SCIENCE ADVANCES | RESEARCH ARTICLE

GENETICS

Sexual dimorphism in the meiotic requirement
for PRDM9: A mammalian evolutionary safeguard

Natalie R. Powers, Beth L. Dumont, Chihiro Emori, Raman Akinyanju Lawal, Catherine Brunton,
Kenneth Paigen, Mary Ann Handel, Ewelina Bolcun-Filas, Petko M. Petkov, Tanmoy Bhattacharyya*

In many mammals, genomic sites for recombination are determined by the histone methyltransferase PRMD9.
Some mouse strains lacking PRDM?9 are infertile, but instances of fertility or semifertility in the absence of PRDM9
have been reported in mice, canines, and a human female. Such findings raise the question of how the loss of
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PRDM9 is circumvented to maintain fertility. We show that genetic background and sex-specific modifiers can
obviate the requirement for PRDM9 in mice. Specifically, the meiotic DNA damage checkpoint protein CHK2 acts
as a modifier allowing female-specific fertility in the absence of PRDM9. We also report that, in the absence of
PRDM9, a PRDM9-independent recombination system is compatible with female meiosis and fertility, suggesting
sex-specific regulation of meiotic recombination, a finding with implications for speciation.

INTRODUCTION

Meiotic recombination generates genetic diversity and ensures the
accuracy of chromosome transmission to the next generation. In many
organisms, recombination occurs preferentially at sites in the genome
known as recombination hotspots (I). In a subset of mammals, in-
cluding mice and humans, the positions of hotspots are determined
by the specialized histone methyltransferase PRDM9—a meiosis-
specific, DNA binding zinc finger protein that uniquely trimethyl-
ates both lysines 4 and 36 of histone H3 (2-6). This H3K4me3/
H3K36me3 double-positive signature is thought to preferentially
facilitate recombination at these sites, to the exclusion of other func-
tional elements (1, 6, 7). In the absence of PRDMY, meiotic double-
strand breaks (DSBs) occur in normal numbers but are localized to
functional elements enriched for H3K4me3, such as promoters (7).
In Prdm9-deficient C57BL/6 mice (henceforth B6.Prdm9™'"), repair
of these ectopic DSBs is impaired, leading to prophase I meiotic ar-
rest of both male and female germ cells, with consequent infertility
(8). In human males, several point mutations in PRDM?9 are associ-
ated with nonobstructive azoospermia (9, 10). Together, these obser-
vations suggest that PRDM9-dependent recombination is required
for successful reproduction, at least in mice and humans.

However, intriguing exceptions have been reported in both mice
and a human female. Prdm9-deficient PWD/Ph] (henceforth PWD.
Prdm9™") male mice have a normal meiotic prophase I, although
they are infertile due to low sperm number (PWD.Prdm9~~ females
are also infertile) (11). Further, some Prdm9~~ male mice with mixed
genetic backgrounds are fertile, suggesting background-dependent
genetic modifiers of the phenotype (11). A report of a single fertile
PRDM9-null woman shows that PRDM9 can be dispensable for fer-
tility in human females (12). Although Prdm9 is a pseudogene in
the canine lineage, both male and female canids reproduce success-
fully (13, 14). Together, these findings imply that the requirement
for PRDMY in mammalian recombination is complex.

These findings also suggest that a functional Prdm9-independent
recombination initiation pathway must exist even in species using
PRDMY; elucidating its mechanisms will help decipher the genetic
complexity that is likely involved. In male mice, recombination
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hotspots on autosomes are PRDM9-dependent, but the recombina-
tion hotspots within the pseudoautosomal region of the sex chro-
mosomes are activated by a PRDM9-independent recombination
initiation pathway (7). This suggests that both PRDM9-dependent
and PRDM9-independent recombination pathways are active in
tandem during mammalian meiosis and might fulfill functions nec-
essary to bypass reproductive bottlenecks due to dysfunctional or
absent PRDMY. Although a PRDM9-independent recombination
mechanism exists in male mice, it has been unknown whether a
similar pathway functions in females. In this study, we investigated
oogenesis and the effect of genetic background to determine (i)
whether there is a sex-specific requirement for PRDM9-dependent
hotspot activation and (ii) the possible mechanisms allowing organ-
isms to circumvent the loss of PRDM9 and maintain fertility.

RESULTS
Sex-specific requirement for PRDM9-dependent histone
methyltransferase activity in mice
We used CRISPR-Cas9 gene editing to create a point mutation in
the PR/SET domain of Prdm9 (Glu365Pro, henceforth Prdm9tF) in
C57BL/6] (B6) mice (fig. S1, A and B). To determine the effect of
this mutation, we performed chromatin immunoprecipitation with
massively parallel DNA sequencing (ChIP-seq) for H3K4me3 and
the recombinase protein DMC1 (DNA Meiotic Recombinase 1) that
binds specifically to the single-stranded ends of resected meiotic DSBs
(Fig. 1, A and B, and fig. S1, C to F), on B6 and B6.Prdm9™"" spermato-
cytes. We defined hotspots as PRDM9-dependent H3K4me3 sites
in the B6 genetic background based on a previously published study
from our lab (15) (see Materials and Methods for details) and com-
pared the number and distribution of H3K4me3 and DMC1 peaks in
B6.Prdm9""*F spermatocgtes to those in wild-type B6 spermatocytes.
We found the Prdm9™" mutation to be a catalytic hypomorph, as
it severely reduced but did not entirely abolish the methyltransfer-
ase activity of Prdm9 in vivo. The mutation did not affect Prdm9
expression (fig. S1B) but altered the epigenetic landscape at hotspots
markedly. In marked contrast to B6 spermatocytes, most hotspots
in B6.Prdm9*"" spermatocytes lacked a detectable H3K4me3
peak, although residual H3K4me3 enrichment was present at stron-
ger hotspots (Fig. 1, A and B). Quantitatively, there was a fivefold
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Fig. 1. Prdm9% alters the Prdm9-dependent H3K4me3 and meiotic DSB landscape in spermatocytes. (A and B) Genome browser snapshots of H3K4me3 and DMC1
ChlP-seq peaks in wild-type and Prdm9™% (Glu365Pro mutation) spermatocytes. (A) One strong and one weaker PRDM9-dependent hotspot are shown, together with one
PRDM9-independent H3K4me3 peak. (B) Several PRDM9-dependent and PRDM9-independent H3K4me3 peaks are shown. Note the shift in DMC1 peaks to PRDM9-inde-
pendent H3K4me3 peaks in Prdm9¥ spermatocytes. (C) Venn diagrams showing the number of detectable PRDM9-dependent H3K4me3 peaks in wild-type (B6) and
Prdm9¥"/® spermatocytes. (D) Venn diagram directly comparing the number of detectable PRDM9-dependent H3K4me3 peaks in wild-type and Prdm9¥"/® spermatocytes.
(E) MA plot comparing Prdm9¥/° versus wild-type signal at PRDM9-dependent H3K4me3 peaks that were detectable in Prdm9t”/¥ spermatocytes (n = 3703). (F) Aggre-
gation plot showing normalized average signal intensity [reads per million (RPM)] at known PRDM9-dependent H3K4me3 ChIP-seq peaks (n = 18,838) in wild-type and
Prdm9¥® spermatocytes. (G) Aggregation plot showing normalized average signal intensity (reads per million, RPM) at common nonhotspot H3K4me3 ChIP-seq peaks
(n=79,043) in wild-type and Prdm9 "% spermatocytes. (H) Distribution of DMC1 peaks in wild-type and Prdm95"/¥ spermatocytes. (1) Venn diagram comparing the
number of PRDM9-dependent DMC1 peaks in wild-type and Prdm9%"/E” spermatocytes. (J and K) MA plots comparing Prdm9¥P versus wild-type DMC1 signal at (J)
common PRDM9-dependent DMC1 peaks (n =4724) and (K) common PRDM9-independent DMC1 peaks (n = 378). Black points represent autosomal peaks, and purple
points represent peaks on the X chromosome. EP, Glu365Pro change in amino acid sequence.

