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Abstract—In this paper, we present the downlink coverage and
rate analysis of a cellular vehicle-to-everything (C-V2X) com-
munication network where the locations of vehicular nodes and
road side units (RSUs) are modeled as Cox processes driven by
a Poisson line process (PLP) and the locations of cellular macro
base stations (MBSs) are modeled as a 2D Poisson point process
(PPP). Assuming a fixed selection bias and maximum average
received power based association, we compute the probability
with which a typical receiver, an arbitrarily chosen receiving node,
connects to a vehicular node or an RSU and a cellular MBS.
For this setup, we derive the signal-to-interference ratio (SIR)-
based coverage probability of the typical receiver. One of the key
challenges in the computation of coverage probability stems from
the inclusion of shadowing effects. As the standard procedure of
interpreting the shadowing effects as random displacement of the
location of nodes is not directly applicable to the Cox process, we
propose an approximation of the spatial model inspired by the
asymptotic behavior of the Cox process. Using this asymptotic
characterization, we derive the coverage probability in terms
of the Laplace transform of interference power distribution.
Further, we compute the downlink rate coverage of the typical
receiver by characterizing the load on the serving vehicular nodes
or RSUs and serving MBSs. We also provide several key design
insights by studying the trends in the coverage probability and
rate coverage as a function of network parameters. We observe
that the improvement in rate coverage obtained by increasing
the density of MBSs can be equivalently achieved by tuning the
selection bias appropriately without the need to deploy additional
MBSs.

Index Terms—Stochastic geometry, Cox process, Poisson line
process, coverage probability, C-V2X, rate coverage.

I. INTRODUCTION

Vehicular communication networks are essential to the
development of intelligent transportation systems (ITS) and
improving road safety [2]–[4]. As the in-vehicle sensors can
assess only their immediate environment, some information
still needs to be communicated from external sources to the
vehicle to assist the driver in making critical decisions in
advance [5]. Vehicle-to-vehicle (V2V) communication enables
the vehicular nodes to share information with each other with-
out network assistance. Vehicle-to-infrastructure (V2I) and
vehicle-to-network (V2N) communications can support a wide
range of applications from basic safety messages and info-
tainment to autonomous driving. The underlying technology
that enables all these services through long term evolution
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(LTE) communication is referred to as cellular vehicle-to-
everything (C-V2X) and has been standardized by the third
generation partnership project (3GPP) as part of Release 14
[6]. The key technical characteristics of C-V2X include low
latency, network independence, and support for high speed
vehicular use. Some preliminary system-level simulations are
considered in [6] to study the performance of this network
under different scenarios. Since simulation-based design ap-
proaches are often time consuming and may not be scalable
for large number of simulation parameters, it is important to
develop complementary analytical approaches to gain design
insights and benchmark simulators. For this purpose, tools
from stochastic geometry are of particular interest, where the
idea is to endow appropriate distributions to the locations of
different network entities and then use properties of these
distributions to characterize network performance. From the
perspective of vehicular networks, the spatial model that is
gaining popularity is the so-called Cox process, where the
spatial layout of roads is modeled by a Poisson line process
(PLP) and the locations of vehicular nodes and road side units
(RSUs) on each line (road) are modeled by a 1D Poisson
point process (PPP) [7], [8]. While this spatial model has
been employed in a few works in the literature, the effect
of shadowing has not been considered. In particular, as the
signals are often blocked by buildings and other structures in
urban areas, shadowing effects have a significant impact on the
performance of vehicular networks. Also, the characterization
of key performance metrics such as rate coverage, which
requires the computation of load on the cellular macro base
stations (MBSs), vehicular nodes, and RSUs, is still an open
problem. In this paper, we close this knowledge gap and
present the coverage and rate analysis for a C-V2X network
in the presence of shadowing.

A. Related Work

Most of the earlier works in the stochastic geometry liter-
ature pertaining to vehicular communications were motivated
by vehicular ad hoc networks (VANETs) based on dedicated
short range communication (DSRC) standard [9]–[15]. Also,
the spatial models considered in these works were limited
to a single road or an intersection of two roads. That said,
there have been some works that consider more sophisticated
models, primarily the Cox process, where the spatial layout of
roads were modeled by a PLP and the locations of nodes on
each road were modeled as a 1D PPP [7], [8], [16]–[22]. The
idea of using PLP to model road systems was first proposed
in [8] to study the handover rate of vehicles moving across
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cells. This model was further explored in [23], where the
distribution of the distances between the nodes located on
a PLP was studied. In [16], the authors have presented the
success probability of a typical link in a VANET modeled as
a Cox process driven by a PLP. The routing performance of
a VANET for a linear multi-hop relay was studied in [17].
In [18], the authors have presented the downlink coverage
probability of a typical receiver in an urban setup where the
locations of base stations operating at millimeter wave fre-
quencies were modeled as Cox process driven by a Manhattan
Poisson line process (MPLP). The uplink coverage probability
for a setup where the typical receiver is chosen from a 2D PPP
and the locations of transmitting nodes form a Cox process
was presented in [19]. In [7], [24], the authors have derived
the downlink coverage probability of a typical receiver for
nearest neighbor connectivity in a vehicular network where the
transmitter and receiver nodes are modeled by Cox processes
driven by the same PLP. While these are key steps towards
understanding the behavior of vehicular networks, the analysis
presented in these works is often limited to V2V and V2I
communications as they do not include cellular base stations
in their setup.

Recently, there have been a few works in which cellular-
assisted vehicular networks were considered [25]–[27]. A
comprehensive coverage analysis for two different types of
users (planar and vehicular users) was provided in [25], where
the locations of transmitting vehicular nodes were modeled by
the Cox process and the locations of cellular base stations were
modeled by 2D PPP. In [27], the authors have attempted to
derive the uplink coverage probability for C-V2X communica-
tion. However, the effects of shadowing were ignored in these
works because of the technical complications arising from
the doubly stochastic nature of this Cox process. Moreover,
the rate coverage analysis of a C-V2X network has not been
investigated in the literature due to the challenges involved
in the characterization of the load on RSUs and MBSs using
this spatial model. So, this paper makes two key contributions.
First, we present the coverage analysis of a C-V2X network
including the shadowing effects in our model. Second, we
present the rate coverage analysis for a C-V2X network. More
details of our contribution are provided next.

B. Contributions

In order to distinguish our contributions from prior art,
we will first provide a few details about the system model
considered in this paper. We model the locations of vehicular
nodes and RSUs by Cox processes driven by a PLP and
the locations of cellular MBSs by a homogeneous 2D PPP.
We consider Nakagami-m fading to model the effects of
small-scale fading. We consider standard power-law path-loss
model and log-normal shadowing to model large-scale fading
effects. We further introduce selection bias to balance the load
between MBSs, RSUs and vehicular nodes across the network.
Assuming that a typical receiver, which is an arbitrarily chosen
receiver node, connects to the node that yields the highest
average biased received power among the contending nodes,
we derive the signal-to-interference ratio (SIR)-based coverage

probability and rate coverage. We also offer useful design
insights by studying the trends in the performance as a function
of key network parameters. More technical details about the
analysis are provided next.

Asymptotic behavior of the Cox process. Based on the
results provided in [19], we first present the expression for
the void probability of a Cox process driven by a PLP for any
planar Borel set. Using Choquet’s theorem, we then rigorously
prove that the Cox process asymptotically converges to a
homogeneous 2D PPP with the same average density of points
as the line density approaches infinity and the density of points
on each line tends to zero [28, Chapter 6].

Coverage probability. The key technical challenge in the
characterization of SIR-based coverage probability stems from
the inclusion of shadowing effects. Traditionally, in wireless
networks where the locations of nodes were modeled as a
PPP, the effect of shadowing could be conveniently interpreted
as a random displacement of the location of the nodes in
the computation of the desired signal power and interference
power at the receiver [29]. However, this method is not
applicable to the Cox process as the random displacement
of each point on a line would disrupt the collinearity of
the points, thereby making it difficult to exactly characterize
the SIR at the typical receiver. Therefore, inspired by the
asymptotic behavior of the Cox process, we propose a tractable
and accurate approximation of the spatial model. Using this
asymptotic characterization, we obtain the expression for cov-
erage probability in terms of the Laplace transform of the
interference power distribution. Given its nature, the proposed
model could enable similar analyses that may not otherwise be
possible due to the doubly stochastic nature of a Cox process
driven by a PLP.

