

1 **Wave attenuation by oyster reefs in shallow coastal bays**

2 Patricia L. Wiberg, Sara R. Taube, Amy E. Ferguson, Marnie R. Kremer, Matthew A.

3 Reidenbach

4 Department of Environmental Sciences, University of Virginia, Charlottesville, VA USA

5

6 *Correspondence to:*

7 Patricia Wiberg, Department of Environmental Sciences, University of Virginia, P.O. Box

8 400123, Charlottesville, VA 22904-4123 (pw3c@virginia.edu; 434-924-7546)

9

10

11

12

13

14 **Acknowledgements**

15 This research was supported by the National Science Foundation through the VCR LTER award

16 1237733 and by a grant from the National Fish and Wildlife Foundation to The Nature

17 Conservancy (2300.14.042551). We thank the staff of the Anheuser-Busch Coastal Research

18 Center and The Nature Conservancy for logistical support, particularly David Boyd (ABCRC)

19 and Bo Lusk (TNC).

20

21

22

23

1 **Abstract**

2 Oyster reef restoration in shallow estuarine environments has been thought to have the
3 potential to provide shoreline protection as well as oyster habitat. This study was designed to
4 address the question of how effective oyster reefs are at attenuating wave energy in shallow
5 coastal bays. Measurements were made of waves on both sides of four restored intertidal oyster
6 reefs and at a control site with no reef; mean water depths ranged from 0.9-1.3 m. The reefs
7 differed in composition and position relative to the shoreline, but all had reef crest elevations
8 between 0.3-0.5 m below mean sea level. Differences in wave heights between the
9 exposed/sheltered sides and upwind/downwind sides of the reefs were used to quantify the
10 effects of the reefs on waves under varying tidal and wind conditions. All four reefs were able to
11 reduce wave heights by an average of 30-50 % for water depths of 0.5 – 1.0 m (bracketing the
12 heights of reef crests) and 0 – 20 % for water depths of 1.0 – 1.5 m (reef crests > 0.25 m below
13 the water surface). For water depths greater than 1.5m, there was < 10% change in wave heights.
14 In contrast, there was no average decrease in wave height from the more seaward (exposed) to
15 the more landward wave gauge at the control site regardless of water depth. Based on our results
16 we conclude that fringing oyster reefs can reduce the wave energy reaching the shoreline of
17 marshes with edge elevations close to mean sea level. However, reefs like those in our study
18 have little effect on waves during deeper water conditions, which allow for the largest waves,
19 and are therefore less likely to offer protection to marshes characterized by high edge scarps and
20 marsh surface elevations well above mean sea level.

21

22 **Keywords:** oyster reefs, salt marsh, wave attenuation, shoreline stabilization, shallow coastal
23 bays

1 **Introduction**

2 Oyster reefs are known to stabilize intertidal sediment and to influence hydrodynamic
3 patterns within estuarine environments (Dame and Patten 1981; Meyer et al. 1997; Piazza et al.
4 2005; Coen et al. 2007; Whitman and Reidenbach 2012). Because of their potential stabilizing
5 effects, building oyster reefs close to eroding intertidal marshes has been considered as a means
6 of slowing or reversing shoreline erosion (Meyer et al. 1997; Piazza et al. 2005; Stricklin et al.
7 2010; Scyphers et al. 2011). Modeling of energy flows through oyster reefs shows that reefs
8 change water current patterns (Dame and Patten 1981) and can increase the coefficient of drag
9 up to five times over that for a bare mud bed (Whitman and Reidenbach 2012).

10 Marshes fringing coastal bays are undergoing rates of lateral erosion in excess of 1 m y^{-1}
11 in many locations (Wray et al. 1995; Day et al. 1998; Schwimmer 2001; van der Wal and Pye
12 2004; Wilson and Allison 2008; Marani et al. 2011; Mariotti and Fagherazzi 2013; McLoughlin
13 et al. 2015). Waves are the primary driver of marsh edge erosion in shallow coastal bays (Möller
14 et al. 1999; Tonelli et al. 2011; Marani et al. 2011; Mariotti and Fagherazzi 2013; McLoughlin et
15 al. 2015; Leonardi et al. 2016). Oyster reefs, like coral reefs (Lowe et al. 2005; Huang et al.
16 2012), may be effective at dissipating wave energy, and thereby slowing retreat of marshes
17 fronted by oyster reefs.

18 Several previous studies have investigated the efficacy of oyster reefs as a form of
19 erosion control. Meyer et al. (1997), Piazza et al. (2005) and Stricklin et al. (2005) measured
20 shoreline response to restored oyster reefs constructed of old shell material (cultch) placed into
21 relatively low-lying fringing reefs (heights of 0.15-0.7m) adjacent to intertidal marshes at sites in
22 North Carolina, Louisiana and Mississippi, respectively. The results revealed considerable
23 variability among sites and generally indicated that reefs are only successful at limiting erosion

1 in low energy environments (Piazza et al. 2005, Stricklin et al. 2009). None of these studies
2 measured the effects of the constructed reefs on wave attenuation.

3 Scyphers et al. (2011) constructed and monitored breakwater reefs of loose shell placed
4 on geotextile fabric and shaped into trapezoidal sections 5 m wide, 25 m long with their tops
5 initially just above mean-lower low water (MLLW) at two sites in Alabama. They measured
6 shoreline position, deposition, oyster recruitment, fish and mobile invertebrates at the
7 constructed reefs and control sites over a 2-year period; no measurements were made of the
8 effect of the reef on waves. The seaward extent of vegetation, which they used to indicate
9 shoreline position, retreated at both sites for both treatments (with and without the breakwater
10 reef), and rates of retreat were not significantly different between treatments. However, Scyphers
11 et al. (2011) did find that the constructed reefs provided habitat for oyster recruitment and were
12 host to larger and more diverse populations of fishes and mobile invertebrates than control sites.

13 Our study was designed to address the question of how effective oyster reefs are at
14 attenuating wave energy in shallow coastal bays. We considered both established reefs that were
15 located near marshes and newly constructed fringing reefs made using concrete “oyster castle”
16 spat blocks (Theuerkauf et al. 2015). These reefs, which are relatively long, narrow, and offset
17 from the marsh shoreline, are typical of many of the constructed reefs in the Virginia coastal
18 bays. We measured waves and tides on both sides of four study reefs and a control site and used
19 differences in wave heights across the reefs to investigate the impact of reefs on waves under
20 varying tidal and wind conditions.

21

22 **Study area**

1 The reefs investigated in this study were located in northern Ramshorn Bay and in
2 northern South Bay, both shallow bays on the seaward side of the southern Delmarva Peninsula
3 in Virginia, USA (Figure 1). Ramshorn Bay is about 10 km long and 1-2 km wide, with its long
4 axis generally aligned with the long axis of the Delmarva Peninsula (north-northeast (NNE) to
5 south-southwest (SSW)) (Figure 1a). The bay has a mean depth of 1.1 m relative to mean sea
6 level (MSL) and is fringed with salt marsh around most of the bay. A deeper channel runs
7 through the bay that connects to a larger channel to the south that extends to the Sand Shoal tidal
8 inlet. Although the northeastern end of Ramshorn Bay is open to an adjacent bay (Outlet Bay),
9 circulation in Ramshorn Bay is relatively restricted, resulting in water residence times ranging
10 from 3 - 12 days for the northern - southern portions of the bay, respectively (Safak et al. 2015).
11 South Bay, located between Wreck Island and Mockhorn Island, is 4-5 km wide and 11 km long,
12 with a mean depth of 0.8 m relative to MSL (Figure 1b). South Bay is relatively well flushed
13 (residence times of <1 to 4 days; Safak et al. 2015) owing to tidal exchange through Sand Shoal
14 Inlet to the north and New Inlet in the southern portion of the bay.

15 Mean tidal range in the bays is 1.2 -1.3 m (Figure 2a). Winds in the vicinity of the
16 Virginia coastal bays blow predominantly along the axis of the Delmarva Peninsula with the
17 highest winds from the NNE and the most frequent winds from the SSW (Figure 2b). When
18 winds blow from the NE, water depths tend to be higher than average (Figure 2c; Fagherazzi et
19 al. 2010). SW winds are associated with lower than average water levels.

20 Two oyster reefs were built near small marsh islands adjacent to the Boxtree farm region
21 of northern Ramshorn Bay in the 1950s or 1960s (B. Truitt, personal communication). The
22 oysters that settled on these reefs were American eastern oysters, *Crassostrea virginica*. The
23 base of the Boxtree southern reef (Site BTS) was made of crushed whelk shells, while the

1 Boxtree northern reef (Site BTN) was constructed of concrete oyster castles on the shoreward
2 end and old oyster shells on the seaward end (Figure 3a and 3b). The BTN reef is nearly
3 perpendicular to the mainland; the BTS reef is about 30 degrees clockwise from perpendicular
4 (Figure 1a). A third reef, BTI (“Idaho Reef”), was constructed in the same region of interlocking
5 oyster castle spat blocks by The Nature Conservancy (TNC) in 2013 and 2014 (Figure 3c) on top
6 of an older, dead oyster reef to test the efficacy of oyster castle reefs for mitigating marsh edge
7 erosion and providing substrate for oyster recruitment. This reef is located outside an embayment
8 and roughly parallels the shoreline of the bay interior, which is located about 0.5 km west-
9 northwest of the reef (Figure 1a). We selected a control site (no reef; Site BTC) just south of the
10 Idaho Reef to compare wave conditions at sites with and without reefs. The fourth reef was built
11 by TNC in 2017 at the southern end of the northeast facing side of Man and Boy marsh (Site
12 MBE; Figure 1b) to investigate its effectiveness for wave attenuation and shoreline stabilization.
13 The main reef, made of staggered rows of interlocking oyster castle spat blocks placed on top of
14 a layer of fossil oyster and whelk shell (Figure 3d), is 26 m away from, and roughly parallels an
15 ENE-facing section of marsh shoreline (Figure 1b). There is a set of older, degraded oyster spat
16 blocks several meters bayward of the 2017 reef (Figure 3d).

