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Abstract

In this paper we study the global exponential stability in the L2 norm of semi-

linear 1-d hyperbolic systems on a bounded domain, when the source term and

the nonlinear boundary conditions are Lipschitz. We exhibit two sufficient sta-

bility conditions: an internal condition and a boundary condition. This result

holds also when the source term is nonlocal. Finally, we show its robustness by

extending it to global Input-to State Stability in the L2 norm with respect to

both interior and boundary disturbances.
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1. Introduction1

Hyperbolic systems can be found everywhere in sciences and nature: from2

biology [1], to fluid mechanics, population dynamics [2], electromagnetism, net-3

works [3, 4, 5] etc. For this reason, they are of large importance for practical4

applications and the question of their stability and stabilization is paramount.5

For linear 1-d systems, studying the exponential stability or the stabilization can6
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be achieved by looking at the eigenvalues and using spectral mapping theorems7

[6, 7]. For nonlinear systems, the situation is much more tricky. For nonlinear8

systems, the situation is much more tricky. In general the stabilities in different9

norms are not equivalent [8]. Indeed, for the same system, stabilities in different10

norms can require different criteria. For semilinear systems the spectral tools11

may still work (in contrast with quasilinear systems), but the resulting expo-12

nential stability may only hold locally, meaning for small enough perturbations.13

Worse, most of the time spectral tools are hard to use when the system is inho-14

mogeneous. Several tools were developed to deal with this situation and obtain15

local exponential stability results. A first method is the characteristic analysis,16

which was originally used by Li and Greenberg in 1984 in [9] then generalized in17

[10, 11, 12, 13] for quasilinear homogeneous hyperbolic systems in the C1 norm.18

A second method is the use of basic Lyapunov functions1. This method was,19

for instance, applied in [16, Chapter 6] for general semilinear systems in the20

H1 norm and quasilinear systems in the H2 norm, but also in many particular21

cases [17, 18, 15, 19, 20]. This will be our approach in this article. A third22

method is the backstepping method, a very powerful tool originally designed23

for finite-dimensional systems, modified for PDEs using a Volterra transform24

in [21], 2 and then used in [23, 24] for quasilinear hyperbolic systems in the25

H2 norm. Such backstepping approach was also used to derive controllability26

[25, 26] or finite-time stabilization [27, 28, 29] in both parabolic and hyperbolic27

settings. Other results using a more general transform were then introduced28

[30, 31]. The main drawback of this method is that it involves controls that29

are usually using full-state measurements and cannot take the simple form of30

output feedback controllers (see (3)). Therefore these controls might be less31

convenient for practical implementation. Although sometimes observers can be32

designed to tackle this issue [32]. Other methods exist, as for instance the study33

of stability based on time delay systems introduced in [8] where the authors give34

1see [14, Definition 1.4.3] for a proper definition and [15] for an overview of this method
2see [22] for more details
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criteria for exponential stability in the W 2,p norms for any p ≥ 1 (see also [33]).35

36

So far, the nonlinear stability results for hyperbolic systems have been ob-37

tained in theH1 norm for semilinear systems and for theH2 norm for quasilinear38

systems. The H1 and H2 norm enabling to bound the nonlinear terms of the39

source term and of the transport term respectively, using the Sobolev embed-40

dings Hp([0, L];R) ⊂ Cp−1([0, L];R), for p ≥ 1. Other results have been shown41

for the C0 and C1 norm [34, 35]. For weaker norms, such as the L2 norm, one42

is usually unable to derive any exponential stability result when the system is43

nonlinear. However, in this paper we show that having a Lipschitz source44

term, with some condition on the size of the source, is enough to obtain the ex-45

ponential stability in the L2 norm for semilinear systems. Besides, in contrast46

with most of the previous analyses cited above, this result holds for a nonlocal47

source term. Nonlocal source terms are found in many important phenomena48

as population dynamics, material sciences, flocking, traffic flow [2, 36, 37], and49

open the door to many potential applications. Moreover, while all the above50

previous approaches were dealing with local exponential stability, we obtain51

here global exponential stability. Concerning semilinear systems with Lipschitz52

source terms, one should highlight the work of [38] where the authors study the53

exponential stability in C0 norm of a semilinear system with a diagonal and54

Lipschitz source term, and saturating boundary conditions. They give a poten-55

tially large explicit bound on the basin of attraction, and they prove in addition56

the well-posedness in L2.57

58

Finally, we show that these results can be extended to a wider notion: the59

Input-to-State Stability (ISS). The ISS measures the resilience of the stability of60

a system when adding disturbances in the boundary conditions or in the source61

term [39, 40]. These disturbances could have many origins such as actuator62

errors, quantized measurments, uncertainties of model parameters, etc. The63

ISS is therefore a more relevant notion from an application perspective, and is64

also paramount for designing observers. While exponential stability of nonlinear65
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hyperbolic systems has been studied for several decades now, fewer results are66

known concerning this wider notion of ISS. Until recently, the most up-to-date67

results were given in [40, Part II], for Lp norms, p ∈ N∗ ∪ {+∞} (see also [41]68

for instance for nonautonomous systems), and recently several works have been69

providing quite good conditions by extending exponential stabilization results70

obtained through Lyapunov approach to ISS results under the same conditions71

[42, 43, 44]. These results suffer however the same limitations as the exponential72

stabilization results they are generalizing: local validity and strong norms. One73

can also refers to [45, 46, 47, 48] for other ISS results on hyperbolic systems74

in particular cases, and to [40] for a more detailed review on ISS results for75

PDEs in general. This paper is organized as follows: in Section 2 we state some76

definitions and our main result, which is proven in Section 3 using a Lyapunov77

approach. The well-posedness and the extension to ISS are dealt with in the78

Appendix.79

2. Statement of the problem and main results80

A semilinear hyperbolic system can always be written in the following way81

[49]:82

∂tu + Λ(x)∂xu +B(u, x) = 0, (1)

where u(t, x) ∈ Rn, Λ(x) is a diagonal matrix with non vanishing eigenvalues,83

Λ : x→ Λ(x) belongs to C1([0, L]) and B ∈ C0(L2(0, L)× [0, L], L2(0, L)) is the84

nonlinear source term, with B(0, x) = 0. Note that B could be potentially non-85

local at it takes a function as argument, thus B(u, x) refers here to B(u(t, ·), x).86

