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Abstract— Robust estimation of camera motion under the
presence of outlier noise is a fundamental problem in robotics
and computer vision. Despite existing efforts that focus on
detecting motion and scene degeneracies, the best existing ap-
proach that builds on Random Consensus Sampling (RANSAC)
still has non-negligible failure rate. Since a single failure can
lead to the failure of the entire visual simultaneous localization
and mapping, it is important to further improve the robust
estimation algorithm. We propose a new robust camera motion
estimator (RCME) by incorporating two main changes: a
model-sample consistency test at the model instantiation step
and an inlier set quality test that verifies model-inlier con-
sistency using differential entropy. We have implemented our
RCME algorithm and tested it under many public datasets. The
results have shown a consistent reduction in failure rate when
comparing to the RANSAC-based Gold Standard approach and
two recent variations of RANSAC methods.

I. INTRODUCTION

Robust estimation of geometric relationships between two
camera views is a fundamental problem in computer vision
and robotics. It simultaneously identifies corresponding inlier
features from outlier noises. When applied to the problem of
visual odometry (VO) or visual simultaneous localization and
mapping (vSLAM) in robotics, the geometric relationship
is often the fundamental matrix, or essential matrix when
camera intrinsic parameters are known. Since camera motion
can be inferred from the essential matrix, this is also known
as camera motion estimation.

The classical robust estimation method that can filter
out outliers is random consensus sampling (RANSAC) [13]
(Fig. 1(a)). Simply applying RANSAC to estimate camera
motion is not wise since there are well-known motion degen-
eracy and scene degeneracy issues, also known as Type A and
Type B degeneracies according to [40], respectively. To elim-
inate both degeneracies, existing state-of-the-art approaches
apply key frame selection and simultaneously estimate ho-
mography and fundamental matrices [26]. However, these
remedies do not solve every problem. After testing 46643
images from 23 different datasets with 3 iteration number set-
tings, our results show that the RANSAC-based fundamental
matrix estimation algorithm still has a failure rate of 1.83%
in indoor environments at iteration number of 1000, despite
test data having both degeneracies removed. Since one single
failure can lead to an entire continuous monocular vSLAM
failure, the mean distance between failure is mere 49 meters
if the average distance between adjacent key frames is 0.5
meters. This means that current methods for the estimation
of camera motion is not robust enough.
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Fig. 1. The system diagrams of our RCME framework in (b) which is an
improvement of RANSAC in (a), the Gold standard algorithm for estimating
camera motion.

A deep look into the failed cases reveals that since the
epipolar geometric relationship characterized by a funda-
mental matrix is a weak point-to-line distance measure and
scene feature distribution may not be uniform, it is possible
that the initial sampling in RANSAC may establish a wrong
model and still can find a potential large number of inliers.
Hence RANSAC may output incorrect camera motion. To
address these issues, we propose a new robust camera motion
estimator (RCME) (see Fig. 1(b)) by incorporating two main
changes: model-sample consistency test to verify the quality
of the model built by over-parameterized sampling, and inlier
set quality test that first determines inliers according to model
uncertainty and then verifies if the inlier set agrees with the
model through a test on differential entropy. The RCME
can also detect and report a failed estimation when input
data quality is too low. We have implemented the RCME
algorithm in C++ and tested with public datasets. The results
have shown consistent reduction of failure rate across almost
all test data. It also have been compared to two recent
RANSAC variations and outperforms the both counterparts.

II. RELATED WORK

Robust camera motion estimation mainly relates to two
research fields: robust estimation in computer vision and the
front-end algorithm of vSLAM/VO in robotics.

Robust estimation is a fundamental problem in computer
vision and robotics. A robust estimator’s task is to estimate
parameters and find the inliers according to a predefined
type of geometric relationship. The outliers from wrong
correspondences often introduce significant errors when esti-
mating the geometric relationship. M-estimator, L-estimator
and R-estimator [20] formulate the estimation problem as a
reprojection error minimization problem and solve it by using
a nonlinear cost function. Leat Median of Squares (LMeds)
by Rousseeuw [33] minimizes the median of error instead.



However, these methods are not stable when over half of
data are outliers since they perform the minimization among
all the data including the outliers. RANSAC by Fischler et
al. [13] is the most widely used robust estimator since it is
capable of handling a high ratio of outliers.

The vSLAM and VO works can be classified as the
feature-based approaches [9], [22], [26], the semi-dense
approaches [12], [14], and the direct approaches [10], [11].
Among these methods, the widely adopted feature-based ap-
proaches explicitly and repeatedly utilize robust estimation of
camera motion (e.g., MonoSLAM [9], PTAM [22] and ORB-
SLAM2 [26]). RANSAC has been employed in combination
with different fundamental matrix estimation models such as
the one-point method in [35], the five-point algorithm [36]
in PTAM or the eight-point method in ORB-SLAM2. These
works repeatedly obtain initial solutions for camera poses
(key) frame by (key) frame before bundle adjustment. Hence
the robustness of the robust estimation method is critical here
because a single failure can collapse the entire mapping.