17 The estimated fetch for the Boxtree sites is <1 km - 6 km, with the largest fetch to the
18 southwest and moderate fetch to the east. The sites had very limited fetch to the west and north
19 (Figure 1a). Woodhouse and Knutson (1990) considered low-energy environments to have fetch
20 distances of less than 9 km in their study of successful marsh restoration along the Atlantic and
21 Gulf coasts, which was comparable to the fetch range at the Boxtree sites. The limited fetch in
22 this area is reflected in low values of wave exposure and shoreline change. Values of relative
23 wave exposure (RWE; Fonseca and Malhotra 2010) are less than 100 J/m along the continuous

1 shoreline to the west and north of the study sites compared to values almost 10 times higher on
2 the northeast facing side of Man and Boy marsh (Ferguson 2018), where estimated fetch is 2 km
3 – 20 km. The longest fetch at our Man and Boy marsh site is to the NNE, which is also the
4 direction from which the strongest winds blow.

5 Rates of shoreline change (colored cells along shoreline in Figure 1) were estimated
6 using the AMBUR method (Jackson et al. 2012) with shorelines digitized from georectified
7 imagery for 2006, 2009 and 2014 available from the National Agricultural Imagery Program
8 (NAIP; gdg.sc.egov.usda.gov) (Emery 2015, Ferguson 2018). Shoreline change in the Boxtree
9 region averaged -0.2 m y^{-1} (erosion), with a standard deviation of 0.7 m, except for the channel
10 mouth area to the west of BTS where rates of erosion were locally higher (Figure 1a). Rates of
11 shoreline change are larger on Man and Boy marsh, with rates exceeding -1.0 m y^{-1} (erosion)
12 along most of the NE facing side of the island (Figure 1b), including the site of the constructed
13 reef (MBE).

14

15 **Methods**

16 *Field measurements*

17 We measured waves and tides on both sides of each study reef and the control site using
18 RBR-Global tide and wave recorders (TWR-2050P; referred to here as a wave gauges), which
19 were placed a distance of roughly 10 m away from both sides of each reef; wave gauges were ~
20 20 m apart at the control site (Figure 1). At MBE, the wave gauges were placed 10 m on either
21 side of the main (2017) reef; remnants of an older reef (Figure 3d) were present between the
22 2017 reef and the bayward wave gauge. The wave gauges recorded tidal elevation and wave
23 conditions every 30 minutes for 3-4 weeks (Table 1), with tides averaged over a 10-minute

1 sampling interval and waves recorded at 4 Hz for 5 minutes. Nortek AquaDopp Profilers (ADP)
2 were deployed just behind the landward tip of reefs BTS and BTN to characterize current
3 velocities. Velocity was recorded every 30 minutes for two weeks (Table 1), averaging over an
4 interval of 10 minutes at 0.5 m increments of elevation within the water column, the minimum
5 for the ADP used in this study, with a blanking distance of 0.2 m above the bottom. Velocities
6 reported herein are from the lowest measurement bin.

7 Tidal and meteorological data for the duration of each deployment were obtained from
8 the NOAA station at Wachapreague, VA, located 30 km north of Ramshorn Bay
9 (tidesandcurrents.noaa.gov; Station 8631044). Wind speed and direction were also available
10 from an anemometer positioned 7.5 m above a marsh surface on Fowling Point, about 3.5 km
11 north of the study area, for the BTI/BTC deployment (Kathilankal et al. 2008). Atmospheric
12 pressure recorded at Wachapreague was used to correct pressure measured by the ADP and wave
13 gauges for atmospheric pressure (Wunsch and Stammer 1997), after which the corrected pressure
14 values were converted to water depth. Tidal water levels from the wave gauges, ADP and
15 Wachapreague tide gauge were checked for agreement, as were winds from Wachapreague and
16 Fowling Point (see below).

17 Elevations of the BTS and BTN reef crests as well as a number of reef cross-sections
18 were surveyed in 2012 using a Trimble RTK system (Taube 2013). The vegetation lines of the
19 adjacent marshes were also surveyed. Elevations were checked against photos of the reef crest at
20 known tidal water elevations. Elevations of the BTI reef were estimated from measurements of
21 water depth to the reef crest at known tidal elevations; similar measurements were made at BTS
22 and BTN to check for consistency. The height of the MBE reef was determined from the spat
23 block assembly and was checked against photos of the reef crest at known tidal water elevations.

1 *Wind conditions*

2 Wind speeds measured at the Wachapreague NOAA station are consistently lower than
3 winds measured at other met stations in or near the VCR likely due to the elevation of the
4 anemometer and its location on top of a shed (McLoughlin et al. 2015); wind directions
5 measured at sites within the VCR are generally in good agreement. Comparison of wind
6 measurements from Wachapreague and Fowling Point in July 2014 reveal that the largest
7 differences in wind speed were for winds from the northwest (NW; Supplement, Figures S1 and
8 S2). Winds from both sites were decomposed into NW-SE and NE-SW components. Scatter
9 plots for positive and negative values along each coordinate axis were used to develop wind
10 speed corrections to bring Wachapreague wind into better agreement with the closer and less
11 obstructed record from Fowling Point (Supplement). The same correction was applied to
12 Wachapreague winds in June 2016 and compared to concurrently measured Fowling Point winds
13 as a test of the correction (Supplement, Figure S3). The corrections were then applied to
14 Wachapreague winds during the February 2012 and May 2017 deployments (no Fowling Point
15 winds at these times) and for the 3-year period from 2012-2014 shown in Figure 2b.

16 *Wave analysis*

17 Significant wave height for each wave record was obtained using the RBR wave analysis
18 software (Ruskin) based on the variance of the 4-Hz depth-corrected water-surface elevation
19 time series recorded at each site (see, e.g., Wiberg and Sherwood 2008). Changes in wave height
20 across each reef were analyzed based on wind speed, wind direction, total water depth and water
21 depth above the reef in order to determine conditions contributing to the greatest wave heights
22 and wave height differences at each site. Comparisons were made of waves on the more exposed
23 side (east sides of BTS, BTI and MBE; southwest side of BTN) vs. more sheltered side of each

1 reef. Comparisons were also made of waves on the upwind vs. downwind sides of each reef, with
2 upwind and downwind sides determined for each record based on wind direction and reef
3 orientation. The upwind/downwind and exposed/sheltered gauge designations at BTC (site with
4 no reef) were set to match those at BTI. Because our wave gauges did not resolve wave direction
5 and our measurements were limited to a single pair of wave gauges per reef, we did not attempt
6 to quantify wave dissipation per se. However, spectra were calculated for a subset of the 5-min-
7 long, 4-Hz records depth-corrected water-surface elevation time series measured by the wave
8 gauges following Wiberg and Sherwood (2009) and examined for differences across the reefs.

9

10 **Results**

11 *Site characterization*

12 Average water depth at each site is listed in Table 1. The BTS reef averaged 0.7 m high
13 (crest height 0.35-0.4 m below mean sea level (MSL)). The main reef structure was 3-5 m wide
14 with gently sloping sides that gradually descend into the mud at the edge of the reef (Taube
15 2013; Figure 3a). The shoreward portion of the BTN reef was similar in height to BTS (crest
16 0.45-0.50 m below MSL owing to slightly deeper water depths at BTN compared to BTS); the
17 width of the main reef structure was 0.5-2 m. This reef comprised two sections, the shoreward
18 section made of oyster castles that had a relatively uniform elevation (Figure 3b), and an older,
19 lower section made of shell. The difference in surveyed reef-crest elevations below MSL at BTS
20 and BTN (about 0.1 m) is consistent with aerial photos that indicate greater emergence of the
21 BTS reef compared to the BTN reef at low tidal conditions. BTI was 4-5 m wide and uniform in
22 elevation when constructed (Figure 3c). Reef-top elevation relative to MSL at BTI was similar to
23 BTS (roughly 0.35 m below MSL), but about 0.1 m deeper relative to mean water depth during

1 the deployment owing to seasonal variations in mean water level in the VCR. The MBE reef
2 comprises a 150-m long, 2.6-m wide, 0.5-m high staggered array of spat blocks on top of a layer
3 of shell just inshore of an older similar array of shell and concrete rubble (Figure 3d). Reef crest
4 elevation is somewhat variable along the reef but was roughly 0.3 m below MSL at the study
5 site.

6 Mean tidal ranges recorded at the study sites by the wave gauges were 1.26-1.31 m, with
7 reef crests submerged about three-quarters of the time (Table 2, Figure 2a). Current speeds
8 averaged 0.12-0.13 m s⁻¹ at BTS and BTN (Table 2). The dominant flow axis was NE/SW, which
9 paralleled the general orientation of the shoreline in the Boxtree study area (Figure 1a). Water
10 levels measured at NOAA's Wachapreague tide station were very well correlated with water
11 level measurements in the study areas.

12 During the February 2012 deployment (2/15/2012 – 3/7/2012), winds tended to most
13 frequently blow from the southwest, but the highest wind speeds were from the northeast (Figure
14 4a). The distribution of winds during this period was similar to the distribution over the three
15 years from 2012-14 (Figure 2b). Winds blew predominantly from the southwest during the July
16 2014 deployment (6/28/2014 – 7/31/2014) with less frequent winds from the east-northeast
17 (Figure 4b). The southerly winds during the July 2014 deployment were larger on average than
18 the southerly winds during the February 2012, whereas winds from the north-northeast were
19 more frequent and larger during the February 2012 deployment than the July 2014 deployment.
20 Several periods of strong northeasterly winds marked the May 2017 deployment, with remaining
21 winds primarily from the south-southwest (Figure 4c). Winds ≥ 8 m s⁻¹ were most frequent in
22 May 2017 (15% of the record) but accounted for <1% of all wind speeds in February 2012 and
23 July 2014.

1 *Wave environment*

2 Average significant wave heights of 0.03 m, 0.06-0.07 m, and 0.10 m were recorded in
3 February 2012, July 2014, and May 2017, respectively (Table 2). Maximum significant wave
4 heights were 0.3-0.4 m during the Boxtree deployments and reached 0.5 m at MBE. Cumulative
5 distributions of wave heights indicate that waves at BTS-E (more exposed side) were
6 consistently higher than at BTS-W and both wave gauges at BTN, all of which had roughly the
7 same distribution (Figure 5a). Overall the waves at BTI were a little larger than at BTC (Figure
8 5b), and the largest waves recorded at BTC were at the more western (shoreward) site (BTC-W).
9 Wave heights on the more seaward and deeper side of the reef at MBE (MBE-E) were
10 consistently a little higher than on the marshward side (MBE-W; Figure 5c). Wave period at all
11 sites was roughly 2 s.