Throrough the article we will assume that B(·, x) is Lipschitz with respect to u87

with a Lipschitz constant CB in the following sense: for u and v two functions88

of L2(0, L),89

‖B(u, ·)−B(v, ·)‖L2 ≤ CB‖u− v‖L2 . (2)

Of course, this assumption is satisfied if B is local, takes argument in Rn× [0, L]90

and is Lipschitz with respect to the first argument, with a Lipschitz constant91

that might depend on x but as a L2 function. We will come back to this special92
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case later on in Remark 2.4. When the system is equipped with a control static93

and exerted at the boundaries, the boundary conditions can be written in the94

following way:95 u+(t, 0)

u−(t, L)

 = G

u+(t, L)

u−(t, 0)

 , (3)

whereG is a continuous and Lipschitz function such thatG(0) = 0. The notation96

u+ is used to refer to the components of u corresponding to positive propagation97

speeds Λi > 0, whereas the notation u− is used to refer to the components98

corresponding to negative propagation speeds. In the following, we assume99

without loss of generality that Λi > 0 for i ∈ {1, ...,m} and Λi < 0 for i ∈100

{m + 1, ..., n}. Note that the boundary conditions (3) are nonlinear. As G is101

Lipschitz, all of its components are Lipschitz, which implies that there exists a102

matrix K such that for any i ∈ {1, ..., n},103 ∣∣∣∣∣∣Gi
u+(t, L)

u−(t, 0)

∣∣∣∣∣∣ ≤
m∑
j=1

Kij |uj(t, L)|+
n∑

j=m+1

Kij |uj(t, 0)|. (4)

Remark 2.1 (Choice of K). Of course the matrix K = CGI, where I is the104

identity matrix and CG the Lipschitz constant of G would work. However, there105

might be other matrices K satisfying (4) and some could lead to potentially less106

restrictive conditions in Theorem 2.2 than the matrix CGI (see (11) below).107

System (1), (3) with (2), (4) is well posed in L2 in the following sense:108

Theorem 2.1 (Well posedness). For any T > 0 and any u0 ∈ L2(0, L) the109

Cauchy problem (1)–(3), with initial condition u(0, ·) = u0 has a unique solution110

u ∈ C0([0, T ], L2(0, L)). Moreover,111

‖u(t, ·)‖L2 ≤ C(T )‖u0‖L2 , ∀ t ∈ [0, T ], (5)

where C(T ) is a constant depending only on T .112

This theorem is shown in the Appendix. Most of the proof is a subcase of a113

remarkable result in [38, Theorem A.1], where the authors study the framework114

of saturating boundary conditions. The only differences are some slight changes115
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in the estimates to deal with a nonlocal functional and a density argument.116

These changes are indicated in Appendix A, together with a proper definition117

of the notion of weak solution to System (1), (3).118

Remark 2.2. As it could be expected, the well posedness also holds for more119

regular solutions. In particular for any u0 ∈ H1(0, L) satisfying the compatibil-120

ity conditions given by (3), the Cauchy problem (1), (3) with initial condition121

u(0, ·) = u0 has a unique solution u ∈ C0([0, T ], H1(0, L))∩C1([0, T ], L2(0, L)).122

This is also shown in Appendix A.123

Before stating our main result, we recall the definition of exponential stability124

for the L2 norm.125

Definition 2.1 (Exponential stability). We say that System (1)–(3) is expo-126

nentially stable for the L2 norm with decay rate γ and gain C if there exists con-127

stants δ > 0, γ > 0, and C > 0 such that for any T > 0 and u0 ∈ L2(0, L) such128

that ‖u0‖L2 ≤ δ, the Cauchy problem (1)–(3) with initial condition u(0, ·) = u0129

has a unique solution u ∈ C0([0, T ], L2(0, L)) and130

‖u(t, ·)‖L2 ≤ Ce−γt‖u0‖L2 . (6)

Moreover, if131

δ = +∞, (7)

then the system is said globally exponentially stable.132

We can now state our main result.133

Theorem 2.2. Let a system be of the form (1), (3), where Λ ∈ C1([0, L])134

and B is Lipschitz with respect to u. If there exist K ∈ Mn(R) satisfying (4),135

J ∈ C1([0, L];Mn(R)) where J(x) is a diagonal matrix with positive coefficients,136

and M ∈ C0([0, L];Mn(R)), such that the following conditions are satisfied137

1. (Interior condition)138

−(J2Λ)′ + J2M +M>J2 (8)
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is positive definite and there exists D ∈ C1([0, L];Mn(R)) where D(x) is139

a diagonal matrix with positive coefficients, such that140

Cg <
λm

2 maxi,x(Di) maxi,x(DiJ2
i )
, (9)

where Cg is the Lipschitz constant of g :=B − M and λm denotes the141

smallest eigenvalue of142

−D(J2Λ)′D +DJ2MD +DM>J2D, (10)

143

2. (Boundary condition) the matrix144 J2
+(L)Λ+(L) 0

0 J2
−(0)|Λ−(0)|


−K>

J2
+(0)Λ+(0) 0

0 J2
−(L)|Λ−(L)|

K

(11)

is positive semidefinite,145

then the system is globally exponentially stable for the L2 norm. Moreover the146

gain is ‖J−1‖L∞‖J‖L∞ and an admissible decay rate is λm(2 maxi,x(DiJ
2
i ))−1−147