Our work is an improvement over the existing RANSAC
framework for camera motion estimation. In fact, most
existing works in this area mainly focus on detecting the two
type of degeneracy issues: Type A and Type B [40]. When
handling degeneracy cases, existing approaches often treat
the problem as a model selection between the homography
relationship and the fundamental matrix relationship. Popular
approaches include AIC [1], PLUNDER-DL score [42],
GIC [21], and GRIC [39]. Pollefeys et al. [29] uses GRIC in
recovering the structure and motion. DEGENSAC [8] sets up
the H-degeneracy test for the degeneracy issues, and incor-
porates the homography in the epipolar geometry estimation
if the degeneracy is detected. ORB-SLAM2 initializes the
trajectory by finding the better geometry model between the
fundamental matrix or the homography matrix. However,
even when Type A and Type B degeneracies have been
ruled out, our tests have shown that RANSAC-based camera
motion estimation may still fail with non-negligible proba-
bility. It is due to the fact that the fundamental matrix only
represents a weak geometric point-line distance geometric
relationship which is not very selective.

Many attempts have been tried to improve RANSAC in
general. Guided sampling replaces the random sampling
by employing the prior information [6], [30], [37] or the
heuristics [27], [32], [38]. The statistic testing including the
Td,d test [5], the Bail-out test [4] and the SPRT test [25],
[30] to evaluate the hypothesis provides an early evaluation.
LO-RANSAC [7] adds the inner RANSAC in the model
refinement to find better support of inliers. QDEGSAC [15]
can handle the (quasi-)degenerate data by involving in the
robust rank detection. However, these methods are not stable
in camera motion recovery since they are designed for
general geometric model instead of the fundamental matrix.

Our work emphasizes the robustness in camera pose esti-
mation. We incorporate the model uncertainty in every step
of RANSAC framework. We employ the information entropy
for the hypothesis evaluation to improve model quality and
hence increase robustness. The threshold used in determining

inliers is based on the model uncertainty. MLESAC [41]
introduces the loss function in hypothesis selection by mod-
eling inliers and outliers respectively. It has been embedded
in many state-of-the-arts (e.g., the initialization module of
ORB-SLAM2). Cov-RANSAC [31] which also incorporates
the model uncertainty to identify inliers, but they do not rank
the model by using the model-inlier consistency.

III. PROBLEM DEFINITION

We begin with the following assumptions:
a.1 The camera lens distortion removed.
a.2 Position noises of the points follow zero-mean Gaussian

distribution with known variance σ2 in each dimension
and the noise in each dimension is independent.

Let us define the common notations in this paper.
K the intrinsic matrix of the camera.
X is a 4-vector and concatenates point correspon-

dences from two views. The i-th point is denoted
as Xi =

[
x̃T
i x̃

′T
i

]T ∈ R4, where x̃i ↔ x̃′i is
the i-th corresponding points from the first and the
second views, respectively. Symbol ˜ indicates the
inhomogeneous coordinate and x̃i, x̃

′
i ∈ R2. The

corresponding 3-vector homogeneous representa-
tion is xi,x

′
i ∈ P2.

f is a 9-vector with entries from fundamental matrix
F, f =

[
F1 F2 F3

]T ∈ R9, where Fi denotes
the i-th row of F. The i-th model vector is fi.

p is a 7-vector in SE(3) defining the camera motion
and consists of a unit quaternion vector q ∈ R4

and a translation vector t ∈ R3. The i-th camera
motion denotes as pi =

[
qT
i tTi

]T
.

In this paper, In denotes the n× n identity matrix.
We pre-process both views to obtain inputs. Feature de-

tection and feature matching have been applied to obtain
putative point correspondences {xi ↔ x′i}ni=1, where n is
the number of point correspondences. We concatenate every
inhomogeneous point correspondence x̃i ↔ x̃′i in to a 4-
vector Xi =

[
x̃T
i x̃

′T
i

]T
. The inputs may be obtained from

a variety of feature detectors such as scale-invariant feature
transform (SIFT) [23], speeded up robust feature (SURF) [2],
or ORB [34]. It is worth noting that the point correspondence
set is the result of putative matching of feature descriptors
and often contains many outliers. Our problem is,

Definition 1: Given n point correspondences (or points for
brevity) {Xi}ni=1, determine if the solution of the camera
motion p exists. If the solution exists, estimate p.

As shown in the problem definition, one immediate differ-
ence between our method and RANSAC is that our method
can detect failure cases instead of output an unreliable
solution. This is actually very useful for vSLAM because
it can be used as a signal to re-adjust key frame selection.