12 Of more importance for the present study than wave height per se is the difference in
13 wave heights across the reefs. Statistics of least squares linear relationships (Table 3) between
14 waves measured simultaneously on both sides of the reefs (gauges 20 m apart) show a reduction
15 in wave height from the more bayward/exposed side (east sides of BTS and MBE; southwest
16 side of BTN) to the more landward, sheltered side of BTS, BTN and MBE. These fits indicated
17 no significant difference on average from the east side to the west side of BTI and an increase in
18 wave height from the eastern (bayward) to the western (landward) gauge at BTC (site with no
19 reef).

20 While it was relatively straightforward to identify the more exposed and more sheltered
21 sides of the BTS, BTI and MBE reefs, drawing this distinction was more difficult at the BTN
22 reef because of its orientation perpendicular to the adjacent marsh. Although the northern side of
23 BTN faced into a more sheltered portion of the bay (Figure 1a), winds from the northeast could

1 generate waves that approached the reef from its northern side, particularly under high water
2 conditions when the marshes to the northeast were submerged. To account for this, statistics of
3 least-squares linear relationships (Table 3) were also calculated for waves from the upwind vs.
4 downwind sides of the reefs, defined simply in terms of wind direction relative to the orientation
5 of the reef crest-line. Wave heights were on average consistently lower (slope significantly < 1)
6 on the downwind compared to upwind sides of all four reefs (Table 3); there was no significant
7 difference for the control site BTC.

8 The largest overall reduction in wave heights, 17-19% as indicated by the slope of the
9 line fit to a scatterplot of significant wave heights on the two sides of a reef, was found at BTS
10 (Figure 6a; Table 3). The slope was not significantly different when considered in terms of
11 waves on the more exposed (eastern) vs. more sheltered (western) side of BTS or waves on the
12 upwind vs. downwind side of BTS, largely because most of the stronger winds came from the
13 more exposed side of BTS. A smaller overall reduction of 4% was found for the upwind vs.
14 downwind side of the BTN reef (10% for SW vs. NE side; Figure 6b, Table 3). At BTI, an
15 overall reduction in significant wave height of 7% was found for waves on the upwind vs.
16 downwind side; no difference was observed for waves on exposed (eastern) vs. sheltered side of
17 this reef, which roughly paralleled the shoreline (Figure 6c). Waves at BTC (no reef control site),
18 increased in height by about 6% toward the shoreline (Figure 6d), but were unchanged on
19 average on the downwind vs. upwind side (Table 3). At MBE, the slope was not significantly
20 different for wave on the more exposed (eastern) vs. more sheltered side of MBE compared to
21 waves on the upwind vs. downwind side of MBE, with a 13-16% overall reduction in wave
22 height (Table 3). Like BTS, this is because the strongest winds blew from the more exposed side
23 of the reef.

1 *Effects of water depth and wind speed*

2 Owing to the relatively large changes in wave height that were observed across the BTS
3 reef, this site provides an interesting set of measurements to investigate in more detail. Figure 7a
4 depicts all wave measurements at BTS-E (more exposed side of reef) in terms of wind speed and
5 water depth at the time the waves were recorded. Low wind speeds ($<2.5 \text{ m s}^{-1}$) and shallow
6 water depths ($<0.5 \text{ m}$) consistently are associated with very small waves. Wave heights increase
7 with water depth and wind speed, with the largest waves recorded for northeasterly winds of 9 -
8 12 m s^{-1} and water depths of 2 m. Changes in significant wave height across the reef from BTS-E
9 to BTS-W are shown in a similar manner in Figure 7b. The greatest change in wave height is
10 found for moderate wind speeds and water depths in the range of 0.6-1.1 m. Reef crest height at
11 BTS was 0.7 - 0.8 m above the bay bottom.

12 To extend this comparison to the other sites and to provide a more quantitative
13 comparison of change in wave height as a function of water depth, the regression analysis of
14 waves on both sides of the reefs was extended by dividing the data into times when water depths
15 were shallower and deeper than 1.0 m (Figure 6; Table 3). At all sites, reef crests were
16 submerged by at least 0.25 m of water at a water depth of 1.0 m. For all 4 reef sites, the change
17 in wave heights across the reef was significantly greater for shallower water depths than deeper
18 conditions (Figure 6, Table 3), averaging 30-70% reduction in wave height. At BTS and MBE
19 there was also a more modest but significant reduction of wave heights for deeper-water
20 conditions (13-15% compared to 50-70% reduction for shallower depths; Table 3). In contrast,
21 the control site BTC (no reef) showed a distinctly different pattern of wave height difference for
22 shallow-water conditions, with 12% larger waves on average at the more shoreward (western) of
23 the pair of wave gauges at BTC.

1 Wave spectra for a subset of cases from the Boxtree site with moderately high winds
2 from NE and SW and water depths in the shallower (< 0.75 m), intermediate (0.75-1.0 m) and
3 deeper (>1.0) range (Figure 8) further illustrate the effects of water depth on wave conditions
4 across the reefs. In each row of Figure 8, spectra are shown for the same times at sites BTS and
5 BTN (in February 2012) and at sites BTI and BTC (in July 2014). Times, winds, water depths
6 and significant wave heights for each case are given in Table 4. For these reefs, depth was
7 similar on both sides of the reef, allowing differences in spectra across the reef to be largely
8 attributed to the reef itself. Spectra for site MBE were not included in Figure 8 owing to
9 significant differences in depth between the two wave gauges at that site that make it difficult to
10 separate spectral differences caused by change in water depth from differences due to the
11 presence of the reef.

12 *Wave events*

13 Because wave energy is proportional to wave height squared, the smallest waves, which
14 are also the most frequent waves, have little effect on the bay bottom or adjacent marshes. We
15 used an event threshold of one standard deviation above mean significant wave height for all
16 wave gauges during each deployment. This yielded an event threshold of 0.07 m for February
17 2012, 0.13 m for July 2014 and 0.17 m for May 2017. After removing wave records with
18 significant wave heights below the event threshold, 12-16 % of the half-hourly wave records
19 remained for the five sites. Wind directions during these events were primarily from the
20 northeast and south-southwest, consistent with the directions typically associated with the
21 highest winds in the study area (Figure 2b). The strong tidal modulation of waves during the
22 intervals of high winds is evident in all records (Figure 4), such that the largest percentage of
23 wave conditions exceeding the threshold occurred when water depths were relatively high.

1 While the largest waves were recorded when water depths and wind speeds were both
2 large, the largest average change in wave heights for waves exceeding the event threshold was
3 observed for shallow - intermediate water depths (Figure 9; Table 5). Similar to the pattern found
4 for all waves (Figure 6), waves exceeding the event threshold experienced the greatest average
5 reduction in wave height across the reefs at water depths in the range of 0.5 – 1.0 m, spanning
6 the heights of the reef crests. Within this depth range, event wave heights at the BTS, BTN and
7 BTI reefs were reduced by an average of 0.05 m, representing 30-50 % of the incoming wave
8 height (Table 5). Average wave height reduction was larger at MBE, where waves were also
9 larger, averaging 0.10 m, but the fractional change (47 %) of the incoming wave height was
10 similar to that at BTS (Table 5). Event wave height differences were significantly smaller at all
11 four reef sites for water depths greater than 1.0 m (0.0-0.3 m below MSL at the reef locations),
12 averaging 0-20% for depths of 1.0 - 1.5 m and <10% for depths > 1.5 m (Table 5; Figure 9). This
13 stands in contrast to observed wave differences at the control site (BTC) where event wave
14 heights were consistently larger at the more landward of the pair of wave gauges.

15

16 **Discussion**

17 Our results show that oyster reefs can significantly reduce wave heights, and therefore
18 wave energy, within a range of intermediate water depths from several tens of centimeters below
19 a reef crest to several tens of centimeters above the crest. At lower water depths, waves are small
20 regardless of wind speed and are completely interrupted by the emergent reef. At higher water
21 depths, the reefs in our study area had significantly less impact on wave heights. The effects of
22 reef orientation, water depth and storms on reef-related reductions in wave height are considered

1 below, as well as the potential significance of the observed wave height reductions on nearby
2 marshes.

3 *Reef orientation relative to the shoreline*

4 Our study reefs exhibited a range of orientations with respect to the trend of the shoreline.
5 Reef MBE was parallel to and closest to the shoreline of the four reefs, with the largest fetch and
6 the highest winds on its eastern side (MBE-E; Figure 1b). Of the five study sites, MBE had the
7 largest difference in depth, 0.4 m, between the pair of wave gauges on either side of the reef,
8 which may contribute to the reduction in wave height recorded between the two wave gauges.

9 This site experienced the highest winds, with all winds $\geq 10\text{ m s}^{-1}$ coming from the offshore
10 direction. As noted above, the highest waves were generally associated with the deepest water,
11 thereby diminishing the potential for the reef to significantly reduce wave heights. However, it is
12 worth pointing out that the three high outliers in the deepest depth range in Figure 9e are for the
13 large northeasterly wind event on yearday 140 (12 May 2017; Figure 4c) and represent a wave
14 height reduction of 25%. Without more detailed data (directional wave gauges and more
15 sampling locations) it is not possible to say whether these reductions in wave heights under
16 deeper-water conditions are the result of the reef or the decrease in depth between the two wave
17 gauges or some combination of both.

18 Reef BTI roughly paralleled the general trend of the shoreline, such that the eastern side
19 (BTI-E) was clearly the side with larger fetch and therefore more likely to be impacted by large
20 wind-waves than its western side (Figure 1a). Any effect of the reef at this site, however, was
21 superimposed on a tendency for waves measured at the same time to increase in height between
22 the outer (BTC-E) and inner (BTC-W) wave gauges at a nearby site with no reef (Figure 6d;
23 Table 3). Water depths at BTC-E and BTC-W differ by $< 10\%$, making it more likely that the

1 increase in wave height is due to refraction related to the local configuration of reefs and coastal
2 features (Figure 1a) than shoaling. It does show, however, that BTI is a more effective wave
3 attenuator than indicated by the simple difference in wave height across the reef, because in the
4 absence of the reef, waves at BTI-W would likely have been greater in height than those at BTI-
5 E.