Cg maxi,x(Di)148

We prove this theorem in Section 3. Note that (9) does not involve directly149

the Lipschitz constant of B but the Lipschitz constant of g= B −M , which is150

B minus a linear part that can be chosen. Of course, the Lipschitz constant151

of B would be suitable by setting M = 0, but other choices of M could lead152

to less restrictive conditions. Let us note that the apparent complexity of the153

interior condition aims at giving a good explicit computable bound on Cg for154

practical applications: indeed finding the values of λm can be numerically solved.155

Besides, choosing D = Id or K = CGI would also give a sufficient condition156

that is simpler to write, but the sufficient condition would be more restrictive.157

Remark 2.3 (Linear case). When B is a local and linear operator we recover158

the result found in [16, Proposition 5.1] (see also [50] when B is in addition159
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marginally diagonally stable). Indeed, we can choose M = B, then g = 0 and160

the interior condition is reduced to the existence of J , diagonal matrix with161

positive coefficients such that −(ΛJ2)′ + J2M +M>J2 is positive definite.162

Remark 2.4 (Local case). In the special case where the system is local, i.e. B163

is a function on R× [0, L] and B(u, x) = B(u(t, x), x), the condition (9) of the164

previous theorem can be slightly improved as follows: assume that B is Lipschitz165

with respect to the first variable with a Lipschitz constant C(x) ∈ L2(0, L), then166

for any matrix M , g = B−M is also Lipschitz with respect to the first variable167

and we can denote again its Lipschitz constant by Cg(x) ∈ L2(0, L). Then, the168

interior condition (9) in Theorem 2.2 can be replaced by169

Cg <
λm(x)

maxi(J2
i )(x)

or Cg < µm(x)
maxi(Ji)(x)

infi(Ji)(x)
, (12)

where λm(x) and µm(x) are the smallest eigenvalues at a given x of the matrix170

given by (8) and (10) respectively.171

2.1. Input-to-State Stability172

In fact, this result can be extended to a more general notion: the Input-173

to-State Stability (ISS). This notion is more relevant when looking at practical174

implications as it takes into account the external disturbances that can arise.175

When such disturbance arise, System (1), (3) is replaced by176

∂tu + Λ(x)∂xu +B(u, x) + d1(t, x) = 0,u+(t, 0)

u−(t, L)

 = G

u+(t, L)

u−(t, 0)

+ d2(t),
(13)

where d1 and d2 are respectively the distributed and boundary disturbances.177

We define the ISS as follows:178

Definition 2.2 (Input-to-State Stability). We say that System (13) is strongly179

Input-to-State stable (or ISS) with fading memory for the L2 norm if there180

exists positive constants δ > 0, C1 > 0, C2 > 0, γ > 0, such that for any T > 0181

and any u0 ∈ L2(0, L) with ‖u0‖L2 ≤ δ and ‖d1‖L2 + ‖d2‖L2 ≤ δ, there exists182
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a unique solution u ∈ C0([0, T ], L2([0, L])) to System (1), (3), and183

‖u(t, ·)‖L2 ≤ C1e
−γt‖u0‖L2

+ C2

(
‖e−γ(t−s)d1(s, x)‖L2((0,t)×(0,L))

+ ‖e−γ(t−s)d2(s)‖L2(0,t)

)
, for any t ∈ [0, T ].

(14)

Moreover, if δ = +∞, then the system is said to be globally strongly ISS with184

fading memory.185

This defines a strong notion of ISS with an exponentially fading memory.186

The fading memory comes from the e−γ(t−s) in the L2 norms of d1 and d2.187

It means that the influence of the disturbances at a given time s decreases188

exponentially with time. One could have chosen other and less restrictive fading189

factors (see [40, Chapter 7] for a more complete description of ISS estimates190

with fading memory). The constants C1 and C2 are called the gains of the ISS191

estimate. When such notion of ISS cannot be achieved, weaker notions exist192

and can be found for instance in [51]. We have the following result, analogous193

to Theorem 2.2194

Theorem 2.3. Let a system be of the form (13) where Λ ∈ C1([0, L]), d1 ∈195

L2((0, T )× (0, L)), d2 ∈ H1([0, T ]) and B is Lipschitz with respect to u. If the196

condition (9) is satisfied and the matrix defined by (11) is positive definite, then197

the system is globally strongly ISS with fading memory for the L2 norm.198

The proof of this theorem is very similar to the proof of Theorem 2.2. The199

only difference being that the assumption on (11) has to be slightly stronger200

than in Theorem 2.2 (positive definite instead of positive semidefinite). A way201

to adapt the proof of Theorem 2.2 is given in 4. Besides, the gains can again be202

computed explicitly as a function of K, B and Λ (see (38)).203

3. Exponential stability in the L2 norm204

Proof of Theorem 2.2. Let a semilinear system be of the form (1), (3) with205

Λ ∈ C1([0, L],Mn(R)) and B being L2 with respect to u with Lipschitz con-206
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stant CB . We will first show Theorem 2.2 for H1 solutions and then re-207

cover it for L2 solutions using a density argument. Let T > 0, and let u0 ∈208

H1(0, L). From Theorem 2.1 and Remark 2.2, there exists a unique solution209

u ∈ C0([0, T ], H1(0, L))∩C1([0, T ], L2(0, L)) associated to this initial condition.210

Let us now define the following Lyapunov function candidate:211

V (u) =

∫ L

0

(J(x)u(t, x))>J(x)u(t, x)dx, (15)

where J = diag(J1, ..., Jn) ∈ C1([0, L],D+
n (Rn)), where D+

n is the space of212

diagonal matrices with positive coefficients. The function V is well defined on213

L2(0, L) and equivalent to ‖u(t, ·)‖2L2 , as214

‖u(t, ·)‖2L2‖J−1‖−2
L∞ ≤ V (u) ≤ ‖J‖2L∞‖u(t, ·)‖2L2 . (16)