Rate Coverage. In order to determine the rate coverage
of the typical receiver, one of the important components is
the distribution of load on the serving node of the typical
receiver. As the load on the serving node is proportional to
the size of its coverage region, we characterize the length of
the coverage region of the serving vehicular node or RSU.
We also determine the mean load on the serving MBS. Using
these results, along with the distribution of SIR, we completely
characterize the rate coverage of the typical receiver.

Design Insights. Using the analytical results, we study the
impact of node densities and selection biases on the coverage
probability and rate coverage of the typical receiver. As
expected, we observe that the rate coverage can be improved
by increasing the node density of MBSs. However, since
the deployment of additional MBSs is costly (and may not
always be possible because of challenges in site acquisitions),
our results concretely demonstrate that we can alternately
achieve similar performance gains by adjusting bias factors
appropriately. We also observe that an increase in the density
of RSUs has a contrasting effect on coverage probability and
rate coverage. While a denser deployment of RSUs decreases
coverage probability due to an increase in interference power,
it also reduces the load on the RSUs thereby improving the rate
coverage. Hence, one must consider such trade-offs between
these two metrics in the design of the network.
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II. MATHEMATICAL PRELIMINARY: ASYMPTOTIC
BEHAVIOR OF COX PROCESS

In this section, we will explore a key property of the Cox
process driven by a PLP which will be useful in developing
a tractable way to characterize the interference distribution in
our analysis later. Specifically, we will analyze the asymptotic
behavior of a Cox process driven by a PLP for extreme values
of line and point densities. As basic knowledge of PLP and
its properties would be useful in understanding this analysis,
we will first give a brief introduction to the topic. A detailed
account on the theory of line processes can be found in [28].

Definition 1. (Poisson line process). An undirected line L

in R2 can be uniquely parameterized by its perpendicular
distance from the origin ⇢ and the angle ✓ subtended by
the perpendicular dropped onto the line w.r.t. the positive
x-axis. So, each line in R2 can be uniquely mapped to
a point with coordinates (⇢, ✓) on the cylindrical surface
C ⌘ R+⇥[0, 2⇡), which is termed as the representation space.
A random collection of lines that is generated by a PPP in C
is called a PLP.

Definition 2. (Line density). The line density of a line process
is defined as the mean line length per unit area.

Definition 3. (Motion-invariance). A line process is said to
be motion-invariant if the distribution of lines is invariant to
translation and rotation.

We will now discuss the construction of the Cox process.
First, we consider a motion-invariant PLP  ` with line density
µ`. We denote the corresponding 2D PPP in C by  C with
density �`. As shown in [28], the relation between �` and µ`

is given by �` = µ`

⇡
. We populate points on the lines of  `

such that they form a 1D PPP with density �p on each line.
Thus, we obtain a Cox process  a driven by the PLP  `.
Owing to the stationarity of the underlying PLP  `, it follows
that the Cox process  a is also stationary for any arbitrary
values of µ` and �p. We begin our analysis by deriving the
void probability of the Cox process in the following lemma.

Lemma 1. The void probability of the Cox process  a is given
by

P (Np(A) = 0)

= exp


��`

Z 2⇡

0

Z

R+

⇥
1� exp

�
��p⌫1

�
L(⇢,✓) \A

��⇤
d⇢d✓

�
,

(1)

where Np(·) denotes the number of points, A ⇢ R2 is a planar
Borel set, and ⌫1(·) is the 1D Lebesgue measure.

Proof: See Appendix A.
Using Choquet’s theorem [28], we will now show that the

Cox process  a asymptotically converges to a homogeneous
2D PPP in the following theorem.

Theorem 1. As the line density approaches infinity (�` ! 1)
and the density of points on each line tends to zero (�p ! 0)
while the overall density of points (average number of points
per unit area) remains unchanged, the Cox process  a con-

verges to that of a 2D PPP with the same average node density
⇡�`�p.

Proof: See Appendix B.

III. SYSTEM MODEL

A. Spatial Modeling of Wireless Nodes
We consider a vehicular network consisting of vehicular

nodes, RSUs, and cellular MBSs, as illustrated in Fig. 1. Since
the locations of vehicles and RSUs are restricted to roadways,
we first model the irregular spatial layout of roads by a PLP
�l with line density µl. We denote the corresponding 2D PPP
in the representation space C by �C with density �l. We model
the locations of transmitting and receiving vehicular nodes on
each line Lj 2 �l by independent and homogeneous 1D PPPs
⌅(V )
Lj

and ⌦(R)
Lj

with densities �v and �r, respectively. Further,
we model the locations of RSUs on each line Lj by a 1D
PPP ⌅(U)

Lj
with density �u. Thus, the locations of receiving

vehicular nodes, transmitting vehicular nodes and RSUs form
Cox processes �r ⌘ {⌦(R)

Lj
}Lj2�l , �v ⌘ {⌅(V )

Lj
}Lj2�l and

�u ⌘ {⌅(U)
Lj

}Lj2�l , respectively. Note that �r, �v , and �u are
stationary [19]. The locations of cellular MBSs are modeled
by a 2D PPP �c with density �c.

Our goal is to characterize the SIR-based coverage prob-
ability and rate coverage of a typical receiver, which is an
arbitrarily chosen receiving vehicular node from the point
process �r. For analytical simplicity, we translate the origin
o ⌘ (0, 0) to the location of the typical receiver. Since the
typical receiver must be located on a line, we now have
a line L0 passing through the origin. Thus, under Palm
probability of the receiver point process, the resulting line
process is �l0 ⌘ �l [ L0. This result simply follows from
the application of Slivnyak’s theorem to the line process
�l or equivalently to the corresponding 2D PPP �C in the
representation space C. Thus, the point process of receiving
vehicular nodes �r0 ⌘ �r[⌦(R)

L0
[{o} is the superposition of

�r, an independent 1D PPP with density �r on line L0 and
an atom at the origin. Consequently, under Palm probability
of �r0 , the point process of transmitting vehicular nodes
�v0 ⌘ �v [ ⌅(V )

L0
is the superposition of the point process

�v and an independent 1D PPP with density �v on line L0

[7], [19]. Similarly, under Palm probability of �r0 , the point
process of RSUs �u0 ⌘ �u[ L0 is also the superposition of
�u and an independent 1D PPP  L0 on L0 with density �u.
The line L0 will henceforth be referred to as the typical line.

B. Propagation Model
We assume that all the MBSs have the same transmit powers

Pc. Further, we assume that all the vehicular nodes and RSUs
have the same transmit power Pu. Since the vehicular nodes
and RSUs predominantly communicate with the nodes on the
road on which they are located, we assume that vehicular
nodes and RSUs employ transmit beamforming to maximize
the signal power at the receiver nodes. Based on the directional
antennas considered in [30], we assume a beam pattern in
which the main lobes are aligned along the road on which these
nodes are located, as shown in Fig. 2. We assume a sectorized
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Fig. 1. Illustration of the system model.
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Fig. 2. Illustration of the antenna radiation pattern for a
vehicular node or an RSU.
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Fig. 3. Illustration of the antenna radiation pattern for a
cellular MBS.

antenna pattern with main lobe and side lobe gains denoted
by Gu and gu, respectively. We assume that the cellular
MBSs also use transmit beamforming with main lobe and side
lobe gains denoted by Gc and gc, respectively, as shown in
Fig. 3. Unlike vehicular nodes and RSUs with fixed beam
patterns, MBSs scan the space for the best beam alignment
during the association process. Therefore, the main lobe of
the serving MBS is directed towards the typical receiver, i.e.,
the beamforming gain from the serving MBS is always Gc.
However, the main lobes of other MBSs may not necessarily
be in the direction of the typical receiver. So, we assume
that the main lobe of an interfering MBS is directed towards
the typical receiver with a probability qc, which depends on
the main lobe beamwidth. Thus, the beamforming gain from
an interfering MBS is Gc with a probability qc and gc with
probability (1�qc). As the typical receiver may not have prior
knowledge of the direction of arrival of the desired signal, we
assume an omni-directional antenna at the typical receiver.

