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Abstract— We propose a novel subsurface pipeline mapping
and 3D reconstruction method by fusing ground-penetrating
radar (GPR) scans and camera images. To facilitate the simul-
taneous detection of multiple pipelines, we model the GPR
sensing process and prove hyperbola response for general scan-
ning with nonperpendicular angles. Furthermore, we fuse visual
simultaneous localization and mapping outputs, encoder readings
with GPR scans to classify hyperbolas into different pipeline
groups. We extensively apply the J-linkage method and maximum
likelihood estimation with error analysis to improve algorithm
robustness and accuracy. As a result, we optimally estimate the
radii and locations of all pipelines. We have implemented our
method and tested it in physical experiments with representative
pipeline configurations. Two different kinds of 3-m-long pipes are
used, with radii being 4.62 and 3.02 cm, respectively. The results
show that our method successfully reconstructs all subsurface
pipes. Moreover, the average estimation errors for two orientation
angles of pipelines are 1.73◦ and 0.73◦, respectively. The average
localization error is 4.47 cm.

Note to Practitioners—Automatic and accurate underground
pipeline mapping technology is very important in civil construc-
tion projects. Lack of 3D utility pipeline maps may lead to acci-
dental damage in civil construction and maintenance. Although
ground-penetrating radar (GPR-based pipeline mapping methods
have been studied for several years, these methods require
the perpendicular scanning with respect to the pipe, which is
impossible to guarantee in practice since the orientations of
pipelines are unknown. Furthermore, these traditional methods
can only estimate one pipeline at a time in a survey area and
require prior knowledge of pipe diameter. We propose a robotic
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subsurface pipeline mapping method with a GPR and a camera to
handle difficult factors such as multiple pipes, unknown pipeline
orientation, and unknown pipeline diameters. Hence, we can
perform GPR scanning along any generic linear trajectories.
Our method has been tested in physical experiments with
representative pipeline configurations. The results are sufficiently
accurate, and it proves that our method can be an effective
technology to reconstruct the underground pipelines.

Index Terms— Ground-penetrating radar (GPR) and camera
sensor fusion, hyperbola detection, underground pipeline map-
ping.

I. INTRODUCTION

PRECISE 3D maps for underground pipelines, such as

gas, water, and sewage pipes, are important for local

governments, utility companies, and civil engineers. However,

underground pipeline locations in old urban areas are usually

unknown. Even in new urban areas, there are no 3D maps

but rough 2D layout information [1] for subsurface pipelines.

As a result, civil construction projects can easily damage

underground pipes and cause significant loss. A ground-

penetrating radar (GPR) is an important tool for the detection

and localization of underground objects. However, a GPR

does not directly provide a 3D position but convoluted and

noisy radar reflection images which require trained eyes to

manually recognize objects of interest. For pipeline mapping,

the traditional GPR methods [2]–[5] have too many limitations

and constraints; only allow one pipeline in a survey area,

require prior knowledge of pipe diameter or orientation, and

only perform perpendicular scanning with respect to the pipe.

Therefore, the whole process is labor intensive and costly.

To automate the pipeline mapping problem, we propose

a new method to simultaneously map multiple subsurface

pipelines using a GPR and a camera (see Fig. 1). We model the

GPR sensing process and prove/derive hyperbola responses for

general scanning with nonperpendicular angles. This allows us

to develop a new hyperbola detection algorithm for multiple

pipeline detection. Next, we fuse visual simultaneous local-

ization and mapping (vSLAM) outputs and encoder readings

with GPR scans to classify hyperbolas into groups belonged

to different pipelines. We extensively apply the J-linkage

method [6] and the maximum likelihood estimation (MLE)

to improve the algorithm robustness and accuracy. As a

result, we optimally estimate the radii and locations of all

pipelines. We have implemented our method and tested it in

physical experiments. Two different kinds of 3-m-long pipes
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Fig. 1. Illustration of our subsurface pipeline mapping problem. Given a set
of GPR scans and camera images, our algorithm outputs a set of collinear
center axis points and radii of all buried pipelines. The reconstructed 3D points
are represented with different marks according to their residing pipelines.

are used, with radii being 4.62 and 3.02 cm, respectively.

The results show that our method successfully reconstructs

all subsurface pipes. Moreover, the average estimation errors

for two orientation angles of pipelines are 1.73◦ and 0.73◦,

respectively. The average localization error is 4.47 cm.

The rest of the article is organized as follows. We summarize

the related work in Section II before we introduce our pipeline

mapping problem in Section III. We detail our algorithm

design in Section IV. We perform the algorithm computational

complexity analysis in Section V. We test our algorithm

in experiments in Section VI and conclude our article in

Section VII.

II. RELATED WORK

Pipeline mapping is a critical step for assessing the condi-

tion of the buried utility pipelines. There are many existing

efforts focusing on condition assessment [7] in general. The

3D reconstruction for the cylinder pipeline above the ground

has been well studied [8], where laser scanner can be used

to generate a point cloud of pipeline surface. However, laser

scanner cannot be adopted to detect underground pipelines.

Popular approaches for buried pipeline mapping include elec-

tromagnetic, acoustic, and seismic methods. A U.K. project

named Mapping the Underworld [9] focuses on locating,

mapping, and recording buried utility assets by fusing multiple

sensors.

Among different sensor modalities, GPRs have been widely

used in subsurface target detection [10]–[12]. However, map-

ping the underground targets from GPR signals is nontrivial,

because different from a laser scanner, a GPR cannot provide

3D positions but a reflection image with high degrees of free-

dom (DoFs) for interpretation. Windsor et al. [2] estimate sub-

surface pipe diameters with a given radio propagation velocity.

Al-Nuaimy et al. [3] estimate pipeline depth by assuming zero

pipeline radius and a perpendicular scanning trajectory. The

assumptions limit their methods to cases when the pipeline

is buried very deep and with small radius. To deal with

this limitation, many methods [4], [5] simultaneously estimate

the wave velocity and pipe radii. However, the perpendicular

scanning constraint remains which is difficult to be satisfied

in real-world applications. Recently, Li et al. [13] proposed an

approach to estimate features of the buried pipelines without

the requirement of perpendicular scanning. However, only an

approximate model is proposed, and the approach has not

considered multiple pipeline case.