reduction in the number of detectable Prdm9-dependent H3K4me3
peaks in spermatocytes from B6.Prdm9*”" males (Fig. 1, C and D),
compared to B6 spermatocytes. The intensity of detectable PRDM9-
dependent peaks was also sharply reduced relative to B6 (Fig. 1E);
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the mean normalized read count at these peaks (n = 3703) was re-
duced more than threefold to 1.29 reads per million (RPM), compared
to 4.45 RPM in B6 (P = 1.5 x 107°%, Student’s  test). PRDM9-
dependent H3K4me3 signal was so low overall in B6.Prdm9™"/%?
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spermatocytes that it did not register in aggregation plots of
H3K4me3 enrichment at all known PRDM9-dependent sites
(Fig. 1F), confirming a significant alteration in PRDM9-dependent
methyltransferase activity in B6.Prdm9""/%" spermatocytes. By con-
trast, PRDM9-independent H3K4me3 peaks (an internal control)
were unaffected (Fig. 1, A, B, and G), showing that the effect of
Prdm9™F was restricted to PRDM9-dependent peaks.

The effect of Prdm9™ on the meiotic DSB landscape, as mea-
sured by ChIP-seq for DMC1, was equally marked. A quarter of
meiotic DSBs occurred at PRDM9-dependent hotspots, while nearly
three quarters occurred at PRDM9-independent “default” sites,
which are used exclusively in Prdm9-null spermatocytes (7). This
was markedly different from B6 spermatocytes, in which about 85%
of DMCI1 peaks occurred at hotspots and only ~4% occurred at de-
fault sites (Fig. 1, A, B, H, and I). These results represented a marked
improvement over Prdm9-null spermatocytes, which make no DSBs
at hotspots (7). The average intensity of DMCI signal at hotspots
was also reduced in B6.Prdm9*"/F? spermatocytes relative to B6
spermatocytes: The mean normalized read count at common
PRDMO9-dependent DMC1 peaks (n = 4724) was reduced more
than threefold to 12.8 RPM, relative to 41.3 RPM in B6 (P = 1.97 x
107%, Student’s ¢ test). When DMCI signals at common peaks be-
tween B6 and B6.Prdm9*"” were compared directly, we observed a
distinct contrast between hotspots and default sites (Fig. 1, ] and K).
While DMCI1 signal tended to be higher at default sites in B6.
Prdm9*"E" spermatocytes relative to B6 spermatocytes, it was
much lower at hotspots, especially on the X chromosome (Fig. 1]).
This likely implies a lower rate of DSB initiation at hotspots in
B6.Prdm9™"EP, which would be e)}(sgected given the drastically re-
duced catalytic activity of PRDM9™. However, we cannot rule out
the possibility that DSB repair is affected as well. In summary, the
residual catalytic activity of Prdm9™ is sufficient to induce DSBs at
a subset of PRDM9-dependent sites, but not sufficient to rescue
meiotic arrest, in spermatocytes.

The Prdm9*" mutation also yielded an unanticipated phenotype:
sexual dimorJPhism (Fig. 2, A to C, and fig. S1G). Homozygous
B6.Prdm9°"E" males exhibited the expected meiotic arrest and in-
fertility, phenocopying both the Prdm9-null condition (8) and a
recently reported methyltransferase-dead Prdm9 allele (fig. S1G)
(16, 17). In contrast to the infertile males, all tested homozygous
B6.Prdm9*”F? females produced at least one—and up to five—
litters when mated to B6 males over a period of 6 months (Fig. 2,
C and D, and tables S1 and S2). The offspring were grossly normal
and healthy, and those tested, males and females, were fertile. Com-
pared to wild-type B6 controls, ovaries from prepubescent B6.
Prdm9*”FF females were smaller but contained all developmental
stages including primary follicles (Fig. 2, A and B, and fig. S1G).
Quantification of follicles revealed lower numbers of follicles in
B6.Prdm9°"EF ovaries, relative to wild-type and heterozygous ova-
ries (Fig. 2B). B6.Prdm9""*" females are therefore subfertile rela-
tive to wild type but escape the unconditional sterility characteristic
of Prdm9-null B6 females (8).

To determine whether B6.Prdm oocytes exhibit normal
cytological features of recombination, we performed immunofluo-
rescence staining on meiotic chromatin spreads from the ovaries of
newborn pups (postnatal day 0 or P0), using antibodies against the cross-
over regulator RNF212 (ring finger protein 212), the crossover marker
MLH1 (mutL homolog 1), and the sznaptonemal complex (SC)
protein SYCP3 (Fig. 2E). In B6. Prdm9™"¥, ~65% of pachytene oo-

9EP/EP
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cytes exhibited homologous synapsis of all chromosomes stained
with RNF212 and at least one MLH1 focus on each chromosome,
in comparison to ~91% of B6 pachytene oocytes (Fig. 2E). In dis-
tinct contrast, only ~4% of B6.Prdm9™'~ oocytes had all homolo-
gous chromosomes synapsed and with at least one MLH1 focus per
chromosome (Fig. 2F). Most (~79%) B6.Prdm9™"" pachytene oo-
cytes showed widespread asynapsis and few MLH]1 foci on synapsed
chromosomes (Fig. 2, E and F, and table S3). The average number of
MLHI1 foci was significantly higher in B6.Prdm9*”EF oocytes than
in wild-type B6 control oocytes (P = 0.000216, Mann-Whitney U
test; Fig. 2, E and F, and table S3). Future work will determine
whether this increase in MLH1 count in B6.Prdm9*"*? oocytes
reflects altered crossover rates due to DSBs at a large number of
PRDMY-independent sites in B6.Prdm9™" " oocytes, providing
both PRDM9-dependent and PRDM9-independent DSB sites as
candidates for crossover sites, or whether there is some other reason
for the increase. Together, these results show that the effects of the
Prdm9*F mutation are tolerated better in female meiosis than in
male meiosis, with sufficient recombination to ensure at least some
viable eggs despite the severely reduced catalytic activity. This find-
ing implies that the requirement for PRDM9-dependent hotspot
activation in mammalian reproduction is subject to sex-specific
control.