As the vehicular nodes and RSUs have identical transmit
powers and beamforming patterns, we consider them as wire-
less nodes of a single tier in the coverage and rate analysis
presented in this paper. Therefore, the vehicular nodes and
RSUs will henceforth be collectively referred to as tier 2 nodes
and the cellular MBSs will be referred to as tier 1 nodes.
Thus, under Palm probability of the receiver point process,
the locations of the tier 2 nodes form a Cox process �2

driven by the line process �l0 , where the locations of nodes on
each line Lj form a homogeneous 1D PPP ⌅Lj with density
�2 = �u + �v . In order to be consistent with the notation, we
denote the set of locations of tier 1 nodes by �1 with density
�1 = �c. We also update the notation of transmit powers,
main lobe and side lobe gains of tier 1 and tier 2 nodes to
{P1, G1, g1} and {P2, G2, g2}, respectively.

As the channel fading characteristics could vary signifi-
cantly from rural to urban areas, we choose Nakagami-m
fading to mimic a wide range of fading environments. We
denote the fading parameter for the link between the typical
receiver and tier 1 nodes by m1 and the channel fading gains
by H1. The tier 2 nodes on the typical line have a higher
likelihood of a line-of-sight (LOS) link to the typical receiver
than those nodes located on the other lines. So, in order
to distinguish the severity of fading, we denote the fading
parameters for the links to tier 2 nodes on the typical line
and the tier 2 nodes on other lines by m20 and m21, and
the corresponding fading gains by H20 and H21, respectively.
The fading gains Hi, where i 2 {1, 20, 21} follow a Gamma
distribution with probability density function (PDF)

fHi(h) =
m

mi
i

h
mi�1

�(mi)
exp(�mih), m 2 {m1,m20,m21}.

(2)

In the interest of analytical tractability, we restrict the values
of m1, m20 and m21 to integers.

We will now discuss the modeling of large scale fading
effects. We assume a standard power-law path loss model with
exponent ↵ > 2 for all the wireless links. We model the shad-
owing effects for the links from the typical receiver to the tier 1
nodes, tier 2 nodes on the typical line, and tier 2 nodes on other
lines by the random variables X1, X20, and X21, respectively.
We assume that Xi, where i 2 {1, 20, 21}, follows a log-
normal distribution such that 10 log10 Xi ⇠ N (!i,�

2
i
) with

mean !i and standard deviation �i in dB. Thus, the received
signal power at the typical receiver from a node located at x
is

Pr(x) =

8
><

>:

P1GxH1X1kxk�↵
, x 2 �1,

P2G2H20X20kxk�↵
, x 2 ⌅L0 ,

P2g2H21X21kxk�↵
, x 2 �2 \ ⌅L0 ,

(3)

where Gx 2 {G1, g1} denotes the beamforming gain from
the tier 1 node located at x, and k · k denotes the Euclidean
norm. Note that we have assumed that the beamforming gain
from all the tier 2 nodes that are not located on the typical
line would be g2. However, if the typical receiver is located
exactly at the intersection of two roads, then there would be
two lines which contain nodes with a beamforming gain of G2.
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This case can be handled by slightly modifying the equation
for received power given in (3) and then following the same
analytical procedure. However, since it is a zero measure event
in our model, we do not have to consider it explicitly in this
paper.

C. Association Policy

We assume that the typical receiver connects to the node
which yields the highest average biased received power. As
mentioned earlier, tier 1 nodes scan the space for the best
beam alignment during the association process. Therefore, the
candidate serving node from tier 1 is the node located at x⇤1 =
arg maxx2�1

P1G1X1kxk�↵. A well-known procedure in the
literature to handle the effect of shadowing is to express it as
a random displacement of the location of the node w.r.t. the
typical receiver [29]. Thus, the average received power at the
typical receiver from a tier 1 node can be alternately written
as Pr(y) = P1G1kyk�↵, where y = X� 1

↵
1 x. By displacement

theorem [31], for a homogeneous PPP  ⇢ R2 with density
�, if each point xk 2  is transformed to y = X� 1

↵
k

xk, then
the transformed points also form a homogeneous PPP with
density E[X� 2

↵ ]�. Thus, the candidate serving node from tier
1 is the node located at y⇤1 = arg max

y2�(e)
1

P1G1kyk�↵,

where �(e)
1 is the equivalent 2D PPP with density �

(e)
1 =

E[X� 2
↵

1 ]�1 = exp
⇣

!1 ln 10
5↵ + 1

2

�
�1 ln 10

5↵

�2⌘
�1. Therefore, the

candidate serving node from tier 1 is the closest node to the
typical receiver from the point process �(e)

1 .
Among the tier 2 nodes, the information obtained at the

typical receiver from the nodes on the typical line is more
relevant than the information from the nodes on the other
lines. So, we consider that the typical receiver would connect
to only those tier 2 nodes that lie on the typical line. Therefore,
the candidate tier 2 serving node is the node located at
x⇤2 = arg maxx2⌅L0

P2G2X20kxk�↵. As shown in case of
tier 1 nodes, the impact of shadowing can be expressed as a
random displacement of the location of the node at x 2 ⌅L0 .
Therefore, the candidate serving node from tier 2 is the node
located at y⇤2 = arg max

y2⌅(e)
L0

P2G2kyk�↵, where ⌅(e)
L0

is the

equivalent 1D PPP with density �
(e)
2 = E[X� 1

↵
20 ]�2. Thus, the

candidate serving node from tier 2 is the closest node to the
typical receiver from the point process ⌅(e)

L0
.

Therefore, the typical receiver either connects to its closest
tier 1 node from �(e)

1 or the closest tier 2 located on the typical
line ⌅(e)

L0
. Further, we introduce selection bias factors B1 and

B2 for the tier 1 and tier 2 nodes, respectively, in order to bal-
ance the load between them across the network. So, among the
two candidate nodes from tier 1 and tier 2, the typical receiver
connects to the node at y⇤ = arg maxy2{y⇤

j } BjPjGjkyk�↵,
where j 2 {1, 2}.

For expositional simplicity, we assume that the system is
interference limited and hence, the thermal noise is neglected
in our analysis. The aggregate interference at the typical
receiver is composed of the interference from the tier 1 nodes
I1, interference from the tier 2 nodes on the typical line I20,

and the interference from the tier 2 nodes on the other lines
I21. Thus, the SIR measured at the typical receiver is

SIR =
Pr(y⇤)

I1 + I20 + I21
, (4)

where

I1 =
X

x2�1

P1GxX1kxk�↵
<Pr(y

⇤)

P1GxH1X1kxk�↵

=
X

y2�(e)
1

P1Gykyk�↵
<Pr(y

⇤)

P1GyH1kyk�↵;Gy =

(
G1 with prob. qc,
g1 with prob. 1� qc.

(5)

I20 =
X

x2⌅L0

P2G2X20kxk�↵
<Pr(y

⇤)

P2G2H20X20kxk�↵ =
X

y2⌅(e)
L0

P2G2kyk�↵
<Pr(y

⇤)

P2G2H20kyk�↵
,

(6)
and

I21 =
X

x2�2\⌅L0

P2g2X21kxk�↵

=
X

Lj2{�l0\L0}

X

x2⌅Lj

P2g2X21H21kxk�↵
. (7)

While the terms I1 and I20 were simplified by the applica-
tion of displacement theorem, it is not possible for I21. The
characterization of I21 is the key challenge that needs to be
handled carefully in the computation of coverage probability.

IV. COVERAGE ANALYSIS

In this section, we will determine the SIR-based coverage
probability of the typical receiver in the network. Recall
that the typical receiver would connect to its closest tier
1 node from the 2D PPP �(e)

1 or the closest tier 2 node
from the 1D PPP ⌅(e)

L0
and we denote these events by E1

and E2, respectively. As a result, the interference measured
at the typical receiver is different in these two cases and
hence we handle them separately in our analysis. We first
determine the probability of occurrence of these events and
then characterize the desired signal power by computing the
cumulative distribution function (CDF) of the serving distance
R conditioned on these events.