A GPR generates hyperbola response when perpendicu-

larly scanning over a cylindrical object. Pipeline mapping

is actually the detection and analysis of hyperbolas. The

commonly used hyperbola detection methods include conic

fitting method [14], machine learning-based method [15], [16],

and Hough transform-based method [17]. Most conic fitting

methods can only identify one conic in each image and are

often sensitive to outliers. Although the probabilistic hyperbola

mixture model [18] is proposed to deal with these problems,

the data partition in noisy GPR images before hyperbola fitting

is still problematic. Results from machine learning methods

depend on the quality of manually labeled training sets for

different settings which are difficult to obtain in applications.

Hough transform-based methods need to repeat with different

parameter combinations to search the best hyperbola and are

quite time consuming. Furthermore, it is difficult to specify

a suitable threshold for the number of votes to determine

the number of hyperbolas in the process. To deal with these

problems, our method builds on a new GPR sensing model,

the fusion of vSLAM, encoder, and GPR, and the integration

of J-linkage and MLE. The approach does not require prior

knowledge about the total number of hyperbolas or pipelines.

To map multiple pipelines, the 3D location of the detected

pipelines needs to be georegistered to a spatial referencing

system for further filtering. Combining GPR and GPS is posed

in recent work [13]. However, GPS signals are often chal-

lenged in urban environments. Chen and Cohn [19] propose

a pipeline mapping approach by fusing GPR detection results

with existing utility records. However, the method inherently

depends on both the quality and the availability of utility

records. Our method employs a fixed on-board camera to

localize itself and the GPR based on vSLAM technique [20],

which requires minimal to zero prior knowledge and is less

restricted by environments.

Our group has worked on both surface and subsurface

infrastructure inspection using a robotic sensing suite for

several years [21], [22]. The sensing suite contains a cam-

era, a wheel encoder, and a GPR. Accurate calibration is

the foundation of multiple sensor fusion for our subsurface

inspection task. To fuse the three sensor modalities properly,

we first design a calibration rig, model the GPR imaging

system, introduce a mirror to obtain the joint coverage between

the GPR and the camera, and employ the maximum like-

lihood estimator to estimate the relative pose between the

GPR and the camera [23], [24]. Second, we propose a data

collection scheme using the customized artificial landmarks

to synchronize GPR/encoder data and camera images, and

we also employ pose graph optimization with location dis-

crepancy as penalty functions to perform data fusion [25].

The above-mentioned works lay a foundation for this article.

This article improves our previous conference paper [26] by

removing the assumption about planar ground surface, adding
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Fig. 2. (a) Our sensing suite on a tricycle, (b) experiment setup, and
(c) grid-based scanning pattern contains two parallel groups that are perpen-
dicular to each other.

pulse response extraction, performing error propagation analy-

sis, analyzing the algorithm complexity, and conducting more

field experiments. Compared with the conference version,

the supplementary theoretical contributions mentioned earlier

extend the application scope. Furthermore, in the experiment,

the average localization error is slightly descended (4.47 cm

versus 4.69 cm), and more importantly, more field tests have

validated the robustness of our improved method more con-

vincingly.

III. PROBLEM FORMULATION

Fig. 2(a) shows our sensing suite design which mounts a

GPR and a camera on a tricycle. To focus on the horizontal

pipeline mapping, we have the following assumptions.

Assumption 1: All pipelines can be approximated as piece-

wise connected cylinders whose centerlines intersect the hori-

zontal plane with an angle less than 45◦, since a GPR cannot

distinguish pipes that are close-to-vertical and most pipeline

segments are horizontal anyway.

Assumption 2: Pipelines are buried in a homogeneous

medium, and the radio wave propagation velocity is priorly

known from calibration.

During scanning, the GPR transmitting antenna emits polar-

ized high-frequency pulses into the soil [see Fig. 3(a)]. When

reaching an object with different electromagnetic proper-

ties compared with its surrounding medium, the pulses are

reflected back to GPR. Then, the GPR estimates the travel-

ing time between the emitted pulses and the echoed pulses

and generates an A-scan [Fig. 3(b)] that records the signal

amplitude versus traveling time at this GPR position. Based

on Assumption 2, the traveling time can be converted into the

traveling distance. While the GPR moves on the ground to

perform scanning, it produces a series of A-scans at different

positions. This ensemble of A-scans forms a B-scan [27]

[Fig. 3(c)]. A collection of B-scans combining with images

Fig. 3. Illustration of GPR working principle and coordinate system. (a)–(c)
Ball-shaped object registers itself as a hyperbola in B-scan. (d) Coordinate
systems and important notations. (e) Typical B-scan 2D view. (f) Sample
B-scans 3D view with peaks marked by combining parallel scanning results.

captured by the camera at different scanning positions serve

as inputs. To describe them, we define the following notations.

1) {W }, the 3D world coordinate system with X–Y plane

representing the horizontal ground plane and z-axis

pointing to the upward direction [see Fig. 3(d)]. A 3D

point in {W } is denoted as XW ∈ R
3.

2) Ak
q = {at |t = 1, . . . , nq }, the qth A-scan belonging to

the kth B-scan, where t is the traveling time, at is the

signal amplitude, and nq is the number of readings.

3) Bk = {Ak
q |q = 1, . . . , nk}, the kth B-scan consisting of

nk A-scans. Each B-scan can be viewed as a 2D image,

where each Ak
q ∈ Bk is a column of pixels. Note that this

2D GPR image is in an Euclidean coordinate because

each pixel position x = [xk, dk]
T ∈ R

2 is in physical

units of meters with xk-axis parallel to the GPR moving

direction, representing the distance traveled, and dk-axis

indicating the distance from GPR to object. Its origin is

at the position of the first A-scan in Bk [see Fig. 3(d)].

4) Hk = {H j | j = 1, . . . , nh}, the set of hyperbolas

extracted from Bk , with each H j , 1 ≤ j ≤ nh being

the parameter vector of a hyperbola.

5) Lp = [rp, (X
W
p,1)

T, . . . , (XW
p,n p

)T]T, the pth pipeline

segment with its radius equal to rp , XW
p, j , j = 1, . . . , n p

representing the j th reconstructed point in {W }.

6) � = ∪{Lp}, the detected pipeline set.

Our pipeline mapping problem is defined as follows.
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Fig. 4. System diagram. Each box index letter corresponds to
Sections IV-B–IV-G.

Definition 1: Given synchronized camera images and GPR

B-scans, extract hyperbola set Hk from each Bk , obtain �.

