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Abstract— We propose a novel subsurface pipeline mapping
and 3D reconstruction method by fusing ground-penetrating
radar (GPR) scans and camera images. To facilitate the simul-
taneous detection of multiple pipelines, we model the GPR
sensing process and prove hyperbola response for general scan-
ning with nonperpendicular angles. Furthermore, we fuse visual
simultaneous localization and mapping outputs, encoder readings
with GPR scans to classify hyperbolas into different pipeline
groups. We extensively apply the J-linkage method and maximum
likelihood estimation with error analysis to improve algorithm
robustness and accuracy. As a result, we optimally estimate the
radii and locations of all pipelines. We have implemented our
method and tested it in physical experiments with representative
pipeline configurations. Two different kinds of 3-m-long pipes are
used, with radii being 4.62 and 3.02 cm, respectively. The results
show that our method successfully reconstructs all subsurface
pipes. Moreover, the average estimation errors for two orientation
angles of pipelines are 1.73° and 0.73°, respectively. The average
localization error is 4.47 cm.

Note to Practitioners—Automatic and accurate underground
pipeline mapping technology is very important in civil construc-
tion projects. Lack of 3D utility pipeline maps may lead to acci-
dental damage in civil construction and maintenance. Although
ground-penetrating radar (GPR-based pipeline mapping methods
have been studied for several years, these methods require
the perpendicular scanning with respect to the pipe, which is
impossible to guarantee in practice since the orientations of
pipelines are unknown. Furthermore, these traditional methods
can only estimate one pipeline at a time in a survey area and
require prior knowledge of pipe diameter. We propose a robotic
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subsurface pipeline mapping method with a GPR and a camera to
handle difficult factors such as multiple pipes, unknown pipeline
orientation, and unknown pipeline diameters. Hence, we can
perform GPR scanning along any generic linear trajectories.
Our method has been tested in physical experiments with
representative pipeline configurations. The results are sufficiently
accurate, and it proves that our method can be an effective
technology to reconstruct the underground pipelines.

Index Terms— Ground-penetrating radar (GPR) and camera
sensor fusion, hyperbola detection, underground pipeline map-
ping.

I. INTRODUCTION

RECISE 3D maps for underground pipelines, such as
gas, water, and sewage pipes, are important for local
governments, utility companies, and civil engineers. However,
underground pipeline locations in old urban areas are usually
unknown. Even in new urban areas, there are no 3D maps
but rough 2D layout information [1] for subsurface pipelines.
As a result, civil construction projects can easily damage
underground pipes and cause significant loss. A ground-
penetrating radar (GPR) is an important tool for the detection
and localization of underground objects. However, a GPR
does not directly provide a 3D position but convoluted and
noisy radar reflection images which require trained eyes to
manually recognize objects of interest. For pipeline mapping,
the traditional GPR methods [2]-[5] have too many limitations
and constraints; only allow one pipeline in a survey area,
require prior knowledge of pipe diameter or orientation, and
only perform perpendicular scanning with respect to the pipe.
Therefore, the whole process is labor intensive and costly.
To automate the pipeline mapping problem, we propose
a new method to simultaneously map multiple subsurface
pipelines using a GPR and a camera (see Fig. 1). We model the
GPR sensing process and prove/derive hyperbola responses for
general scanning with nonperpendicular angles. This allows us
to develop a new hyperbola detection algorithm for multiple
pipeline detection. Next, we fuse visual simultaneous local-
ization and mapping (VSLAM) outputs and encoder readings
with GPR scans to classify hyperbolas into groups belonged
to different pipelines. We extensively apply the J-linkage
method [6] and the maximum likelihood estimation (MLE)
to improve the algorithm robustness and accuracy. As a
result, we optimally estimate the radii and locations of all
pipelines. We have implemented our method and tested it in
physical experiments. Two different kinds of 3-m-long pipes
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Fig. 1. Illustration of our subsurface pipeline mapping problem. Given a set
of GPR scans and camera images, our algorithm outputs a set of collinear
center axis points and radii of all buried pipelines. The reconstructed 3D points
are represented with different marks according to their residing pipelines.

are used, with radii being 4.62 and 3.02 cm, respectively.
The results show that our method successfully reconstructs
all subsurface pipes. Moreover, the average estimation errors
for two orientation angles of pipelines are 1.73° and 0.73°,
respectively. The average localization error is 4.47 cm.

The rest of the article is organized as follows. We summarize
the related work in Section II before we introduce our pipeline
mapping problem in Section III. We detail our algorithm
design in Section IV. We perform the algorithm computational
complexity analysis in Section V. We test our algorithm
in experiments in Section VI and conclude our article in
Section VII.

II. RELATED WORK

Pipeline mapping is a critical step for assessing the condi-
tion of the buried utility pipelines. There are many existing
efforts focusing on condition assessment [7] in general. The
3D reconstruction for the cylinder pipeline above the ground
has been well studied [8], where laser scanner can be used
to generate a point cloud of pipeline surface. However, laser
scanner cannot be adopted to detect underground pipelines.
Popular approaches for buried pipeline mapping include elec-
tromagnetic, acoustic, and seismic methods. A U.K. project
named Mapping the Underworld [9] focuses on locating,
mapping, and recording buried utility assets by fusing multiple
Sensors.

Among different sensor modalities, GPRs have been widely
used in subsurface target detection [10]-[12]. However, map-
ping the underground targets from GPR signals is nontrivial,
because different from a laser scanner, a GPR cannot provide
3D positions but a reflection image with high degrees of free-
dom (DoFs) for interpretation. Windsor et al. [2] estimate sub-
surface pipe diameters with a given radio propagation velocity.
Al-Nuaimy et al. [3] estimate pipeline depth by assuming zero
pipeline radius and a perpendicular scanning trajectory. The
assumptions limit their methods to cases when the pipeline
is buried very deep and with small radius. To deal with
this limitation, many methods [4], [5] simultaneously estimate
the wave velocity and pipe radii. However, the perpendicular

scanning constraint remains which is difficult to be satisfied
in real-world applications. Recently, Li et al. [13] proposed an
approach to estimate features of the buried pipelines without
the requirement of perpendicular scanning. However, only an
approximate model is proposed, and the approach has not
considered multiple pipeline case.

