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Abstract

Schmidingerella arcuata is an ecologically important tintinnid ciliate that has long-served as a
model species in plankton trophic ecology. We present a partial micronuclear genome and macronuclear
transcriptome resource for S. arcuata, acquired using single-cell techniques, and we report on pilot
analyses including functional annotation and genome architecture. Our analysis shows major
fragmentation, elimination, and scrambling in the micronuclear genome of S. arcuata. This work
introduces a new non-model genome resource for the study of ciliate ecology and genomic biology, and
provides a detailed functional counterpart to ecological research on S. arcuata.
Keywords: genome architecture, single-cell ‘omics, tintinnid, micronucleus, macronucleus, Ciliophora
Significance
Our understanding of genome organization in non-model ciliates is limited because (1) most species are
uncultivable and (2) it requires the separate amplification of a ciliate's two nuclei (the germline
micronucleus and the somatic macronucleus), which is technically difficult. By using single-cell 'omics,
we were able to separately sequence both genomes of the ciliate Schmidingerella arcuata, which revealed
patterns of extensive genome rearrangement and fragmentation, and also allowed us to analyze functional
details of its somatic genome. This research contributes information on the genomic architecture and
functional of an ecologically important ciliate, and expands our understanding of ciliate genomics beyond
model species.

Introduction
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Ciliates are an ancient and diverse clade of microbial eukaryotes that inhabit nearly every environment on
Earth. They have long-served as models in the research of cell biology, and recently have become an
ideal system for the study of genome fragmentation and organization (Greider and Blackburn 1985;
Parfrey et al. 2011; Lynn 2008, Pederson 2010). Although genome rearrangements have been discovered
throughout the eukaryotes, the phenomenon appears to be especially elaborate within ciliates, which can
exhibit the mass elimination, fragmentation, and scrambling of loci (Prescott 2000; Bracht et al. 2013;
Gao et al. 2015; Jahn and Klobutcher 2002; Chen et al. 2014; Maurer-Alcala et al. 2018a; Chalker 2008,;
Landweber et al. 2000).

The complexity of ciliate genome architecture results from their nuclear dimorphism, a unique
segregation of germline and somatic functions into separate nuclei (Lynn 2008). Chromosomal
rearrangements can occur between the germline-limited micronucleus (MIC) and the transcriptionally
active macronucleus (MAC). Following conjugation, the zygotic nucleus divides to form a new MIC and
anew MAC. In creating the new MAC, a series of rearrangements and deletions can occur, including the
extensive elimination of MIC segments called IESs (Internal eliminated Sequences) (Fass et al. 2011;
Riley and Katz 2001; Gratias and Bétermier 2001; Katz et al. 2003; Zufall et al. 2005). Regions that are
not eliminated (i.e. present in both MIC and MAC) are called MDSs (Macronucleus Destined Sequences),
and are cut and pieced together to form MAC loci (Swart et al. 2013) (Figure 1A). In some ciliates, MDS
regions are arranged out of order in the MIC, a complex pattern of genomic architecture called
“scrambling”. Scrambled loci can additionally be “inverted” if they are transcribed on opposing strands of
the MIC scaffolds (Figure 1A).

As most ciliates are not amenable to culture, research on ciliate genomics and nuclear architecture has
mostly been limited to a few model species (e.g. Paramecium, Tetrahymena) (Wang et al. 2017; Hamilton
et al. 2016). In addition, traditional sequencing methods are biased toward highly-amplified MAC
regions, which has made it challenging to isolate MIC regions. However, the process of multiple-
displacement amplification (MDA) used in single-cell genomics is biochemically biased for long-

template DNA (2-70kb), which allows for the selection of MIC chromosomes (Spits et al. 2006).
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Combined with single-cell transcriptomics, we are now are able to elucidate the patterns of genome
rearrangement, elimination, and scrambling, all from a single cell (Maurer-Alcal4 et al. 2018a).