IV. ALGORITHM

Our system diagram is shown in Fig. 4. The system inputs

are the synchronized GPR scans and camera images. We derive

a sensing model which establishes hyperbola-shaped radar

signals when the GPR scans a straight pipeline along a

linear trajectory. The model allows us to extract hyperbolas

from each Bk . Fused with vSLAM and encoder readings,

the detected hyperbola vertices in all Bk’s are transformed

into {W }. Then, our algorithm classifies hyperbolas into dif-

ferent groups according to their residing pipelines. Finally, for

each pipeline group, we estimate pipe radius and locations.

We begin with the data collection step.

A. Data Collection and GPR Data Rectification

Both the GPR and the camera are fixed on a sensing suite

[see Fig. 2(c)] which moves along a straight line to collect

data if the ground is planar. To guarantee the reconstruction

accuracy, it is necessary to ensure that the intersection angle

between the scanning trajectory and pipeline center lines

projected to the horizontal plane is between 45◦ and 90◦.

Therefore, the scan follows a grid pattern in the horizontal

plane which consists of evenly spaced survey lines in two

parallel groups that are perpendicular to each other for pipeline

mapping [see Fig. 2(c)]. It is obvious that we must have one

group with the intersection angle no less than 45◦ even we

do not know actual pipe orientation in the horizontal plane.

This group can be easily identified in GPR readings. Hence,

we assume all data are from this group in the rest of this

article, which means all Bk’s are taken from parallel scans.

If the ground is nonplanar (see Fig. 5), we only need to

ensure that the projections of GPR trajectories to the horizontal

plane are from the two parallel groups. Although nonlinear

in 3D [Fig. 5(a)], these trajectories are still straight lines if

projecting to 2D horizontal space. According to GPR’s work-

ing principle, it only records the traveling time of reflected

waves (traveling time can be converted into distance if signal

velocity is known). Therefore, the reflected curve generated by

a pipeline in B-scan is no longer a hyperbola [Fig. 5(b)] when

GPR travels on the nonplanar ground. Since GPR maintains

the same distance to the ground during scanning, the ground

reflection is still a straight band as indicated by the dark

blue banded region on the top part of Fig. 5(b). To rectify

this distortion, we can process each A-scan by realigning its

Z -values in {W } to an equal planar ground height, which is

done by vertical offsetting A-scans using the ground height

Fig. 5. Illustration of GPR data rectification for nonplanar ground distortion
removal. (a) Declaration of GPR scan when moving on nonplanar ground.
(b) Original B-scan. (c) Rectified B-scan.

from visual SLAM output. Fig. 5(c) shows the rectified B-scan

for Fig. 5(b), where we can see the properly shaped hyperbola

after the rectification.

In the rest of this article, all B-scans mentioned have

their nonplanar ground distortion removed. Without loss of

generality, we only need to focus on scans on a planar surface.

Next, let us model the GPR sensing process in a single scan.

B. GPR Sensing Modeling

According to [4], horizontal cylindrical pipelines are recog-

nized as hyperbolas in GPR scans. We explain it using a simple

case when the GPR scans a pipeline perpendicularly before

extending it to general cases with unknown orientations.

1) Perpendicular Scanning: Fig. 6(a) shows this ideal case.

Let di be the distance measurement by the GPR at point xi

in Bk , xv denotes the closest point to the pipeline on the

scanning trajectory along xk-axis, and dv denotes the measured

distance from xv to the pipeline. The geometric relationship

between the extracted hyperbola in Bk and the pipeline radius

r is governed by the red right triangle formed at location xv

according to [28]

(di + r)2 = (xi − xv)
2 + (dv + r)2. (1)

We can rewrite (1) as the canonical hyperbola formulation

(di + r)2

(dv + r)2
−

(xi − xv)
2

(dv + r)2
= 1. (2)

In fact, the point [xv , dv ]
T is the hyperbola vertex. However,

in practice, the accurate orientation of pipelines is unknown.

The probability of having a perpendicular scanning is negligi-

ble. A generic linear trajectory (GLT) usually does not have a

known approaching angle to the pipeline centerline. We need a
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Fig. 6. Understanding GPR sensing model. (a) Perpendicular scanning. (b) GLT scanning. (c) Virtual pipeline. (d) 2D projection of (c).

sensing model for a GLT. More importantly, we need to know

if the signal shape in the B-scan is still a hyperbola.

2) GLT Sensing Model: Fig. 6(b) shows that a GPR scans

a pipeline along a GLT. Two angles, α and θ , are employed to

describe the orientation of a straight pipeline segment, where

α is the angle between the projection of the pipeline centerline

on the X–Y plane of {W } (i.e., ground plane) and the GLT,

and θ is the angle between the pipeline and the GLT. Denote

Xi and Xv as two 3D points on GLT in {W } and Xv is the

closest point to the pipeline. The measured distances from Xi

and Xv by the GPR are di and dv , respectively. The following

lemma presents the GPR sensing model when crossing the

pipeline with a GLT.

Lemma 1: When the GPR scans the subsurface pipeline

along a GLT, the resulting signal in a B-scan is the following

hyperbola:

(di + r)2

(dv + r)2
−

(xi − xv)
2(sin θ)2

(dv + r)2
= 1 (3)

where xi and xv denote the x-coordinate values in Bk when

the GPR is located at Xi and Xv , respectively.

Proof: Fig. 6(b)–(d) shows the GLT scanning case. Denote

XY as the line segment connecting 3D points X and Y.

We select two 3D points Yv and Yi lying on the center line

of the pipeline, such that XvYv ⊥ YvYi and Xi Yi ⊥ YvYi .

Thus

‖XvYv‖ = dv + r

‖Xi Yi‖ = di + r.

We introduce a virtual pipeline XvY j which is parallel to

YvYi [see Fig. 6(c)]. Then, the angle between XvXi and XvY j

is θ , thus ‖Xi Y j‖ = ‖XvXi‖ sin θ .

Since XvYv ⊥ YvYi and YvYi ‖ XvY j , and thus,

XvYv ⊥ XvY j . In addition, XvYv ⊥ XvXi , and thus, XvYv is

perpendicular to the plane where Xv , Xi and Y j are lying on.