A GPR generates hyperbola response when perpendicu-
larly scanning over a cylindrical object. Pipeline mapping
is actually the detection and analysis of hyperbolas. The
commonly used hyperbola detection methods include conic
fitting method [14], machine learning-based method [15], [16],
and Hough transform-based method [17]. Most conic fitting
methods can only identify one conic in each image and are
often sensitive to outliers. Although the probabilistic hyperbola
mixture model [18] is proposed to deal with these problems,
the data partition in noisy GPR images before hyperbola fitting
is still problematic. Results from machine learning methods
depend on the quality of manually labeled training sets for
different settings which are difficult to obtain in applications.
Hough transform-based methods need to repeat with different
parameter combinations to search the best hyperbola and are
quite time consuming. Furthermore, it is difficult to specify
a suitable threshold for the number of votes to determine
the number of hyperbolas in the process. To deal with these
problems, our method builds on a new GPR sensing model,
the fusion of vSLAM, encoder, and GPR, and the integration
of J-linkage and MLE. The approach does not require prior
knowledge about the total number of hyperbolas or pipelines.

To map multiple pipelines, the 3D location of the detected
pipelines needs to be georegistered to a spatial referencing
system for further filtering. Combining GPR and GPS is posed
in recent work [13]. However, GPS signals are often chal-
lenged in urban environments. Chen and Cohn [19] propose
a pipeline mapping approach by fusing GPR detection results
with existing utility records. However, the method inherently
depends on both the quality and the availability of utility
records. Our method employs a fixed on-board camera to
localize itself and the GPR based on vSLAM technique [20],
which requires minimal to zero prior knowledge and is less
restricted by environments.

Our group has worked on both surface and subsurface
infrastructure inspection using a robotic sensing suite for
several years [21], [22]. The sensing suite contains a cam-
era, a wheel encoder, and a GPR. Accurate calibration is
the foundation of multiple sensor fusion for our subsurface
inspection task. To fuse the three sensor modalities properly,
we first design a calibration rig, model the GPR imaging
system, introduce a mirror to obtain the joint coverage between
the GPR and the camera, and employ the maximum like-
lihood estimator to estimate the relative pose between the
GPR and the camera [23], [24]. Second, we propose a data
collection scheme using the customized artificial landmarks
to synchronize GPR/encoder data and camera images, and
we also employ pose graph optimization with location dis-
crepancy as penalty functions to perform data fusion [25].
The above-mentioned works lay a foundation for this article.
This article improves our previous conference paper [26] by
removing the assumption about planar ground surface, adding
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Fig. 2. (a) Our sensing suite on a tricycle, (b) experiment setup, and
(c) grid-based scanning pattern contains two parallel groups that are perpen-
dicular to each other.

pulse response extraction, performing error propagation analy-
sis, analyzing the algorithm complexity, and conducting more
field experiments. Compared with the conference version,
the supplementary theoretical contributions mentioned earlier
extend the application scope. Furthermore, in the experiment,
the average localization error is slightly descended (4.47 cm
versus 4.69 cm), and more importantly, more field tests have
validated the robustness of our improved method more con-
vincingly.

IIT. PROBLEM FORMULATION

Fig. 2(a) shows our sensing suite design which mounts a
GPR and a camera on a tricycle. To focus on the horizontal
pipeline mapping, we have the following assumptions.

Assumption 1: All pipelines can be approximated as piece-
wise connected cylinders whose centerlines intersect the hori-
zontal plane with an angle less than 45°, since a GPR cannot
distinguish pipes that are close-to-vertical and most pipeline
segments are horizontal anyway.

Assumption 2: Pipelines are buried in a homogeneous
medium, and the radio wave propagation velocity is priorly
known from calibration.

During scanning, the GPR transmitting antenna emits polar-
ized high-frequency pulses into the soil [see Fig. 3(a)]. When
reaching an object with different electromagnetic proper-
ties compared with its surrounding medium, the pulses are
reflected back to GPR. Then, the GPR estimates the travel-
ing time between the emitted pulses and the echoed pulses
and generates an A-scan [Fig. 3(b)] that records the signal
amplitude versus traveling time at this GPR position. Based
on Assumption 2, the traveling time can be converted into the
traveling distance. While the GPR moves on the ground to
perform scanning, it produces a series of A-scans at different
positions. This ensemble of A-scans forms a B-scan [27]
[Fig. 3(c)]. A collection of B-scans combining with images

Receiver Amplitude
. GPR
Transmitter ®
£
F
target
(@)

Scanning trajectol

Time

hyperbola

(©)

Fig. 3. TIllustration of GPR working principle and coordinate system. (a)—(c)
Ball-shaped object registers itself as a hyperbola in B-scan. (d) Coordinate
systems and important notations. (e) Typical B-scan 2D view. (f) Sample
B-scans 3D view with peaks marked by combining parallel scanning results.

captured by the camera at different scanning positions serve
as inputs. To describe them, we define the following notations.

1) {W}, the 3D world coordinate system with X-Y plane
representing the horizontal ground plane and z-axis
pointing to the upward direction [see Fig. 3(d)]. A 3D
point in {W} is denoted as X" ¢ R3.

2) A’; = {alt =1,...,n4}, the gth A-scan belonging to
the kth B-scan, where ¢ is the traveling time, a; is the
signal amplitude, and n, is the number of readings.

3) B = {Ag|q =1,...,ng}, the kth B-scan consisting of
ni A-scans. Each B-scan can be viewed as a 2D image,
where each A’; € By is a column of pixels. Note that this
2D GPR image is in an Euclidean coordinate because
each pixel position X = [xz,d;]T € R? is in physical
units of meters with x,-axis parallel to the GPR moving
direction, representing the distance traveled, and dj-axis
indicating the distance from GPR to object. Its origin is
at the position of the first A-scan in By [see Fig. 3(d)].

4) Hy = {H;|j = 1,...,n,}, the set of hyperbolas
extracted from By, with each H;,1 < j < n; being
the parameter vector of a hyperbola.