6 The BTS reef was sub-parallel to the shoreline, but its eastern side (BTS-E) was exposed
7 to a much larger fetch than its western side (Figure 1a). Cumulative distributions of significant
8 wave heights at this site (Figure 5a) confirm that waves on the eastern side of the reef were
9 consistently larger than those on the western side. Only one wind event from the west reversed
10 this trend (Figure 7b, NWM), but these are uncommon (Figure 2b). During this event, when
11 water depths were below 0.8 m, there were moderate sized waves on the western side of BTS
12 (0.05-0.11 m) but almost no waves on the eastern side (0.01-0.02 m) suggesting the reef crest
13 was emergent. This creates a relatively large negative mean change in wave height (0.44 m
14 smaller on the more exposed, eastern side of BTS) for this event (Figures 6 and 7). Waves
15 produced by southwest winds have the largest fetch, propagating up the main axis of Ramshorn
16 Bay, seaward of the BTS reef. As a result, waves from the southwest were generally larger on the
17 eastern side of the reef (Figure 7b). The BTS and BTI reef crests are oriented in a direction
18 similar to that of the dominant winds in the VCR (NNE-SSW). Particularly for winds from the
19 SSW, which allows for greater fetch to the study reefs, waves may at times be reaching both
20 sides of these reefs without crossing their crests.

21 The BTN reef, oriented perpendicular to the shoreline trend, was the only one of the three
22 reefs to lack a clear “exposed” vs. “sheltered” side. While a reef with this orientation is unlikely
23 to be built for shoreline protection, it is worth considering the effect that reefs like this (natural or

1 constructed for purposes other than shoreline protection such as provision of oyster habitat)
2 might have on passing waves. Because both sides of the reef were at times exposed to large
3 waves, we found it most useful to think of this reef in terms of its upwind and downwind sides,
4 which varied according to wind direction. This distinction was less useful for the other reefs,
5 because when winds blew from their more sheltered sides (west and northwest), the fetch was
6 generally small enough that the resulting waves were small as well.

7 The northeastern side of the BTN reef faces into the northern end of Ramshorn Bay
8 (Figure 1a). There is limited fetch in this direction when water depths are below the elevation of
9 the marshes, but the strongest winds come from the northeast (Figure 2b). In addition,
10 northeasterly winds tend to be associated with super-elevation of the water surface (storm surge)
11 in the Virginia coastal bays (Figure 2c; Fagherazzi et al. 2010). Significant submergence of
12 marshes to the northeast could locally increase fetch in this direction. Surprisingly, the period of
13 high northeasterly winds during the BTN deployment (19 Feb 2012; yearday 50), was
14 characterized by relatively high waves on the NE side of BTN (0.19-0.26 m) but even higher
15 waves on the SW side of the reef (0.19-0.33 m). As a result, the upwind-downwind wave height
16 difference was negative (Figure 6b, upwind-side wave heights > 0.2 m). The larger waves on the
17 downwind side of BTN may have been generated in the more open water to the east and
18 propagated into northern Ramshorn Bay.

19 *Importance of reef crest elevation relative to the water surface*

20 The greatest average decreases in wave heights across the reefs were associated with
21 water depths in the range of 0.5 – 1.0 m, bracketing the elevations of the reef crests. This pattern
22 of wave height change as a function of water depth was consistent for the four reefs, despite
23 differences in the material comprising the reefs, their shape, reef orientation and proximity

1 relative to the shoreline, wind conditions and whether all waves or just wave events were
2 considered (Figures 6 and 9). The elevations of the reef crests, 0.30 – 0.45 m below MSL, are
3 below the growth ceiling for intertidal oyster reefs, observed to be on the order of 0.1 m below
4 MSL for an estuary in North Carolina (Rodriguez et al. 2014). In fact, the BTI reef has recruited
5 a significant oyster population since its installation in 2013-2014. As reefs grow vertically, the
6 range of water depths associated with the greatest wave attenuation will shift upward. However,
7 our results indicate that the greatest change in wave heights across a reef will still occur when
8 water depths are within roughly ± 0.25 m of the elevation of the reef crest.

9 Within a ± 0.25 m range of water depths relative reef crest elevation, there are three
10 possible relationships between the waves on one side of a reef and the other. For water depths on
11 the low end of the range, the reef crest would be above the water surface for all but possibly the
12 largest individual waves. In this case, any waves on the downwind side are likely to be the result
13 of wave diffraction around the reef, locally generated waves, or waves propagating along the
14 back side of the reef. Water depths in the middle of the range are comparable to the height of the
15 reef crest. We therefore expect waves to be strongly modified or break as they cross the reef.
16 When water depths are near the top of this range, the reef crest is submerged and waves may be
17 able to propagate across the reef, with dissipation of wave energy owing to interactions of the
18 oscillatory flow and the reef crest. As water depths continue to increase, the frictional interaction
19 between the waves and reef crest diminishes, especially for the relatively narrow reefs in this
20 study. Because the period of these waves was on the order of 2 s, their orbital motion at the level
21 of the reef crest was significantly diminished by even 0.5 m of water over the reef.

22 To illustrate the relationship between waves on either side of the reefs, we examined
23 several of the individual 5-min-long, 4-Hz wave time series, focusing on times when wind

1 speeds were on the order of 6 - 8 m/s and water depths ranged from 0.6 – 1.3 m. Spectra during
2 these times indicate only small changes in spectral form (Figure 8) and average wave height
3 (Table 4) when water depths are > 1.0 m (Dp-NE and Dp-SW). Spectra for water depths < 1.0 m
4 (Sh and In cases in Figure 8) were more variable, in some cases showing almost no waves on the
5 sheltered side (e.g., BTS-199), in others a modified spectrum (e.g., BTS-589) and in still others,
6 similar spectra on both sides of the reef (e.g., BTS-448) (Figure 8; Table 4). Some of this
7 variability may be due to the orientation of the BTS and BTI reef crests in the NNE-SSW
8 directions, roughly paralleling the direction of the dominant winds, as noted above. In addition,
9 because of the variability in wind directions and therefore the direction of wave propagation, the
10 pair of wave gauges at each reef was seldom in line with the direction of wave motion. As a
11 result, the downwind gauge was generally not recording the same specific set of waves as the
12 upwind gauge. A more detailed investigation of wave transformation, including dissipation,
13 refraction and diffraction, by the reefs would require the use of a number of directional wave
14 gauges spanning the reefs.

15 The reefs in our study were constructed for oyster habitat and, in some cases, shoreline
16 protection. As a result, they are all located at least far enough offshore of the marsh shoreline for
17 the reef crests to be below mean sea level, thereby allowing oyster recruitment over the reef
18 surface. We did not consider any reefs constructed to be in contact with the marsh shoreline,
19 such as a marsh toe revetment, although such reefs may also provide oyster habitat (Drexler et al.
20 2014; Theuerkauf et al. 2017). The reefs considered in our study are representative of many of
21 the older and more recent constructed reefs in the Virginia coastal bays. Our sample size is small
22 however, and similar or more detailed measurements over a wider range of reefs will be valuable
23 for assessing the generality of our results.

1 *Potential for reef-associated wave change to benefit adjacent marshes*

2 Our results indicate that the reefs we studied were most effective at attenuating wave
3 energy when water depths were below mean sea level. When depths were very shallow (MLW-
4 MLLW), waves were small no matter what (Figure 7a). As depth increased, and with it the
5 potential for larger waves, the reefs were able to reduce event wave heights (defined as wave
6 heights greater than a standard deviation above the mean) by an average of 30 – 50 % for water
7 depths of 0.5 – 1.0 m (bracketing heights of reef crests) and 0 – 20 % for water depths of 1.0 –
8 1.5 m (Table 5, Figure 9). For water depths greater than 1.5m, there was < 10% change in event
9 wave heights across the four reefs.

10 Tonelli et al. (2011) concluded that the most effective waves for driving marsh-edge
11 erosion are those that reach the marsh scarp when water levels are close to the elevation of the
12 marsh platform. In general, the higher the marsh-edge scarp, the deeper the water is over the
13 adjacent tidal flat when the water surface is at the elevation of the marsh platform. The deeper
14 the water, the larger the waves for a given wind speed, and the greater the thrust the waves can
15 impart to the marsh edge (Tonelli et al. 2011). When water depths are significantly higher than
16 the elevation of the marsh platform, waves propagate across the marsh edge and dissipate their
17 energy on the marsh platform rather than on the marsh edge.

18 Marsh platforms are most commonly found at elevations between MSL and MHHW
19 (mean higher high water; Fagherazzi et al. 2013). Our results indicate that marshes with edge
20 elevations close to mean sea level are most likely to benefit from reductions in wave energy
21 associated with oyster reefs like those in our study area. For these marshes, the elevation of the
22 marsh edge coincides with the water depths for which nearby oyster reefs have the greatest effect
23 on wave height. As a result, the reefs have the potential to reduce the energy of the waves most

1 likely to drive edge erosion, thereby helping to stabilize the location of the marsh edge. During
2 high tide and storm surge conditions, waves will propagate over the low-elevation marsh edge
3 and dissipate within the marsh canopy due to interactions with marsh vegetation (Möller et al.
4 1999, 2004; Ferguson 2018), provided the marsh is sufficiently wide.

5 Low-elevation marsh edges are relatively common along the mainland marsh fringe of
6 the Virginia coastal bays. For example, mainland marsh elevations in our study (BTS, BTN and
7 BTI) are mostly close to MSL in elevation, with little to no marsh-edge scarp (Figure 10a, taken
8 of the shoreline to the west of BTI) and shoreline erosion rates are generally low in the region to
9 the west of the reefs, averaging $-0.2 \text{ m/y} \pm 0.7 \text{ m}$ (standard deviation), except locally near a
10 channel mouth west of BTS (Figure 1a). These rates are considerably smaller than rates at MBE
11 (rates $> 1.0 \text{ m/y}$; Figure 1b) and several other marsh island and backbarrier marsh sites
12 (McLoughlin et al., 2015), largely owing to differences in fetch and wave exposure, but still
13 reflect a general trend of shoreline erosion.