IV. RCME AGLORITHM

A. RANSAC Review and RCME Overview

Since our RCME is an extension of RANSAC, let us
begin with a brief review of RANSAC as shown in Fig. 1(a).



RANSAC establishes hypothesis models by randomly sam-
pling a minimal correspondence set (model instantiation) and
then examines each set by comparing how many other fea-
tures agree with the hypothesis model (model verification).
RANSAC is an iterative method which terminates when
reaching a maximum iteration number or a high quality inlier
set with its size agreeable to the estimated inlier ratio is
found. The model with the largest inlier set is the output.

Building on basic RANSAC framework, Fig. 1(b) illus-
trates our system diagram. It contains four main blocks in
gray. The first three blocks are different from the counterpart.
After instantiating a hypothesis model through sampling, we
test the consistency between the samples and the model. If no
consistency exists between the samples and the model, we
discard the model and repeat the model instantiation step.
Otherwise, we begin model verification, where we perform
an inlier quality test before we select the model according
to entropy. If no model can be selected, we consider the
camera motion estimation as failure in termination step (See
? from Box 3(b) in Fig. 1(b)). The selected model is our
initial solution for the model refinement.

Without loss of generality, let us assume we are at the j-th
iteration to begin the explanation.

B. Model Instantiation

Model instantiation is the first step of every iteration. We
want to check if a model building on the randomly sampled
point correspondences actually agrees with the samples. This
is crucial for overpameterized models.

Same as the traditional RANSAC, we randomly sample m
point-correspondences from {Xi} where m is the minimal
number of samples to instantiate the model and can be
different according to different parameterizations used in
modeling. Define the sample set for the j-th iteration as
Sj :=

{
Xsk : sk ∈ {1, · · · , n} and 1 ≤ k ≤ m

}
, where

sk is the point index and k denotes the k-th sample.
1) fj&pj model instantiation and uncertainty analysis:

Given the sample set Sj , we instantiate the model fj and
recover the camera motion pj from fj . The camera motion
pj =

[
tTj qT

j

]T
and the fundamental matrix model fj =[

F1
j F2

j F3
j

]T
always satisfy [tj ]×R(qj) = sKT

F1
j

F2
j

F3
j

K,

where s is a scalar, [tj ]× is the skew-symmetric matrix rep-
resentation of tj , and R(qj) is the rotation matrix of the unit
quaternion vector qj . The camera motion pj is recovered by
using the fundamental matrix decomposition [18].

Consider a mapping function Ω which maps the camera
motion pj to the concatenated samples

[
. . . ,XT

sk
, . . .

]T
,

Ω : R7 → R4m. The concrete representation of Ω depends
on parameterization of fundamental matrix which is utilized
in the camera motion recovery. It includes 1−point [35],
5−point [28], or 8−point methods [19]. Since our framework
is not limited by a particular parameterization, we represent
it as a generic Ω mapping. Therefore, the camera motion is

pj = Ω−1([. . . ,XT
sk
, . . .]T). (1)

Uncertainty analysis. The uncertainty of pj depends
on the error distribution of model instantiation samples[
. . . ,XT

sk
, . . .

]T
and is propagated through the mapping

function Ω−1(·). The noise distribution of Xsk is modeled as
a zero-mean Gaussian with the covariance matrix ΣX = σ2I4

according to the assumption a.2.
We utilize the first order approximation [18] of the

covariance matrix to estimate the uncertainty. Denote the
covariance matrix of pj as Σpj . The first order approx-

imation of Σpj is Σpj =
(
JT

ΩΣ−1
S JΩ

)−1

, where ΣS =

diag(· · · ,ΣX , · · · ) and Jacobian matrix JΩ = ∂Ω
∂pj

.
2) Samples and pj consistency test: A good model must

be consistent with the samples that instantiate it. However,
the consistency between the samples and the instantiated
model can be always satisfied if the model is parameterized
by using the same amount of parameters as the degrees
of freedom (DoFs) of the model. Before assessing the
consistency, it is necessary to know how fundamental matrix
estimation is parameterized:

Exact case: The fundamental matrix is parameterized
by the same amount of parameters as the DoFs of
fundamental matrix. For example, the 1-point algorithm
is an exact case since the fundamental matrix is param-
eterized by one yaw angle and the DoF of fundamental
matrix is 1 when the robot motion is assumed to follow
the Ackermann steering model on a planar surface.
Over-parameterized case: The amount of parameters
used to parameterize the fundamental matrix is larger
than the DoFs of fundamental matrix. For example,
the normalized 8-point algorithm is a common Ooer-
parameterized case since it employs 8 parameters but
the DoFs of a general fundamental matrix is 7.