Here we use single-cell ‘omics (genomics and transcriptomics) to study the MIC genome and the
transcriptome (a proxy for the gene-sized chromosomes of the macronuclear genome) of
Schmidingerella arcuata, a marine ciliate (class Spirotrichea, order Tintinnida). Long-used as an
ecological model in planktonic food web studies, S. arcuata is ubiquitous in coastal waters, where it
periodically dominates the ciliate community (Dolan and Pierce 2013; Santoferrara et al. 2018; Agatha
and Striider-Kypke 2012; Echevarria et al. 2014). S. arcuata is also one of the few marine ciliates
amenable to culture and thus represents a ciliate that is both ecologically relevant and cultivable
(Echevarria et al. 2016; Montagnes et al. 2008, 2013; Dolan 2012; Jung et al. 2016; Cobb 2017; Gruber
et al. 2019). Although tintinnids have a long history of taxonomic study (Miiller 1779; Haeckel 1866),
there exists no published data on their MIC or genomic architecture, and only limited transcriptome data
exist for Schmidingerella (Keeling et al. 2014), the only tintinnid genus with transcriptome data. Here,
we present a genome and transcriptome resource for S. arcuata, acquired using single-cell techniques,
and we report on pilot analyses of its genome architecture and transcriptome. This represents a new
resource for the study of ciliate genomic architecture, and provides a detailed genomic counterpart to

ecological research on this model microzooplankton.

Materials and Methods

Culturing

Schmidingerella arcuata was collected from the surface waters of northeastern Long Island Sound, CT
(41.31° N, 72.06° W), using a 20um-mesh plankton net. Single cells were isolated with drawn capillaries
and moved to 6-well culture plates with 0.2um-filtered sample water. Clonal cultures of S. arcuata were
fed saturating concentrations (c. 3x10° cells/ml) of the dinoflagellate Heterocapsa triquetra and the

prymnesiophyte Isochrysis galbana (strain TISO). Cultures were kept at 18°C under a 12:12 h light:dark
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cycle. Morphology and 18S rDNA sequences (see Santoferrara et al. 2013) confirmed the taxonomic
identification of S. arcuata (Agatha and Striider Kypke, 2012).

Isolation of Single Cells

Individuals were transferred from growing cultures to autoclaved, 0.2 um-filtered seawater and starved
for twelve hours to ensure the clearance and digestion of prey. The cells were then picked and rinsed a
minimum of five times in autoclaved, 0.2 um-filtered seawater using drawn capillaries under a stereo
microscope. Each cell was then transferred into the appropriate buffer for transcriptome or genome
sequencing and brought to volume with nuclease-free water (as specified in the kits detailed below).
Single Cell Transcriptome and Genome Amplification

The SMART-Seq2 v4 Ultra Low input RNA kit (Cat: 634889; Takara, Mountain View, CA) was used for
WTA (whole transcriptome amplification) following manufacturer’s protocols, with the exception that we
quartered the reaction volumes. For WGA (whole genome amplification), the Repli-g single-cell kit (Cat:
150343; Qiagen, Hilden, Germany) was used following manufacturer’s protocols. The products (cDNA
for WTA, gDNA for WGA) were quantified with the dsDNA Qubit assay (Invitrogen, Waltham, MA)
and PCR-checked with eukaryotic 18S rDNA (Medlin et al. 1988) and genus-specific ITS (Costas et al.
2007) primers. Minimum bacterial contamination was confirmed by PCR with 16S rDNA primers (Lane
et al. 1991). Sequencing libraries were prepared with the Illumina Nextera XT kit (Cat: FC1311096;
[llumina, San Diego, CA) then processed with Illumina HiSeq 2500 at Macrogen Sequencing
(Geumcheon-gu, Seoul, South Korea).

Transcriptome and Genome Assembly

Raw reads from WTA and WGA sequencing were trimmed for quality and size (Q28 and minimum
length of 200bp and 1500bp, respectively) using BBMap (V38.39; Bushnell 2014) After trimming, two
single-cell WTAs were assembled together using rnaSPAdes (V3.13.1; Bankevich et al. 2012), and seven
singe-cell WGAs were assembed together using both SPAdes (V3.13.1) and MEGAHIT (V1.2.9; Li et al.
2015) .The MEGAHIT genome assembly was used for the final analysis because it yielded a higher
mapping continuity (i.e. the amount of transcripts mapped to the WGA assembly per kilobase).
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Assemblies were processed through custom python scripts (http:/github.com/maurerax/KatzLab/tree/HTS-