We next investigated whether the absence of an efficient PRDM9-
dependent hotspot activation mechanism promotes recombination
at PRDM9-independent sites. To determine where crossover sites
occur in B6.Prdm9™"/FF females, we used the strategy of outcrossing
this mutant to another strain and mapping detectable crossovers in
the progeny of Prdm9*"" females. We chose WSB/Ei] as the out-
cross strain because it is highly divergent from the classical labora-
tory strains but still a member of the Mus musculus (M. m.) domesticus
subspecies; it could therefore give us maximum resolution while
avoiding fertility issues or unnecessary genetic complexity associated
with intersubspecific crosses. We outcrossed B6.Prdm9* " mice to WSB/
Ei] (WSB) mice, producing male and female B6WSBF1 progeny het-
erozygous for Prdm9*F. We then intercrossed these F1 mice to
produce BEWSBF2.Prdm9*"FF mice, homozygous for the Prdm9*”
mutation. All BEWSBF2.Prdm9*”* males were infertile with low
testis weight (table S4). We backcrossed three B6WSBF2.Prdm9""EP
females to wild-type B6 males and genotyped both the F2 females
and 20 of their progeny with a genome-wide single-nucleotide poly-
morphism (SNP) array (18). This allowed us to map some of the
crossovers that had occurred in the oocytes giving rise to these
progeny. Only maternal crossovers were detectable in these proge-
ny, as their B6 fathers were homozygous at every locus. We limited
our focus to the 94 informative crossovers that occurred in the
Prdm9*"EP mothers; crossovers that had occurred in the BEWSBF1
generation were excluded. Of these, 26 occurred in intervals with
no known PRDM9-dependent H3K4me3 peak (27.7%) (15). To
exclude the possibility that these 26 putative PRDM9-independent
crossovers occurred at heretofore unrecognized PRDM9 binding
sites on the WSB chromosomes, we searched the B6 and WSB
genomic sequences in the crossover regions for PRDM9Po™
binding motifs (19). Prdm9P°™ is the endogenous Prdm9 allele in
the B6 strain, of which Prdm9** is a mutant version. Only hotspots
defined by PRDM9”°™ will therefore be bound in Prdm9™"*F ho-
mozygotes. Of these 26 intervals, 17 (18.1% of total) had no apparent
PRDM9”°™ binding motifs in the WSB sequence when compared to
the B6 sequence and are considered PRDM9-independent. Of the 94
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Fig. 2. Females homozygous for Prdm9*® are fertile. (A) Periodic acid-Schiff (PAS)-stained sections from 3-week postpartum ovaries in wild-type and Prdm

9EP/EP mice

in the B6 genetic background. Arrows show primary follicles. Scale bars, 100 um. (B) Oocytes per ovary in wild-type, heterozygous, and Prdm9t"/¥ females (error bars,
SEM). P values were not calculated as N'=2 is not sufficient for reaching statistical significance. (C) Litter sizes in wild-type, Prdm9~~, and Prdm9'® female mice (error
bars, SEM). P values were calculated using the Mann-Whitney U test with Bonferroni correction for multiple testing. (D) Pups produced by Prdm9*E® female mice.
(E) Coimmunolabeling detection of RNF212 foci (red, top row), MLH1 (red, bottom row), and SYCP3 (blue) in pachytene oocyte chromatin spreads in wild-type and mutant
females. White arrows highlight unsynapsed regions of chromosomes. Scale bars, 10 um. (F) Violin plot with dots showing numbers of MLH1 foci per meiotic oocyte (error
bars, SEM), in wild-type, Prdm9'/', and Prdm9¥”/®" mice. P values were calculated using the Mann-Whitney U test with Bonferroni correction for multiple testing. (G) Dia-
gram showing proportions of PRDM9-dependent and PRDM9-independent crossovers in progeny of B6WSBF2.Prdm95”/EF females (n = 94). Photo credit: Natalie R. Powers

and Tanmoy Bhattacharyya, The Jackson Laboratory.

total crossovers, 12 (12.8%) could be classified as clearly PRDM9-de-
pendent based on very high-resolution crossover intervals contain-
ing a known hotspot (Fig. 2G). Notably, the B6WSBF2.Prdm9*"/%F
females produced more offspring than B6.Prdm9""*" females (av-
erage offspring per female per month 4.55 versus 2.69, respectively;
table S1), revealing an effect of genetic modifiers from the WSB ge-
netic background or hybrid vigor.

While the small scale and limited resolution of most of the in-
formative crossovers constrain any quantitative conclusions, this
analysis does show directly that PRDM9-independent meiotic
DSBs yield recombinant chromosomes in mice. These PRDM9Y-
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independent crossovers occurred in oocytes that gave rise to grossly
normal and healthy animals, further supporting the idea that these
PRDM9-independent recombination events support normal chro-
mosome segregation. In addition, the clearly PRDM9-dependent
crossovers demonstrate that the residual methyltransferase activi-
ty of PRDM9** is sufficient to promote PRDM9-dependent cross-
overs in oocytes, as it is for PRDM9-dependent meiotic DSBs in
spermatocytes.

In summary, a severe catalytic hypomorph of Prdm9 allows for
successful meiosis and fertility in female—but not male—M. m.
domesticus mice. Meiotic progression is presumably facilitated by
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the activation of a normally quiescent PRDM9-independent recom-
bination pathway in response to limited PRDM9 activity.