5) Ly, = [rp, (XK1)T; S (X;‘jnp)T]T,
segment with its radius equal to 7, ngj, j=1...,np
representing the jth reconstructed point in {W}.

6) Q= U{L,}, the detected pipeline set.

Our pipeline mapping problem is defined as follows.

the pth pipeline
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Fig. 4. System diagram. Each box index letter corresponds to
Sections IV-B-IV-G.

Definition 1: Given synchronized camera images and GPR
B-scans, extract hyperbola set Hy from each By, obtain Q.

IV. ALGORITHM

Our system diagram is shown in Fig. 4. The system inputs
are the synchronized GPR scans and camera images. We derive
a sensing model which establishes hyperbola-shaped radar
signals when the GPR scans a straight pipeline along a
linear trajectory. The model allows us to extract hyperbolas
from each By. Fused with vSLAM and encoder readings,
the detected hyperbola vertices in all Bj’s are transformed
into {W}. Then, our algorithm classifies hyperbolas into dif-
ferent groups according to their residing pipelines. Finally, for
each pipeline group, we estimate pipe radius and locations.
We begin with the data collection step.

A. Data Collection and GPR Data Rectification

Both the GPR and the camera are fixed on a sensing suite
[see Fig. 2(c)] which moves along a straight line to collect
data if the ground is planar. To guarantee the reconstruction
accuracy, it is necessary to ensure that the intersection angle
between the scanning trajectory and pipeline center lines
projected to the horizontal plane is between 45° and 90°.
Therefore, the scan follows a grid pattern in the horizontal
plane which consists of evenly spaced survey lines in two
parallel groups that are perpendicular to each other for pipeline
mapping [see Fig. 2(c)]. It is obvious that we must have one
group with the intersection angle no less than 45° even we
do not know actual pipe orientation in the horizontal plane.
This group can be easily identified in GPR readings. Hence,
we assume all data are from this group in the rest of this
article, which means all By’s are taken from parallel scans.

If the ground is nonplanar (see Fig. 5), we only need to
ensure that the projections of GPR trajectories to the horizontal
plane are from the two parallel groups. Although nonlinear
in 3D [Fig. 5(a)], these trajectories are still straight lines if
projecting to 2D horizontal space. According to GPR’s work-
ing principle, it only records the traveling time of reflected
waves (traveling time can be converted into distance if signal
velocity is known). Therefore, the reflected curve generated by
a pipeline in B-scan is no longer a hyperbola [Fig. 5(b)] when
GPR travels on the nonplanar ground. Since GPR maintains
the same distance to the ground during scanning, the ground
reflection is still a straight band as indicated by the dark
blue banded region on the top part of Fig. 5(b). To rectify
this distortion, we can process each A-scan by realigning its
Z-values in {W} to an equal planar ground height, which is
done by vertical offsetting A-scans using the ground height

Fig. 5. Illustration of GPR data rectification for nonplanar ground distortion
removal. (a) Declaration of GPR scan when moving on nonplanar ground.
(b) Original B-scan. (c) Rectified B-scan.

from visual SLAM output. Fig. 5(c) shows the rectified B-scan
for Fig. 5(b), where we can see the properly shaped hyperbola
after the rectification.

In the rest of this article, all B-scans mentioned have
their nonplanar ground distortion removed. Without loss of
generality, we only need to focus on scans on a planar surface.
Next, let us model the GPR sensing process in a single scan.

B. GPR Sensing Modeling

According to [4], horizontal cylindrical pipelines are recog-
nized as hyperbolas in GPR scans. We explain it using a simple
case when the GPR scans a pipeline perpendicularly before
extending it to general cases with unknown orientations.

1) Perpendicular Scanning: Fig. 6(a) shows this ideal case.
Let d; be the distance measurement by the GPR at point x;
in By, x, denotes the closest point to the pipeline on the
scanning trajectory along xx-axis, and d, denotes the measured
distance from x, to the pipeline. The geometric relationship
between the extracted hyperbola in By and the pipeline radius
r is governed by the red right triangle formed at location x,
according to [28]

(d; +r)’ = (xi —x,)* + (dy +71)*. e))
We can rewrite (1) as the canonical hyperbola formulation

(di +7)? (i —x,)°
dy+7)?  (dy+1r)?

In fact, the point [x,, d,]T is the hyperbola vertex. However,
in practice, the accurate orientation of pipelines is unknown.
The probability of having a perpendicular scanning is negligi-
ble. A generic linear trajectory (GLT) usually does not have a
known approaching angle to the pipeline centerline. We need a

)
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Fig. 6. Understanding GPR sensing model. (a) Perpendicular scanning. (b) GLT scanning. (c) Virtual pipeline. (d) 2D projection of (c).

sensing model for a GLT. More importantly, we need to know
if the signal shape in the B-scan is still a hyperbola.

2) GLT Sensing Model: Fig. 6(b) shows that a GPR scans
a pipeline along a GLT. Two angles, o and €, are employed to
describe the orientation of a straight pipeline segment, where
o is the angle between the projection of the pipeline centerline
on the X-Y plane of {W} (i.e., ground plane) and the GLT,
and @ is the angle between the pipeline and the GLT. Denote
X; and X, as two 3D points on GLT in {W} and X, is the
closest point to the pipeline. The measured distances from X;
and X, by the GPR are d; and d,, respectively. The following
lemma presents the GPR sensing model when crossing the
pipeline with a GLT.

Lemma 1: When the GPR scans the subsurface pipeline
along a GLT, the resulting signal in a B-scan is the following
hyperbola:

Wt - x)6in0? .
G2 ot ©

where x; and x, denote the x-coordinate values in B; when
the GPR is located at X; and X, respectively.

Proof: Fig. 6(b)—(d) shows the GLT scanning case. Denote
XY as the line segment connecting 3D points X and Y.
We select two 3D points Y, and Y; lying on the center line
of the pipeline, such that X, Y, L Y,Y; and X;Y; L Y,Y;.
Thus

IXoYoll =dy +r
IX;Yill =di +r.

We introduce a virtual pipeline X, Y; which is parallel to
Y, Y; [see Fig. 6(c)]. Then, the angle between X, X; and X, Y ;
is 0, thus [|X; Y| = IX,X; | sin@.