Processing-PhyloGenPipeline) for the removal of rDNA and prokaryotic transcripts, and for the

identification of orthologous gene (OG) families using USEARCH (V9.2; Edgar 2010) with
OrthoMCLdatabases (V2.0.9; Fischer et al. 2011) (Maurer-Alcala et al. 2018a). Additional steps included
the prediction of open reading frames with AUGUSTUS (Hoff and Stanke 2019) using an E.coli model to
eliminate bacterial contaminants. Stop codon usage was determined using a custom Python script, which
quantified the frequency of in-frame occurences of TAG/TGA/TAA when each codon was used as a
termination site. The completeness of the MIC genome assembly was analyzed using BUSCO
(Benchmarking Universal Single-Copy Ortholog; Waterhouse et al. 2018) (E-value <107, alveolate
lineage database). OmicsBox (V5.2.5; Gotz et al. 2008) was used with InterProScan (V5.42; Hunter et al.
2009) and BLASTx (NCBI non-redundant database, E-value <10™*; V2.8.1; Altschul et al. 1990) for
functional annotation and for the identification of GO terms involved in KEGG (Kyoto Encyclopedia of
Genes and Genomes) (Kanehisa and Goto 2000) pathways.

Genome Architecture Analysis

Custom Python scripts were used to identify and organize the genome architecture of S. arcuata (Maurer-
Alcala et al. 2018a). Putative MIC loci for MAC MDSs were identified via mapping of the MAC
transcriptome to the MIC genome sequences using BLAST. For transcripts to be considered “MIC-
mapped”, at least 60% of their length was required to be mapped to the MIC (length threshold as
suggested in Maurer-Alcala et al. 2018a). Loci were classified into categories of “unmapped,”
“nonscrambled”, and “scrambled”. MDS-IES borders were required to be flanked by pairs of short (2-
10bp) tandem repeats called pointer regions to discriminate them from possible intron-exon boundaries
(Bracht et al. 2013) (Figure 1B, C). The GC content of MDS-IES boundaries was determined by

evaluating the 40bp located at both ends (i.e. the 5* and 3”) of an MDS in the MIC.

Results and Discussion

Genome and Transcriptome Resources
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Assemblies for the MIC and MAC of S. arcuata are about 49Mbp and 6Mbp in size, respectively (Table
1). Of the 11,673 transcripts, which are a proxy for the gene-sized MAC chromosomes of this species,
roughly 15% (1,712) were mapped to the MIC. BUSCO analyses estimate that the MIC genome resource
is about 19% complete (Complete:18.8%, Fragmented:7.6%, Missing:73.6%, n:171). This indicates the
need for deeper sequencing, although BUSCO analyses have been found to underestimate highly-
fragmented genomes (Lopez-Escardo et al. 2017) and thus may not be a reliable indicator of completeness
in S. arcuata. About 80% of MAC transcripts have significant BLASTx hits (NCBI non-redundant
database, E-value <10™*), and of those, 74% have a confident assignment of GO terms. The majority of
MAC transcripts related to cellular components correspond to membrane and organelle activity, while
catalytic and binding activity are the primary molecular functions, and localization and biological
regulation comprise the main biological terms (Supplementary Figure S1). About 15% of MAC
transcripts were placed in KEGG pathways. The three primary pathways identified are thiamine
metabolism, purine metabolism, and Aminoacyl-tRNA biosynthesis (Supplementary Figure S1).
Annotation details regarding the MAC transcriptome can be found in Supplementary Data, and full
annotation files can be found at figshare at the link: https://doi.org/10.6084/m9.figshare.12686621.

We assessed stop codon usage and found that the codons TGA and TAA were rarely found in-
frame, and their usage in S. arcuata matched homologs in the Oxytricha trifallax transcriptome (GenBank
BioSample SAMNO02953822). The combination of TGA/TAA as stop codons is not observed in the few
published transcriptomes for this genus (Keeling et al. 2014; Heaphy 2018) or for other Spirotrichs, with
TAA/TAG reported for E. crassus and TGA for O. trifallax and S. lemnae (Lozupone et al. 2001;
Kervestin et al. 2001; Yan et al. 2019; Heaphy 2018; Swart et al. 2013). However, ciliates have frequent
stop codon reassignments, and even context-dependent stop codons (Yan et al. 2019; Heaphy et al. 2016;
Adachi and Calvacanti 2009).