For the over-parameterized case, we perform the consis-
tency test between the samples and the model. Only the
model which passes this consistency test can advance to
the next step. Otherwise, we discard the model and the j-th
iteration ends. Of course, this does not apply to the exact
case where its model always perfectly fits the samples.

The consistency between the samples and the model is
measured by the error distance. We use the Sampson error
vector [18] to form the error measurement. Denote the Samp-
son error vector of Xsk as δsk . Let ∆ as the Sampson error
vector function which utilizes pj to calculate the Sampson
correction of Xsk as δsk = ∆(Xsk ,pj) ∈ R4. We model δsk
as the zero-mean Gaussian distribution with the covariance
Σδsk . Under the Gaussian noise assumption, the first-order
approximation Σδsk = Jδ,XΣXJ

T
δ,X + Jδ,pΣpjJ

T
δ,p, where

Jacobian matrices Jδ,X = ∂∆
∂Xsk

and Jδ,p = ∂∆
∂pj

.
For each sample Xsk , we design hypothesis testing:

H0 : Xsk does not fitpj , H1 : Otherwise. (2)

Given the Sampson error vector δsk and the covariance
matrix Σδsk , the error distance is re-written as

δTskΣ−1
δsk

δsk . (3)



Since we approximate δsk as the normal distribution with
zero mean vector and the covariance Σδsk , (3) is a χ2

distribution. Besides, δsk is defined on the variety of
xT
sk

K−T[tj ]×R(qj)K
−1xsk , which reduces 1 DoF. There-

fore, (3) follows a χ2 distribution with 4 − 1 = 3 DoFs.
Define F3 as the cumulative χ2 distribution under 3 DoFs
and we can set the distance threshold F−1

3 (1−α) by setting
the significance level α = 0.05, where F−1

3 (·) is the inverse
function of F3(·). Thus, we consider Xsk agrees with pj by
rejecting H0 when δTskΣ−1

δsk
δsk ≤ F

−1
3 (1− α).

C. Model Verification

For the model which passes the aforementioned consis-
tency tests, we find inliers from the rest of the inputs and
verify the model by checking the quality of its inliers (See
Boxes 2(a) and 2(b) in Fig. 1(b)).

1) Find inliers: An inlier is defined to be a point consis-
tent with the model. We employ pj consistency test to find
the inliers.

For the point Xi, the Sampson error vector and corre-
sponding covariance are denoted as δi and Σδi , respectively,
and can be obtained from their definition. Let Ij as an inlier
indicator function of pj

Ij(Xi) :=

{
1, when δTi Σ−1

δi
δi ≤ F−1

3 (1− α)

0, otherwise.
(4)

The inlier set of pj is Xj :=
{
Xik : Ij(Xik) = 1, 1 ≤

ik ≤ n
}

with its size defined as nj = |Xj |.
2) Score inliers: It measures the quality of the consistency

between model and its inlier set. Instead of using nj , the
number of inliers or the loss function [41] to score the inliers,
we want to score inliers by using the differential entropy on
the covariance matrices Σδik . The intuition is that the joint
distribution of distances {δik , k = 1, 2, ..., nj} for the inliers
should have a small entropy for a high quality inlier set. For
inlier set Xj , we define a score vector hj as,

hj = [. . . , hik,j , . . .]
T ∈ Rnj , (5)

where each entry is a differential entropy for each inlier,
hik,j = 1

2 log((2π)4 exp(4)|Σδik |) where |Σδik | denotes the
determinant of Σδik .

3) Inlier set quality test: Now, we evaluate the inliers’
quality to determine if the model can enter candidate solution
set by checking entropy values. A good model must contain
the inliers with high quality of consistency and leads to
small entropy values. Given the score vector hj , the average
entropy and the standard deviation are defined as follows:
ψj =

‖hj‖1
nj

, sj =
√
‖hj−ψj1n‖22

nj−1 , where ‖ · ‖1 is L1 norm,
‖ · ‖2 is L2 norm, and 1n is a n-vector of ones.

To evaluate the quality of the model and its inlier set, we
design the following hypothesis testing based on the Z−test,

H0 : ψj > µ, H1 : Otherwise, (6)

where µ = −3.53 is an differential entropy threshold
determined by the experiments. The test statistic can be

calculated Zj =
ψj−µ
sj/
√
nj
. Define Φ(x) as the cumulative

distribution function of the standard normal distribution at
value x. By setting the significance level α, the p-value
is obtained Φ−1(1 − α). We consider that the model is
highly consistent with its inlier set by rejecting H0 when
Zj ≤ Φ−1(1 − α). For models that passed the hypothesis
testing, we proceed to next step.