Therefore, XvYv ⊥ Xi Y j . Since XvYv ‖ Yi Y j , we can obtain

that △Xi Yi Y j is a right triangle. Projecting the scanning

scenario into 2D view [see Fig. 6(d)], we have

(di + r)2 = (‖Xi − Xv‖ sin θ)2 + (dv + r)2. (4)

Since both |xi − xv | and ‖Xi − Xv‖ represent the same

GPR traveling distance, we have |xi − xv | = ‖Xi − Xv‖.

Rewriting (4) in canonical hyperbola format, Lemma 1 is

proven. �

Lemma 1 shows that the resulting B-scan signals from scan-

ning a pipeline along a GLT are still a hyperbola. Therefore,

we can utilize this knowledge to extract them from noisy

B-scans.

C. Hyperbola Extraction

The raw GPR data must be preprocessed before extract-

ing hyperbolas. The preprocessing involves time-zero correc-

tion, average background subtraction, and low-pass filtering.

According to [29] and [30], the distance between the first

peaks of ground response and object response is the depth

of the object [see the points in Fig. 3(b)]. Thus, to extract the

hyperbola and the subsequent depth of the object, we need

to find the peaks of the two types of response. To find the

peaks accurately, we first extract the pulse responses generated

by the ground and objects in each Ak
q ∈ Bk , by fitting

a damped sinusoidal model [31], [32]. For the i th pulse

response, we have

at,i = βi e
−αi t cos(ωi t + φi ) + γi (5)

where at,i is the signal amplitude at traveling time t , βi is

the amplitude, ωi is the angular frequency, φi is the phase, γi

is the offset for the model, and αi is the attenuation constant

defined by material properties.

With the pulse measurements {(t, at,i)|t ∈ Ŵ}, where Ŵ

denotes the index set containing all measurements in the

pulse, we can estimate the pulse responses from ground and

objects in each Ak
q ∈ Bk by solving the following optimization

problem:

arg min
α̂i ,β̂i ,γ̂i ,ω̂i ,φ̂i

∑

t∈Ŵ

‖ât,i − at,i‖
2
∑

s.t. ât,i = β̂i e
−α̂i t cos(ω̂i t + φ̂i ) + γ̂i (6)

where hat ˆ indicates the estimators and ‖ · ‖∑ denotes the

Mahalanobis distance.

After obtaining these parameters, we can extract the peaks

and the corresponding traveling times. Since the radio wave

propagation velocity is priorly known according to Assump-

tion 2, we can convert the traveling time into traveling dis-

tance. Define xi = [xi , di ]
T be the i th peak position extracted

from object responses in Bk , with xi being the scanning

distance in Bk and di being the signal traveling distance.

Denote Mk = {xi |i = 1, . . . , nm} as the set of extracted peak

points. Thus, our hyperbola detection problem is

Definition 2: Given Mk to Detect Multiple Hyperbolas.
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Extracting hyperbolas from a GPR B-scan is nontrivial

due to multiple solutions and significant noises as shown

in Fig. 3(e) and (f). To find all hyperbolas, we apply the

J-linkage [6] framework to detect them from each GPR B-scan.

The J-linkage approach can simultaneously fit multiple models

to data corrupted by noise and outliers without specifying

the model number. Let us define x j,i = [x j,i , d j,i ]
T be

the i th point lying on the j th hyperbola in Bk . Specially,

we denote [x j,v, d j,v ]
T as the vertex of the hyperbola H j .

We can represent the hyperbola form in Lemma 1 as

x̃T
j,iQ j x̃ j,i = 0 (7)

where x̃ j,i = [x j,i , d j,i , 1]T is the homogeneous coordinate of

x j,i , and

Q j =

⎡

⎣

(sin θ)2 0 −x j,v(sin θ)2

0 −1 −r

−x j,v(sin θ)2 −r (sin θ)2x2
j,v + d2

j,v + 2d j,vr

⎤

⎦ .

A generic conic, ax2 + bxy + cy2 + dx + ey + f = 0, has

five DoFs. However, there are only four DoFs in our conic

in (7) since the major axis of each hyperbola in B-scan is

vertical which means b = 0. Thus, we can parameterize each

hyperbola as

H j = [x j,v, d j,v , sin θ, r ]T. (8)

Four points lying on the hyperbola are sufficient to compute

a minimal solution of this hyperbola by solving (7).

In the J-linkage process, we first randomly choose M

minimal sample set of four peak points to estimate the initial

hyperbola by solving (7). For each initial hyperbola, if it

satisfies x j,v > 0 and d j,v > 0, which indicates the vertex of

the hyperbola located in the first quadrant of Bk , we consider

it as a model hypothesis. Otherwise, we discard it.

For the rest, we follow the standard J-linkage steps which

generate multiple clusters. For each cluster M j , if its size is

greater than a threshold Nh , we accept this model hypothesis

and further refine it from all peak points in M j . We model

x j,i ’s measurement error as a zero mean Gaussian with covari-

ance matrix σ 2
j,i I2, where I2 is a 2×2 identity matrix. Stacking

all points in M j together, we obtain the following overall

measurement error function

Ch(H j ) =

⎡

⎢

⎣

x̃T
j,1Q j x̃ j,1

...

x̃T
j,m j

Q j x̃ j,m j

⎤

⎥

⎦
(9)

where m j = |M j | denotes the total point number in M j .

The MLE of H j can be obtained by minimizing the Maha-

lanobis distance

H∗
j = arg min

H j

Ch(H j )
T

−1
∑

H, j

Ch(H j ) (10)

where
∑

H, j = diag(σ 2
j,1, . . . , σ

2
j,m j

) is a diagonal matrix.

This nonlinear optimization problem can be solved using

Levenberg–Marquardt (LM) algorithm.

We also analyze the error of the estimated H∗
j using

the error backward propagation method [33] under Gaussian

assumptions. The estimation covariance matrix of H∗
j , denoted

as
∑

H∗
j
, can be obtained as follows:

∑

H∗
j

=

(

J T
h

−1
∑

H, j

Jh

)−1

(11)

where Jh = (∂Ch/∂H j )|H j=H∗
j

is the Jacobian matrix.

Since H j contains x j,v and d j,v , we can obtain the hyperbola

vertex from H∗
j . Let us define vI

p, j = [x j,v, d j,v ]
T to be the

vertex of the j th hyperbola generated from the pth pipeline in

the image coordinate system of Bk . Next, we need to classify

and group the extracted hyperbolas in {W } according to its

pipe. This requires fusing with vSLAM and encoder readings.