Genetic background- and sex-limited requirement

for PRDM9 in mice

The human case of a fertile PRDM9-null female (12), and the higher
fertility in the BEWSBF2.Prdm9*"F" females, led us to examine the
impact of different genetic backgrounds on meiotic recombination
and fertility in the absence of Prdm9. To this end, we introgressed
the B6.Prdm9-null allele onto the CAST/Ei] and C3H/HeJ inbred
backgrounds for five generations (~5% residual heterozygosity,
henceforth CAST.Prdm9™~ and C3H.Prdm9™"", respectively). These
strains derive from distinct house mouse subspecies (M. m. castaneus
and M. m. domesticus, respectively) that diverged ~0.5 million years
ago (20, 21). We chose these strains for the contrast they provide:
C3H/He] is a classical laboratory strain and closely related to B6,
whereas CAST/Ei] is a wild-derived inbred strain of M. m. castaneus,
a divergent subspecies. There is no Prdm9-dependent hybrid steril-
ity in B6CASTF1 hybrids, which might influence interpretation of
the phenotype (22). Notably, CAST.Prdm9 ™~ females have func-
tional oocytes and are fertile, producing grossly healthy, fertile off-
spring, while C3H.Prdm9~~ females, like B6.Prdm9™'~ females, are
infertile (Fig. 3, A to C, and table S2). To determine the recombi-
nation status in PO CAST.Prdm9~/~ oocytes, we immunostained
CAST.Prdm9™~ ovarian meiotic spreads with antibodies against
MLH1 and SYCP3 (Fig. 3D and table S3). We observed normal syn-
apsis and MLHI frequency in ~96% of CAST.Prdm9™'~ pachytene
oocytes, although there was a significant reduction in the average
number of MLHI foci in these oocytes compared to the CAST.
Prdm9*"* control oocytes (P = 0.02149, Mann-Whitney U test;
Fig. 3, D and E, and table S3). This might be due to alteration of DSB
sites or recombination rate in the absence of PRDM9 in the CAST
genetic background. B6CASTF1.Prdm9~'~ and C3HCASTEF1.
Prdm9™" females were fertile, while B6C3HF1.Prdm9™~'~ females
were infertile (Fig. 3C and table S2), indicating the presence of one
or more dominant modifiers in the CAST genetic background that
abrogate the requirement for PRDMY in oocytes for fertility. All
Prdm9-deficient males of the genetic backgrounds we tested—
CAST.Prdm9~, B6.Prdm9™"", and C3H.Prdm9~'~—exhibited mei-
otic arrest (fig. S2A) and failed to produce live-born offspring.
Although these males are infertile, we did observe round sperma-
tids and elongating spermatids in histological sections of some
CAST.Prdm9™"" testes (fig. S2, A to C). This suggests a rescue of
meiotic arrest in some spermatocytes, as previously observed in
PWD.Prdm9~”" males (11). In conclusion, the requirement for
PRDMY in recombination initiation and fertility in mice is sexually
dimorphic and is modulated by background-specific genetic modi-
fiers that lead to fertility despite PRDM9 deficiency.

To identify the CAST modifier(s) that allow for Prdm9-null fe-
male fertility, we generated 75 BGCASTF2.Prdm9™'~ female mice to
perform quantitative trait locus (QTL) mapping, with the total
number of ovarian follicles per female as the phenotype [see Fig. 3
(F and H) and Materials and Methods for details]. We chose this
phenotype because the number of oocytes in mature ovaries cor-
relates with the efficacy of meiotic DSB repair and oocyte survival
(23). The analysis yielded a significant QTL on chromosome 5, with a
peak at ~100.4 Mb [1.5 LOD (logarithm of the odds) score drop:
72.9 to 127.65 Mb, permutation-derived significance threshold cal-
culated at o = 0.05] (Fig. 3, G and H, and fig. S2D). Intriguingly,
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this QTL contains two critical meiotic genes: ring finger protein
212 (Rnf212 at 108.7 Mb) and checkpoint kinase 2 (Chk2 at 110.8 Mb).
The success of the meiotic recombination process depends on
the efficient repair of meiotic DSBs and crossover formation, while
oocyte survival depends on successful passage through a checkpoint
that monitors DNA damage. The roles of RNF212 and CHK2 in
DNA damage surveillance in oocytes nominate them as compel-
ling candidate genetic modifiers of PRMD9 (23, 24). RNF212 is a
SUMO (Small Ubiquitin-like Modifier) ligase essential for cross-
over formation and oocyte quality control (24). It has been reported
that localization of RNF212 to DSB sites acts as a “memory” of
unrepaired DSBs, thus promoting apoptosis of defective oocytes
during the diplotene to dictyate meiotic substage transition (24).
Loss of Rnf212 leads to persistent DSBs and synapsis defects, and
Rnf212 knockout females are infertile (24). The other candidate gene,
Chk2, encodes a meiotic checkpoint kinase responsible for DNA
damage surveillance in oocytes (23). Ablation of CHK2 prevents
oocyte elimination in response to both radiation-induced DNA
damage and persistent meiotic DSBs due to genetic mutation of
Trip13 (23). Both the Rnf212 and Chk2 genomic sequences are well
conserved between B6 and CAST mice (~99% sequence identity;
fig. S3, A and B); however, regulatory variants outside the genes
themselves may play a critical role. To further elucidate the mecha-
nism behind this QTL, we examined Rnf212 and Chk2 experimen-
tally for their potential roles as genetic modifiers of Prdm9.

Modulation of a meiotic DNA damage checkpoint leads

to female-limited fertility in Prdm9-null B6 mice

The first candidate modifier gene we considered was Rnf212. In
meiotic spreads, RNF212 protein expression and colocalization pat-
terns were similar between CAST.Prdm9~~ meiotic oocytes and
CAST.Prdm9*"* oocytes (fig. $4). As mentioned above, crossover
formation in CAST.Prdm9~'~ meiotic oocytes is normal (Fig. 3,
D and E), suggesting that the role of RNF212 in crossover formation
in CAST.Prdm9”'~ remains intact. While the oocyte count of
B6.Rnf2127'" females is normal, these mice are infertile due to the
absence of crossovers (24). RNF212 deficiency promotes survival of
oocytes with genetic and radiation-induced DNA damage, sug-
gesting an additional role for RNF212 as a proapoptotic cell cycle
regulator that promotes elimination of defective oocytes (24). In
CAST.Prdm9~"" females, delayed activation of RNF212 in this ca-
pacity could conceivably promote the survival of oocytes with un-
repaired DSBs while still fulfilling its role in crossover formation.
Further investigation is needed to understand the exact role of
RNF212 in PRDM9-dependent and PRDM9-independent meiotic
recombination in CAST oocytes. However, because RNF212 ex-
pression and RNF212 colocalization with the SC protein SYCP3
(fig.S4) are similar in Prdm9*"* and Prdm9~"~ CAST oocytes, we did
not pursue it further, considering that additional validation would
require in-depth sequencing, genetic models, and analysis of func-
tional domains beyond the scope of the present study.