Since X,Y, L1 Y,Y; and Y,Y; || X,Y;, and thus,
X,Y, L X,Y;. In addition, X, Y, L X,X;, and thus, X, Y, is
perpendicular to the plane where X, X; and Y; are lying on.
Therefore, X, Y, L X;Y;. Since X, Y, || Y;Y;, we can obtain
that AX;Y;Y; is a right triangle. Projecting the scanning
scenario into 2D view [see Fig. 6(d)], we have

(di +1)? = (I1Xi =X, ||sin0)> + (d, + )%, (4)

Since both |x; — x,| and || X; — X, | represent the same
GPR traveling distance, we have |x; — x,| = [|X; — X, |
Rewriting (4) in canonical hyperbola format, Lemma 1 is
proven. (]

Lemma 1 shows that the resulting B-scan signals from scan-
ning a pipeline along a GLT are still a hyperbola. Therefore,
we can utilize this knowledge to extract them from noisy
B-scans.

C. Hyperbola Extraction

The raw GPR data must be preprocessed before extract-
ing hyperbolas. The preprocessing involves time-zero correc-
tion, average background subtraction, and low-pass filtering.
According to [29] and [30], the distance between the first
peaks of ground response and object response is the depth
of the object [see the points in Fig. 3(b)]. Thus, to extract the
hyperbola and the subsequent depth of the object, we need
to find the peaks of the two types of response. To find the
peaks accurately, we first extract the pulse responses generated
by the ground and objects in each A’; € By, by fitting
a damped sinusoidal model [31], [32]. For the ith pulse
response, we have

ai = Pie” %" cos(wit + ¢i) + 7i (5)

where a;; is the signal amplitude at traveling time ¢, f; is
the amplitude, w; is the angular frequency, ¢; is the phase, y;
is the offset for the model, and «; is the attenuation constant
defined by material properties.

With the pulse measurements {(t,a,;)|t € I'}, where I'
denotes the index set containing all measurements in the
pulse, we can estimate the pulse responses from ground and
objects in each Ag € By by solving the following optimization
problem:

: . 2
argmin > [l —arilly:
Gi, i, D1, i tel

st ap; = Pie %" cos(@it + §i) + Fi (6)

where hat " indicates the estimators and || - |5 denotes the
Mahalanobis distance.

After obtaining these parameters, we can extract the peaks
and the corresponding traveling times. Since the radio wave
propagation velocity is priorly known according to Assump-
tion 2, we can convert the traveling time into traveling dis-
tance. Define x; = [x;, d;]T be the ith peak position extracted
from object responses in By, with x; being the scanning
distance in By and d; being the signal traveling distance.
Denote My = {x;|i = 1,...,n,} as the set of extracted peak
points. Thus, our hyperbola detection problem is

Definition 2: Given My to Detect Multiple Hyperbolas.
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Extracting hyperbolas from a GPR B-scan is nontrivial
due to multiple solutions and significant noises as shown
in Fig. 3(e) and (f). To find all hyperbolas, we apply the
J-linkage [6] framework to detect them from each GPR B-scan.
The J-linkage approach can simultaneously fit multiple models
to data corrupted by noise and outliers without specifying
the model number. Let us define x;; = [xj,i,dj,i]T be
the ith point lying on the jth hyperbola in By. Specially,
we denote [x;,,d j,U]T as the vertex of the hyperbola Hj;.
We can represent the hyperbola form in Lemma 1 as

Xj,Q;%;i =0 )
where X;; = [x;;,dj,, 117 is the homogeneous coordinate of
Xjis and

(sin )2 0 —x;,(sin 0)?
Q= 0 —1 -r

—)cj,v(siné?)2 —r  (sinf)%x 2 —+—d2 » T 2djor

A generic conic, ax? 4 bxy + ¢y?> +dx + ey + f =0, has
five DoFs. However, there are only four DoFs in our conic
in (7) since the major axis of each hyperbola in B-scan is
vertical which means b = 0. Thus, we can parameterize each
hyperbola as

H; = [x;,,d},,sin0,r]". (8)

Four points lying on the hyperbola are sufficient to compute
a minimal solution of this hyperbola by solving (7).

In the J-linkage process, we first randomly choose M
minimal sample set of four peak points to estimate the initial
hyperbola by solving (7). For each initial hyperbola, if it
satisfies x;, > 0 and d;, > 0, which indicates the vertex of
the hyperbola located in the first quadrant of By, we consider
it as a model hypothesis. Otherwise, we discard it.

For the rest, we follow the standard J-linkage steps which
generate multiple clusters. For each cluster M, if its size is
greater than a threshold Nj, we accept this model hypothesis
and further refine it from all peak points in M ;. We model
Xj,;’s measurement error as a zero mean Gaussian with covari-
ance matrix 2, Iz, where I is a 2 x 2 identity matrix. Stacking
all points in M ;j together, we obtain the following overall
measurement error function

Xj,Q,%;,1
Cn(H)) = : &)
X, QiXjm,
where m; = | M| denotes the total point number in M ;.

The MLE of H; can be obtained by minimizing the Maha-
lanobis distance
-1
H* = argmin C, (H;)" > C,(H;) (10)

H; H.j

where ZH dlag(aj oo e j m; ) is a diagonal matrix.
This nonlmear optimization problem can be solved using
Levenberg—Marquardt (LM) algorithm.

We also analyze the error of the estimated H* using
the error backward propagation method [33] under Gaussian

assumptions. The estimation covariance matrix of ij, denoted
as ». > can be obtained as follows:
J

-1
—1
ZH’f = (JhTZJh)
J Hj

where J, = (ach/aH,)|H =H’ is the Jacobian matrix.

Since H; contains x; , and d; I o we can obtain the hyperbola
vertex frorn H*. Let us define V1 J= [X),0,dj »]T to be the
vertex of the jth hyperbola generated from the pth pipeline in
the image coordinate system of By. Next, we need to classify
and group the extracted hyperbolas in {W} according to its
pipe. This requires fusing with vSLAM and encoder readings.