D. Sensor Fusion for Coordinate Transformation

We project all hyperbola vertices onto the X–Y plane of

{W }. Define xv
p, j = [xv

p, j , yv
p, j ]

T to be the corresponding

position on X–Y plane in {W } where the GPR receives vI
p, j .

Here, we use the superscript v to indicate the vertex. We know

vI
p, j in Bk but finding xv

p, j requires combining vSLAM outputs

and wheel encoder data.

We denote the starting and ending points of the scanning

line as xs,k = [xs,k, ys,k]
T and xe,k = [xe,k, ye,k]

T, respec-

tively, which are measured by the vSLAM algorithm. Note that

they are 2D because all points are in X–Y plane with z = 0.

We do not directly use xs,k and xe,k to localize xv
p, j due to

the vSLAM measurement errors. Since the GPR moves along

a group of parallel GLTs according to Section IV-A, we adopt

the parallelism constraint to refine xs,k and xe,k . Denote x̂s,k

and x̂e,k as the estimations of xs,k and xe,k , respectively. Let

us define

pv = [vT, (x̂s,1)
T, . . . , (x̂s,n)

T]T

to be the parameter vector, where v = [vx , vy]
T is 2 × 1

directional vector with ‖v‖ = 1, denoting the moving direction

of all parallel trajectories, and n is total number of the parallel

trajectories. Define lk to be the length of the kth linear

trajectory, which is obtained from wheel encoder readings.

Thus

x̂e,k = x̂s,k + lkv. (12)

We model both the covariance matrices of xs,k and xe,k as

a zero mean Gaussian with covariance matrix σ 2
v I2, where I2

is a 2 × 2 identity matrix. We estimate x̂s,k, k = 1, . . . , n and

v by minimizing the following cost function:

Cv (pv) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̂s,1 − xs,1

...

x̂s,n − xs,n

x̂s,1 + l1v − xe,1

...

x̂s,n + lnv − xe,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

We obtain the MLE of pv by solving the following opti-

mization problem:

p∗
v = arg min

pv

Cv(pv )
T

−1
∑

Cv

Cv (pv) (14)
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where
∑

Cv
= diag(

∑

s,1, . . . ,
∑

s,n,
∑

e,1, . . . ,
∑

e,n) is a

blockwise diagonal matrix and
∑

s,k and
∑

e,k denote the

covariance matrices of xs,k and xe,k , respectively. Here,

we ignore the measurement errors from the wheel encoder

because the wheel encoder is very accurate when the sensing

suite moves on a flat ground. Again, this optimization problem

can be solved by the LM algorithm.

With x̂s,k and x̂e,k obtained, we can obtain each hyper-

bola vertex position xv
p, j in {W } using the wheel encoder.

We already know the wheel encoder increments between

xv
p, j and x̂s,k to be x j,v . We also know the wheel encoder

increments between x̂s,k and x̂e,k as ‖x̂e,k − x̂s,k‖. Thus,

the position of xv
p, j is determined as

xv
p, j =

(

1 −
x j,v

‖x̂e,k − x̂s,k‖

)

x̂s,k +
x j,v

‖x̂e,k − x̂s,k‖
x̂e,k . (15)

Again, the covariance matrix of the estimated xv
p, j can be

obtained using error propagation methods in [33, Ch. 5].

We also analyze the error of the estimated xv
p, j . Since

xv
p, j is a function of [(x̂s,k)

T, (x̂e,k)
T, x j,v ]

T, its uncertainty

depends on the noise distribution of [(x̂s,k)
T, (x̂e,k)

T, x j,v]
T.

Thus, we first compute the covariance matrices of x̂s,k and

x̂e,k , denoted as
∑

x̂s,k
and

∑

x̂e,k
, respectively. We also denote

the covariance of v as
∑

v . According to the error backward

propagation, we can obtain the covariance matrix of p∗
v by

∑

p∗
v

=
(

J T
v

∑−1
Cv

Jv

)−1
(16)

where
∑−1

Cv
= diag(

∑−1
s,1, . . . ,

∑−1
s,n,

∑−1
e,1, . . . ,

∑−1
e,n) and

Jv = (∂Cv (pv)/∂pv)|pv=p∗
v

is the Jacobian matrix, with

Jv =
∂Cv

∂pv

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

02×2 I2×2 02×2 02×2

... 02×2
. . . 02×2

02×2 02×2 02×2 I2×2

l1I2×2 I2×2 02×2 02×2

... 02×2
. . . 02×2

lnI2×2 02×2 02×2 I2×2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

4n×(2n+2)

.

Then,
∑

x̂s,k
,

∑

v , and the covariance matrix of [x̂T
s,k, vT]T,

denoted as
∑

x̂s,k ,v, can be extracted from
∑

p∗
v
.

From (12), we know
∑

x̂e,k
depends on the noise distribution

of x̂s,k and v. We obtain
∑

x̂e,k
as

∑

x̂e,k
= Ae

∑

x̂s,k ,v AT
e (17)

where the matrix Ae is

Ae =

[

1 0 lk 0

0 1 0 lk

]

.

According to (12), we can also derive the covariance of

[x̂T
s,k, x̂T

e,k]
T as

∑

x̂s,k ,x̂e,k
=

[

∑

x̂s,k

∑

s,e
∑

s,e

∑

x̂e,k

]

(18)

Fig. 7. An illustration of pipeline localization under parallel GLTs.

where

∑

s,e = 1
2

diag
(

σ 2
xe,k

+ σ 2
xs,k

− lkσ
2
vx

, σ 2
ye,k

+ σ 2
ys,k

− lkσ
2
vy

)

with σ 2
xs,k

,σ 2
ys,k

,σ 2
xe,k

and σ 2
ye,k

being the variances of

x̂s,k,ŷs,k,x̂e,k and ŷe,k , respectively, σ 2
vx

and σ 2
vy

being the

variances of v̂x and v̂y .

With
∑

x̂s,k ,x̂e,k
obtained, we have

cov([(x̂s,k)
T, (x̂e,k)

T, x j,v]
T) =

[

∑

x̂s,k ,x̂e,k
0T

0 σ 2
x, j

]

(19)

where cov(·) indicates the covariance matrix of a random

vector, 0 denotes a 1×4 zero matrix, and σ 2
x, j is the variance of

x j,v which is already obtained in (11). Applying the first-order

approximation of error forward propagation, we obtain the

covariance matrix
∑

xv
p, j

of xv
p, j

∑

xv
p, j

= Jxcov([(x̂s,k)
T, (x̂e,k)

T, x j,v]
T)J T

x (20)

where Jacobian matrix

Jx =
∂xv

p, j

∂(x̂s,k, x̂e,k, x j,v)

=

⎡

⎢

⎣

1 −
x j,v

des

0
x j,v

des

0
xe,k − xs,k

des

0 1 −
x j,v

des

0
x j,v

des

ye,k − ys,k

des

⎤

⎥

⎦
(21)

where des = ‖x̂e,k − x̂s,k‖.