We would like to show that V decreases exponentially quickly along u. Before215

going any further, let us comment on the choice of the form of this Lyapunov216

function candidate. Functions of this type are sometimes called basic quadratic217

Lyapunov function or basic Lyapunov function for the L2 norm because they218

can be seen as the simplest functional equivalent of the L2 norm. A commonly219

used Lyapunov function candidate for hyperbolic systems of conservation laws220

has the form (15) with J(x) = diag(qie
−µsix) where si = 1 if Λi > 0 and221

si = −1 if Λi < 0 and qi and µ are positive constants to be chosen. In our222

case however, such function might not work. This is due to the inhomogeneity223

and this a phenomena that can be seen in balance laws in general [52]. For224

instance, in [15] is found a basic quadratic Lyapunov function that exists for225

any length L > 0 provided good boundary conditions, while this could not226

happen with a basic quadratic Lyapunov function made of exponential weights.227

As u ∈ C1([0, T ], L2(0, L)), V (u(t, ·)) can be differentiated with time, and we228
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have229

dV (u(t, ·))
dt

=

∫ L

0

2u>J2∂tudx

= −
∫ L

0

2u>J2Λ∂xudx− 2

∫ L

0

u>J2B(u, x)dx

= −
[
u>J2Λu

]L
0

+

∫ L

0

u>(J2Λ)′udx

− 2

∫ L

0

u>J2B(u, x)dx.

(17)

We used here that J and Λ commute as they are both diagonal. Now, let M ∈230

C0([0, L],Mn(R)) to be selected later on and set g(u, x) = B(u, x)−M(x)u(t, x)231

which is again Lipschitz in u in the sense of (2). We have232

dV (u(t, ·))
dt

= −
[
u>J2Λu

]L
0

+

∫ L

0

u>(J2Λ)′udx

− 2

∫ L

0

u>J2Mudx− 2

∫ L

0

u>J2g(u, x)dx

= −
[
u>J2Λu

]L
0

−
∫ L

0

u>[−(J2Λ)′ + J2M +M>J2]udx

− 2

∫ L

0

u>J2g(u, x)dx

(18)

where we used that u>J2Mu = u>M>J2u, as it is a scalar. Now, we set233

I2 : =
[
u>J2Λu

]L
0
,

I3 : =

∫ L

0

u>[−(J2Λ)′ + J2M +M>J2]udx

+ 2

∫ L

0

u>J2g(u, x)dx

(19)

We would like to show that under assumptions 1. and 2. of Theorem 2.2, I2 is234

a nonnegative definite quadratic form with respect to the boundary conditions,235

and I3 ≥ µ‖u‖L2 where µ is a positive constant. We will show that this is236
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exactly the point of Assumptions 1. and 2.. Let us start with I2. From (3),237

I2 =

u+(t, L)

u−(t, L)

> J2(L)Λ(L)

u+(t, L)

u−(t, L)


−

u+(t, 0)

u−(t, 0)

 J2(0)Λ(0)

u+(t, 0)

u−(t, 0)


=

m∑
i=1

J2
i (L)Λi(L)u2

i (L)−
n∑

i=m+1

J2
i (0)Λi(0)ui(0)2

+
n∑

i=m+1

J2
i (L)Λi(L)

Gi
u+(t, L)

u−(t, 0)

2

−
m∑
i=1

J2
i (0)Λi(0)

Gi
u+(t, L)

u−(t, 0)

2

.

(20)

We set xi := 0 if i ∈ {1, ...,m} and xi := L if i ∈ {m + 1, ..., n}. Then using238

that Λi > 0 for i ∈ {1, ...,m} and Λi < 0 otherwise, and using (4),239

I2 =

n∑
i=1

J2
i (L− xi)|Λi(L− xi)|u2

i (L− xi)

−
n∑
i=1

J2
i (xi)|Λi(xi)|

Gi
u+(t, L− xi)

u−(t, L− xi)

2

≥
n∑
i=1

J2
i (L− xi)|Λi(L− xi)|u2

i (L− xi)

−
n∑
i=1

J2
i (xi)|Λi(xi)|

 n∑
j=1

Kij |uj(t, L− xj)|

2

,

(21)

This can be rewritten as240

I2 ≥ Y>NY, (22)

where Y is a vector with components Yi = |ui(t, L− xi)| and N is given by241

N =
(
J2

+(L)|Λ+(L)| 0

0 J2
−(0)|Λ−(0)|

)
−K>

(
J2

+(0)|Λ+(0)| 0

0 J2
−(L)|Λ−(L)|

)
K.

(23)
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From (11) the matrix N is positive semidefinite, thus242

I2 ≥ 0. (24)

Let us now deal with I3. Assume that the condition (9) holds. Then there exists243

D ∈ C1([0, L],Mn(R)) such that D(x) is diagonal with positive coefficients for244

any x ∈ [0, L]. Thus245

−D(J2Λ)′D +DJ2MD +DM>J2D (25)

is a symmetric and definite positive matrix and we denote by λm its smallest246

eigenvalue on [0, L]. We have from (19), using Cauchy-Schwarz inequality and247

using the fact that g is Lipschitz with u and the fact that g(0, x) = B(0, x) = 0,248

249

I3 ≥
∫ L

0

(D−1u)>[−D(J2Λ)′D +DJ2MD +DM>J2D](D−1u)dx

− 2

(∫ L

0

|D−1u|2dx

)1/2(∫ L

0

|DJ2g(u, x)|2dx

)1/2

≥
∫ L

0

(D−1u)>[−D(J2Λ)′D +DJ2MD +DM>J2D](D−1u)dx

− 2 max
i,x

(DiJ
2
i (x))

(∫ L

0

|D−1u|2dx

)1/2(∫ L

0

|g(u, x)|2dx

)1/2

≥
∫ L

0

(D−1u)>[−D(J2Λ)′D +DJ2MD +DM>J2D](D−1u)dx

− 2 max
i,x

(DiJ
2
i (x))

(∫ L

0

|D−1u|2dx

)1/2

Cg

(∫ L

0

|u|2dx

)1/2

≥
∫ L

0

(D−1u)>[−D(J2Λ)′D +DJ2MD +DM>J2D](D−1u)dx

− 2Cg max
i,x

(DiJ
2
i (x)) max

i,x
(Di(x))

(∫ L

0

|D−1u|2dx

)1/2

≥ λm‖D−1u‖2L2 − 2Cg max
i,x

(DiJ
2
i (x)) max

i,x
(Di(x))‖D−1u‖2L2 .