14 Marsh-edge elevations associated with marsh islands and backbarrier marshes in the
15 Virginia coastal bays are commonly located higher in the tidal frame (between MSL and mean
16 high water (MHW), which is about 0.6 m in the VCR), with a significant scarp on the order of 1
17 m high between the marsh platform and the adjacent tidal flat (Figure 10b; McLoughlin et al.
18 2015) as is characteristic of many stable intertidal salt marshes (Morris et al. 2002; Fagherazzi et
19 al. 2006). The scarp at our MBE site is quite small ($\sim 0.1 \text{ m}$), but portions of the Man and Boy
20 shoreline have a much higher scarp. Our results indicate that oyster reefs are relatively
21 ineffective at reducing wave energy when water depths are above MSL. This means that marsh
22 edges characterized by relatively high vertical scarps with marsh surface elevations close to
23 MHW will experience almost no decrease in wave energy due to fringing oyster reefs when

1 water levels are close to the elevation of the marsh platform. As these are the wave and water-
2 level conditions most effective at driving marsh-edge erosion, it is unlikely that fringing oyster
3 reefs would significantly slow rates of retreat for these marshes.

4 Recent studies in the VCR and elsewhere have concluded that marsh-edge erosion rates
5 have been relatively constant over the last 50 yrs (e.g., McLoughlin et al. 2015) and vary linearly
6 in proportion to wave power at the marsh boundary (e.g., Marani et al. 2011; McLoughlin et al.
7 2015; Leonardi et al. 2016). Based on wave and marsh-edge erosion data from eight sites in the
8 U.S., Leonardi et al. (2016) determined that maximum marsh-edge erosion is associated with
9 modestly-sized storms with a recurrence interval of 2.5 ± 0.5 mo. This is in part because of their
10 high frequency (Leonardi et al. 2016) but also because the storms that produce the largest waves
11 are often accompanied by storm surge which allows much of the wave energy to pass across
12 marsh boundaries. While oyster reefs with crests below MSL are unlikely to be effective at
13 reducing the wave heights associated with high wind, storm surge conditions, our results support
14 the conclusion that fringing oyster reefs are effective at reducing the wave energy reaching low-
15 elevation marsh shorelines during the smaller, more frequent storms that tend to drive marsh
16 retreat.

17

18 **Conclusions**

19 Wave and water-level measurements collected across four restored oyster reefs in a
20 system of shallow coastal bays show that they can be effective at reducing wave energy, but their
21 effect is greatest when water depths are no more than a few 10s of cm above the reef crest.
22 Intertidal reef crest elevation is limited by aerial-exposure stress, resulting in a growth ceiling
23 just below mean sea level (Rodriguez et al. 2014). As a consequence, intertidal fringing oyster

1 reefs are most likely to be effective at attenuating moderately-sized wind-driven waves that are
2 able to persist when water depths are near mean sea level or below. These waves are the primary
3 driver of marsh-edge retreat for marshes with marsh-edge elevations that are close to mean sea
4 level. In the Virginia coastal bays, low-lying marsh edges are most prevalent along the mainland
5 margin of the bays, which is also the portion of marsh in the system most likely to be privately
6 owned and targeted for shoreline protection. By attenuating wave energy at low to mid-water
7 levels, fringing reefs may help to stabilize low-elevation marsh edges. When water surface
8 elevations are high, waves will propagate over low-elevation marsh edges and onto the marsh
9 platform where marsh vegetation can provide effective wave attenuation. However, because
10 reefs like those in our study have little effect on waves during deeper water conditions, which
11 allow for the largest waves, they are less likely to offer protection to marshes characterized by
12 high edge scarps and marsh surface elevations well above mean sea level.

13

14

15

16

1 References

2 Coen, L.D., R.D. Brumbaugh, D. Bushek, R. Grizzle, M.W. Luckenbach, M.H. Posey, S.P.
3 Powers, S.G. Tolley. 2007. Ecosystem services related to oyster restoration. *Marine
4 Ecology Progress Series* 341: 303-307.

5 Dame, R.F. and B.C. Patten. 1981. Analysis of energy flows in an intertidal oyster reef. *Marine
6 Ecology Progress Series* 5: 115-124.

7 Day, J.W., Jr., F. Scarton, A. Rismundo, and D. Are. 1998. Rapid deterioration of a salt marsh in
8 Venice Lagoon, Italy. *Journal of Coastal Research* 14: 583-590.

9 Drexler, M., M.L. Parker, S.P. Geiger, W.S. Arnold and P. Hallock. 2014. Biological assessment
10 of eastern oysters (*Crassostrea virginica*) inhabiting reef, mangrove, seawall, and
11 restoration substrates. *Estuaries and Coasts* 37: 962-972. doi:10.1007/s12237-013-9727-
12 8

13 Emery, K.A. 2015. Man and Boy Marsh Shoreline Change. Report for The Nature Conservancy.

14 Fagherazzi, S., L. Carniello, L. D'Alpaos and A. Defina. 2006. Critical bifurcation of shallow
15 microtidal landforms in tidal flats and salt marshes. *Proceedings of the National Academy
16 of Sciences* 103: 8337-8341. doi:10.1073/pnas.0508379103

17 Fagherazzi, S., G. Mariotti, J.H. Porter, K.J. McGlathery, and P.L. Wiberg. 2010. Wave energy
18 asymmetry in shallow bays. *Geophysical Research Letters* 72: L24601.
19 doi:10.1029/2010GL045254

20 Fagherazzi, S., Wiberg, P.L., Temmerman, S., Struyf, E., Zhao, Y. & P.A. Raymond. 2013.
21 Fluxes of water, sediment, and biogeochemical compounds in salt marshes. *Ecological
22 Processes* 2:3.

1 Ferguson, A.E. 2018. Evaluating nature-based solutions to storm wave impacts in the Virginia
2 Coast Reserve. M.S. Thesis, University of Virginia, Charlottesville, VA, 188pp.

3 Huang, Z.-C., L. Lenain, W.K. Melville, J.H. Middleton, B. Reineman, N. Statom, and R.M.
4 McCabe. 2012. Dissipation of wave energy and turbulence in a shallow coral reef lagoon.
5 *Journal of Geophysical Research* 117: C03015. doi:10.1029/2011JC007202

6 Jackson, C.W., C.R. Alexander and D.M. Bush. 2012. Application of the AMBUR R package for
7 spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. *Computers &*
8 *Geosciences* 41: 199-207. doi: 10.1016/j.cageo.2011.08.009

9 Kathilankal, J.C., T.J. Mozdzer, J.D. Fuentes, P. D'Odorico, K.J. McGlathery and J.C. Zieman.
10 2008. Tidal influences on carbon assimilation by a salt marsh. *Environmental Research*
11 *Letters* 3: 044010. doi: 10.1088/1748-9326/3/4/044010

12 Leonardi, N., N.K. Ganju and S. Fagherazzi. 2016. A linear relationship between wave power
13 and erosion determines salt-marsh resilience to violent storms and hurricanes.
14 *Proceedings of the National Academy of Sciences* 113: 64-68.
15 doi:10.1073/pnas.1510095112

16 Lowe, R.J., J.L. Falter, M.D. Bandet, G. Pawlak, M.J. Atkinson, S.G. Monismith, and J.R.
17 Koseff. 2005. Spectral wave dissipation over a barrier reef. *Journal of Geophysical*
18 *Research* 110: C04001. doi:10.1029/2004JC002711

19 McLoughlin, S.M., P.L. Wiberg, I. Safak, K.J. McGlathery. 2015. Rates and forcing of marsh
20 edge erosion in a shallow coastal bay. *Estuaries and Coasts* 38:620–638. doi:
21 10.1007/s12237-014-9841-2

1 Marani, M., A. D'Alpaos, S. Lanzoni, and M. Santalucia. 2011. Understanding and predicting
2 wave erosion of marsh edges. *Geophysical Research Letters* 38: L21401.
3 doi:10.1029/2011GL048995

4 Mariotti, G. and S. Fagherazzi. 2013. Critical width of tidal flats triggers marsh collapse in the
5 absence of sea-level rise. *Proceedings of the National Academy of Sciences* 110: 5353–
6 5356. doi: 10.1073/pnas.1219600110

7 Meyer, D. L., E. C. Townsend, and G. W. Thayer. 1997. Stabilization and erosion control value
8 of oyster cultch for intertidal marsh. *Restoration Ecology* 5: 93-99.

9 Möller, I., T. Spencer, J. R. French, D. J. Leggett, and M. Dixon. 1999. Wave transformation
10 over salt marshes: A field and numerical modeling study from North Norfolk, England.
11 *Estuarine Coastal and Shelf Science* 49: 411-426.

12 Möller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B.K. van Wesenbeeck, G. Wolters, K.
13 Jensen, T.J. Bouma, M. Miranda-Lange, and S. Schimmels. 2014. Wave attenuation over
14 coastal salt marshes under storm surge conditions, *Nature Geoscience* 7: 727–31.
15 doi:10.1038/ngeo2251

16 Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve and D.R. Cahoon. 2002. *Ecology* 83:
17 2869–2877.

18 Piazza, B. P., P. D. Banks, and M. K. La Peyre. 2005. The potential for created oyster shell reefs
19 as a sustainable shoreline protection strategy in Louisiana. *Restoration Ecology* 13: 499–
20 506.

21 Rodriguez, A.B., F.J. Fodrie, J.T. Ridge, N.L. Lindquist, E.J. Theuerkauf, S.E. Coleman, J.H.
22 Grabowski, M.C. Brodeur, R.K. Gittman, D. A. Keller, and M.D. Kenworthy. 2014.

1 Oyster reefs can outpace sea-level rise. *Nature Climate Change* 4: 493-497. doi:
2 10.1038/nclimate2216

3 Safak, I., P.L. Wiberg, M.O. Kurum and D.L. Richardson. 2015. Controls on residence time and
4 exchange in a system of shallow coastal bays. *Continental Shelf Research* 97: 7-20. doi
5 10.1016/j.csr.2015.01.009

6 Schwimmer, R. A. 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay,
7 Delaware, U.S.A. *Journal of Coastal Research* 17: 672-683.

8 Scyphers, S.B., S.P. Powers, K.L. Heck Jr., D. Byron. 2011. Oyster Reefs as Natural
9 Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries. *PLoS ONE* 6: e22396.
10 doi:10.1371/journal.pone.0022396

11 Stricklin, A. G., M. S. Peterson, J. D. Lopez, C. A. May, C. F. Mohrann, and M. S. Woodrey.
12 2009. Do small, patchy, constructed intertidal oyster reefs reduce salt marsh erosion as
13 well as natural reefs? *Gulf and Caribbean Research* 22: 21-27.