In addition to the high quality inliers, a good model also
need to contain sufficiently large amount of inliers. We use
two ratio thresholds ωp and λ to determine if the j-th model
satisfies the requirement. ωp is a priorly-known or estimated
inlier ratio. A model is considered to contain a sufficiently
large amount of inliers when nj

n ≥ λωp, where conservative
coefficient 0.5 ≤ λ ≤ 1 determine how close to ideal size ωp
we want the inlier set to be. Same as the RANSAC, inlier
ratio ωp can be inferred in the process. All models surviving
the hypothesis testing in (6) and being sufficiently large are
added to the candidate solution set,

C :=
{
j|
(
Zj ≤ Φ−1(1− α)

)
∧
(nj
n
≥ λωp

)
, ∀j
}
. (7)

After the maximum number of trials N , we consider the
camera motion recovery fail if C = ∅. This leads to the failed
algorithm output (i.e. ‘?’ in Fig. 1(b)). Provided sufficiently
large iteration number, the failure reason is most due to poor
quality inputs (PQI) in {Xi} .

D. Model Selection and Early Termination

1) Model selection: For non empty C, we select the one
with the minimum average entropy to be the output.

min
j∈C

‖hj‖1
nj

. (8)

This output serves as an initial solution for the following
model refinement by applying Maximum Likelihood Esti-
mation (MLE) to minimize reprojection error. Since this is
the same as the traditional approach (i.e. Box 4s in both
Fig. 1(a) and Fig. 1(b), we skip it here.

2) Early termination condition: So far, our RCME algo-
rithm runs for the entire maximum iterations. It is possible
to design an early termination threshold to speed up the
algorithm. Note that entries in C grow after each successful
iteration. For each new entry, we can test its average entropy
‖hj‖1
nj

by comparing to a preset threshold. If it is small
enough, which means it is a satisfying solution, we can
terminate RCME early to perform model refinement.

V. EXPERIMENTS

We have implemented our system in C++. We first evaluate
the camera pose accuracy using the simulated experiments
and commonly-used public data sets.

A. Algorithms in Comparison and Settings

We compare our algorithm to the following approaches.
• Standard: the most widely-used Gold standard approach

with RANSAC [13], [18].
• MLESAC [41]: a representative RANSAC-based

method in using the loss function to score inliers.



• Cov-RANSAC [31]: a representative RANSAC-based
method employing the model uncertainty to verify the
inliers. The model with the most inliers’ support wins.

We also include “pRCME” which is RCME with model
consistency test (2) in Sec. IV-B.2 turned off. The purpose is
to show the individual effectiveness of the consistency test
and the following inlier set quality test.

All algorithms employ the normalized 8-point algo-
rithm [18] for the fundamental matrix estimation since it
is fast and works for general camera motion. The maximum
iteration number N is set according to different experiments
and we perform a complete N iterations instead of estimating
N during the iteration process. Best results are highlighted
in boldface fonts in the tables.

B. Simulated Experiments

In this simulation two cameras are in a corridor surround-
ing by 5 walls. Each camera is a monocular camera, where
the camera focal length is 500 and the image resolution is
640×480. Both cameras are free-flying cameras. We fix the
baseline distance by 1 meter and set the depth of the corridor
with 50 meters to avoid both Type A and B degeneracy [40].
Before we obtain a pair of two-view images, we decide the
number of points n, inlier ratio ω and the injected noise σ
on the images. Then we uniformly sample the points on the
walls and project them on images with the noise and the
outliers.

Given the inlier ratio ω, the maximum iteration number
N is determined by N = log(1− p)/ log(1− ωs), where p
is the probability that ensure at least one of the s samples
is free from outliers. p is usually chosen at 0.99 and s = 8
since we choose the normalized 8-point algorithm [18] for
the fundamental matrix estimation.

1) Evaluation metric for accuracy: To capture the accu-
racy of the camera motion, we evaluate the the orientation
and the translation separately. Given the estimate camera mo-
tion p =

[
qT tT

]T
and the ground truth p̄ =

[
q̄T t̄T

]T
,

where q is unit quaternion vector and the unit of t is
meter, the orientation error ∆q [17] and the translation error
∆t are defined as ∆q := min

(
‖q − q̄‖2, ‖q + q̄‖2

)
, and

∆t := ‖t− t̄‖2, respectively.
2) Experimental results: Table I shows the average and

standard deviation of 5000 two-view pairs of images. Both
RCME and pRCME outperform the “Standard” approach,
MLESAC and Cov-RANSAC especially in the rotation error.
RCME and pRCME are about 10 times smaller in the rota-
tion error compared with the other three approaches. This is
because that RCME and pRCME employ the average entropy
to measure the quality of the inlier set instead of the amount
of inliers in the model selection. The “Standard” approach
and Cov-RANSAC utilizes the inlier amount to score the
hypothesis. Counting the inlier amount is not reliable when
the poor configuration of the data happens. For example, the
indoor environment dominated by the planar surfaces like the
simulated corridor in the experiments often contains highly
degeneracy configuration even though we already eliminate
the Type A and B degeneracy from our data. The highly