A. Association Probability
In this subsection, we derive the probability of the occur-

rence of the events E1 and E2. We denote the distances from
the typical receiver to its closest node in �(e)

1 and ⌅(e)
L0

by R1

and R2, respectively. As is well known in the literature, the
CDF and PDF of R1 and R2 are given by

CDF: FR1(r1) = 1� exp
⇣
��

(e)
1 ⇡r

2
1

⌘
, (8)

FR2(r2) = 1� exp
⇣
��

(e)
2 2r2

⌘
, (9)

PDF: fR1(r1) = 2⇡�(e)
1 r1 exp

⇣
��

(e)
1 ⇡r

2
1

⌘
, (10)

fR2(r2) = 2�(e)
2 exp

⇣
��

(e)
2 2r2

⌘
. (11)
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Using these distributions, we will now derive the association
probabilities of the typical receiver with tier 1 and tier 2 nodes
in the following Lemma. As the shadowing terms are already
handled, this derivation follows from the standard procedure
but is given for completeness.

Lemma 2. The probability of occurrence of the events E1 and
E2 are

P(E1)

= 1�

vuut (�(e)
2 )2

�
(e)
1 ⇣

� 2
↵

21

exp

"
(�(e)

2 )2

�
(e)
1 ⇡⇣

� 2
↵

21

#
erfc

0

@ �
(e)
2q

�
(e)
1 ⇡⇣

� 2
↵

21

1

A ,

(12)
P(E2)

=

vuut (�(e)
2 )2

�
(e)
1 ⇣

� 2
↵

21

exp

"
(�(e)

2 )2

�
(e)
1 ⇡⇣

� 2
↵

21

#
erfc

0

@ �
(e)
2q

�
(e)
1 ⇡⇣

� 2
↵

21

1

A ,

(13)

where ⇣21 = P2B2G2
P1B1G1

.
Proof: See Appendix C.

B. Serving Distance Distribution
The next key step in computing the coverage probability is

to characterize the desired signal power at the typical receiver
which depends on the serving distance. Therefore, we will
now derive the serving distance distribution conditioned on
the events E1 and E2 in the following Lemmas.

Lemma 3. Conditioned on the event E1, the PDF of the
serving distance is given by

fR(r|E1) =
2⇡�(e)

1 r exp
⇣
�⇡�

(e)
1 r

2 � 2⇣
1
↵
21�

(e)
2 r

⌘

P(E1)
.

Proof: The conditional CDF of R can be obtained as

FR(r|E1) = 1� P(R > r, E1)
P(E1)

(a)
= 1� 1

P(E1)
P
 
R1 > r,R1 <

✓
P2B2G2

P1B1G1

◆� 1
↵

R2

!

(b)
= 1� 1

P(E1)

Z 1

⇣

1
↵
21 r

P
⇣
r < R1 < ⇣

� 1
↵

21 r2|R2

⌘
fR2(r2)dr2

= 1� 1

P(E1)

Z 1

⇣

1
↵
21 r

h
FR1

⇣
⇣
� 1

↵
21 r2

⌘
� FR1(r)

i
fR2(r2)dr2,

where (a) follows form the condition for the occurrence of
the event E1, (b) follows from substituting ⇣21 = P2B2G2

P1B1G1
and

conditioning on R2, and the final expression for CDF can be
obtained by substituting the expressions for FR1(·) and fR2(·)
in the last step and simplifying the resulting integral. The PDF
of the serving distance conditioned on E1 can then be obtained
by taking the derivative of FR(r|E1) w.r.t. r.
Lemma 4. Conditioned on the event E2, the PDF of the
serving distance is given by

fR(r|E2) =
2�(e)

2 exp
⇣
�2�(e)

2 r � ⇡�
(e)
1 ⇣

� 2
↵

21 r
2
⌘

P (E2)
,

where ⇣21 = P2B2G2
P1B1G1

.

Proof: The proof follows along the same lines as that of
Lemma 3 and hence skipped.

C. Approximation of the Cox Process Model
In order to determine the coverage probability, we need to

compute the conditional Laplace transform of the interference
power distribution. Recall that the aggregate interference at
the typical receiver can be decomposed into three independent
components I1, I20, and I21, caused by tier 1 nodes, tier 2
nodes on the typical line and the tier 2 nodes on other lines,
respectively. The key technical challenge in the computation of
Laplace transform of interference stems from the inclusion of
shadowing effects. As explained in section III, a well-known
approach in the literature is to interpret the effect of shadowing
as a random displacement of the location of the nodes and
then compute the received power at the typical receiver from
the nodes whose locations are given by the equivalent point
process. So, we can apply this technique to the 2D PPP of tier
1 nodes �1 and 1D PPP of tier 2 nodes on the typical line
⌅L0 and rewrite the interference powers I1 and I20 in terms
of the equivalent points processes �(e)

1 and ⌅(e)
L0

, respectively,
as given in (5) and (6). However, upon applying this technique
to the Cox process of tier 2 nodes excluding the nodes on the
typical line �0

2 = �2 \⌅L0 , the collinearity of the locations of
the nodes is disrupted in the resulting point process �0(e)

2 =

{y : y = X� 1
↵

21 x, x 2 �0
2} due to the random displacement of

each point on a line. Thus, in order to exactly characterize the
interference, it is necessary to find the exact distribution of
points in �0(e)

2 , which is quite hard. This is the key motivation
behind proposing a tractable yet accurate approximation for
the interference analysis of this component.

From Theorem 1, we already know that the Cox process
asymptotically converges to a 2D PPP. Further, as mentioned
earlier, the effect of shadowing interpreted as random displace-
ment of points also disturbs the collinear structure of points
on all the lines except the typical line. Motivated by these
two facts, we make the following assumption which enables
a tractable interference analysis.
Assumption 1. We assume that the spatial distribution of
nodes in �0(e)

2 follows a 2D PPP with density E[X� 2
↵

2 ]⇡�l�2.
This density follows from the result given in Theorem 1
combined with the interpretation of shadowing as random
displacement of nodes.

Under Assumption 1, the approximate spatial model for the
tier 2 nodes with the inclusion of shadowing effects is �̃(e)

2 =
⌅(e)
L0

[ �(a)
2 , where �(a)

2 is a 2D PPP with density �
(a)
2 =

E[X� 2
↵

2 ]⇡�l�2. In other words, the proposed approximation
for the tier 2 nodes is the superposition of the 1D PPP ⌅(e)

L0

with density �
(e)
2 on the typical line and the 2D PPP �(a)

2 with
density �

(a)
2 .

Remark 1. The Ripley’s K-function of a Cox process driven
by PLP with line density µl is given by K(r) = 2r

µl
+ ⇡r

2.
The first term in K(r) corresponds to the points located on the
typical line. The second term, which corresponds to the rest of
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the points, is identical to the K-function of a homogeneous 2D
PPP. This is further evidence that the proposed approximation
is quite reasonable. More numerical evidence will be provided
in Section VI.

Now that we have clearly established the approximate spa-
tial model for the tier 2 nodes, we proceed with the coverage
analysis by computing the Laplace transform of interference
in the next subsection.

D. Laplace Transform of Interference Power Distribution
In this subsection, we will compute the Laplace transform of

the distribution of interference power measured at the typical
receiver conditioned on the serving distance R and the events
E1 and E2. First, let us consider E1. In case of E1, as the typical
receiver connects to its closest tier 1 node at a distance R, there
can not be any tier 1 node closer than R. Also, the average
received power from any tier 2 nodes on the typical line can
not exceed the received power from the serving node. This
means that there can not be any tier 2 node on the typical line
whose distance to the typical receiver is lesser than ⇣

1
↵
21R. We

have similar restrictions on the spatial distribution of nodes in
case of E2. Incorporating these conditions, we determine the
Laplace transform of interference conditioned on E1 and E2 in
the following Lemmas.
Lemma 5. Conditioned on the event E1 and the serving
distance R, the Laplace transform of the interference at the
typical receiver is

LI(s|R, E1)

= exp

"
-2⇡qc�

(e)
1

Z 1

r

 
1-
✓
1 +

sP1G1y
�↵

m1

◆�m1
!
ydy

-2⇡(1� qc)�
(e)
1

Z 1

r

 
1-

 
1 +

sP1g1y
�↵

m1

!�m1
!
ydy

-2�(e)
2

Z 1

⇣

1
↵
21 r

 
1-
✓
1 +

sP2G2y
�↵

m20

◆�m20
!
dy

-2⇡�(a)
2

Z 1

0

 
1-
✓
1 +

sP2g2y
�↵

m21

◆�m21
!
ydy

#
. (14)

Proof: See Appendix D.