Patterns of Genome Architecture
Schmidingerella arcuata shows extensive genome fragmentation, including the unscrambling and

inversion of loci during MAC formation (Figure 1B). We considered MIC loci as scrambled if their
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associated transcripts mapped to MDSs that were out of consecutive order in the MIC, and if those MDS-
IES boundaries contained pointer regions (Maurer-Alcald et al. 2018a). Scrambled loci were determined
to be inverted if non-consecutive MDSs appeared on both strands of germline scaffolds (Figure 1A, B).
Of the MIC-mapped transcripts, roughly 36% were found to be scrambled. The average GC content at
MDS-IES boundaries for S. arcuata (47.5%) was slightly higher than the overall GC for all germline-
supported scaffolds (46.4%); this increase also occurs in other ciliate classes, although most report a
sharper rise (10-14%) in %GC around these regions (Maurer-Alcald et al. 2018a). Pointer sequence size
was variable within and among MDS groups (Figure 1B), with a range of 2-10bp. We found no evidence
for alternative processing (more than one MAC sequence resulting from a single MIC region; Katz and
Kovner 2010).
Variations in Genome Architecture Within and Among Ciliate Classes

In general, the micronuclear arrangement of housekeeping genes in S. arcuata matched that of
Oxytricha trifallax. However, we detected a major housekeeping gene with variable micronuclear
organization among six ciliates with available data (Figure 1C). In this example, the beta-tubulin gene
(paralog 1) is separated into two similar-sized MDSs in the MIC of S. arcuata, interrupted by a single IES
and connected by an 8bp TC-iterative pointer sequence (Figure 1C). In contrast, other ciliates of the class
Spirotrichea (O. trifallax, S. lemnae) separate the paralog into three or four MDSs, with comparatively
shorter IES regions. Model ciliates of the Oligohymenophorea class (P.caudatum and T. thermophila)
contain this paralog as either three MDS regions of variable size, or as an uninterrupted sequence in the
MIC. The Phyllopharyngean ciliate C. unicinata divides the MIC gene into three consecutive MDSs of
variable size (75 to 600 bp each) with two 6-7bp pointer sequences (Zufall and Katz 2007; Katz and
Kovner 2010; Harper and Jahn 1989; Zufall et al. 2005).
Significance of S. arcuata -Omics Resources
This work contributes a MIC genome and MAC transcriptome resource for the ecologically-important
ciliate S. arcuata. Single-cell omics allowed selective amplification the MIC and MAC, which revealed

genomic scrambling, elimination, and inversion in S. arcuata. This study provides a non-model genome
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and transcriptome resource to a field represented mostly by model ciliates. The included annotation
details are a valuable resource for future ecological research on S. arcuata and closely-related ciliates,
which are currently underrepresented in detailed genome-scale analyses. Additionally, research on non-
model ciliates are beginning to reveal the significance of genome architecture in molecular evolution
(Yan et al. 2019; Maurer-Alcala et al. 2018b; Maurer-Alcald and Nowacki 2019). Recent models indicate
that slight differences in IESs and specific architectural patterns (e.g. alternative processing and
scrambling) among intraspecific ciliate populations can cause rapid incompatibility, potentially leading to
incipient speciation (Gao et al. 2015; Yan et al. 2019; Katz and Kovner 2010; Goldman and Landweber
2012). These slight errors in the rearrangement of loci could theoretically accumulate more frequently
than (non-neutral) point mutations, which may help to explain the large disparity between the molecular

and morphological diversity in ciliates (Gao et al. 2015).

Data deposition: Data has been deposited at NCBI under the Bioproject ID:PRINA626068; under the
accession numbers JABUIQ000000000 (MIC genome), GISN00000000 (MAC transcriptome), and
SRR11933493 (raw reads); transcriptome annotation is available on figshare at the link:

https://doi.org/10.6084/m9.figshare.12686621.