(1)

D. Sensor Fusion for Coordinate Transformation

We project all hyperbola vertices onto the X—Y plane of
{W}. Define xp j [)cp ],yp ]]T to be the corresponding
position on X—Y plane in {W} where the GPR receives v/ ..
Here we use the superscript v to indicate the vertex. We know

. in By but finding X requires combining vSLAM outputs
and wheel encoder data

We denote the starting and ending points of the scanning
line as x;x =[xy, YS,k]T and X,k = [xex, ye,k]T» respec-
tively, which are measured by the vSLAM algorithm. Note that
they are 2D because all points are in X-Y plane with z = 0.
We do not directly use X, and X, to localize x” . due to
the vSLAM measurement errors. Since the GPR moves along
a group of parallel GLTs according to Section IV-A, we adopt
the parallelism constraint to refine X ; and X, . Denote Xg x
and X, as the estimations of X, and X, x, respectively. Let
us define

T (¢ T s 4T
:[V ’(XS,]) s .,(Xs’n) ]

to be the parameter vector, where v = [z)x,vy]T is 2 x 1
directional vector with ||v|| = 1, denoting the moving direction
of all parallel trajectories, and » is total number of the parallel
trajectories. Define [; to be the length of the kth linear
trajectory, which is obtained from wheel encoder readings.

Thus
Xek = Xk + kv (12)

We model both the covariance matrices of X, x and X, x as
a zero mean Gaussian with covariance matrix 00212, where I

is a 2 x 2 identity matrix. We estimate X;x, k = 1,...,n and
v by minimizing the following cost function:
i ﬁs,] — X, 1
Xsn — X
Co(po) = BT (13)

X1+ 1V — X1

_’A(s,n +Ipv — Xeon |
We obtain the MLE of p, by solving the following opti-
mization problem:

1
pi = argmin C, (p,) "> C, (p) (14)

Po Cy
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where > - = diag(Q 1,5 Dgs Dels s Qo) 18 @
blockwise diagonal matrix and > , and >, denote the
covariance matrices of X;; and X.x, respectively. Here,
we ignore the measurement errors from the wheel encoder
because the wheel encoder is very accurate when the sensing
suite moves on a flat ground. Again, this optimization problem
can be solved by the LM algorithm.

With X, and X obtained, we can obtain each hyper-
bola vertex position x” . in {W} using the wheel encoder.
We already know the ‘wheel encoder increments between
XZ,,- and Xy to be x;,. We also know the wheel encoder
increments between X, and X.x as [Xex — Xkl Thus,
the position of xi;,, j is determined as

X R X R
XZ i= (1 - #) Xs,k + #Xe,k-
’ 1Xe,x — X, 1Xex — Xs k]l

Again, the covariance matrix of the estimated x” . can be
obtained using error propagation methods in [33, Ch. 5].

5)

We also analyze the error of the estimated x; j Since
x; j is a function of [(X;, O, (Xe, T, x; i, 1T, its uncertainty

depends on the noise distribution of [(X;, o, (Xe, T, x; i, L.

Thus, we first compute the covariance matrices of X, and
Xk, denoted as ZX and ZX , respectively. We also denote
the covariance of v as D Accordlng to the error backward
propagation, we can obtain the covariance matrix of p} by

>, = (42l ) (16)
1 . 1 1
where ZCU = dlag(Zs,l, .. ZS o Ze TR Ze,n) and
Jo = (@Cy(Py)/0P0) lp,=p: is the Tacobian matrix, with
oC
Jy = —2
Opy
[ 02x2 1 Do 022 0252 ]
D02 e 000
_ | 022l 022 020 Do
Iy Lo 022 0252
: 02,2 - 022
2t Ox2 02x2 Tax2 ly, 0042
Then, ZX o > ,, and the covariance matrix of xT 5.k v T,

denoted as ZX v can be extracted from Z
From (12), we know ZX depends on the noise distribution
of X« and v. We obtain ZX as

e,k
Zie,k = Aezf{_y’k,VA;r
where the matrix A, is
1 0 L O
Ae = [O 1 0 lki| ’
According to (12), we can also derive the covariance of
(%7 . %, 41" as

a7)

Z’A‘s,k
2

2o

18
2k (1%

Z’A‘s,k aﬁe,k =

Fig. 7. An illustration of pipeline localization under parallel GLTs.
where
_ 1 2 2
Z - Zdlag( xe k + O-XA k lka“ }e k + o-)s k lko-l)y)
with ¢2 062 02 and o2 being the variances of
A *7 s 2 Xe Yeok
Xs.k>Vs koXek and ek, respectlvely, and 0'1,2v being the
variances of 0, and 0,. A
With Zfis,k,ie,k obtained, we have
T
5 T (o AT T 2% X 0
cov([(Xs,x) "> Xeyk) » Xj 0] )= sokoRek 2 (19)
0 oy

where cov(-) indicates the covariance matrix of a random
vector, 0 denotes a 1 x4 zero matrix, and axz, j is the variance of
Xj» which is already obtained in (11). Applying the first-order
approximation of error forward propagation, we obtain the
covariance matrix »_.» of x”

X P
ZX;J' = JXCOV([()A(S,]{)T: (ﬁe,k)T, xj,U]T)J;cr (20)
where Jacobian matrix
a 0
Je = #
O (X k> Xe ks Xj0)
1 — Xjo 0 Xj 0 Xek — Xs k
— des des des (21)
0 1-br g fiv Yek T sk
des des des
where des = ||%e,

E. Hyperbola Grouping

Knowing hyperbola vertices in {W} allow us to classify
hyperbolas from multiple By’s into different groups according
to their residing pipelines. This allows us to simultaneously
detect multiple pipelines. Recall that we perform scanning by
following parallel GLTs (see Fig. 7). Let s;, j = 1,...,n,
represent the parallel GLTs crossing the pth pipeline, and
thus, we have s; | s» | | sn,. Recall that Xp i =
[x pj,yp j]T is 2D point on X-Y plane of {W} when the
GPR receives the jth hyperbola vertex [x;,,d;, 1T from the
pth pipeline, and X[VX. is the jth center axis point on the pth
pipeline, which is the closest axis point to s;. The following
lemma presents the geometric model for center axis point
reconstruction.