Lemma 6. Conditioned on the event E2 and the serving
distance R, the Laplace transform of the interference at the
typical receiver is

LI(s|R, E2)

= exp

"
-2⇡qc�

(e)
1

Z 1

⇣
� 1

↵
21 r

 
1-
✓
1 +

sP1G1y
�↵

m1

◆�m1
!
ydy

-2⇡(1� qc)�
(e)
1

Z 1

⇣
� 1

↵
21 r

 
1-

 
1 +

sP1g1y
�↵

m1

!�m1
!
ydy

-2�(e)
2

Z 1

r

 
1-
✓
1 +

sP2G2y
�↵

m20

◆�m20
!
dy

-2⇡�(a)
2

Z 1

0

 
1-
✓
1 +

sP2g2y
�↵

m21

◆�m21
!
ydy

#
. (15)

Proof: The proof follows along the same lines as that of
Lemma 5 and hence skipped.

E. Coverage Probability

The coverage probability is formally defined as the prob-
ability with which the SIR measured at the typical receiver
exceeds a predetermined threshold �. Using the conditional
distributions of serving distance and the conditional Laplace
transform of interference power distribution, we derive the
coverage probability in the following theorem.

Theorem 2. The coverage probability of the typical receiver
is

Pc = P(E1)
m1�1X

k=0

Z 1

0

(-m1�r
↵)k

(P1G1)kk!


@
k

@sk
LI(s|R, E1)

�

s=
m1�r↵

P1G1

⇥ fR(r|E1)dr + P(E2)
m20�1X

k=0

Z 1

0

(-m20�r
↵)k

(P2G2)kk!

⇥

@
k

@sk
LI(s|R, E2)

�

s=
m20�r↵

P2G2

fR(r|E2)dr, (16)

where P(E1) and P(E2) are given in Lemma 2, LI(s|R, E1)
and LI(s|R, E2) are given in Lemmas 5 and 6, and fR(r|E1)
and fR(r|E2) are given in Lemmas 3 and 4.

Proof: The proof follows along the same lines as that of
Theorem 1 in [7] and is hence skipped.

Note that this is the exact coverage probability for the
asymptotic case which corresponds to the dense layout of
roads and sparsely distributed vehicular nodes and RSUs.
However, as will be demonstrated by the numerical results
provided in Section VI, this result is quite accurate even for
nominal values of line and node densities.

V. DOWNLINK RATE COVERAGE

In this section, we will compute the downlink rate coverage
of the typical receiver by characterizing the load on the serving
tier 1 and tier 2 nodes. This characterization of load is one of
the key contributions of this paper and is useful in studying
several other metrics such as latency and packet reception
rate [6]. Assuming that the bandwidth resource is equally
shared by all the users that are connected to the serving node,
the downlink rate achievable at the typical receiver can be
computed using Shannon’s theorem as

R =
W

J
log2 (1 + SIR) bits/sec, (17)

where W is the available bandwidth and J is the load
on the serving node of the typical receiver. Note that SIR
and J are in general negatively correlated. However, in the
interest of analytical tractability, we consider these two random
variables to be independent. This assumption does not affect
the accuracy of our final results. We further assume a full-
buffer traffic model for the downlink communications. We will
refer to the serving node of the typical receiver as the tagged
node and the corresponding cell as the tagged cell [32], [33].
We denote the load on the tagged tier 1 and tier 2 nodes by
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J1 and J2, respectively. As we have already characterized the
SIR at the typical receiver in the previous section, we will
now focus on the distribution of J1 and J2 in the following
subsections.

A. Load on the Tagged Tier 2 Node

As the load on a node is proportional to the size of its
cell, we need to characterize the size of the tagged tier 2
cell. First, we will focus on the cell of a typical tier 2 node,
which is an arbitrarily chosen tier 2 node. We assume that
the typical tier 2 node is located at xtyp on a line L. As
the tier 2 nodes serve only the users located on their own
lines, the typical cell is a line segment on the line L and
is denoted by Ztyp = {x : x 2 L,P2G2B2kx � xtypk�↵ �
PyGyBykx�yk�↵

, 8y 2 �(e)
1 [⌅(e)

L
}, where Py, Gy, and By

correspond to the transmit power, beamforming gain, and bias
of the node located at y, respectively. We begin our analysis
by computing the distribution of the length of the typical tier
2 cell, which is denoted by Ztyp = ⌫1(Ztyp).

Lemma 7. The PDF of the length of a typical tier 2 cell is

fZtyp(z) ⇡
Z

z

k+1
2k z

fZ1,1(z � z0)fZ0(z0)dz0

+

Z k+1
2k z

k�1
2k z

fZ1,2(z � z0)fZ0(z0)dz0

+

Z k�1
2k z

0
fZ1,3(z � z0)fZ0(z0)dz0, (18)

where

fZ1,1(z1) = 2�(e)
2 exp(-2�(e)

2 z1), 0 < z1 <
k � 1

k + 1
z0,

fZ1,2(z1) =

✓
2�(e)

2 + �
(e)
1

@�2,2(z0, z1)

@z1

◆
exp


-2�(e)

2 z1

-�(e)
1 �2,2(z0, z1)

�
,
k � 1

k + 1
z0 < z1 <

k + 1

k � 1
z0,

fZ1,3(z1) = (2�(e)
2 + 2�(e)

1 ⇡k
2
z1) exp


-2�(e)

2 z1-�
(e)
1 ⇡k

2
z
2
1

+ �
(e)
1 ⇡k

2
z
2
0

�
,
k + 1

k � 1
z0 < z1 < 1,

fZ0(z0) =
⇣
2�(e)

2 + 2�(e)
1 ⇡⇣

� 2
↵

21 z0

⌘

⇥ exp
h
�2�(e)

2 z0 � �
(e)
1 ⇡⇣

� 2
↵

21 z
2
0

i
,

�2,2(z0, z1) = ⇡k
2
z
2
1 � (kz0)

2(✓ � 1

2
sin(2✓))

� (kz1)
2(�� 1

2
sin(2�)),

✓ = arccos

 
(z0 + z1)2 + (kz0)2 � (kz1)2

2kz0(z0 + z1)

!
,

� = arccos

 
(z0 + z1)2 � (kz0)2 + (kz1)2

2kz1(z0 + z1)

!
,

and k = ⇣
� 1

↵
21 .

Proof: See Appendix E.

 

!0

Typical Receiver
Receiving Vehicular
users

Tier 2 nodes
Tagged Tier 1 node

Coverage region of
Tier 2 nodes

Fig. 4. Illustration of the coverage region of a tagged tier 1 node.

In order to compute the load on the tagged tier 2 node
located at y⇤2 , we now need to determine the length of the
tagged tier 2 cell. Recall that the tagged tier 2 cell is the
cell that contains the typical receiver located at the origin and
is denoted by Ztag = {x : x 2 L0, P2G2B2kx � y⇤2k�↵ �
PyGyBykx � yk�↵

, 8y 2 �(e)
1 [ ⌅(e)

L0
}. Hence, the length of

the tagged tier 2 cell is larger on average than that of a typical
tier 2 cell. Thus, the PDF of the length of the tagged tier 2
cell Ztag can be computed from the PDF of the length of a
typical tier 2 cell, as given in the following Lemma.

Lemma 8. The PDF of the length of the tagged tier 2 cell is

fZtag(w) =
wR1

0 wfZtyp(w)dw
fZtyp(w), (19)

where fZtyp(·) is given in Lemma 7.

Proof: As the typical receiver is expected to lie in a longer
cell than a typical tier 2 cell, the PDF of the length of the
tagged cell is directly proportional to its length [34, Lemma
3], [35, Chapter 6]. Using appropriate normalization for the
PDF of Ztag, we obtain the final expression.