We next turned our attention to Chk2, which encodes a proapop-
totic DNA damage surveillance kinase whose ablation is known to
allow survival of oocytes with persistent DNA damage (23). We
speculated that ablation of Chk2 might also allow for the survival of
Prdm9-deficient oocytes. To determine directly whether Prdm9-
null oocytes complete meiosis in the face of Chk2 deficiency, we
generated Prdm9~"Chk2™~ double knockout females in the B6 ge-
netic background (henceforth, B6.Prdm9~~Chk2”"). Among PO
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Fig. 3. CAST/EiJ Prdm9-null females are fertile. (A) Immunofluorescence staining of histology sections from 3-week postpartum ovaries in wild-type and Prdm9~"~
females of different genetic backgrounds. DDX4 (red, also known as MVH) marks oocytes. DNA is stained with 4',6-diamidino-2-phenylindole (DAPI) (blue). Arrowheads
indicate primordial follicles. Scale bars, 100 um. Note the oocyte depletion in Prdm9™~ mice in the B6 and C3H genetic backgrounds, in contrast to survival of oocytes in
wild-type and Prdm9™~ mice in the CAST genetic background. (B) Pups produced by CAST.Prdm9~~ female mice. (C) Reproductive productivity of wild-type and Prdm9~"~
females in different genetic backgrounds. P values were calculated using the Mann-Whitney U test with Bonferroni correction for multiple testing. NS, not significant.
(D) Coimmunolabeling detection of MLH1 foci (red) in pachytene oocyte chromatin spreads, also labeled with antibody against SYCP3 (blue) in wild-type and Prdm9™~
CAST females. Scale bars, 10 um. (E) Violin plot with dots showing numbers of MLH1 foci per oocyte (error bars, SEM). The genotypes of mice tested are indicated below
the graphs. P values were calculated using the Mann-Whitney U test with Bonferroni correction for multiple testing. (F) Scheme of construction of BECASTF2.Prdm9~~
female cohorts used for SNP array genotyping [Giga Mouse Universal Genotyping Array (GigaMUGA)]. Seventy-five F2 females were generated by crossing
B6CASTF1.Prdm9~~ and B6CASTF1.Prdm9*'~ females with BECASTF1.Prdm9*'~ males. Eight-week-old B6CASTF2.Prdm9~'~ females were phenotyped for oocyte quantity
and genotyped. (G) Quantitative trait locus (QTL) mapping, with the total number of ovarian follicles (refer to Materials and Methods for details) per B6CASTF2.Prdm9™"~
female as the phenotype. QTL (pink) reached significance on chromosome 5, with a peak at ~100.4 Mb (1.5 LOD drop: 72.9 to 127.65 Mb, mm10). (H) Genotype effects of
the chromosome 5 QTL. CAST alleles affect oocyte number positively, as highlighted by CC (violet) and BC (orange) lines, relative to B6 homozygotes (BB, green).
CC, homozygous CAST; BB, homozygous B6; BC, heterozygous CAST/B6. Photo credit: Catherine Brunton and Tanmoy Bhattacharyya, The Jackson Laboratory.

oocytes from B6.Prdm9~'" single mutants, most exhibited wide- PO oocytes had fully synapsed chromosomes stained with RNF212,
spread asynapsis and persistent unrepaired DSBs, revealed by per- ~MLH1, and MLH3 foci (markers of mature crossovers) (Fig. 4, A to D,
vasive BRCAL1 (breast cancer 1 protein), YH2AFX (phosphorylated  fig. S5D, and table S3). This phenotype was substantially improved
form of H2A histone family member X), and IHOI (interactor of in B6.Prdm9~'"Chk2™~ double-mutant oocytes, with a significant
HORMADI 1) signals (figs. S5, A to D, and S6A). Only ~4% of these  increase in the number of oocytes with fully synapsed chromosomes
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Fig. 4. Chk2 ablation rescues meiosis in Prdm9-null females in the B6 genetic background. (A and C) Coimmunolabeling detection of MLH3 foci (red, A), MLH1 (red, C),
and SYCP3 (blue, both A and C) in pachytene oocyte chromatin spreads from wild-type and mutant females. Yellow arrowheads highlight unsynapsed regions of chro-
mosomes. Scale bars, 10 um. (B and D) Violin plots with dots showing numbers of MLH3 (B) and MLH1 (D) foci per meiotic oocyte (error bars, SEM). The genotypes of mice
tested are indicated below the graphs. P values were calculated using the Mann-Whitney U test with Bonferroni correction for multiple testing. (E and F) Chromosome
configuration in meiosis Ml analyzed by chromosome spreads from different mutant and control oocytes, pictured in (E) and quantified in (F). In (E), DNA (blue) and kine-
tochores (red) were detected by DAPI and CREST antiserum, respectively. Scale bars,10 um. Multiple univalents in a B6.Prdm9™~ oocyte are indicated with white arrow-
heads. The examples of oocytes from B6 and B6.Prdm9~~Chk2™~ mice reveal all chromosomes organized in bivalents. P values were calculated using xz test.

devoid of BRCA1, YH2AFX, and THO1 (~26%; figs. S5, E to H, and
S6A). We also observed an approximate threefold increase in the
number of dictyate oocytes in PO B6. Prdm9~'~Chk2™~ double-
mutant females, compared to B6.Prdm9 ™~ females (figs. S5, E to H,
and S6B). Only a small number of growing follicles survived in
B6.Prdm9™'" females (Fig. 5, A and C). We isolated metaphase I
(MI) oocytes from young B6.Prdm9~~ and B6.Prdm9~'~Chk2™'~
females and noted a significant increase (~25%) in the number
of metaphase oocytes with normal chiasmata between the homol-
ogous chromosomes in B6.Prdm9~'~Chk2™"~ females relative to
B6.Prdm9~'~ females (Fig. 4, E and F). We conclude that CHK2
eliminated oocytes that failed to repair meiotic DSBs, but oocytes
in which recombination was completed were not eliminated and
progressed through folliculogenesis. Although ~4% of B6.Prdm9 ™"~
oocytes at PO had a full complement of crossovers, this is probably
not sufficient for fertility, especially given further oocyte elimina-
tion after PO during follicle formation and atresia. We propose that
with the removal of Chk2, more Prdm9™~ oocytes escape the mei-
otic DNA damage checkpoint and subsequently complete DSB
repair, resulting in a higher oocyte reserve.