(26)

Therefore if Cg < λm/(2 maxi,x(Di(x)) maxi,x(Di(x)J2
i (x))) then250

I3 ≥ µ‖D−1u‖L2 , (27)

13



with µ = λm − 2Cg max
i,x

(DiJ
2
i (x)) max

i,x
(Di(x)) > 0. Thus from (16), the251

positive definiteness of D, hence D−1, (18), (24), and (27) we can set γ =252

µ(max(DiJ
2
i ))−1 > 0 such that such that for any t ∈ [0, T ].253

dV (u(t, ·)
dt

≤ −γV, (28)

and therefore254

V (u(t, ·)) ≤ V (u(s, ·))e−γ(t−s), ∀ 0 ≤ s ≤ t ≤ T. (29)

From (16), this implies that255

‖u(t, ·)‖L2 ≤ ‖J−1‖L∞‖J‖L∞e−
γ
2 (t−s)‖u0‖L2 , (30)

which is exactly the estimate wanted with decay rate γ/2. So far this estimate256

is only true for H1 solutions. However, it only involves the L2 norm. Thus, as257

the system is well-posed in C0([0, T ], L2(0, L)) and ‖·‖L∞((0,T );L2(0,L)) is lower258

semicontinuous, the estimate (30) also hold for L2 solutions by density (more259

details on this argument can be found in the proof of [53, Lemma 4.2]).260

261

4. Adapting the proof in the ISS case262

In this section we show how to adapt the proof of Theorem 2.2 to get The-263

orem 2.3.264

Proof. Let us consider System (13) and let T > 0. Let u0 ∈ H1(0, L) and265

u ∈ C1([0, T ], H1(0, L)) the associated solution. Then, defining V as in (15),266

and differentiating along u, we obtain as previously267

dV (u(t, ·))
dt

= −I2 − I3 − 2

∫ L

0

u>J2d1dx, (31)

where I2 and I3 are given by (19). Thus, using Young’s inequality268

dV (u(t, ·))
dt

= −I2 − I3 + ε0V +
‖J2‖L∞
ε0

‖d1(t, ·)‖2L2 , (32)
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where ε0 > 0 and can be chosen. As previously, from (9), I3 ≥ µV where µ > 0.269

Therefore, choosing ε0 = µ/2, we have270

−I3 + ε0V ≤ −
µ

2
V. (33)

Concerning I2, if we denote by I2,0 the quantity in the absence of disturbances271

(i.e. the quantity given by the first equality of (21)) we get272

I2 = I2,0 −
n∑
i=1

J2
i (xi)|Λi(xi)|

d2
2,i + 2d2,iGi

u+(t, L)

u−(t, 0)


≥ Y>NY −

n∑
i=1

J2
i (xi)|Λi(xi)|

(
1 +

1

ε

)
d2

2,i

− εYK>

J2
+(0)|Λ+(0)| 0

0 J2
−(L)|Λ−(L)|

KY,

(34)

where we used Young’s inequality and where N is the matrix given in (23), Y is273

defined as in (22), and ε > 0 is to be chosen. Using the definition of N and the274

fact that N is positive definite (and not positive semidefinite in contrast with275

Theorem 2.2), we get by continuity that there exists ε > 0 such that276

N − εK>
J2

+(0)|Λ+(0)| 0

0 J2
−(L)|Λ−(L)|

K is semipositive definite. (35)

Therefore, I2 ≥ −(1 + ε−1)‖J‖2∞‖Λ‖∞|d2(t)|2 and (32) becomes277

dV (u(t, ·))
dt

≤− µ

2
V +

2‖J‖2L∞
µ

‖d1(t, ·)‖2L2

+ (1 + ε−1)‖J‖2∞‖Λ‖∞|d2(s)|2,
(36)

thus, using Gronwall’s Lemma,278

V (u(t, ·)) ≤ V (u0)e−
µt
2

+
2‖J‖2L∞

µ

∫ t

0

e−
µ
2 (t−s) (‖d1(s, ·)‖2L2

+
µ

2
(1 + ε−1)‖Λ‖∞|d2(t)|2

)
ds,

(37)
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which, together with (16) and the concavity of the square root function gives279

‖u(t, ·)‖L2 ≤ ‖J−1‖L∞‖J‖L∞‖u0‖L2e−
µt
4

+ ‖J−1‖L∞‖J‖L∞
√

2

µ
max

(
1,
µ

2
(1 + ε−1)‖Λ‖L∞

)(
‖e−

µ
2 (t−s)d1(s, x)‖L2((0,t)×(0,L))+

+‖d2(t)‖L2(0,t)

)
,

(38)

which is the ISS estimate wanted and this holds for any H1 solutions. And, by280

density, this holds also for any L2 solutions. Note that the gains of the estimate281

can again be computed explicitly. This ends the proof of Theorem 2.3282

5. Numerical simulations283

In this section we present a numerical illustration of the previous result on a284

simple example. We consider a system inspired from [16, Section 5.6] and given285

as286

∂tu1 + ∂xu1 = cL−1 sin

(∫ L

0

u2(t, x)dx

)

∂tu2 − ∂xu2 = cL−1 sin

(∫ L

0

u1(t, x)dx

)
u1(t, 0)− u2(t, 0) = 0

u1(t, L)− u2(t, L) = ku1(t, L)