Having determined the PDF of the tagged tier 2 cell length,
we now compute the distribution of load on the tagged tier 2
node in the following Lemma.

Lemma 9. The probability mass function (PMF) of the load
on the tagged tier 2 node is

P(J2 = j2 + 1|E2) =
Z 1

0

exp(��rw)(�rw)j2

j2!
fZtag(w)dw,

j2 = 0, 1, 2, . . . . (20)

Proof: The proof follows from the Poisson distribution of
receiving vehicular user nodes on the typical line.

B. Load on Tagged Tier 1 Node
In contrast to the tier 2 nodes with 1D coverage regions, the

tier 1 nodes have 2D coverage regions which partition R2 into
multiple cells, as shown in Fig. 4. As all the tier 1 nodes have
the same transmit power and beamforming gains during the
association process, their coverage regions are simply given
by the Voronoi cells constructed from the 2D PPP �(e)

1 . Thus,
the tagged tier 1 cell is the Voronoi cell containing the origin
and is denoted by Vtag = {x : kx�y⇤1k  kx�yk8y 2 �(e)

1 }.
Although the vehicular users located on the line segments
inside Vtag receive the highest average biased power among
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the tier 1 nodes from the node at y⇤1 , some of the vehicular
users inside the cell are served by tier 2 nodes located on these
line segments, as illustrated in Fig. 4. Thus, a few segments of
the lines inside the Voronoi cell are not part of the tagged cell
and hence, the load on the tagged tier 1 node is the number
of vehicular users located on the line segments inside Vtag

which are not covered by any tier 2 node. As the load is
proportional to the length of these line segments, we need
to compute the exact distribution of the total length of line
segments that are not covered by tier 2 nodes inside Vtag,
which is intractable. Hence, we propose to compute the rate
coverage using the mean load on the tagged node, which will
be formally explained in the next subsection. So, we will
now compute the mean load on the tagged tier 1 node in
this network, which has not been studied in the literature.
This result will be derived using the results discussed in the
previous subsection.

Lemma 10. The mean load on a tagged tier 1 node is

J̄1 = 1 + �r

 
1.28⇡�l

�
(e)
1

+
3.216

⇡

q
�
(e)
1

!

⇥
✓
1� �

(e)
2

Z 1

0
zfZtyp(z)dz

◆
. (21)

Proof: See Appendix F.

C. Rate Coverage

Using the results derived thus far, we will now compute the
rate coverage of the typical receiver which is formally defined
as the probability with which the data rate achievable at the
typical receiver exceeds a predefined target rate T . Before we
proceed to the computation of overall rate coverage, we will
first focus on the case where the typical receiver is connected
to a tier 1 node. As discussed in the previous subsection, it is
quite hard to exactly characterize the load on the tagged tier
1 node. So, we make the following assumption which enables
the computation of the rate coverage without much loss in the
accuracy of our final results.

Assumption 2. We assume that all the tier 1 nodes are
operating at the mean load.

Under this assumption, the overall rate coverage of the
typical receiver is given in the following theorem.

Theorem 3. The rate coverage of the typical receiver is

Rc ⇡ P(E1)
m1�1X

k=0

Z 1

0

(-m1�1r
↵)k

(P1G1)kk!


@
k

@sk
LI(s|R, E1)

�

s=
m1�1r↵

P1G1

⇥ fR(r|E1)dr + P(E2)
1X

j2=1

P(J2 = j2)

⇥
m20�1X

k=0

Z 1

0

(-m20�2r
↵)k

(P2G2)kk!


@
k

@sk
LI(s|R, E2)

�

s=
m20�2r↵

P2G2

⇥ fR(r|E2)dr, (22)

where �1 = 2
TJ̄1
W � 1 and �2 = 2

Tj2
W -1.

Proof: The rate coverage can be computed as

Rc = P(R > T ) =
X

i2{1,2}

P(R > T |Ei)P(Ei)

=
X

i2{1,2}

EJi


P(R > T |Ei, Ji)

�
P(Ei)

=
X

i2{1,2}

1X

ji=1

P
⇣
SIR > 2

Tji
W -1|Ei, Ji

⌘
P(Ji = ji|Ei)P(Ei).

(23)

Although the SIR measured at the typical receiver and the
load on the tagged node are correlated, we assume that they
are independent in the interest of analytical tractability and
proceed with our analysis. Thus, the rate coverage is given by

Rc ⇡
X

i2{1,2}

1X

ji=1

P
⇣
SIR > 2

Tji
W � 1|Ei

⌘
P(Ji = ji|Ei)P(Ei)

(a)
= P

⇣
SIR > 2

TJ̄1
W � 1|E1

⌘
P(E1)

+ P(E2)
1X

j2=1

P
⇣
SIR > 2

Tj2
W -1|E2

⌘
P(J2 = j2|E2), (24)

where (a) follows from Assumption 2. This completes the
proof.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we will present the numerical results for
the coverage and rate analysis of the vehicular network. We
will verify the accuracy of our analytical results by comparing
them with the empirical results obtained from Monte-Carlo
simulations by running the scripts provided in [36]. We will
also discuss the effect of various parameters such as selection
bias factors, and densities of nodes on the performance of
the network. We will then provide a few design insights that
could aid in improving the performance of the network without
deploying additional infrastructure.

A. Coverage Probability
We first simulate the network model described in section III

in MATLAB to compute the empirical distribution of coverage
probability and rate coverage. For all the numerical results
presented in this section, we assume that �r = 15 nodes/km,
↵ = 4, W = 10 MHz, m1 = m20 = m21 = 1 and
!1 = !20 = !21 = 0 dB. We assume that the ratio of main
lobe to side lobe gains for both tier 1 and tier 2 nodes is 20
dB. We also assume that the beamwidth of the main lobe of a
tier 1 node is 0.1⇡ and its orientation is uniformly distributed
in [0, 2⇡). Thus, the probability qc that the main lobe of an
interfering tier 1 node is aligned towards the typical receiver is
0.05. We verify our analytical results for coverage probability
by numerically comparing them with the empirical results
in Fig. 5. As expected, the coverage probability evaluated
using the analytical expressions in Theorem 2 matches closely
with the results obtained from simulations. This shows that
the approximation of the Cox process model presented in
Section IV-C is remarkably accurate for the coverage analysis.
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Fig. 5. Coverage probability of the typical receiver as a function
of SIR threshold (µl = 10 km�1, �1 = 0.5 nodes/km2, �2 = 4
nodes/km, B1 = B2 = 0 dB, P1 = 40 dBm, P2 = 23 dBm and
[�1 �20 �21] = [4 2 4] dB).
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Fig. 6. Coverage probability of the typical receiver as a function
of selection bias B2 (µl = 5 km�1, �1 = 2 nodes/km2, B1 = 0
dB, P1 = 43 dBm, P2 = 23 dBm, [�1 �20 �21] = [4 2 4] dB,
and � = 0 dB).

Therefore, the proposed approximation could also enable other
similar analyses that may not otherwise be possible due to the
nature of the Cox process.

Impact of selection bias. We plot the coverage probability
of the typical receiver as a function of selection bias of
tier 2 nodes B2 in Fig. 6. It can be observed that the
coverage probability improves initially as B2 increases and
then it begins to degrade beyond a certain value. This trend is
somewhat counterintuitive because biasing forces the typical
receiver to connect to a tier 2 which yields lower power than
the other candidate serving node tier 1. Hence, we expect the
coverage probability to decrease as B2 increases. However,
when the typical receiver connects to the tier 2 node, the
closest tier 1 node acts an interferer. Recall that the main
lobes of interfering tier 1 nodes are in the direction of the
typical receiver with only a probability qc. Consequently, the
interference caused by the closest tier 1 node is quite low when
its main lobe is not directed towards the typical receiver. This
may improve the SIR and hence the coverage probability even
when the typical receiver connects to a tier 2 node that yields
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Fig. 7. Coverage probability of the typical receiver as a function
of the density of tier 2 nodes (µl = 10 km�1, B1 = B2 = 0 dB,
P1 = 43 dBm, P2 = 23 dBm, [�1 �20 �21] = [4 2 4] dB, and
� = 0 dB).
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Fig. 8. Coverage probability of the typical receiver as a function
of the density of tier 1 nodes (µl = 5 km�1, �2 = 5 nodes/km,
B2 = 0 dB, P1 = 43 dBm, P2 = 23 dBm, [�1 �20 �21] =
[4 2 4] dB, and � = 0 dB).

lower power. This is why we observe a slight improvement in
the coverage probability as B2 increases.