Acknowledgements:
This research was supported by the U.S. National Science Foundation (awards to G.B.M. and L.F.S.:
OCE1924527; L.A.K.: OCE-1924570 and DEB-1541511), Smith College, and the University of

Connecticut’s Center for Genome Innovation and Computational Biology Core.



mps=
IES= |

telomeres= I L

Radial spokehead protein TGGAA| [ARATC]
. [GTA] [GTA]  [tceAn] TGGAA [AAATC| [ARATC
i. MBS B vDs2 N A MDSI3 A VipSE
IES IES
Hypothetical protein
G A @®m, Grg 61
[[A - MIDS'1 T MDS2" IES2 A MeSZ  IES 3 €SS
IES 1

|C_—

| Schmidingerella arcuata ‘

ccerrerT|
MDS/1 p IES MDS 2
‘ Oxytricha trifallax I S
S
mpsa I mbsz2 3] MDS3 iES T | £
e | rico kS =
wvy
| Stylonychia lemnae |
el
MDS'1 AIﬁEﬁSﬁ MDS 2 ,,I,E,S, MDS 3!
| Paramecium tetraurelia |
cCcT
ccT] [ccT)
vps1 g wmbs2 i VDS 3NN
IES IES

‘ Tetrahymena thermophila ‘

| Chilodonella uncinata |

Phyllopharyngea OVigohymenoﬂhorea
\

e (e

S = wbs2 33J MDs3
211
212
213

214  Figure 1: Genome architecture in S. arcuata. A: Patterns of nuclear architecture in the germline

215  micronucleus (MIC) and somatic macronucleus (MAC). The MIC contains the required



216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

macronuclear-destined sequences (MDSs) for the generation of functional genes during
development of the MAC. MDSs can be interrupted by internally-eliminated sequences (IESs).
Development of the MAC requires the precise excision of IESs and the correct rearrangement of
MDS regions. MDS loci may be scrambled (e.g. MDS 1-4), inverted (e.g. MDS 4), or a
combination of both. The organization of these MDSs is guided by pointer sequences (2-10bp)
that occur at MDS/IES boundaries. Green blocks capping ends indicate telomeres, which are
added de novo to the ends of MAC chromosomes. B: Exemplar micronuclear patterns of loci
elimination, scrambling and inversion identified in S. arcuata. i. Consecutive MDS regions of
varying size separated by IESs and guided by 3-5bp pointers. ii. MDSs separated by IESs of
variable lengths; a mix of scrambled, non-scrambled, and partially-inverted loci, with short
pointers (2-3bp). Pointer sequences are shown in white blocks; those appearing twice indicate
their secondary location in the MIC (pointers occur twice in MIC and once in MAC). MDSs are
numbered according to their somatic order in the MAC. Arrows at the end of each MDS indicate
MDS directionality in the MIC. C. Micronuclear architecture of a beta-tubulin gene in various
ciliates. S. arcuata separates the gene region into two MDSs, interrupted by a single IES and
guided by an 8bp pointer region. Different colors of MDS correspond to different classes,
indicated at right. Accession numbers or gene identifiers: O. trifallax (PRINA194431; OxyDB:
Contigl1167.0.29); S. lemnae (X06874.1); T. thermophila (LO01416.1); P.caudatum

(AB070222.1); C. uncinata (MH388464).
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235 Table 1: Summary data on micronuclear (MIC) and macronuclear (MAC) characteristics of

236 Schmidingerella arcuata. MDS = macronuclear destined sequence; IES = internally eliminated

237 sequence.
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Feature
Size of MIC assembly (Mbp) 48.6
Size of MAC assembly (Mbp) 6.3
Number of MAC transcripts 11,673
Number of MIC-mapped transcripts 1,718
Percentage of MIC covered by MAC 14.6
Number of scrambled transcripts 616
Percentage of MIC genome that contains scrambled transcripts  35.8
Average %GC content for all MIC-supported scaffolds 46.4
Average %GC content at MDS-IES boundaries 47.5
Average pointer length (bp) 3.7
Average %GC content of pointers 40.8
Average length of scrambled MDSs (bp) 361.7
Stop-codon usage TGA/TAA
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