Powers et al., Sci. Adv. 2020; 6 : eabb6606 23 October 2020

To test the impact of improved meiotic phenotypes on oocyte
number and fertility, we estimated the oocyte number in B6.Prdm9 ™"~
Chk2™"~ females and performed fertility tests with wild-type B6
males. In contrast to B6.Prdm9 ™'~ females, B6.Prdm9 ™~ Chk2™'" fe-
males produced at least one litter of grossly healthy, fertile offspring
over a 6-month period (Fig. 5, B to D, fig. S6D, and table S2), indi-
cating some functional ovarian reserve. However, there was a high
incidence of pregnancy losses and perinatal deaths (fig. S6E), sug-
gesting that oocyte quality is compromised, consistent with the ob-
servations of metaphase oocytes in B6.Prdm9~"Chk2™~ females.
The extent of this fertility was much lower than that observed in
CAST.Prdm9™'~ females, suggesting CAST modifiers in addition
to Chk2. In contrast to females, Chk2 deficiency did not rescue fer-
tility in B6.Prdm9~~ males; both single- and double-mutant males
were infertile with complete meiotic arrest (fig. S6C). Together,
these results demonstrate that, in females, a Prdm9-independent
recombination pathway can give rise to the required number of
crossovers for production of healthy offspring, probably facilitated
by modulation of the Chk2-dependent DNA damage surveillance
mechanism.
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Fig. 5. Chk2 ablation rescues fertility in Prdm9-null females in the B6 genetic background. (A) PAS-stained histological sections of 3-week postpartum ovaries from
wild-type, single-, and double-mutant females in the B6 genetic background. Scale bars, 200 um. (B) Pups produced by B6.Prdm9~~Chk2™'~ female mice. (C) Oocyte
quantification in mutant and wild-type animals. (D) Litter sizes in mutant and control females. P values were calculated using the Mann-Whitney U test with Bonferroni
correction for multiple testing. Photo credit: Tanmoy Bhattacharyya, The Jackson Laboratory.

DISCUSSION

In this study, we find that female meiosis tolerates critically low lev-
els of catalytically active PRDMDY, or even no PRDM? at all in some
genetic backgrounds, because a PRDM9-independent recombina-
tion pathway compensates successfully. The meiotic DNA damage
repair protein CHK2 acts as a modifier; removing it allows comple-
tion of meiosis and fertility in females lacking active PRDM9. This
is not the case for males; Prdm9™"/*" and Prdm9-null males in the
genetic backgrounds examined were infertile. Overall, these results
demonstrate that the requirement for functional PRDM9 during
meiosis varies substantially by genetic background and by sex and
that there are alternative pathways for effective recombination.

As shown by our genetic analyses, elimination of CHK2-dependent
DNA damage checkpoint activation can restore female fertility in
the absence of PRDM9. CHK2 triggers elimination of oocytes with
persistent DNA damage. It is possible that PRDM9-independent
DSBs occur later or that their repair is inefficient or prolonged, thus
causing DSBs to persist past the timely activation of the CHK2-
dependent DNA damage checkpoint, leading to oocyte elimination.
Ablation of Chk2 and consequent elimination of checkpoint sur-
veillance may promote survival of oocytes by allowing extra time
for PRDM9-independent crossovers to accumulate, permitting
completion of meiosis in a sufficient number of oocytes to produce
offspring. However, this is not a fully adequate explanation of the
modifier effect because, although B6.Prdm9 "~ Chk2 ™~ females were
fertile, they were not as productive as CAST.Prdm9™~'~ females.
Thus, while CHK2 is clearly mechanistically involved, at least in B6
females, it alone does not explain the disparity between B6 and
CAST female fertility in the absence of PRDM9. Furthermore, the
predicted causative CAST variant(s) in Chk2 seem to be dominant
and possibly neomorphic, unlike the recessive null mutation that
restores fertility in B6.Prdm9~~Chk2™'~ females.

A recent study showing partial restoration of meiosis in PWD.
Prdm9™'~ males, but not females, speculated that mice with higher
crossover rates can alleviate the synapsis defects characteristic of
Prdm9-null meiocytes by increasing the probability of synapsis-
promoting DSBs (11). PWD males have higher recombination rates

Powers et al., Sci. Adv. 2020; 6 : eabb6606 23 October 2020

than females—unlike most other mouse strains, including B6 and
CAST, in which females have higher recombination rates than
males (25, 26). The dosage effect of the crossover maturation
factor RNF212 on crossover rate (27) suggests that alteration in the
level or timing of Rnf212 expression could markedly alter crossover
rate. Thus, higher crossover rates in CAST females (or PWD males)
in comparison to CAST males (or PWD females) may be modulated by
allele-specific genetic regulation or functional variation in RNF212
dosage during pachynema in different genetic backgrounds and sexes.
Alternatively, if RNF212 does indeed participate in DNA damage
surveillance as a memory of persistent DSBs (24), some allelic variants
may be more permissive than others. It is therefore possible that both
Chk2 and Rnf212 are modifiers of the PRDM9-independent fertility
phenotype or that additional CAST genome variants affect timing
or efficacy of DNA repair, the checkpoint, or other features of meiosis
that determine whether or not oocytes activate the checkpoint.
Another possible explanation of fertility restoration in CAST fe-
males lacking PRDMO is that repair of PRDM9-independent DSBs
is more efficient in the CAST genetic background than in the B6,
with fewer oocytes exhibiting enough persistent to activate the
DNA damage checkpoint. Ability to repair DSBs may be a limiting
factor in B6 mice; the high pre- and perinatal death rate (fig. S6E)
and the aneuploidy rate we observed in developing oocytes (Fig. 4,
E and F) indicate that, in B6 mice, the PRDM9-independent path-
way leads to maturation of defective oocytes. Although similar
modification of an infertility phenotype via removal of Chk2 was
reported for Trip13-deficient females (23), there are critical differ-
ences between causes of infertility in Trip13- and Prdm9-deficient
females. In Trip13 mutants, crossovers originate from PRDM9-
dependent DSBs, and complete synapsis is achieved (23, 28); in
contrast, Prdm9-deficient oocytes exhibit widespread chromosomal
asynapsis and form crossovers at ectopic DSBs. Trip13-deficient
oocytes are eliminated due to inefficient repair of DSBs in a non-
crossover pathway (23). Removal of Chk2 in Tripl3 mutants rees-
tablishes ovarian reserve and fertility by allowing oocyte survival and
additional time for DSB repair (23); however in Prdm9-deficient
oocytes, Chk2 removal must also allow chromosomal synapsis and
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recombination at non-PRDM9 DSBs. To our knowledge, this is the
first evidence that modulation of a DNA damage checkpoint pro-
tein can allow survival of oocytes that undergo genetic recombina-
tion via a PRDM9-independent pathway.