Impact of node densities. In Fig. 7, we plot the coverage
probability as a function of the density of tier 2 nodes for
different values of the density of tier 1 nodes without any
selection bias (B1 = B2 = 0 dB). We observe that the
coverage probability of the typical receiver initially decreases
as the density of tier 2 nodes increases and then begins to
improve beyond a certain value of �2. While the densification
of tier 2 nodes increases the desired signal power due to the
reduced distance from the typical receiver to the serving tier 2
node, it also increases the interference power. When operating
at low node density, upon increasing the density of tier 2
nodes, the increase in the interference power is more dominant
than the reduction of the serving distance. However, beyond a
certain value of �2, the increment in the desired signal power
due to reduced serving distance exceeds the interference power
and hence the trend is reversed. That said, this trend may
change depending on the selection bias as we observe that the
curves corresponding to different densities cross over beyond
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Fig. 9. CDF of the load on the tagged tier 2 node (µl = 10 km�1,
�1 = 0.5 nodes/km2, �2 = 4 nodes/km, B1 = B2 = 0 dB,
P1 = 40 dBm, P2 = 23 dBm, and [�1 �20 �21] = [4 2 4] dB).
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Fig. 10. Rate coverage of the typical receiver as a function of
target rate (µl = 10 km�1, �1 = 0.5 nodes/km2, �2 = 4
nodes/km, B1 = B2 = 0 dB, P1 = 40 dBm, P2 = 23 dBm
and [�1 �20 �21] = [8 4 8] dB).

a certain value of B2, as shown in Fig. 6. Similarly, from Fig.
8, we observe that the coverage probability increases with an
increase in the density of tier 1 nodes when there is no bias and
the trend gradually changes as the selection bias B1 increases.

B. Rate Coverage
As the distribution of load is a key component in the com-

putation of the downlink rate, we first compare the CDF of the
load on the tagged tier 2 node evaluated using the expression
given in Lemma 9 with the results obtained from simulations.
We observe that the theoretical results match closely with the
simulations as shown in Fig. 9. This also shows that the PDF
of the length of the tagged tier 2 cell given in Lemma 8 is quite
accurate. We observe that the approximate load distribution,
combined with the exact association probabilities and accurate
coverage probability expressions, yields a tight approximation
of the rate coverage as depicted in Fig. 10 with only a small
gap between the simulation and analytical results. We will now
study the impact of selection bias and node densities on the
rate coverage of the typical receiver.
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Fig. 11. Rate coverage of the typical receiver as a function of
selection bias B1 (µl = 5 km�1, �2 = 5 nodes/km, B2 = 0 dB,
P1 = 43 dBm, P2 = 23 dBm, [�1 �20 �21] = [4 2 4] dB, and
T = 10 Mbps).

0 5 10 15 20

Density of RSUs (nodes/km)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
at
e
C
ov
er
ag
e,
R
c

Fig. 12. Rate coverage of the typical receiver as a function of
the density of tier 2 nodes (µl = 5 km�1, �1 = 0.5 nodes/km2,
B1 = B2 = 0 dB, P1 = 43 dBm, P2 = 23 dBm, [�1 �20 �21] =
[4 2 4] dB, and T = 10 Mbps).

Impact of selection bias. We plot the rate coverage as a
function of selection bias of tier 1 nodes B1 for different values
of node densities, as shown in Fig. 11. We observe that the
rate coverage initially increases with B1 and then degrades
beyond a certain value, thereby yielding an optimal bias factor
that maximizes the rate coverage of the typical receiver for
a given set of node densities. Also, the optimal bias factor
decreases as the density of tier 1 nodes increases.

Impact of node densities. From Figs. 11 and 12, we observe
that the rate coverage improves as the density of tier 1 and
tier 2 nodes increases when there is no selection bias. This is
because of the reduced load on the tagged nodes as the density
of nodes increases while the user density remains unchanged.
However, we notice that this trend does not hold for higher
values of selection bias B1, as shown in Fig. 11. This is
because of the downward trend in coverage probability for
higher values of B1, as shown in Fig. 8.
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C. Design Insights

We will first compare the performance of the C-V2X
network considered in the paper with a single-tier setup where
the vehicular nodes are served only cellular MBSs, which
corresponds to the case �2 = 0 in the current model. From
Fig. 7, we observe that the coverage probability of the typical
receiver in the C-V2X network is significantly lower than
that of a single-tier network. Although the addition of tier 2
nodes to the network reduces the distance between the typical
receiver and the serving node, it also significantly increases
the interference power. Hence, the coverage performance of
the heterogeneous C-V2X network is worse than that of the
single-tier setup of cellular MBSs. On the other hand, from
Fig. 12, we observe that the rate coverage of the typical
receiver in the heterogeneous network is remarkably better
than that of single-tier network due to improved spatial reuse
of frequency resources. The deployment of RSUs significantly
reduces the load on the cellular MBSs and hence improves the
rate coverage of the typical receiver.

We will now provide some key system-level insights into the
deployment of MBSs and RSUs based on the trends observed
in coverage probability and rate coverage. From Fig. 11, we
observe that the rate coverage can be improved by increasing
the density of tier 1 nodes. However, deploying more tier 1
nodes may not always be an option because of cost and site
acquisition constraints. So, an alternate solution to improve
the performance without additional deployment of nodes is to
adjust the selection bias. For instance, we can observe that the
rate coverage obtained by increasing the node density from
�1 = 0.25 nodes/km2 to �1 = 0.5 nodes/km2 without any
bias can also be achieved by increasing the selection bias to
B1 = 5 dB while keeping the node density unchanged. Unlike
tier 1 nodes, we observe that an increase in the density of tier
2 has different effects on the coverage probability depending
on the regime of operation, as depicted in Fig. 7. However,
as mentioned earlier, the rate coverage of the typical receiver
improves with the density of tier 2 nodes as shown in Fig. 12.
Hence, it is important to consider the trade-off between these
two metrics in the deployment of RSUss.

VII. CONCLUSION

In this paper, we have presented the coverage and rate analy-
sis of a C-V2X network in the presence of shadowing. We have
modeled the locations of vehicular nodes and RSUs as Cox
processes driven by PLP and the locations of cellular MBSs
as a 2D PPP. Assuming a fixed selection bias and maximum
average received power based association, we computed the
probability with which a typical receiver connects to another
vehicular node or an RSU and a cellular MBS. Inspired by
the asymptotic behavior of the Cox process, we approximated
the Cox process of vehicular nodes and RSUs by a 2D PPP
to characterize the interference from those nodes. We then
derived the expression for SIR-based coverage probability in
terms of the Laplace transform of interference power distri-
bution. Further, we computed the rate coverage of the typical
receiver by characterizing the load on the serving nodes. We
have also provided several design insights based on the trends

observed in the coverage probability and rate coverage as a
function of network parameters. We have observed that the
performance gain obtained by the densification of MBSs can
be equivalently achieved by choosing an appropriate selection
bias without additional deployment of infrastructure.

This work has numerous extensions. First of all, the pro-
posed approximation of the spatial model based on the asymp-
totic behavior of the Cox process could be applied to lend
tractability to similar analyses which may not otherwise be
possible. For instance, the approximate spatial model and some
of the intermediate results presented in this paper could be
useful in studying other metrics, such as latency and packet
reception rate. Another meaningful extension of this work
could be to study the handover rate of moving vehicular
users from not just one MBS to another but also from an
RSU or a vehicular node to a MBS and vice versa. Further,
there is scope for improving the system model by considering
correlated shadowing where the nodes in close proximity
experience similar loss in signal power due to blockages
from the same buildings. Hence, it is worthwhile to develop
generative blockage models that imitate the propagation of
signals in a physical environment [37], [38].
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The void probability can be computed as
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where (a) follows from the independent distribution of points
on the lines, (b) follows from the void probability of a 1D
PPP, (c) follows from rewriting the expression in terms of the
point process  C in the representation space C, and (d) follows
from the probability generating functional (PGFL) of the 2D
PPP  C .