degenerate configuration leads to the fact that false hypothe-
ses can gain as much as support compared with the true
hypothesis, and eventually the false hypotheses can become
the final selection. MLESAC replaces the loss function with
the amount of inliers, but the score from the loss function
is also proportional to the inlier amount. The SPRT test in
Cov-RANSAC is a optimal randomized testing, which makes
Cov-RANSAC perform slightly better in accuracy compared
the “Standard” approach and MLESAC. However, the SPRT
relies on the inlier ratio in the sequential hypothesis testing,
and the inlier ratio is relevant to the amount of inliers.

TABLE I
EXPERIMENTAL RESULTS OF 1000 SYNTHETIC DATA.

Method Avg(∆q) Std(∆q) Avg(∆t) Std(∆t)
RCME 0.010 0.013 0.534 0.665
pRCME 0.017 0.023 0.720 0.739
Cov-RANSAC 0.139 0.392 0.660 0.810
MLESAC 0.190 0.453 0.741 0.830
Standard 0.193 0.459 0.739 0.838

C. Tests on Public Datasets

We test our method with a wide range of public datasets in-
cluding one outdoor (KITTI odometry dataset [16]) and two
indoor datasets (EuRoC MAV dataset [3] and HRBB4 [24]),
as described below.
• KITTI odometry dataset: a outdoor dataset which is

recorded by a moving vehicle while driving in Karl-
sruhe, Germany. We perform tests on 11 image se-
quences of the KITTI odometry dataset.

• EuRoC MAV: an indoor dataset collected by a syn-
chronized stereo camera. Since this paper only concerns
monocular vision, we only utilize the images from the
left camera. The EuRoC MAV dataset has 11 sequences,
and covers from office rooms to industrial halls with dif-
ferent objects, camera motions and lighting conditions.

• HRBB4: an indoor dataset recored in HRBB 4th floor in
Texas A&M University. The HRBB4 dataset is recorded
in the office corridor environment.

In all cases, the sequence of two-view image pairs of each
dataset are initially selected by applying the initialization
module (i.e. key frame selection) of ORB-SLAM2 [26] and
we only keep the non-degenerated two-view image pairs.
According to different maximum iteration number N settings
in the initialization module of ORB-SLAM2, we obtain
different sequences of two-view image pairs of each dataset.
For each two-view image pair, we use SIFT [23] to obtain
the point correspondences as our inputs.

1) Evaluation metric for robustness: Robustness is mea-
sured by failure rate of each algorithm. It is important to
recognize a failed case.

For every two-view pair, we use the ratio of the consistent
inlier amount before and after performing MLE in model
refinement step (Box 4s in Fig. 1(a) and Fig. 1(b)) to identify
if the method fails to find a correct solution. The underlying
rationale is that a quality solution should cause the number of
inliers to increase or at least maintain its inlier set size instead
of decreasing inlier set size drastically. Also, an incorrect



solution usually falls into local minima instead of the solution
close to the global minima in the optimization process.
The local minima causes the solution loses the consistency
from its inlier data. It is a common heuristic in vSLAM
algorithm to check if the map can be created successfully.
ORB-SLAM2 algorithm considers a fail initialization if the
consistent inlier amount is insufficient after their full BA.

We employ the Huber robust function γ(·) on top of repro-
jection error (page 617 in [18] ) to re-evaluate the consistency
of inliers before and after MLE. An inlier remains consistent
with its model when the value of the Huber robust function is
less than the threshold τ2 = σ2F−1

2 (1−α), where F2 denotes
the cumulative χ2 distribution under 2 DoF and α = 0.05 is
the significance level. Let nI and n∗I be the consistent inlier
amount before and after MLE, respectively. We set a ratio
threshold κ = 0.5 to determine that the solution is considered
as a failed camera motion recovery when n∗I

nI
≤ κ. We collect

the overall failure rate for each dataset as the measure for
robustness for the dataset.

Note that precision that is represented by residual error in
cost function is not the concern here because both standard
RANSAC and RCME can output high quality solutions in
precision if they do NOT fail. In other words, precision is
useless if they fail to find the correct solution.

2) Experimental results: The experimental results with
3 different maximum iteration number settings are shown
in Tab. II. For each table, the upper half of the table are
results from outdoor datasets and the lower half of table
are results from indoor datasets. All algorithms perform
worse in indoor datasets than that of outdoor dataset. This
is because indoor scenarios are more prone to degeneracy.
All algorithms gain similar performance under 3 maximum
iteration number settings even when the maximum iteration
number increases. RCME can achieve 0% average failure
rate in the low iteration number.