(39)

where one boundary condition can be imposed through a design parameter k287

while the other one is imposed. Note first that in open-loop, i.e. k = 0, the null288

steady-state is an unstable steady-states for any c ∈ R and any length of the289

domain L > 0. Indeed, there is a continuum of travelling wave solutions: for290

any ε > 0291 u1(x) = εe
2πi
L (t−x)

u2(x) = εe−
2πi
L (t−x)

(40)

is a solution of (39) with k = 0. Nevertheless, Theorem 2.2 can be applied to find292

a feedback in closed loop as long as |c|L < 1/2: set M = 0, D = Id, ε > 0 to be293

16



defined, and k =
√

1/(1 + 2Lε−1). Set also, J = diag(
√
L+ ε− x,

√
L+ ε+ x),294

one has Λ = diag(1,−1) therefore −(J2Λ)′ = Id and therefore is positive definite295

with smallest eigenvalue 1. Besides maxi,x(J2
i ) = ε+ 2L and296

‖g(U)− g(V )‖2L2 =
1

L2

∫ L

0

∣∣∣∣∣∣
 c sin

(∫ L
0
U2(x)dx

)
c sin

(∫ L
0
U1(x)dx

)
−

−
 c sin

(∫ L
0
V2(x)dx

)
c sin

(∫ L
0
C1(x)dx

)
−

∣∣∣∣∣∣
2

dx

≤ |c|L−1

(∫ L

0

|U2 − V2|dx

)2

+

(∫ L

0

|U1 − V1|dx

)2


≤ |c|‖U − V ‖2L2 .

(41)

Hence, condition (9) becomes |c| < (ε + 2L)−1. Now, as |c| < (2L)−1, one can297

choose ε = 3(|c|−1 − 2L)/4 such that condition (9) is satisfied. Finally, one can298

easily check that condition (11) becomes299

(1− k)2 ≤ ε

ε+ 2L
, (42)

which is also satisfied from our definition of k. Thus Theorem 2.2 applies and300

the system is globally stable for the L2 norm. On Figure 1 we represent the301

L2 norm of the solution for various values of k when c = 1/4 and L = 1. In302

blue is represented the open-loop situation (i.e. k = 0), in green the closed-loop303

situation with k = 3/4, and in red k = 1/2.304

6. Conclusion and perspective305

We derived sufficient conditions for the global stability in the L2 norm of306

semilinear systems with Lipschitz boundary conditions and source term (poten-307

tially nonlocal). We also showed that a strong ISS property with respect to308

boundary and internal disturbances holds globally under the same conditions.309

This result could have many applications in practice. Knowing whether such310

conditions are optimal for the existence of a basic quadratic Lyapunov function,311

at least for n = 2 as it is in the linear and local case, is an open question. An-312

other interesting direction for future works would be to try to extend, at least313

partially, these results to quasilinear but Lipschitz nonlocal systems.314
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Figure 1: Stability of the system (39) in open-loop (blue) and closed-loop with k = 3/4 (green)

and k = 1/2 (red). horizontal axis represents time, and vertical axis represents the L2 norm

of the solution with initial condition u1,0(x) =
√

2πx and u2,0(x) = e−2πx.
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Appendix A. Well-posedness of the system322

In this section we deal with the well-posedness of the system and extend [38,323

Theorem A.1] to get Theorem 2.1. But first, we give the definition of a weak324

L2 solution for System (1),(3).325

Definition Appendix A.1. Let u0 ∈ L2(0, L). We say that u ∈ C0([0,+∞);L2(0, L))326

is an L2 solution of the Cauchy problem (1), (3), u(0, ·) = u0, if for every T > 0327

there exists a sequence of functions u0,n ∈ H1(0, L) satisfying (3) and such that328
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329

u0,n → u0 in L2(0, L),

un → u in C0([0, T ], L2(0, L)),
(A.1)

where un ∈ C0([0, T ], H1(0, L)) is a weak solution of (1), (3) with initial condi-330

tion u0,n, i.e. un satisfies (3) and for any φ ∈ C1([0, T ];C1
c ((0, L);Rn)) we have331

332 ∫ L

0

∫ T

0

∂tφ
>un + ∂xφ

>Λ(x)un

+ φ>(Λxun −B(un, x))dt dx

=

∫ L

0

[
φ(·, x)>un(·, x)

]T
0
dx.

(A.2)

333

Remark Appendix A.1. As noted in [38], this definition is slightly different334

from the definition given in [16, Definition A.3] when looking at linear systems.335

The reason comes from the nonlinear boundary conditions which may prevent336

the adjoint of the boundary operator from existing. Of course, in the linear337

case, a solution in the sense of [16, Definition A.3] is also a solution in the sense338

of Definition Appendix A.1.339

With this definition in mind, we prove Theorem 2.1, by slightly adapting340

the proof of [38, Theorem A.1]341

Proof of Theorem 2.1. Let T > 0. We define the operator A = −Λ(x)∂x on the342

domain D(A) defined by343

D(A) = {u ∈ H1(0, L)|u satisfies (3) }. (A.3)

We also consider B as an operator on the domain D(B) = L2(0, L), and in the344

following Bf refers to B(f(·), x) ∈ L2(0, L). Observe that D(A + B) = D(A).345

First of all, we can restrict ourselves to the case where Λ has only positive346

components. Indeed, if not, we define v = (vi)i∈{1,...,n} by347 vi(t, ·) = ui(t, ·) if i ∈ {1, ...,m}

vi(t, ·) = ui(t, L− ·) if i ∈ {m+ 1, ..., n},
(A.4)
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and348 

Λ̃i = Λi if i ∈ {1, ...,m}

Λ̃i = −Λi(L− ·) if i ∈ {m+ 1, ..., n},

B̃i(v, ·) = Bi(u, ·) if i ∈ {1, ...,m}

B̃i(v, ·) = Bi(u, L− ·) if i ∈ {m+ 1, ..., n}.