Lemma 2: 1f the GPR scans the pth pipeline along a set
of parallel GLTs, s;, and j = 1,...,n),, and produces the
sequence of XZ, It J =1,...,n, where the hyperbola vertices
are perceived, as shown in Fig. 7, then all x* ., j =1,...,n,
are collinear to a line on X-Y plane of {W’}, denoted as 1,,
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and the corresponding closest 3D center pipe axis points to
each scanning GLT s; can be computed as follows:

xV. = [(1 — Ap )Xyt ’lp’fxiz)z,j—l}
psJ —(dj,p +rp)cosfp

where r, denotes the radius of the pth pipeline, f, is the
angle between 1, and the pipeline centerline, and 4, ; =
((dj,p +rp)sin :BP/”X;J' - X;’j,1 -

Proof: According to the working principle of GPR, for
each s;, the hyperbola vertex is generated by the reflection of
the pipeline surface point which is closest to s;. Thus, with
dj, known in each s;, all possible reflection points of the
pipeline constitutes a hemisphere centered at x? . with radius
equal to dj,, as shown in Fig. 7. The pipeliné is tangential

with all hemispheres.
Denote Xll’, = [(xl[’, j)T, as the 3D coordinate of Xp i

and XY as the line segment connecting 3D points X and Y.
For each s;, we have

(22)

v w .
Xp,jXp,j Lsj

and

Xy XW J_XW xXWw

pnp*
S1 || $2 || T
. w
X XYL X

pinp Pnp

- all X;]XWJ,] =1,...
- all xp,j,] =1,...
With the line denoted as 1, it is clear that 1, and XZIXK%
are coplanar and intersect to each other. Furthermore, due to
all s;,j =1,...,n, are on the horizontal plane, the plane
determined by X ST xW e and X“ is a vertical plane. Inside
this vertical plane, there exists a Vertlcal line passing X" 0 and

,np are coplanar.
,np are collinear.

intersecting 1, at point XIJ; j (see Fig. 7).

Connecting line segment XW Xf; jowe have
W vyl v v
Xp,jXp,j L X Xp j—1

Using trigonometry, we have

IX0 ;=X | = (@jo +rp)sin B
Xt = (1 - M)

)
X, ; =, i1l
(djv—l—rp)smﬁpX

||X pj 1“ Pl

Since X;; j and X;V have the same X and Y coordinates,
replacing the third element of Xj, ; Wwith —(dj,»p +rp)cos fp,
Lemma 2 is proven. (]

Lemma 2 implies that we can simultaneously detect mul-
tiple pipes by grouping the hyperbolas. It can be done by
fitting multiple lines from the hyperbola vertex projection
points. Again the J-linkage framework is applied. Define
x? . = [x? T y b , 11T to be the homogeneous form of x”

p.J
We denote 1, as the 2D line projected from the pth plpehne

v
XPJ

on X-Y plane of {W}. Any i; j generated from pth pipeline
satisfies the following equation:

& N, =0. (23)

A minimal solution requires two points. The rest follows the
standard J-Linkage approach. After classifying the hyperbolas
into different groups where all hyperbolas in the same group
are generated from the same pipeline, we are ready to recon-
struct pipelines with the grouped hyperbolas.

F. Pipeline Radius Refinement

Hyperbolas in the same group belong to the same pipeline
and share the same radius. We can use this to refine the
estimation of radius. Denote r, j,j = 1,...,n, as the
estimated radius of the pth pipeline using the jth hyperbola
by (10), with estimation variance o2. Define r p to be the radius
of the pth pipeline. To estimate r;, optimally by combining all
rp,;j’s, We define the following error function:

T'p = 7Tp,1
Cr(rp) =

'p —Tp,ny,

(24)

The MLE of r, can be obtained by solving the following
optimization problem:

= arg min Cr(rp) ZCr(rp) (25)

I'p

where >, p = diag(o'1 sy anp) is a diagonal matrix.

G. Pipeline Center Axis Point Reconstruction

The final step is to estimate points XW, on the pipe center
axis. Lemma 2 shows that we can obtam them from Xp I 1,
and f3,. We use the geometric relationship to obtain them. Let
us define the parameter vector to be estimated as

p=[X )" (X, )N ) 5]

where )A(; B Jj = 1,...,n, denotes the estimation of X; i
Recall that XZ i = [(XZ j)T,O]T. Then, we estimate p by
minimizing the following cost function:

O 0
Xp,l _Xp,l

X5 = X5,
(%),
Cp(p) = : . (26)
(%5.,) "1

”XZ,Z - XZ,] ” Sinﬂp — (d2,y —d1,p)

5\(;:1 ” Sinﬂp - (dnp,v - dl,v)_

The MLE of p can be obtained by solving the following
problem:

X

P"p_

—1
p* = argminC,(p)">.C,(p) 27)
P P
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Algorithm 1: Pipeline Mapping and 3D Reconstruction

input : a set of camera images and B,k =1,...,n;
output: Q
1 Extract Pulse responses from each A-scan; O(npng)
2 Detect Hyperbolas; O(npnp)
3 Localize X, and X, for each scanning line; O(f(n;))

4 Coordinate transform for each hyperbola vertex;  O(np)
5 Group hyperbolas; o(1)
6 Estimate pipeline radius; o(1)
7 Reconstruct pipeline center axis points; o(l)
8 return Q; o(l)

where >, = diag(>_y» R
P

s, ) o1

va and Z~1} i

Xp respectlvely, which can be directly obtained accordlng

s ZX%,np s j’(z};’l)a ceey
03 ny ) is a blockwise diagonal matrix.

are the covariance matrices of X“ and

to ~as
I’:./
> 0
v = PSS - 28
pr,j pr,j |: Op / 0 ( )
and /I(Zm ) denotes the maximum eigenvalue of >"; w .02 d g

is the estlmatlon variance of (d;, —di ). Let us denote ad
as the estimation variance of d; ,, which can be easily derlved
2 2
from (11). Then, we have o =04, +o d1 %
With X
on Lemma 2