14 Taube, S.R. 2013. Impacts of fringing oyster reefs on wave attenuation and marsh erosion rates.
15 M.S. Thesis, University of Virginia, Charlottesville, VA, 157pp.

16 Theuerkauf, S.J., R.P. Burke, and R.N. Lipcius. 2015. Settlement, growth, and survival of eastern
17 oysters on alternative reef substrates. *Journal of Shellfish Research* 34: 241-250.
18 doi.org/10.2983/035.034.0205

19 Tonelli, M., S. Fagherazzi and M. Petti. 2010. Modeling wave impact on salt marsh boundaries.
20 *Journal of Geophysical Research* 115: C09028. doi:10.1029/2009JC006026

21 van der Wal, D. and K. Pye. 2004. Patterns, rates and possible causes of saltmarsh erosion in the
22 Greater Thames area (UK). *Geomorphology* 61: 373-391.

1 Whitman, E.R. and M.A. Reidenbach. 2012. Benthic flow environments affect recruitment of
2 *Crassostrea virginica* larvae to an intertidal oyster reef. *Marine Ecology Progress Series*
3 463: 117-191.

4 Wiberg, P.L and C.R. Sherwood. 2008. Calculating wave-generated bottom orbital velocities
5 from surface-wave parameters. *Computers & Geosciences* 34: 1243-1262.

6 Wiberg, P.L., J.A. Carr, I. Safak, A. Anutaliya. 2015. Quantifying the distribution and influence
7 of non-uniform bed properties in shallow coastal bays. *Limnology and Oceanography*
8 *Methods* 13: 746-762. doi: 10.1002/lom3.10063

9 Wilson, C. A. and M. A. Allison. 2008. An equilibrium profile model for retreating marsh
10 shorelines in southeast Louisiana. *Estuarine Coastal and Shelf Science* 80: 483-494.

11 Woodhouse, W. E. Jr. and P. L. Knutson. 1982. Atlantic coastal marshes. In: R. R. Lewis, III
12 (ed.), *Creation and restoration of coastal plant communities*. CRC Press, Inc., Boca
13 Raton, FL. 219 p.

14 Wray, R. D., S. P. Leatherman, and R. J. Nicholls. 1995. Historic and future land loss for upland
15 and marsh islands in the Chesapeake Bay, Maryland, U.S.A. *Journal of Coastal Research*
16 11: 1195-1203.

17 Wunsch, C. and D. Stammer. 1997. Atmospheric loading and the oceanic “inverted barometer”
18 effect. *Reviews of Geophysics* 35: 79–107.

19

20

1 Table 1: Hydrodynamic sampling sites and schedule. Locations are shown in Figure 1.

Site/Instrument*	Start date	End date	Lat N	Lon W	AvgDepth (m)
BTS					
ADP	7/7/2011	7/21/2011			
RBR-W	2/15/2012	3/7/2012	37 22.945	75 51.920	1.15
RBR-E	2/15/2012	3/7/2012	37 22.950	75 51.888	1.11
BTN					
RBR-NE	2/15/2012	3/7/2012	37 23.251	75 51.561	1.15
RBR-SW	2/15/2012	3/7/2012	37 23.277	75 71.555	1.24
BTI					
RBR-W	6/27/2014	7/30/2014	37 23.368	75 51.415	1.22
RBR-E	6/27/2014	7/30/2014	37 23.357	75 51.380	1.27
BTC					
RBR-W	6/27/2014	7/30/2014	37 23.325	75 51.448	1.35
RBR-E	6/27/2014	7/30/2014	37 23.310	75 51.403	1.27
MBE					
RBR-W	5/9/2017	5/31/2017	37 16.625	75 49.575	0.87
RBR-E	5/9/2017	5/31/2017	37 16.626	75 49.589	1.30

2 * The east (E) sides of BTS, BTI and MBE are more exposed sides of the reefs; exposed side of

3 BTN depends on wave direction (see text).

4

5

6

7

1 Table 2: Summary of measurements at the sampling sites.

	BTS	BTN	BTI	BTC	MBE17
Tides (m MSL)					
Mean (max) high	0.60 (1.06)	0.60 (1.06)	0.74 (1.08)	0.74 (1.08)	0.65 (1.13)
Mean (min) low	-0.57 (-0.97)	-0.57 (-1.02)	-0.52 (-0.73)	-0.52 (-0.75)	-0.64 (-0.94)
Fraction of time reef crest exposed	0.26	0.19	0.22	N/A	0.35
Average current speed* (m·s ⁻¹)	0.13	0.12			
Dominant current direction	ENE, WSW	ENE, W			
Significant wave height (m) – mean/max	0.03/0.38	0.03/0.33	0.07/0.32	0.06/0.43	0.10/0.52
Fraction of time E/NE side of reef is upwind	0.27	0.30	0.34	0.34	0.51

2 * Velocity measured at BTS and BTN only.

3

1 Table 3: Comparison of waves across reefs

	BTS	BTN	BTI	BTC	MBE
<i>Bayward vs landward side of reef*</i>					
Slope (with 95% confidence interval) of least-squares line	0.81 (0.02)	0.90 (0.02)	1.0 (0.02)	1.06 (0.01)	0.87 (0.02)
Intercept (with 95% confidence interval) of least-squares line	-0.002 (0.001)	0.003 (0.001)	-0.002 (0.002)	-0.002 (0.001)	0.002 (0.003)
R ²	0.87	0.85	0.90	0.97	0.84
<i>Upwind vs downwind side of reef</i>					
Slope (with 95% confidence interval) of least-squares line	0.83 (0.02)	0.96 (0.03)	0.93 (0.01)	1.01 (0.01)	0.84 (0.02)
Intercept (with 95% confidence interval) of least-squares line	0.004 (0.001)	0.000 (0.001)	-0.001 (0.002)	0.002 (0.001)	0.006 (0.003)
R ²	0.83	0.85	0.90	0.96	0.84
<i>Water depths deeper and shallower than 1.0 m**</i>					
Deeper: Slope	0.87 (0.02)	1.03 (0.03)	1.04 (0.01)	1.05 (0.01)	0.85 (0.02)
Intercept	-0.001 (0.001)	0.001 (0.002)	0.001 (0.001)	-0.001 (0.001)	0.015 (0.003)
R ²	0.95	0.91	0.97	0.97	0.91
Shallower: Slope	0.50 (0.04)	0.55 (0.04)	0.69 (0.05)	1.12 (0.02)	0.28 (0.03)
Intercept	0.001 (0.002)	0.002 (0.001)	0.006 (0.004)	-0.004 (0.002)	0.003 (0.002)
R ²	0.57	0.65	0.58	0.96	0.52

2 * For BTN, which is perpendicular to the shoreline, the regressions were of the SW-facing side

3 (toward more open water) vs the NE-facing side

4 ** Bayward vs. landward sides of BTS, BTI, BTC and MBE; upwind vs. downwind side of BTN

1 Table 4: Data corresponding to wave spectra shown in Figure 8

Date	Time	YrDay	RecNo	WSpd	WDir	Depth	Hs-out	Hs-in	ΔHs
<i>Site BTS, 2012, reef crest orientation ~ 10° east of north</i>									
2/19	1200	50.500	199	11.0	23	0.78	0.100	0.021	0.08
3/2	0900	62.375	769	6.2	59	0.97	0.123	0.043	0.08
2/19	1630	50.688	208	8.4	13	1.34	0.23	0.20	0.03
2/24	1630	55.688	448	8.1	217	0.72	0.122	0.115	0.01
2/27	1500	58.625	589	7.3	233	0.84	0.133	0.085	0.05
2/24	1900	55.792	453	7.6	235	1.25	0.174	0.173	0.001
<i>Site BTN, 2012, reef crest orientation ~ 35° east of north</i>									
2/19	1200	50.500	199	11.0	23	0.82	0.060	0.020	0.04
3/2	0900	62.375	769	6.2	59	1.04	0.072	0.052	0.02
2/19	1630	50.688	208	8.4	13	1.42	0.171	0.153	0.02
2/24	1630	55.688	448	8.1	217	0.82	0.051	0.166	-0.12
2/27	1500	58.625	589	7.3	233	1.00	0.074	0.096	-0.03
2/24	1900	55.792	453	7.6	235	1.21	0.167	0.132	0.015
<i>Site BTI, 2014, reef crest orientation ~ 10° east of north</i>									
7/18	1000	199.415	1008	6.1	61	0.70	0.107	0.037	0.070
7/19	1130	200.465	1059	6.7	53	0.98	0.125	0.120	0.005
6/28	1230	179.521	53	5.3	77	1.45	0.128	0.133	-0.005
7/15	0800	196.323	860	7.0	203	0.75	0.080	0.074	0.006
7/8	2330	189.965	555	7.0	218	0.76	0.119	0.121	-0.003
7/9	2130	190.883	599	7.0	204	1.47	0.220	0.260	-0.040
<i>Site BTC, 2014, No reef</i>									
7/18	1000	199.415	1008	6.1	61	0.73	0.027	0.021	0.006
7/19	1130	200.465	1059	6.7	53	1.01	0.061	0.049	0.012
6/28	1230	179.523	53	5.3	77	1.41	0.118	0.133	-0.015
7/15	0800	196.323	860	7.0	203	0.77	0.091	0.087	0.004
7/8	2330	189.965	555	7.0	218	0.78	0.148	0.149	-0.001
7/9	2130	190.883	599	7.0	204	1.50	0.258	0.259	-0.001

2

3

1 Table 5: Reductions in wave heights exceeding event threshold* as a function of depth

Site	Depth range: 0.5-1.0m	1.0-1.5m	1.5-2.5m
BTS			
ΔHs (m)	0.046 ± 0.008	0.023 ± 0.005	0.010 ± 0.005
%ΔHs	48 ± 7	20 ± 4	8 ± 4
BTN			
ΔHs (m)	0.048 ± 0.021	0.006 ± 0.008	-0.011 ± 0.008
%ΔHs	32 ± 13	20 ± 6	6 ± 4
BTI			
ΔHs (m)	0.053 ± 0.011	0.001 ± 0.005	-0.012 ± 0.003
%ΔHs	35 ± 7	0 ± 3	-6 ± 2
BTC			
ΔHs (m)	-0.019 ± 0.005	-0.014 ± 0.005	-0.007 ± 0.005
%ΔHs	-12 ± 3	-7 ± 3	-4 ± 3
MBE			
ΔHs (m)	0.096 ± 0.014	0.042 ± 0.009	0.009 ± 0.007
%ΔHs	47 ± 7	17 ± 3	3 ± 2

2

3 *Event threshold is defined as one standard deviation above the mean significant wave height
4 during each deployment period. For the February 2012 deployment, the threshold was 0.07m; for
5 the July 2014 deployment the threshold was 0.13 m; for the May 2017 deployment the threshold
6 (at the inner site) was 0.17 m.

