path distance between a pair
of points to the corresponding Euclidean distance between those points [35]. While
we have derived the results for a MPLCP, the analytical procedure can be extended
to a PLCP. Also, the discussion on applications of our results in transportation, in-
frastructure planning, and wireless communication in Section 4 could motivate future
work in all these areas.
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