While checkpoint modulation appears to be a feature allowing
oocyte, but not spermatocyte, survival in the absence of PRDMD9, at
least in certain genetic backgrounds, the question of the genetic and
cellular mechanisms behind this dimorphism is undoubtedly more
complex. Although recombination is essentially the same process in
both sexes, spermatogenesis and oogenesis are fundamentally dif-
ferent cell differentiation programs. Two key differences unique to
males that might explain the sexually dimorphic requirement for
PRDMO are meiotic sex chromosome inactivation (MSCI), which is
the silencing of most genes on the sex chromosomes from pachynema
of meiotic prophase I into spermiogenesis (29), and deployment of
Piwi-interacting RNAs (piRNAs) (30, 31). MSCI is triggered by XY
asynapsis in spermatocytes and is marked by sequestration of the sex
chromosomes in the “sex body” (29). Spermatocytes undergoing
PRDMO9-deficient meiotic arrest in B6 mice do not form a normal
sex body, as unsynapsed autosomes and unrepaired DSBs compro-
mise recruitment of silencing factors to sex chromosomes (8, 17, 32).
This could potentially lead to failure of MSCI, triggering meiotic
arrest of PRDM9-deficient spermatocytes (8, 32). Inappropriate
critical gene silencing on the asynapsed autosomes due to meiotic
silencing of unsynapsed chromatin (MSUC) may also contribute to
spermatocyte elimination (29). Oocytes, which are not affected by
MSUC, may escape these outcomes (29). In mammals, piRNAs are
necessary to suppress expression of L1 retrotransposons during
spermatogenesis (30, 31). Mutation or deficiency of the piRNA path-
way contributes to male-limited sterility (33-35), and it was recently
reported that the expression of piRNAs is misregulated in Prdm9-
null spermatocytes (36). Thus, it is possible that dysregulation of the
piRNA pathway contributes to the postmeiotic problems in Prdm9-
null germ cells that undergo partial meiotic arrest, as seen in PWD
(11), CAST, and other genetic backgrounds (this report).

In addition to invoking intriguing meiotic mechanisms, the sex-
ually dimorphic responses to PRDM9 deficiency described here have
significant evolutionary implications. Prdm9 is the first and only
known mammalian speciation gene (37). Prdm9 interacts with an
unknown element on the X chromosome to cause male-limited
meiotic arrest and hybrid sterility in F1 hybrids between the females
of the M. m. musculus strain PWD/Ph] and the males of certain
M. m. domesticus strains, including B6 (37, 38). Sterile (PWDXB6)
F1 hybrid males exhibit a significant enrichment of DSBs at PRDM9-
independent hotspots and high rates of autosomal asynapsis that
trigger pachytene checkpoint activation (38, 39). Chromosome
asynapsis is also observed in F1 hybrid females, although the pheno-
type is markedly less severe than in F1 hybrid males, and females
remain fertile (38, 40). Our findings suggest that F1 hybrid females
may retain fertility by using a PRDM9-independent DSB repair
mechanism to evade checkpoint activation. Our work further nom-
inates Chk2 as a key modifier of these sex and strain differences in
the meiotic tolerance for PRDM9-independent DSB repair.

The pattern of male-limited hybrid sterility in the (PWDxB6)F1
model follows Haldane’s rule, which postulates that when only one
sex of an interspecies hybrid experiences sterility or inviablity, it is
the heterogametic sex (41) . Many hypotheses, largely based on the role
of sex chromosomes, have attempted to explain Haldane’s rule, in-
cluding the faster-male theory, the faster X theory, meiotic drive,

Powers et al., Sci. Adv. 2020; 6 : eabb6606 23 October 2020

and the dominance theory (41). However, the mechanistic basis for
sexually dimorphic hybrid sterility remains unclear in most docu-
mented cases. The sexually dimorphic requirement for PRDM9 for
fertility and the relaxed stringency of DNA damage surveillance in
females that we report here provide a possible explanation for
Haldane’s rule in the (PWDXB6)F1 hybrid sterility model. Notably,
hybrid sterility in this system depends on a genetic interaction be-
tween Prdm9 and an X-linked locus affecting DNA DSB repair be-
tween homologous chromosomes during meiotic prophase (38, 40).
The sex-specific manifestation of (PWDXB6)F1 hybrid sterility may
also be driven, at least in part, by sex and genetic differences at an
autosomal gene, Chk2.

Finally, Prdm9 is a fundamental evolutionary innovation that
is thought to have evolved to direct recombination away from func-
tional elements, safeguarding these regions from recombination-
associated mutagenesis (7). As in most cases of evolutionary innovation,
however, there are trade-offs. Use of a DNA binding protein to specify
regions of recombination requires that sufficient numbers of the
cognate binding sites of that protein remain intact. However, PRDM9-
dependent hotspots extinguish themselves via gene conversion,
leading to gradual erosion of the hotspot-binding motifs recognized
by a particular PRDM?9 variant and, ultimately, meiotic failure and
infertility (42, 43). One mechanism through which populations may
avoid this fate is the emergence of new Prdm9 alleles that recognize
new suites of hotspots (42, 43).

Prdm9 is highly polymorphic and its DNA binding domain is
rapidly evolving via positive selection. Our findings introduce an
additional, novel complexity to the dynamic interplay between
hotspot erosion and reproductive fitness, i.e., sex differences in the
usage or effectiveness of PRDM9-independent pathways may render
one sex more resilient to the loss of PRDM9 activity, leading to potential
sex-specific fitness effects of hotspot erosion. Further work is required
to elucidate the mechanistic details of the sexually dimorphic re-
sponses to lack of PRDMY; nevertheless, the theoretical implications
raised by this phenomenon present fascinating new insights into
the checks and balances that constrain one of the most fundamental
evolutionary processes in mammals—genetic recombination.

MATERIALS AND METHODS

Ethics statement

The animal care rules used by The Jackson Laboratory are compatible
with the regulations and standards of the U.S. Department of Agri-
culture and the National Institutes of Health. The protocols used in
this study were approved by the Animal Care and Use Committee of
The Jackson Laboratory (summary nos. 04008 and 15001). Euthanasia
was carried out by cervical dislocation.

Mouse strains

Mice used in this study were acquired from The Jackson Laboratory.
The following strains were used: C57BL/6] (stock number 000664),
WSB/E]] (stock number 001145), CAST/Ei] (stock number 000928),
C3H/HeJ (stock number 000659), B6;129P2-Prdm9™" ™ #/] (stock
number 010719), C57BL/6]-Prdm9<em2Kpg“>/KUp%n (stock number
28854; Prdm9™). C57BL/6 N-A""P" Chek 2™ P EVCOMMHmg /)N mucd
(stock number 047090-UCD, also known as Chk2) mice were ac-
quired from the Knockout Mouse Project repository at The Jackson
Laboratory. The B6;129P2-Prdm9™™ ™[] mice were backcrossed to
C57BL/6] for 10 generations before use in this study. C3H-Prdm9 ™"~
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and CAST/EiJ-Prdm9~'~ congenic mice were generated by back-
crossing with B6;129P2-Prdm9"™ /] mice for five generations.
C57BL/6]-Prdm9““"*P&"/Kpgn mice were generated by introducing
a point mutation (glu365pro) via CRISPR-Cas9 gene editing, onto the
C57BL/6] genetic background (fig. S1A). Gene editing was performed
by the Genetic Engineering Technology core at The Jackson Laboratory.