1 **Figure Captions**

2

3 Figure 1: a) Study area map showing the shoreline of the northern (Boxtree) region of Ramshorn
4 Bay, VA, with reef crest and wave gauge locations indicated for the BTS, BTN and BTI reefs
5 and the control site (BTC). b) Study area map showing the shoreline of the Man and Boy marsh,
6 with reef crest and wave gauge locations indicated for the MBE reef. Colored squares indicate
7 rates of shoreline change from 2006-2014 with blues and pinks indicative of accretion and
8 erosion, respectively, as indicated in the legend. Insets show study areas in relation to the lower
9 Delmarva Peninsula and Chesapeake Bay.

10

11 Figure 2: a) Cumulative distribution of water levels relative to mean sea level (MSL) during the
12 February 2012, July 2014 and May 2017 deployments. Mean low water (MLW), mean high water
13 (MHW) are indicated for each deployment as is the depth of the reef crests below MSL. b)
14 Distribution of wind speed and direction for the period January 2012 – December 2014 based on
15 measurements at the NOAA station in Wachapreague (Station 8631044), corrected to produce
16 best agreement with nearby, but incomplete, wind measurements at Fowling Point (Supplement
17 A, Figure 1). c) Distribution of the difference in measured and predicted water levels at
18 Wachapreague for 2012-2014 as a function of wind direction.

19

20 Figure 3: Photographs of the study reefs at Boxtree South (BTS, crushed shell), Boxtree North
21 (BTN, oyster shell and oyster castles), Idaho Reef (BTI, oyster castles) and southeastern Man
22 and Boy marsh (MBE). The photograph of BTI was taken shortly after reef construction. The
23 blocks comprising the reef are now covered with oysters.

1 Figure 4: Wind, wave and water depth time series for the a) February 2012, b) July 2014 and c)
2 May 2017 deployments. The wind vectors are pointing in the direction the wind is blowing and
3 the length is proportional to wind speed as indicated in the y-axis. The horizontal dashed lines in
4 the middle panels indicate the event threshold for waves during each deployment, defined as one
5 standard deviation above the mean.

6

7 Figure 5: Cumulative distributions of significant wave height during the a) February 2012
8 deployment, b) July 2014 deployment and c) May 2017 deployment.

9

10 Figure 6: Scatter plots of significant wave height recorded on the eastern (more exposed) vs.
11 western sides of study reefs a) BTS, c) BTI, d) BTC (the control site with no reef), and e) MBE.
12 b) Scatter plot significant wave height recorded on the upwind vs. downwind sides of study reef
13 BTN. Dot color indicates whether water was ≤ 1.0 m (light blue) or > 1.0 m (dark blue). The
14 solid black line is the 1:1 line, the thicker gray line is the best fit line to all points, the light blue
15 dashed line is the best fit for depths ≤ 1.0 m, and the dark blue dashed line is the best fit for
16 depths > 1.0 m (Table 3). f) Summary of regression slopes indicated in panels a-e for deeper ($>$
17 1.0 m) and shallower (≤ 1.0 m) water depths; the stippled bar to the left of each set is for BTC,
18 the control site with no reef. All wave gauge pairs were 20 m apart.

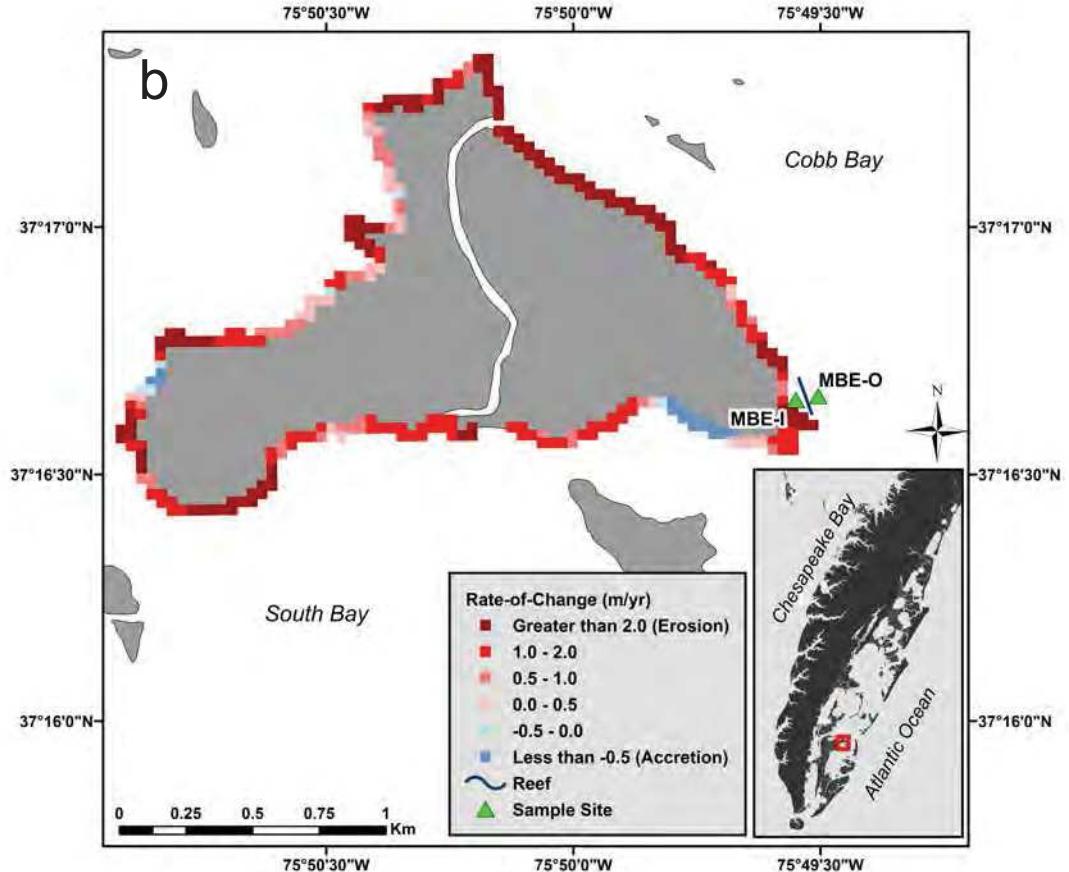
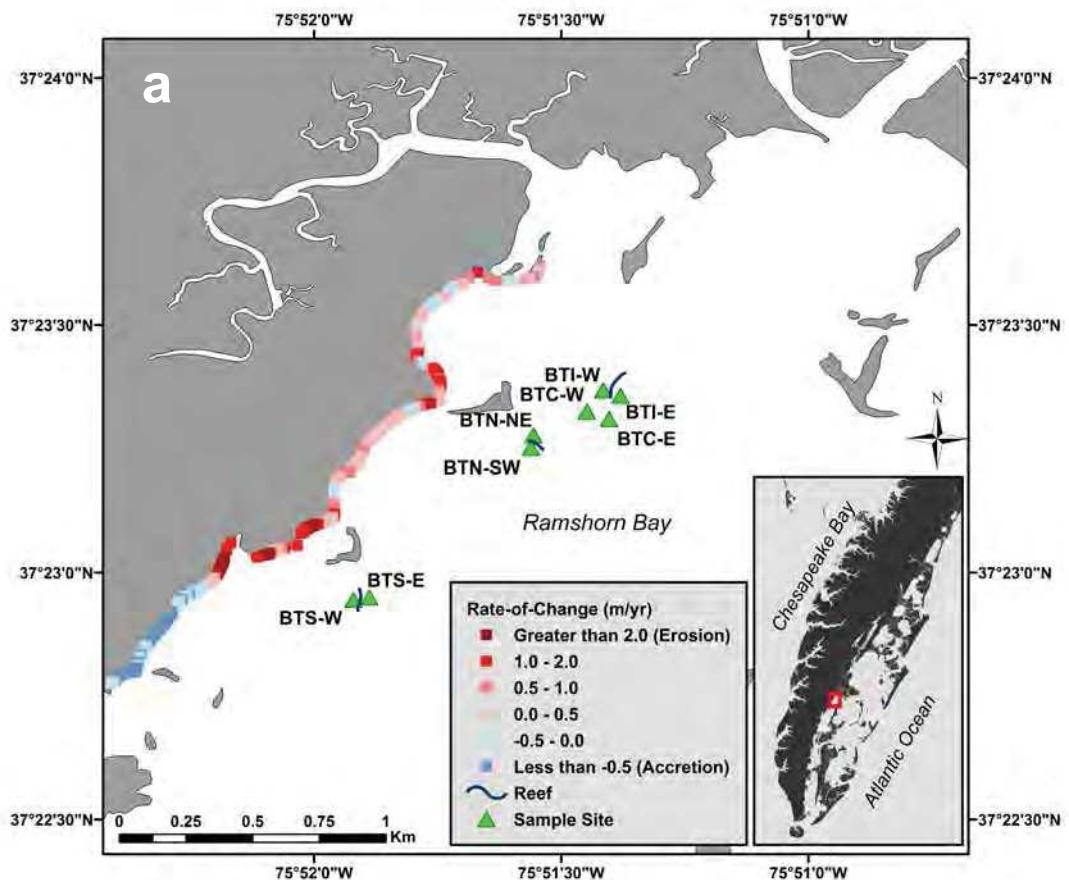
19