(A.5)

Clearly, u is a L2 solution to the system (1), (3) if and only if v is an L2
349

solution to a system of the form (1), (3) with Λ̃ instead of Λ and B̃ instead of350

B. And now, Λ̃ has only positive components while B̃ is still Lipschitz with351

respect to v. Therefore, in this proof, we will assume that m = n and Λ has352

only positive components. From [38, Appendix A.1], A+B is ζ dissipative with353

ζ independent of n and is a closed operator (in L2(0, L)). A definition of an354

operator ζ dissipative can be found in [54, Definition 2.4 and Chapter 5, section355

2]. Note that [38] study systems with a local diagonal source term and positive356

and constant propagation speeds. However, the proof of these two first points in357

[38, Theorem A.1] only requires B to be Lipschitz and the propagation speeds358

to be positive and nonvanishing. Now we would like to show that A+B satisfies359

the following range condition:360

∃ρ0 > 0, ∀ ρ ∈ (0, ρ0), D(A+B) ⊂ Rg(Id− ρ(A+B)). (A.6)

or equivalently that for any v ∈ D(A+B), there exists u ∈ H1(0, L) such that361

u− ρ (Λ∂xu +B(u, ·)) = v,u+(0)

u−(L)

 = G

u+(L)

u−(0)

 .
(A.7)

The difficulty comes from the nonlinearity of the equation and this was the main362

point shown in [38, Theorem A.1]. In our case, all we need to do is to change363

slightly their proof to take into account the nonlocal operator and the fact that364

Λ depends on x. The latter is easy to take into account by replacing e−Λ−1x/ρ
365

by e−
∫ x
0

(Λ−1(s)/ρ)ds when integrating, which has a similar behavior (this holds366

as Λ is diagonal). To take into account the nonlocal operator, we need to get367

the estimate [38, (26)] while replacing the estimations in [38, 2.2.1], which hold368
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only for the local case when B has a Lipschitz constant independent of x. But369

we have from the Lipschitz behavior of B and Cauchy-Schwarz inequality,370 ∣∣∣∣∫ x

0

e−
∫ x
s

Λ−1(v)/ρdvΛ−1(s)B(u, s)ds

∣∣∣∣
≤ ‖B(u, ·)‖L2

‖Λ−1‖∞
2

ρ

∫ x

0

∣∣∣∣e∫ sx 2Λ−1(v)/ρdv 2Λ−1(s)

ρ

∣∣∣∣ ds
≤ ρCB‖Λ

−1‖∞
2

∣∣∣∣1− e−2
∫ L
0

Λ−1(v)
ρ

∣∣∣∣ ‖u‖L2 ≤ ρC2‖u‖L2

(A.8)

where C2 is a constant that depends only on the parameters of the system.371

This enables to recover the estimate [38, (26)] which is then used to apply372

Arzela-Ascoli Theorem and get the range condition (A.6). As in Theorem [38,373

Theorem A.1], from these three properties (ζ dissipative, closed operator and374

range condition) and using [54, Corollary 5.13 and Remark 2 p.148], A + B375

generates a nonlinear semigroup S of type ζ on L2(0, L) and the Cauchy problem376

has a unique integral solution u ∈ C0([0, T ], L2(0, L)) (see [54] for a proper377

definition of an integral solution). Besides, let u0,n ∈ D(A), then from [54,378

Remark 2 p.148], the unique integral solution un of the Cauchy problem with379

initial condition u0,n belongs to C1([0, T ];L2(0, L))∩C0([0, T ];H1(0, L)) and380

satisfies (3) and (A.2). We can choose a sequence u0,n ∈ D(A) such that381

u0,n → u0 ∈ L2(0, L), as D(A) is dense in L2. Finally, as S is a semigroup of382

type ζ we have (see [54, Remark p.146])383

‖S(t)u0 − S(t)u0,n‖L2 ≤ Ceζt‖u0 − u0,n‖L2 , (A.9)

which implies the convergence of un to u in C0([0, T ], L2(0, L)). To conclude384

we only need to show that this is the unique solution in the sense of Definition385

Appendix A.1. Let assume that there is another solution u(1) with initial386

condition u0. Let T > 0. By assumption there exists a sequence u
(1)
0,n ∈ D(A)387

such that u
(1)
n satisfies (3) and (A.2) with initial condition u

(1)
0,n and u

(1)
n → u(1)

388

in C0([0, T ], L2(0, L)). For any n ∈ N, u
(1)
n ∈ C1([0, T ], L2(0, L)), therefore u

(1)
n389

is also an integral solution of the Cauchy problem with initial condition u
(1)
0,n390

(see [54, Remark 2 p.148]). Thus, from [54, Remark p.146],391

‖u(t, ·)− u(1)
n (t, ·)‖L2 ≤ Ceζt‖u0 − u

(1)
0,n‖L2 , (A.10)
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and therefore u
(1)
n → u in C0([0, T ], L2), which implies that u = u(1) in392

C0([0, T ], L2). This holds for any T > 0, and ends the proof.393

394

Well-posedness in the ISS case395

The well-posedness of system (13) is again a consequence of the three prop-396

erties of the operator (A + B) and the results in [54]. In particular, let T > 0397

and u0 ∈ L2(0, L), and assume (d1,d2) ∈ L2((0, T )× (0, L))×H1(0, T ), and set398

L : x→ diag(Li(x)) where Li(x) = (L− x)/L if i ∈ {1, ...,m} and Li = x/L if399

i ∈ {m+ 1, ..., n}. A function u ∈ C0([0, T ], L2(0, L)) is an L2 solution to (13),400

u(0, ·) = u0, if and only if v(t, x) := u(t, x)− L(x)d2(t) is an L2 solution to401