., 15, and ), obtained, we can compute XW based

V. ALGORITHM ANALYSIS

We summarize the proposed subsurface pipeline mapping
and 3D reconstruction method in Algorithm 1 to facilitate our
analysis. Let the total amount of B-scans be n,. We suppose
there are n, A-scans in each B-scan on average. Then,
extracting pulse responses can be done in O(npn,) time.
Suppose on average we extract n, pulse responses and ny
hyperbolas in each B-scan, then detecting hyperbolas can
be done in O(npn,) time. Obviously, n, > n, since we
detect both ground pulse response and object pulse response
in each A-scan. The value of n; depends on the total number
of pipelines. Thus, n; is usually small and can be con-
sidered as constant. Localizing X, and X, involves the
process of Oriented FAST and Rotated BRIEF (ORB)-SLAM,
whose time complexity depends on landmarks in the environ-
ment. We define the total number of landmarks involved in
ORB-SLAM is n;. Then, the time complexity of ORB-SLAM
process is O(f(n;)), where f(-) denotes a function of n;.
Then, localizing the endpoints for all scanning lines can be
done in O(f(n;)) time. There are npn; hyperbola vertices in
total. Since we consider nj, as constant, coordinate transform
takes O(np) time, and grouping hyperbolas takes O(1) time.
The time complexities of both estimating pipeline radii and
reconstructing pipeline center axis points are O(1). Thus,
the computational complexity of our proposed pipeline map-
ping algorithm is max(O (npnp), O(f(nr))).

artificial

Fig. 8. Experiment setup for hyperbola model verification.

Theorem 1: The computational complexity of the pro-
posed pipeline mapping and 3D reconstruction algorithm is
max (0 (npnp), O(f (n1))).

VI. EXPERIMENTS

We have implemented our algorithm using MATLAB under
a PC. We use GSSI SIR-3000 GPR with 1.6 GHz anten-
nas, and the parameters are given as follows: the horizontal
sample rate for the wheel encoder is 390 pulses per meter,
the two-way travel time of the radar signal is 8 ns, and the
sample rate for the GPR is 1024 sample/scan. Each B-scan
consists of 1643 A-scans on average. The camera used in
the system is a 10-MP industry camera with model number
DS-CFMT1000-H. The sensing suite is shown in Fig. 2(a).

We conduct two physical experiments—hyperbola model
verification and field test for pipeline mapping. We begin with
the verification of our proposed generic hyperbola model.

A. Hyperbola Model Verification

Since the generic hyperbola model proposed in Lemma 1 is
the foundation of the following pipeline mapping, we verify
it first. As shown in Fig. 8, we design an artificial planar
bridge as the survey area under which an artificial pipeline
with known parameters is placed. The bridge allows us to
freely adjust the pipeline orientations underneath the bridge
to generate different hyperbolas. We force the GPR to move
along a fixed rail track with mechanical stops to guarantee
each GPR scan repeating exactly the same trajectory. We can
extract a hyperbola, denoted as y = h(x), from each GPR
scan. We also can derive a hyperbola equation, denoted as
y = fz(x), according to Lemma 1 by measuring the pipeline
orientation. For comparison purpose, we define y = g(x) be
the hyperbola derived using the model in (2) where GPR scans
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Fig. 9. Experiment results for hyperbola model verification. The marker

position is the average value. The vertical bars correspond to [—o, o] with ¢
as the standard deviation.

the pipeline perpendicularly. Define x and X are the start and
end points of scanning, respectively. To evaluate the similarity
between the extracted curve and the derived one, for each
sample point x € [x, x], we define two error functions ey, (x)
and e, (x) to measure the difference between the extracted
hyperbola with the derived model using Lemma 1 and
the conventional model described in (2), respectively. More
specifically

en(x) = h(x) — fl(x)
eg(x) = h(x) — g(x).

We evenly select 50 sample points from x to X and compute
e (x) and eg(x) for each sample point x € [x, X]. It is worth
noting that the accurate GPR wave transmitting velocity is
unknown when deriving the hyperbola equation according to
Lemma 1 and the conventional model described in (2). Without
loss of reasonableness, here, we adjust the velocity to find the
best one which leads to the minimal average value of ep(x)
and e, (x).

The statistical results for different pipeline orientations are
shown in Fig. 9, where we can see that the average value
of e (x) at each orientation is very small and much smaller
than the average value of e,(x). We did not give the results
when y < 40° because the accuracy of extracted hyperbola
decreases greatly while the angle between pipeline with scan-
ning direction becomes smaller. Furthermore, since we design
our scanning trajectories as a grid with two orthogonal direc-
tions, at least the angle between pipeline with one scanning
direction is no smaller than 45°. The average values of e (x)
are not zero due to the following factors: measurement errors
in pipeline orientation and radius, and errors in hyperbola
detection. However, the fact that the average value of ¢, (x) is
close to 0 and smaller than e, (x) at each orientation validates
that the model in Lemma 1 is correct.

(29)

B. Field Test for Pipeline Mapping

Since it is difficult to obtain the ground truth of the locations
and sizes of the buried pipelines, we build a testbed platform so
that we can place polyvinyl chloride (PVC) pipes underneath.
The platform is a raised square artificial floor with a side

TABLE I
ALL PIPELINE ORIENTATION ESTIMATION ERRORS (°)