APPENDIX B
PROOF OF THEOREM 1

In order to prove this result, by Choquet’s theorem [31],
it is sufficient to show that the void probability of the Cox
process converges to that of a 2D PPP. Therefore, we will now
apply the limits �` ! 1 and �p ! 0 on the expression for
void probability derived in Lemma 1. As the overall density
of nodes in the network �a = ⇡�`�p remains constant, the
application of the two limits �` ! 1 and �p ! 0 can be
simplified to a single limit by substituting �p = �a

⇡�`
in the
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expression in (1). Thus, the asymptotic void probability can
be evaluated as
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where (a) follows from the Taylor series expansion of ex-
ponential function, (b) follows from switching the order of
integral and summation operations and applying Dominated
Convergence Theorem (DCT) on the second term, (c) follows
from the limit of the integrand in the second term which
evaluates to 0 for all k � 2, (d) follows from the Campbell’s
theorem for sums over stationary point processes, and (e)
follows from the definition of line density of line processes,
where ⌫2(A) is the two-dimensional Lebesgue measure (area)
of the region A.
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The typical receiver connects to a tier 1 node if the average
biased received power from the closest tier 1 node exceeds the
average biased received power from the closest tier 2 node on
the typical line. Thus, the probability of occurrence of the
event E1 can be computed as
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where (a) follows from substituting ⇣21 = P2B2G2
P1B1G1

and
conditioning on R2 , and (b) follows from substituting the
expressions for FR1(·) and fR2(·) from (8) and (10) in the
previous step. Since the events E1 and E2 are complementary,
P(E2) = 1� P(E1).
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As the aggregate interference at the typical receiver can
be decomposed into three independent components I1, I20,
and I21, the conditional Laplace transform of interference can
be computed as product of conditional Laplace transforms of
interference of these individual components, i.e.,

LI(s|R, E1) = LI1(s|R, E1)LI20(s|R, E1)LI21(s|R, E1).
(25)

First, we will consider the interference from the tier 1 nodes
I1. Recall that the beamforming gain of an interfering tier
1 node is G1 with probability qc and g1 with probability
(1� qc). So, we can partition the tier 1 interfering nodes into
two independent 2D PPPs �(e)
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(e)
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respectively. Thus, the Laplace transform of interference from
the tier 1 nodes can be computed as

LI1(s|R, E1) = E [exp(�sI1)]

= E
"
exp

 
� s

X

y2�(e)
11 \b(o,R)

P1G1H1kyk�↵

� s

X

y2�(e)
12 \b(o,R)

P1g1H1kyk�↵

!#

(a)
= E

�(e)
11
EH1

"
Y

y2�(e)
11 \b(o,R)

e
�sP1G1H1kyk�↵

#

⇥ E
�(e)

12
EH1

"
Y

y2�(e)
12 \b(o,R)

e
�sP1g1H1kyk�↵

#

(b)
= E

�(e)
11

"
Y

y2�(e)
11 \b(o,R)

✓
1 +

sP1G1kyk�↵

m1

◆�m1
#

⇥ E
�(e)

11

"
Y

y2�(e)
12 \b(o,R)

✓
1 +

sP1g1kyk�↵

m1

◆�m1
#

(c)
= exp

"
� 2⇡qc�

(e)
1

Z 1

r

1�
✓
1 +

sP1G1y
�↵

m1

◆�m1

ydy

� 2⇡(1� qc)�
(e)
1

Z 1

r

1�
✓
1 +

sP1g1y
�↵

m1

◆�m1

ydy

#
,

(26)

where (a) follows from the independence of �(e)
11 and �(e)

12 ,
(b) follows from the Nakagami-m fading assumption, and (c)
follows from substituting y = kyk and the PGFL of a 2D
PPP. The Laplace transform of interference from tier 2 nodes
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located on the typical line conditioned on R and E1 can be
computed as LI20(s|R, E1) =
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where (a) simply follows from the Nakagami-m fading as-
sumption and the PGFL of 1D PPP. Under Assumption 1, the
Laplace transform of I21 conditioned on R and E1 can be
computed as
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where (a) follows from the Nakagami-m fading assumption
and PGFL of a 2D PPP.

Substituting (26), (27), and (28) in (25), we obtain the
final expression for the conditional Laplace transform of the
aggregate interference power distribution.

APPENDIX E
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The total length of the typical cell is the sum of the distances
to the farthest points on the line on either side of the typical
node such that any user closer than that point would connect
to the typical node. We denote the farthest points of the typical
cell by z0 and z1 and the distances to these points from the
typical node by Z0 and Z1, respectively. Thus, the length of
the typical cell is Ztyp = Z0+Z1. Without loss of generality,
we assume that z0 is to the right of xtyp and we will first
focus on the distance Z0.

The CDF of Z0 can be computed as
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where N1(·) and N2(·) denote number of tier 1 and tier 2
nodes, respectively, and b(c, d) denotes a ball of radius d

centered at c. As the random variables Z0 and Z1 are not
independent, we will now compute the CDF of Z1 conditioned

on Z0. Before we proceed with that derivation, it is important
to note that the boundary of the typical cell z0 is determined
by an adjacent tier 2 node on the same line or a tier 1 node. In
the former case, conditioning on Z0 implies that there is a tier
2 node on the same line at a distance 2z0 from xtyp. On the
other hand, if the boundary was determined by a tier 1 node,
conditioning on Z0 also means that there exists a tier 1 node
on the circumference of the disc b(z0, kz0), where k = ⇣

� 1
↵

21 .
Therefore, in order to exactly characterize the length of the
typical cell, we need to distinguish these two cases in the
derivation of the conditional distribution of Z1. However, this
would result in multiple sub-cases and hence complicate the
analysis. Therefore, in the interest of tractability, we do not
distinguish these two cases in our analysis. As will be shown
in the next section, this does not affect the accuracy of our
final results. Thus, the CDF of Z1 conditioned on Z0 can be
computed as
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The area of the region b(z1, kz1)\ b(z0, kz0) is determined by
the relative ranges of z0 and z1, as shown in Fig. 13. Hence,
we obtain a piecewise function for this area which is given by
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Substituting (30) in (29), we obtain the conditional CDF of
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Having determined the CDF of Z0 and conditional CDF of
Z1, the CDF of the length of the typical cell can be computed
as FZtyp(z)

= P(Z0 + Z1 < z) =
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The PDF of Ztyp can be obtained by taking the derivative of
FZtyp(z) w.r.t. z.

APPENDIX F
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The mean load on tagged tier 1 node can be obtained
by determining the difference between the mean number of
vehicular users inside Vtag and the mean number of vehicular
users served by tier 2 nodes inside Vtag. Thus, the mean load
can be computed as

E[J1] = 1 + E [Nr(Vtag)]� E [N2(Vtag)]E [J 0
2] , (33)

where Nr(·) represents the number of receiving vehicular user
nodes and J

0
2 denotes the load on a typical tier 2 node. The

first term, which represents the average number of vehicles in
Vtag, is E [Nr(Vtag)]

= �rE

2

4
X

Li2�l0

⌫1(Li \ Vtag)

3

5 =

0

@1.28⇡�l

�
(e)
1

+
3.216

⇡

q
�
(e)
1

1

A�r.

(34)

The proof of this result is given in [20, Theorem 2] and
is hence skipped. Similarly, the second term in (33) which
represents the average number of tier 2 nodes in Vtag is given
by

E [N2(Vtag)] =

0

@1.28⇡�l

�
(e)
1

+
3.216

⇡

q
�
(e)
1

1

A�
(e)
2 . (35)

The third term in (33), which corresponds to the mean
load on a typical tier 2 node, can be easily computed using
distribution of the length of the typical cell as

E [J 0
2] = �rE[Ztyp] = �r

Z 1

0
zfZtyp(z)dz, (36)

where fZtyp(z) is given in Lemma 7. Substituting (34), (35),
and (36) in (33), we obtain the final expression for the mean
load on the tagged tier 1 node.
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