∂tv = −(A+B)v + d1 + [(Λ∂x +B)(Ld2)− Lḋ2]

v(0, ·) = u0 − L(x)d2(0) =: v0,
(A.11)

with boundary conditions (3), and where B is seen again as an operator on402

L2(0, L). The interest of this reformulation is that the boundary conditions403

of v are now again (3) and do not depend on time (contrary to the boundary404

conditions of (13)) except through v (see also [42]). Using the fact that (A+B)405

satisfies the range condition and is dissipative of type ζ, from [54, Theorem 5.18406

and Remark 2°], there exists a unique integral solution u ∈ C0([0, T ];L2(0, L)),407

satisfying a definition analogous to Appendix A.1 (the precise definition is408

omitted here due to the lack of space).409
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[1] F. Filbet, P. Laurençot, B. Perthame, Derivation of hyperbolic models for411

chemosensitive movement, Journal of Mathematical Biology 50 (2) (2005)412

189–207.413

[2] E. Tadmor, C. Tan, Critical thresholds in flocking hydrodynamics with414

non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng.415

Sci. 372 (2028) (2014) 20130401, 22. doi:10.1098/rsta.2013.0401.416

URL https://doi.org/10.1098/rsta.2013.0401417

22

https://doi.org/10.1098/rsta.2013.0401
https://doi.org/10.1098/rsta.2013.0401
https://doi.org/10.1098/rsta.2013.0401
https://doi.org/10.1098/rsta.2013.0401
https://doi.org/10.1098/rsta.2013.0401


[3] G. Leugering, E. J. P. G. Schmidt, On the modelling and stabilization of418

flows in networks of open canals, SIAM Journal on Control and Optimiza-419

tion 41 (1) (2002) 164–180. doi:10.1137/S0363012900375664.420

URL http://dx.doi.org/10.1137/S0363012900375664421

[4] M. Dick, M. Gugat, G. Leugering, Classical solutions and feedback stabi-422

lization for the gas flow in a sequence of pipes, Netw. Heterog. Media 5 (4)423

(2010) 691–709. doi:10.3934/nhm.2010.5.691.424

URL https://doi.org/10.3934/nhm.2010.5.691425

[5] N. Espitia, A. Girard, N. Marchand, C. Prieur, Fluid-flow modeling and426

stability analysis of communication networks, IFAC-PapersOnLine 50 (1)427

(2017) 4534–4539.428

[6] M. Lichtner, Spectral mapping theorem for linear hyperbolic systems, Proc.429

Amer. Math. Soc. 136 (6) (2008) 2091–2101.430

URL https://doi.org/10.1090/S0002-9939-08-09181-8431

[7] M. Renardy, On the type of certain C0-semigroups, Comm. Partial Differ-432

ential Equations 18 (7-8) (1993) 1299–1307.433

URL https://doi.org/10.1080/03605309308820975434

[8] J.-M. Coron, H.-M. Nguyen, Dissipative boundary conditions for nonlinear435

1-d hyperbolic systems: sharp conditions through an approach via time-436

delay systems, SIAM Journal on Mathematical Analysis 47 (3) (2015) 2220–437

2240.438

[9] J. M. Greenberg, T. Li, The effect of boundary damping for the quasilinear439

wave equation, J. Differential Equations 52 (1) (1984) 66–75. doi:10.440

1016/0022-0396(84)90135-9.441

URL http://dx.doi.org/10.1016/0022-0396(84)90135-9442

[10] T. T. Li, Global classical solutions for quasilinear hyperbolic systems,443

Vol. 32 of RAM: Research in Applied Mathematics, Masson, Paris; John444

Wiley & Sons, Ltd., Chichester, 1994.445

23

http://dx.doi.org/10.1137/S0363012900375664
http://dx.doi.org/10.1137/S0363012900375664
http://dx.doi.org/10.1137/S0363012900375664
https://doi.org/10.1137/S0363012900375664
http://dx.doi.org/10.1137/S0363012900375664
https://doi.org/10.3934/nhm.2010.5.691
https://doi.org/10.3934/nhm.2010.5.691
https://doi.org/10.3934/nhm.2010.5.691
https://doi.org/10.3934/nhm.2010.5.691
https://doi.org/10.3934/nhm.2010.5.691
https://doi.org/10.1090/S0002-9939-08-09181-8
https://doi.org/10.1090/S0002-9939-08-09181-8
https://doi.org/10.1080/03605309308820975
https://doi.org/10.1080/03605309308820975
http://dx.doi.org/10.1016/0022-0396(84)90135-9
http://dx.doi.org/10.1016/0022-0396(84)90135-9
http://dx.doi.org/10.1016/0022-0396(84)90135-9
https://doi.org/10.1016/0022-0396(84)90135-9
https://doi.org/10.1016/0022-0396(84)90135-9
https://doi.org/10.1016/0022-0396(84)90135-9
http://dx.doi.org/10.1016/0022-0396(84)90135-9


[11] T. H. Qin, Global smooth solutions of dissipative boundary value problems446

for first order quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B447

6 (3) (1985) 289–298, a Chinese summary appears in Chinese Ann. Math.448

Ser. A 6 (1985), no. 4, 514.449

[12] Y. C. Zhao, The boundary value problem for systems of first-order quasilin-450

ear hyperbolic equations, Chinese Ann. Math. Ser. A 7 (6) (1986) 629–643,451

an English summary appears in Chinese Ann. Math. Ser. B 8 (1987), no.452

1, 127–128.453

[13] Z. Wang, Exact controllability for nonautonomous first order quasilinear454

hyperbolic systems, Chinese Ann. Math. Ser. B 27 (6) (2006) 643–656.455

doi:10.1007/s11401-005-0520-2.456

URL https://doi.org/10.1007/s11401-005-0520-2457

[14] A. Hayat, Stabilization of 1D nonlinear hyperbolic systems by boundary458

controls, Theses, Sorbonne Université , UPMC (May 2019).459
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