E. Hyperbola Grouping

Knowing hyperbola vertices in {W } allow us to classify

hyperbolas from multiple Bk’s into different groups according

to their residing pipelines. This allows us to simultaneously

detect multiple pipelines. Recall that we perform scanning by

following parallel GLTs (see Fig. 7). Let s j , j = 1, . . . , n p

represent the parallel GLTs crossing the pth pipeline, and

thus, we have s1 ‖ s2 ‖ . . . ‖ sn p . Recall that xv
p, j =

[xv
p, j , yv

p, j ]
T is 2D point on X–Y plane of {W } when the

GPR receives the j th hyperbola vertex [x j,v , d j,v]
T from the

pth pipeline, and XW
p, j is the j th center axis point on the pth

pipeline, which is the closest axis point to s j . The following

lemma presents the geometric model for center axis point

reconstruction.

Lemma 2: If the GPR scans the pth pipeline along a set

of parallel GLTs, s j , and j = 1, . . . , n p , and produces the

sequence of xv
p, j , j = 1, . . . , n p where the hyperbola vertices

are perceived, as shown in Fig. 7, then all xv
p, j , j = 1, . . . , n p

are collinear to a line on X–Y plane of {W }, denoted as lp ,
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and the corresponding closest 3D center pipe axis points to

each scanning GLT s j can be computed as follows:

XW
p, j =

[

(1 − λp, j )x
v
p, j + λp, j x

v
p, j−1

−(d j,v + rp) cos βp

]

(22)

where rp denotes the radius of the pth pipeline, βp is the

angle between lp and the pipeline centerline, and λp, j =

((d j,v + rp) sin βp/‖xv
p, j − xv

p, j−1‖).

Proof: According to the working principle of GPR, for

each s j , the hyperbola vertex is generated by the reflection of

the pipeline surface point which is closest to s j . Thus, with

d j,v known in each s j , all possible reflection points of the

pipeline constitutes a hemisphere centered at xv
p, j with radius

equal to d j,v , as shown in Fig. 7. The pipeline is tangential

with all hemispheres.

Denote Xv
p, j = [(xv

p, j )
T, 0]T as the 3D coordinate of xv

p, j ,

and XY as the line segment connecting 3D points X and Y.

For each s j , we have

Xv
p, j X

W
p, j ⊥ s j

and

Xv
p, j X

W
p, j ⊥ XW

p,1XW
p,n p

.

s1 ‖ s2 ‖ . . . ‖ sn p

∴ Xv
p,1XW

p,1 ‖ . . . ‖ Xv
p,n p

XW
p,n p

.

∴ all Xv
p, j X

W
p, j , j = 1, . . . , n p are coplanar.

∴ all xv
p, j , j = 1, . . . , n p are collinear.

With the line denoted as lp , it is clear that lp and XW
p,1XW

p,n p

are coplanar and intersect to each other. Furthermore, due to

all s j , j = 1, . . . , n p are on the horizontal plane, the plane

determined by XW
p,1, XW

p, j , and Xv
p, j is a vertical plane. Inside

this vertical plane, there exists a vertical line passing XW
p, j and

intersecting lp at point X⊥
p, j (see Fig. 7).

Connecting line segment XW
p, j X

⊥
p, j , we have

XW
p, j X

⊥
p, j ⊥ Xv

p, j X
v
p, j−1.

Using trigonometry, we have

∥

∥Xv
p, j − X⊥

p, j

∥

∥ = (d j,v + rp) sin βp

X⊥
p, j =

(

1 −
(d j,v + rp) sin βp

‖xv
p, j − xv

p, j−1‖

)

Xv
p, j

+
(d j,v + rp) sin βp
∥

∥xv
p, j − xv

p, j−1

∥

∥

Xv
p, j−1.

Since X⊥
p, j and XW

p, j have the same X and Y coordinates,

replacing the third element of X⊥
p, j with −(d j,v + rp) cos βp,

Lemma 2 is proven. �

Lemma 2 implies that we can simultaneously detect mul-

tiple pipes by grouping the hyperbolas. It can be done by

fitting multiple lines from the hyperbola vertex projection

points. Again, the J-linkage framework is applied. Define

x̃v
p, j = [xv

p, j , yv
p, j , 1]T to be the homogeneous form of xv

p, j .

We denote lp as the 2D line projected from the pth pipeline

on X–Y plane of {W }. Any x̃v
p, j generated from pth pipeline

satisfies the following equation:

(x̃v
p, j )

Tlp = 0. (23)

A minimal solution requires two points. The rest follows the

standard J-Linkage approach. After classifying the hyperbolas

into different groups where all hyperbolas in the same group

are generated from the same pipeline, we are ready to recon-

struct pipelines with the grouped hyperbolas.

F. Pipeline Radius Refinement

Hyperbolas in the same group belong to the same pipeline

and share the same radius. We can use this to refine the

estimation of radius. Denote rp, j , j = 1, . . . , n p as the

estimated radius of the pth pipeline using the j th hyperbola

by (10), with estimation variance σ 2
j . Define rp to be the radius

of the pth pipeline. To estimate rp optimally by combining all

rp, j ’s, We define the following error function:

Cr (rp) =

⎡

⎢

⎣

rp − rp,1

...

rp − rp,n p

⎤

⎥

⎦
. (24)

The MLE of rp can be obtained by solving the following

optimization problem:

r∗
p = arg min

rp

Cr (rp)
T

−1
∑

r,p

Cr (rp) (25)

where
∑

r,p = diag(σ 2
1 , . . . , σ 2

n p
) is a diagonal matrix.

G. Pipeline Center Axis Point Reconstruction

The final step is to estimate points XW
p, j on the pipe center

axis. Lemma 2 shows that we can obtain them from Xv
p, j , lp

and βp . We use the geometric relationship to obtain them. Let

us define the parameter vector to be estimated as

p =
[(

X̂v
p,1

)T
, . . . ,

(

X̂v
p,n p

)T
, (lp)

T, βp

]T

where X̂v
p, j , j = 1, . . . , n p denotes the estimation of Xv

p, j .