No. pipe 1 pipe 2 pipe 3 pipe 4
Eq €3 €Eq €g Eq € € €g
1 0.58 | 0.58 — — — — — —
2 0.85 | 0.27 — — — — — —
3 0.51 | 3.56 — — — — — —
4 0.15 | 3.17 — — — — — —
5 0.01 | 0.39 | 1.40 | 0.44 — — — —
6 1.22 | 0.07 | 047 | 020 | 0.29 | 041 | 0.28 | 0.22
7 0.86 | 0.21 | 6.23 | 0.15 — — — —
8 426 | 1.12 | 627 | 1.52 | 462 | 0.15 — —
9 041 | 029 | 047 | 0.01 | 0.31 | 0.40 — —
10 1.05 | 0.13 | 1.51 | 031 | 1.96 | 044 | 142 | 0.44
11 0.14 | 0.69 — — — — — —
12 1.12 | 0.06 — — — — — —
13 .11 | 1.11 — — — — — —
14 1.01 | 0.24 — — — — — —
15 2.59 | 0.19 | 0.09 0 — — — —
16 | 2.00 | 022 | 1.16 | 0.01 | 2.28 | 0.01 | 2.84 | 0.01
17 1.02 | 1.64 | 2.02 | 1.73 — — — —
18 | 0.77 | 2.13 | 0.97 | 2.06 — — — —
19 | 215 | 021 | 2.89 | 0.19 | 2.14 | 2.08 — —
20 1.69 | 042 | 231 | 0.17 | 1.71 | 2.51 | 094 | 2.58
21 1.86 | 1.86 | 3.14 | 0.60 | 2.12 | 0.83 — —
22 | 2.02 | 0.82 — — — — — —
23 | 046 | 0.06 — — — — — —
24 | 2.82 | 044 — — — — — —
25 124 | 025 | 1.77 | 0.05 — — — —
26 | 3.39 | 1.57 — — — — — —
27 228 | 1.86 — — — — — —
28 1.70 | 0.73 — — — — — —
29 | 2.65 | 030 | 299 | 0.13 — — — —
30 1.32 | 0.15 | 2.51 | 0.18 — — — —

length of 5.5 m and a height of 0.9 m using wooden boards
[see Fig. 2(b)]. To emulate the reflection signals from
metal pipes, we wrap each PVC pipe with aluminum foil.
Before GPR scanning, we first create a global map using
ORB-SLAM [20] that covers the entire field, as shown
in Fig. 2(c). The ground truth is manually measured using
a tape measure with 1.59 mm accuracy.

In each setup, we change the PVC pipe number and con-
figurations. We have finished all the 11 sets of different pipe
configurations. The pipe configurations and the corresponding
pictures are shown in Fig. 10. These 11 different configurations
include most cases of real-utility pipeline configurations—
one pipe with different orientations [Fig. 10(a)—(d)], multiple
pipes with different radius [Fig. 10(e)-(k)], pipes in parallel
[Fig. 10(e)—(h)] or intersect to each other [Fig. 10(1)—(k)], and
create occlusion due to close proximity [Fig. 10(g)]. Two types
of pipes are used in our experiments, with radii being 4.62
and 3.02 cm, respectively. In each setup, we move the sensing
suite along parallel GLTs in the grid to collect the camera and
GPR data following the synchronization method in [25]. Each
GLT generates a B-scan and 98 camera images on average.
In each setup, we have at least nine B-scans/GLTs. We have
finished 30 experimental trials in all with these 11 different
pipe configurations.

In our experiments, all pipelines are successfully detected.
Fig. 11 presents a sample output for hyperbola extraction,
where four hyperbolas are successfully detected from a
noisy B-scan. As for mapping quality, we first examine the
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(g) (h)

(c) Extracted hyperbolas

) B-scan with peaks

(a) Original B-scan

Fig. 11.  Sample output for hyperbola extraction.

orientation of the detected pipelines. As shown in Fig. 7,
we adopt two angles a, and f, to describe pipe orientations,
where @, is the angle between 1, and the x-axis of {W}.
We define e, and ep to be the estimation errors of o, and
Bp, respectively. The values of e, and ey for each pipe are
presented in Table I. The average values of e, and es are
1.73° and 0.73°, respectively. The maximum value of these
two angle errors is 6.27° and 3.56°, respectively. These small
errors mean that the pipeline orientation estimation accuracy is
satisfying.

Next, we examine the quality of the reconstructed center
axis point XW where we compute the Euclidean distance from
XW to the ground -truth value of pipeline’s centerline, denoted
as error ex. There are totally 58 pipes in our 30 experimental
trials. We number them from 1 to 58 following the order
of experiments. Fig. 12(a) presents the statistical results of
ey for each pipe, where the marker position is the average
value, and the vertical bars correspond to [—a, o] with o
as the standard deviation. The overall average localization
error is 4.47 cm. Our pipeline localization algorithm is
successful.

We define the metric e, = (|F —F|/7) to evaluate the
pipeline radius estimation results, where 7 and 7 are the radius
estimation result and the corresponding ground-truth value,
respectively, and | - | denotes the absolute value operator.

(k)
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Fig. 12.  Pipeline reconstruction results. (a) ey statistical error. (b) Radius
estimation relative error.

Fig. 12(b) presents the values of e, for the 58 pipelines. The
average value of e, is 32.6%. This is expected because pipes
used in our experiment are relatively thin in diameters. The
localization error of 4.47 cm is quite significant in comparison
to pipe diameters. The estimation errors are due to many
factors, such as GPR accuracy limitation, hyperbola detection
errors, the calibration error of GPR wave velocity, and the
GPR scan localization errors. However, in most practical
applications, the radii of pipelines are either prior known or
conformal to typical standard sizes. As long as the result can
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assist in finding the standard size, it is sufficiently accurate
and acceptable.

VII. CONCLUSION AND FUTURE WORK

We reported a novel subsurface pipeline mapping method
by fusing GPR scans and camera images. The camera images
and encoder readings were used to provide the global position
for each GPR scan so that our algorithm can simultaneously
map multiple lines without assuming perpendicular scanning.
We derived a GPR sensing model that proves hyperbola formu-
lation under GLTs. Then, we developed a multiple hyperbola
extraction algorithm under the J-linkage framework to detect
and classify the hyperbolas generated from multiple pipelines.
Finally, we optimally estimated the orientations, radii, and
locations of all pipelines by analyzing the extracted hyperbo-
las. We tested our method in 30 groups of physical experiments
with 11 different representative pipeline configurations. The
results showed that our method successfully reconstructed all
subsurface pipes.

In the future, we will conduct more physical experiments in
various scenarios. We also plan to relax the constraint further
that requires the GPR to move linearly on flat ground by
developing in-depth sensor fusion and GPR signal processing
methods. The developments will significantly increase sys-
tem deployment flexibility and applicability. We will develop
efficient searching algorithms to reduce scanning time and
trajectory length through better motion planning for searching
pipelines.
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