For both RCME and pRCME, they have the ability to
detect poor quality inputs. In those case, the algorithms do
not proceed and directly output failure which are represented
as detected PQI columns. The “Failure” columns represent
the actual failure computed using the metric in Sec. V-C.1.
The “Failure” columns do not include cases in PQI columns.
In general, we want the failure rate to be as close to zero as
possible. It is clear that both RCME and pRCME outperform
the “Standard” approach, MLESAC and Cov-RANSAC in
the robustness metric no matter how many complete itera-
tions are. RCME achieves 0.00% average failure rate with
0.02% average PQI rate. Our algorithm have improve the
robustness of RANSAC for camera motion estimation.

It is also clear that RCME is better than pRCME, which
indicates that our model consistency test with its samples
works as expected. Also, the fact that pRCME is better than
the other three approaches means that our inlier-quality test
works as expected.

It is worth noting that MLESAC also gains good perfor-
mance with overall 0.01% failure rate. The average failure
rate of MLESAC of each maximum iteration number setting
is close to the average PQI rate of RCME. For instance, the

TABLE II
EXPERIMENTAL RESULTS WITH MAXIMUM ITERATION NUMBER N .

(a) N = 200
RCME pRCME Cov-RANSAC MLESAC Standard

Dataset PQI % Failure % PQI % Failure % Failure % Failure % Failure %
KITTI/00(#2424) 0.00 0.00 0.00 0.00 0.08 0.00 0.29
KITTI/01(#58) 1.72 0.00 0.00 0.00 1.72 0.00 3.45
KITTI/02(#2050) 0.00 0.00 0.00 0.00 0.05 0.00 0.15
KITTI/03(#363) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/04(#86) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/05(#1503) 0.00 0.00 0.00 0.00 0.07 0.00 0.40
KITTI/06(#301) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/07(#567) 0.00 0.00 0.00 0.00 0.53 0.00 0.71
KITTI/08(#1711) 0.00 0.00 0.00 0.00 0.18 0.00 0.41
KITTI/09(#687) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/10(#426) 0.00 0.00 0.00 0.00 0.00 0.00 0.47
Avg. 0.01 0.00 0.00 0.00 0.11 0.00 0.30
EuRoC/MH 01(#519) 0.19 0.00 0.00 0.00 0.58 0.00 0.77
EuRoC/MH 02(#459) 0.00 0.00 0.00 0.00 0.66 0.00 0.44
EuRoC/MH 03(#589) 0.00 0.00 0.00 0.00 0.17 0.28 0.51
EuRoC/MH 04(#359) 0.56 0.00 0.28 0.00 1.39 0.00 2.23
EuRoC/MH 05(#404) 0.25 0.00 0.00 0.00 0.25 0.00 0.50
EuRoC/V1 01(#584) 0.17 0.00 0.00 0.00 0.68 0.00 3.08
EuRoC/V1 02(#407) 0.25 0.00 0.25 0.00 0.98 0.25 2.95
EuRoC/V1 03(#140) 0.71 0.00 0.71 0.00 2.14 0.71 3.57
EuRoC/V2 01(#402) 0.00 0.00 0.25 0.00 0.25 0.00 2.49
EuRoC/V2 02(#613) 0.16 0.00 0.00 0.16 0.16 0.16 3.26
EuRoC/V2 03(#103) 0.00 0.00 0.00 0.00 0.97 0.97 2.91
HRBB4th(#315) 0.00 0.00 0.00 0.00 0.32 0.00 0.00
Avg. 0.16 0.00 0.08 0.02 0.57 0.10 1.78