Recall that Xv
p, j = [(xv

p, j )
T, 0]T. Then, we estimate p by

minimizing the following cost function:

Cp(p) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X̂v
p,1 − Xv

p,1
...

X̂v
p,n p

− Xv
p,n p

(

x̃v
p,1

)T
lp

...
(

x̃v
p,n p

)T
lp

∥

∥X̂v
p,2 − X̂v

p,1

∥

∥ sin βp − (d2,v − d1,v)

...
∥

∥X̂v
p,n p

− X̂v
p,1

∥

∥ sin βp − (dn p,v − d1,v)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

The MLE of p can be obtained by solving the following

problem:

p∗ = arg min
p

Cp(p)T
−1
∑

p
Cp(p) (27)
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Algorithm 1: Pipeline Mapping and 3D Reconstruction

input : a set of camera images and Bk, k = 1, . . . , nk

output: �

1 Extract Pulse responses from each A-scan; O(nbna)

2 Detect Hyperbolas; O(nbn p)

3 Localize xs,k and xe,k for each scanning line; O( f (nl))

4 Coordinate transform for each hyperbola vertex; O(nb)

5 Group hyperbolas; O(1)

6 Estimate pipeline radius; O(1)

7 Reconstruct pipeline center axis points; O(1)

8 return �; O(1)

where
∑

p = diag(
∑

Xv
p,1

, . . . ,
∑

Xv
p,n p

, λ(
∑

x̃v
p,1

), . . . ,

λ(
∑

x̃v
p,n p

), σ 2
d,1, . . . , σ

2
d,n p

) is a blockwise diagonal matrix.
∑

Xv
p, j

and
∑

x̃v
p, j

are the covariance matrices of Xv
p, j and

x̃v
p, j , respectively, which can be directly obtained according

to
∑

xv
p, j

as

∑

Xv
p, j

=
∑

x̃v
p, j

=

[

∑

xv
p, j

0

0 0

]

(28)

and λ(
∑

x̃v
p, j

) denotes the maximum eigenvalue of
∑

x̃v
p, j

. σ 2
d, j

is the estimation variance of (d j,v − d1,v). Let us denote σ 2
d j,v

as the estimation variance of d j,v , which can be easily derived

from (11). Then, we have σ 2
d, j = σ 2

d j,v
+ σ 2

d1,v
.

With X̂v
p, j , lp , and βp obtained, we can compute XW

p, j based

on Lemma 2.

V. ALGORITHM ANALYSIS

We summarize the proposed subsurface pipeline mapping

and 3D reconstruction method in Algorithm 1 to facilitate our

analysis. Let the total amount of B-scans be nb. We suppose

there are na A-scans in each B-scan on average. Then,

extracting pulse responses can be done in O(nbna) time.

Suppose on average we extract n p pulse responses and nh

hyperbolas in each B-scan, then detecting hyperbolas can

be done in O(nbn p) time. Obviously, n p ≥ na since we

detect both ground pulse response and object pulse response

in each A-scan. The value of nh depends on the total number

of pipelines. Thus, nh is usually small and can be con-

sidered as constant. Localizing xs,k and xe,k involves the

process of Oriented FAST and Rotated BRIEF (ORB)-SLAM,

whose time complexity depends on landmarks in the environ-

ment. We define the total number of landmarks involved in

ORB-SLAM is nl . Then, the time complexity of ORB-SLAM

process is O( f (nl)), where f (·) denotes a function of nl .

Then, localizing the endpoints for all scanning lines can be

done in O( f (nl)) time. There are nbnh hyperbola vertices in

total. Since we consider nh as constant, coordinate transform

takes O(nb) time, and grouping hyperbolas takes O(1) time.

The time complexities of both estimating pipeline radii and

reconstructing pipeline center axis points are O(1). Thus,

the computational complexity of our proposed pipeline map-

ping algorithm is max(O(nbn p), O( f (nl))).

Fig. 8. Experiment setup for hyperbola model verification.

Theorem 1: The computational complexity of the pro-

posed pipeline mapping and 3D reconstruction algorithm is

max(O(nbn p), O( f (nl))).

VI. EXPERIMENTS

We have implemented our algorithm using MATLAB under

a PC. We use GSSI SIR-3000 GPR with 1.6 GHz anten-

nas, and the parameters are given as follows: the horizontal

sample rate for the wheel encoder is 390 pulses per meter,

the two-way travel time of the radar signal is 8 ns, and the

sample rate for the GPR is 1024 sample/scan. Each B-scan

consists of 1643 A-scans on average. The camera used in

the system is a 10-MP industry camera with model number

DS-CFMT1000-H. The sensing suite is shown in Fig. 2(a).

We conduct two physical experiments—hyperbola model

verification and field test for pipeline mapping. We begin with

the verification of our proposed generic hyperbola model.

A. Hyperbola Model Verification

Since the generic hyperbola model proposed in Lemma 1 is

the foundation of the following pipeline mapping, we verify

it first. As shown in Fig. 8, we design an artificial planar

bridge as the survey area under which an artificial pipeline

with known parameters is placed. The bridge allows us to

freely adjust the pipeline orientations underneath the bridge

to generate different hyperbolas. We force the GPR to move

along a fixed rail track with mechanical stops to guarantee

each GPR scan repeating exactly the same trajectory. We can

extract a hyperbola, denoted as y = h(x), from each GPR

scan. We also can derive a hyperbola equation, denoted as

y = ĥ(x), according to Lemma 1 by measuring the pipeline

orientation. For comparison purpose, we define y = ĝ(x) be

the hyperbola derived using the model in (2) where GPR scans
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Fig. 9. Experiment results for hyperbola model verification. The marker
position is the average value. The vertical bars correspond to [−σ, σ ] with σ
as the standard deviation.

the pipeline perpendicularly. Define x and x are the start and

end points of scanning, respectively. To evaluate the similarity

between the extracted curve and the derived one, for each

sample point x ∈ [x, x], we define two error functions eh(x)

and eg(x) to measure the difference between the extracted

hyperbola with the derived model using Lemma 1 and

the conventional model described in (2), respectively. More

specifically

eh(x) = h(x) − ĥ(x)

eg(x) = h(x) − ĝ(x). (29)

We evenly select 50 sample points from x to x and compute

eh(x) and eg(x) for each sample point x ∈ [x, x]. It is worth

noting that the accurate GPR wave transmitting velocity is

unknown when deriving the hyperbola equation according to

Lemma 1 and the conventional model described in (2). Without

loss of reasonableness, here, we adjust the velocity to find the

best one which leads to the minimal average value of eh(x)

and eg(x).