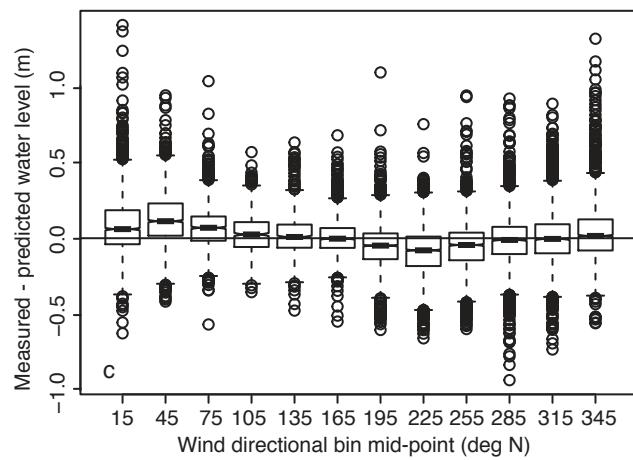
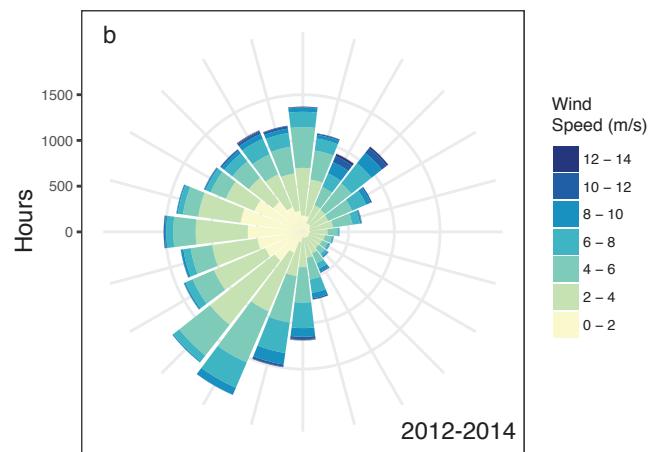
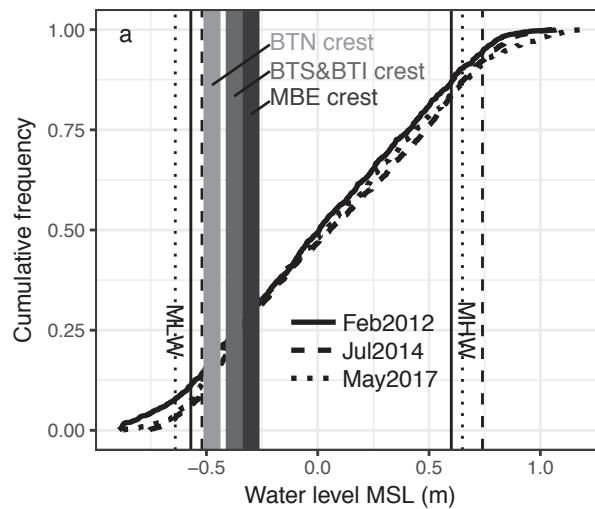
20 Figure 7: a) Significant wave height (as indicated by symbol size; see legend) as a function of
21 wind speed and water depth for the BTS-E wave gauge (Figure 1a). Wind direction (0-90 = NW,
22 90-180 = SE; 180-270 = SW; 270-360 = NW) is indicated by symbol type and color (see legend).
23 b) Difference in significant wave height from the eastern (more exposed) to western (more

1 sheltered) sides of BTS. Symbol size indicates the magnitude of the wave height difference and
2 symbol type and color indicate wind direction. For each range of wind directions, e.g. NE (0-
3 90°), the darker shade of each color is indicative of a positive difference in wave height (larger
4 on the eastern side of the BTS reef) while the lighter shade indicates a negative difference in
5 wave height (waves larger on the western side of BTS).

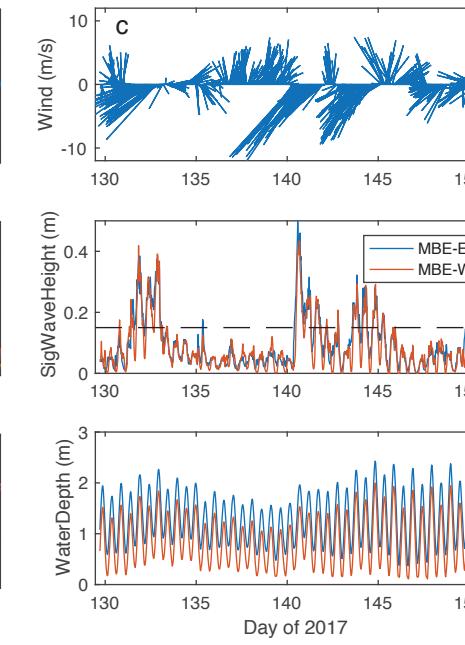
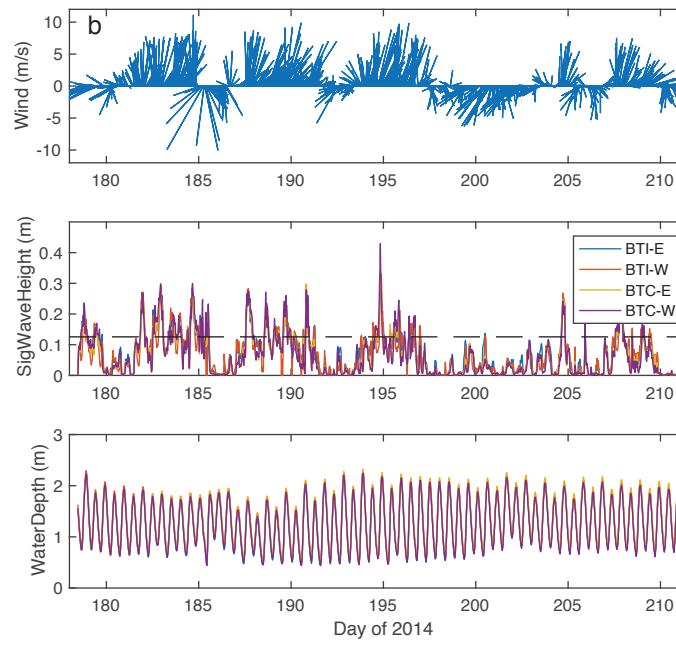
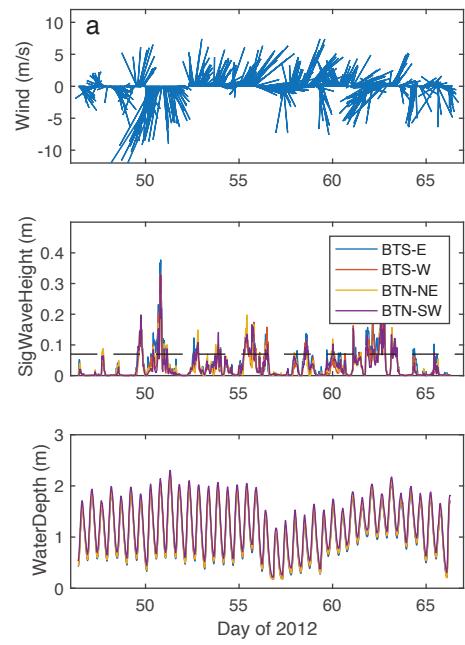
6

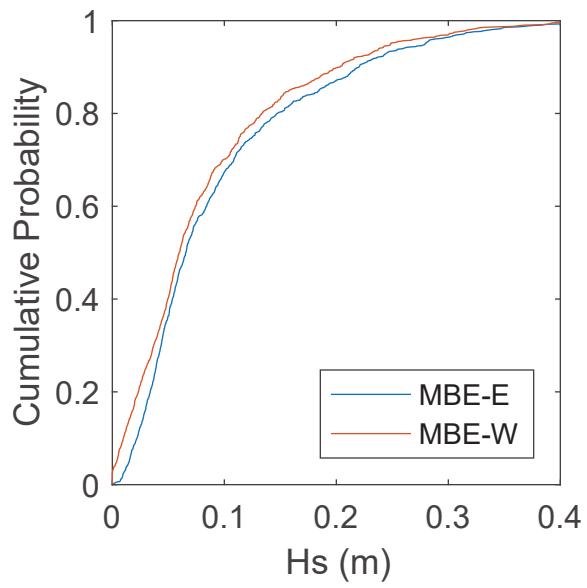
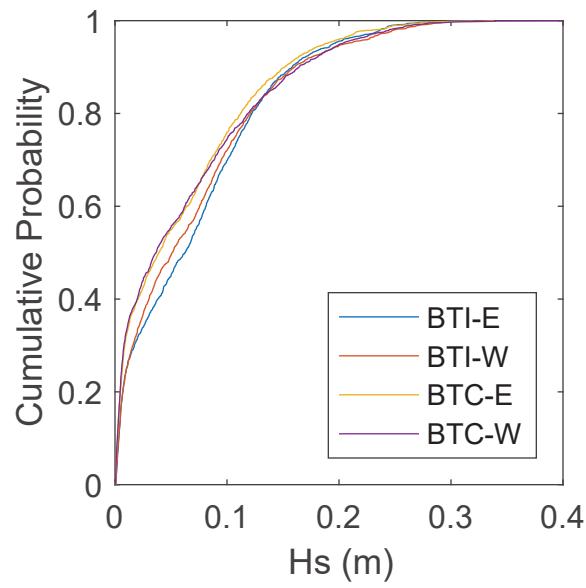
7 Figure 8: Wave spectra examples from sites BTS, BTN, BTI and BTC, by column. The top 3
8 rows show cases of shallow, intermediate and deep-water conditions for times when winds were
9 blowing from the NE. The lower three rows are for shallow, intermediate and deep-water
10 conditions for times when winds were blowing from the SW. In each case a pair of spectra are
11 shown, with the red curve corresponding to the gauge on the more eastern/north-eastern wave
12 gage and the blue curve corresponding to the western/southwestern side. All pairs of wave
13 gauges were 20 m apart.



14




15 Figure 9: Change in significant wave height as a function of water depth during wave events,
16 defined as times when waves were greater than one standard deviation above the mean during
17 each deployment. The event threshold wave height was 0.07 m in February 2012 (a) BTS and b)
18 BTN); 0.13 m in July 2014 (c) BTI and d) BTC); and 0.16 m in May 2017 e) MBE. Notches in
19 the box plots indicate confidence intervals around the mean. Boxes extend from the 25th to 75th
20 percentiles and the central lines show the 5th and 95th percentiles. The dots are conditions that fall
21 outside this range.

22




1 Figure 10: Examples of a) low elevation and b) high elevation marsh edges. a) shows a section of
2 the marsh shoreline just west of Idaho Reef (Site BTI; photo courtesy of Amy Ferguson). b)
3 shows a section of the marsh shoreline on Chimney Pole, a marsh island at the northern border of
4 Hog Island Bay (McLoughlin et al. 2015).

5