(b) N = 500
RCME pRCME Cov-RANSAC MLESAC Standard

Dataset PQI % Failure % PQI % Failure % Failure % Failure % Failure %
KITTI/00(#2493) 0.00 0.00 0.00 0.00 0.12 0.00 0.25
KITTI/01(#65) 0.00 0.00 0.00 0.00 0.00 0.00 6.15
KITTI/02(#2079) 0.00 0.00 0.00 0.00 0.05 0.00 0.14
KITTI/03(#386) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/04(#91) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/05(#1529) 0.00 0.00 0.00 0.00 0.13 0.00 0.59
KITTI/06(#328) 0.00 0.00 0.00 0.00 0.00 0.00 0.91
KITTI/07(#598) 0.00 0.00 0.00 0.00 0.33 0.00 0.17
KITTI/08(#1795) 0.00 0.00 0.00 0.00 0.00 0.00 0.39
KITTI/09(#709) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/10(#437) 0.00 0.00 0.00 0.00 0.27 0.00 0.00
Avg. 0.00 0.00 0.00 0.00 0.09 0.00 0.31
EuRoC/MH 01(#539) 0.00 0.00 0.00 0.00 0.19 0.00 0.56
EuRoC/MH 02(#483) 0.00 0.00 0.00 0.00 0.00 0.00 0.83
EuRoC/MH 03(#679) 0.00 0.00 0.00 0.00 0.00 0.00 0.29
EuRoC/MH 04(#402) 0.00 0.00 0.00 0.00 0.25 0.00 1.74
EuRoC/MH 05(#448) 0.00 0.00 0.00 0.00 0.90 0.00 1.34
EuRoC/V1 01(#598) 0.00 0.00 0.00 0.00 0.33 0.00 2.51
EuRoC/V1 02(#424) 0.24 0.00 0.00 0.24 0.94 0.00 2.59
EuRoC/V1 03(#155) 0.00 0.00 0.00 0.00 1.31 0.00 3.23
EuRoC/V2 01(#395) 0.00 0.00 0.00 0.00 0.00 0.00 1.77
EuRoC/V2 02(#654) 0.00 0.00 0.00 0.15 1.07 0.00 1.99
EuRoC/V2 03(#118) 0.00 0.00 0.00 0.00 0.85 0.00 2.55
HRBB4th(#302) 0.00 0.00 0.00 0.00 0.33 0.00 0.99
Avg. 0.02 0.00 0.00 0.04 0.44 0.00 1.53

(c) N = 1000
RCME pRCME Cov-RANSAC MLESAC Standard

Dataset PQI % Failure % PQI % Failure % Failure % Failure % Failure %
KITTI/00(#2491) 0.00 0.00 0.00 0.00 0.12 0.00 0.40
KITTI/01(#80) 0.00 0.00 0.00 0.00 0.00 0.00 5.00
KITTI/02(#2080) 0.00 0.00 0.00 0.00 0.10 0.00 0.29
KITTI/03(#394) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/04(#95) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KITTI/05(#1553) 0.00 0.00 0.00 0.00 0.06 0.00 0.52
KITTI/06(#323) 0.00 0.00 0.00 0.00 0.00 0.00 1.55
KITTI/07(#592) 0.00 0.00 0.00 0.00 0.17 0.00 0.34
KITTI/08(#1762) 0.00 0.00 0.00 0.00 0.06 0.00 0.34
KITTI/09(#712) 0.00 0.00 0.00 0.00 0.00 0.00 0.14
KITTI/10(#435) 0.00 0.00 0.00 0.00 0.23 0.00 0.92
Avg. 0.00 0.00 0.00 0.00 0.09 0.00 0.44
EuRoC/MH 01(#574) 0.00 0.00 0.00 0.00 0.52 0.00 1.74
EuRoC/MH 02(#491) 0.00 0.00 0.00 0.00 0.20 0.00 0.61
EuRoC/MH 03(#708) 0.00 0.00 0.00 0.00 0.28 0.00 0.42
EuRoC/MH 04(#400) 0.00 0.00 0.00 0.00 0.25 0.00 2.00
EuRoC/MH 05(#452) 0.00 0.00 0.00 0.00 0.67 0.00 1.11
EuRoC/V1 01(#589) 0.00 0.00 0.00 0.00 0.51 0.00 1.87
EuRoC/V1 02(#445) 0.00 0.00 0.00 0.00 1.34 0.00 3.15
EuRoC/V1 03(#155) 0.00 0.00 0.00 0.00 1.30 0.00 2.58
EuRoC/V2 01(#407) 0.25 0.00 0.25 0.25 0.25 0.00 2.70
EuRoC/V2 02(#706) 0.00 0.00 0.00 0.14 0.71 0.00 3.40
EuRoC/V2 03(#136) 0.00 0.00 0.00 0.00 0.74 0.00 0.74
HRBB4th(#312) 0.00 0.00 0.00 0.00 1.28 0.32 1.28
Avg. 0.02 0.00 0.02 0.04 0.60 0.02 1.83

average PQI rate of RCME is 0.16% and the average failure
rate of MLESAC is 0.10% when N = 200. It is possible
that that the poor inputs causing MLESAC to obtain the
false camera motion were detected by RCME. Being able
to recognize poor quality inputs is a significant advantage of
RCME over MLESAC, because we can use this information
to trigger the re-selection of key frames.

VI. CONCLUSIONS AND FUTURE WORK

We reported our new robust camera motion estimation
algorithm targeted at improving robustness in traditional
RANSAC-based approaches. Combining two new develop-
ments: model quality test with its samples, and inlier quality
test with its model, we are able to consistently reduce failure
rate of the existing algorithm, as shown in the experimental
results from testing a wide range of indoor and outdoor
datasets. In the future, we will look deep into those failed



cases that have not been detected by our algorithm and try
to design new tests to further improve the robustness of the
entire algorithm. We are in the processing of embedding our
estimator into existing open source implementation such as
ORB-SLAM2 to share the new developments with others.
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