The statistical results for different pipeline orientations are

shown in Fig. 9, where we can see that the average value

of eh(x) at each orientation is very small and much smaller

than the average value of eg(x). We did not give the results

when γ < 40◦ because the accuracy of extracted hyperbola

decreases greatly while the angle between pipeline with scan-

ning direction becomes smaller. Furthermore, since we design

our scanning trajectories as a grid with two orthogonal direc-

tions, at least the angle between pipeline with one scanning

direction is no smaller than 45◦. The average values of eh(x)

are not zero due to the following factors: measurement errors

in pipeline orientation and radius, and errors in hyperbola

detection. However, the fact that the average value of eh(x) is

close to 0 and smaller than eg(x) at each orientation validates

that the model in Lemma 1 is correct.

B. Field Test for Pipeline Mapping

Since it is difficult to obtain the ground truth of the locations

and sizes of the buried pipelines, we build a testbed platform so

that we can place polyvinyl chloride (PVC) pipes underneath.

The platform is a raised square artificial floor with a side

TABLE I

ALL PIPELINE ORIENTATION ESTIMATION ERRORS (◦)

length of 5.5 m and a height of 0.9 m using wooden boards

[see Fig. 2(b)]. To emulate the reflection signals from

metal pipes, we wrap each PVC pipe with aluminum foil.

Before GPR scanning, we first create a global map using

ORB-SLAM [20] that covers the entire field, as shown

in Fig. 2(c). The ground truth is manually measured using

a tape measure with 1.59 mm accuracy.

In each setup, we change the PVC pipe number and con-

figurations. We have finished all the 11 sets of different pipe

configurations. The pipe configurations and the corresponding

pictures are shown in Fig. 10. These 11 different configurations

include most cases of real-utility pipeline configurations—

one pipe with different orientations [Fig. 10(a)–(d)], multiple

pipes with different radius [Fig. 10(e)–(k)], pipes in parallel

[Fig. 10(e)–(h)] or intersect to each other [Fig. 10(i)–(k)], and

create occlusion due to close proximity [Fig. 10(g)]. Two types

of pipes are used in our experiments, with radii being 4.62

and 3.02 cm, respectively. In each setup, we move the sensing

suite along parallel GLTs in the grid to collect the camera and

GPR data following the synchronization method in [25]. Each

GLT generates a B-scan and 98 camera images on average.

In each setup, we have at least nine B-scans/GLTs. We have

finished 30 experimental trials in all with these 11 different

pipe configurations.

In our experiments, all pipelines are successfully detected.

Fig. 11 presents a sample output for hyperbola extraction,

where four hyperbolas are successfully detected from a

noisy B-scan. As for mapping quality, we first examine the
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Fig. 10. Eleven representative pipe configurations in experiments.

Fig. 11. Sample output for hyperbola extraction.

orientation of the detected pipelines. As shown in Fig. 7,

we adopt two angles αp and βp to describe pipe orientations,

where αp is the angle between lp and the x-axis of {W }.

We define eα and eβ to be the estimation errors of αp and

βp , respectively. The values of eα and eβ for each pipe are

presented in Table I. The average values of eα and eβ are

1.73◦ and 0.73◦, respectively. The maximum value of these

two angle errors is 6.27◦ and 3.56◦, respectively. These small

errors mean that the pipeline orientation estimation accuracy is

satisfying.

Next, we examine the quality of the reconstructed center

axis point XW
p, j where we compute the Euclidean distance from

XW
p, j to the ground-truth value of pipeline’s centerline, denoted

as error ex . There are totally 58 pipes in our 30 experimental

trials. We number them from 1 to 58 following the order

of experiments. Fig. 12(a) presents the statistical results of

ex for each pipe, where the marker position is the average

value, and the vertical bars correspond to [−σ, σ ] with σ

as the standard deviation. The overall average localization

error is 4.47 cm. Our pipeline localization algorithm is

successful.

We define the metric er = (|r̂ − r |/r) to evaluate the

pipeline radius estimation results, where r̂ and r are the radius

estimation result and the corresponding ground-truth value,

respectively, and | · | denotes the absolute value operator.

Fig. 12. Pipeline reconstruction results. (a) ex statistical error. (b) Radius
estimation relative error.

Fig. 12(b) presents the values of er for the 58 pipelines. The

average value of er is 32.6%. This is expected because pipes

used in our experiment are relatively thin in diameters. The

localization error of 4.47 cm is quite significant in comparison

to pipe diameters. The estimation errors are due to many

factors, such as GPR accuracy limitation, hyperbola detection

errors, the calibration error of GPR wave velocity, and the

GPR scan localization errors. However, in most practical

applications, the radii of pipelines are either prior known or

conformal to typical standard sizes. As long as the result can
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assist in finding the standard size, it is sufficiently accurate

and acceptable.

VII. CONCLUSION AND FUTURE WORK

We reported a novel subsurface pipeline mapping method

by fusing GPR scans and camera images. The camera images

and encoder readings were used to provide the global position

for each GPR scan so that our algorithm can simultaneously

map multiple lines without assuming perpendicular scanning.

We derived a GPR sensing model that proves hyperbola formu-

lation under GLTs. Then, we developed a multiple hyperbola

extraction algorithm under the J-linkage framework to detect

and classify the hyperbolas generated from multiple pipelines.

Finally, we optimally estimated the orientations, radii, and

locations of all pipelines by analyzing the extracted hyperbo-

las. We tested our method in 30 groups of physical experiments

with 11 different representative pipeline configurations. The

results showed that our method successfully reconstructed all

subsurface pipes.

In the future, we will conduct more physical experiments in

various scenarios. We also plan to relax the constraint further

that requires the GPR to move linearly on flat ground by

developing in-depth sensor fusion and GPR signal processing

methods. The developments will significantly increase sys-

tem deployment flexibility and applicability. We will develop

efficient searching algorithms to reduce scanning time and

trajectory length through better motion planning for searching

pipelines.
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