Fertility tests

Control and experimental females (2 to 6 months old) were housed
with fertile males for a period of up to 6 months. A female was con-
sidered fertile if she gave live birth at least once. Litter size was de-
termined by counting pups on the day of birth. Embryo loss during
pregnancy was assessed by comparing the number of live births per
pregnancy. Briefly, females were mated to wild-type males and the
presence of a copulation plug was checked the next morning and
recorded. At 19.5 dpc (days post coitum), pregnant females were
expected to deliver. Embryo loss during pregnancy was clear due to
sinking of stomach in pregnant females due to reabsorption of
embryos by 16.5 dpc.

Tissue fixation, histology, immunofluorescence, and
follicle quantification
Whole testes and ovaries were fixed for 24 hours in Bouin’s fixative
at room temperature and then washed three times with 70% ethanol
at room temperature for 1 hour per wash. Testis cross sections were
stained with periodic acid-Schiff (PAS) diastase by standard methods
and imaged at x40 magnification with a NanoZoomer 2.0-HT.
Ovaries from 3- and 8-week-old females were fixed and embedded
in paraffin, serially sectioned at 5 um, and stained by hematoxylin
and eosin or PAS. Follicle quantification was performed as published
previously (23). Briefly, every fifth section was examined for the
presence of the following classes of oocytes/follicles: primordial,
primary, secondary, and mature. For QTL analysis, total follicle
number was used. Statistical differences in follicle number between
different genotypes were evaluated using the nonparametric two-
tailed Mann-Whitney U test with Bonferroni correction using R.
For immunofluorescence, testes from 2-month-old and ovaries
from 3-week-old mice were fixed in 4% paraformaldehyde and sec-
tioned at a thickness of 5 um, matured overnight, dewaxed, rehydrated,
and heated in 10 mM sodium citrate buffer (pH 6.0) for antigen
retrieval. Slides with testis sections were incubated with antibody
dilution buffer [1.5% bovine serum albumin (BSA), 5% donkey serum,
0.05% Triton X-100 in phosphate-buffered saline (PBS), and 0.2x
cocktail of protease inhibitors] for 1 hour at room temperature.
Slides were incubated overnight with diluted anti-PRDM9 (1:100)
(32), anti-yH2AFX (1:5000; Upstate #07-164), and anti-SYCP3 (1:100;
D-1; Santa Cruz #74569) in ADB bulffer. Slides with ovary sections
were stained using rabbit anti-MVH (mouse Vasa homolog) (1:500;
Abcam #27591). Immunofluorescent staining was performed by
staining the sections for 2 hours at 37°C, using diluted appropriate
secondary antibodies conjugated with Alexa Fluor 488/fluorescein
isothiocyanate, Alexa Fluor 594/CY3, and Alexa Fluor 647/CY5
(1:300; Molecular Probes/Invitrogen or Jackson Immunoresearch
Laboratories). Stained sections were mounted using ProLong Gold
Antifade Mountant with 4’,6-diamidino-2-phenylindole (DAPI)
(P36935; Molecular Probes/Invitrogen) at 4°C overnight and imaged
after 24 hours using a Leica SP5 confocal microscope and/or Zeiss
Axiolmager.Z2 epifluorescence microscope. Images were processed
and adjusted using Adobe Photoshop (Adobe Systems).

Powers et al., Sci. Adv. 2020; 6 : eabb6606 23 October 2020

Immunostaining of spread meiocytes

The meiocyte spreads were prepared by using the hypotonic protocol
as described previously (38). The nuclei were immunostained using
the following primary antibodies: rat polyclonal anti-SYCP3 (44),
mouse monoclonal anti-MLH1 (Abcam #14206), mouse monoclonal
anti-yH2AFX (Upstate, #05-636), mouse monoclonal anti-SYCP3(D-1)
(Santa Cruz #74569), guinea pig polyclonal anti-IHO1 (45), rabbit
polyclonal anti-RNF212 (27), rabbit antibody anti-MLH3 (46), and
rabbit polyclonal anti-BRCA1(C-20) (Santa Cruz #642); and the
following secondary antibodies: goat anti-rabbit immunoglobulin
G (IgG)-Alexa Fluor 488 (Molecular Probes, A-11034), goat anti-
mouse IgG-Alexa Fluor 568 (Molecular Probes, A-11031), goat
anti-rabbit IgG-Alexa Fluor 568 (Molecular Probes, A-11036), goat
anti-mouse IgG-Alexa Fluor 350 (Molecular Probes, A-21049),
goat anti-mouse IgG-Alexa Fluor 647 (Molecular Probes, A-21236), goat
anti-rabbit IgG-Alexa Fluor 647 (Molecular Probes, A-21245), and
goat anti-guinea pig IgG-Cy3 (Chemicon, #AP108C). Stained
meiocytes were mounted using ProLong Gold Antifade Mountant
with DAPI (P36935; Molecular Probes/Invitrogen) at 4°C overnight
and imaged after 24 hours using a Zeiss Axiolmager.Z2 epifluores-
cence microscope. Images were processed and adjusted using Adobe
Photoshop (Adobe Systems). MLH1 foci were counted using Image]J
software (http://rsbweb.nih.gov/ij/). Statistical differences in MLH1
and MLH3 focus number per meiocyte between different genotypes
were evaluated using the nonparametric two-tailed Mann-Whitney
U test with Bonferroni correction using R. Meiocytes with partially
asynapsed or desynapsed chromosomes were also considered as a
data point for the MLH1 and MLH3 analysis.

GigaMUGA genotyping and QTL analysis
Giga Mouse Universal Genotyping Array (GigaMUGA) genotyping
was carried out by Neogen’s commercial service (18). Invariant SNPs,
SNPs with erroneous or missing calls in parental and F1 control
samples, SNPs with >10% missing data across all samples, and sites
that deviated from Hardy-Weinberg expectations were excluded.
Putative genotyping errors were identified as tight double recombi-
nants and recoded as missing data. A total of 54,629 genotypes sur-
vived these filters. Cleaned genotypes were then down-sampled to
every 10th marker to eliminate a large number of uninformative
markers, reduce the impact of genotyping error on map inflation,
and expedite the process of map construction. This thinned geno-
type dataset was then used to construct an empirical genetic linkage
map with the est_map call in R/qtl2 (47). Recombination fractions
were converted to map distances using the Carter-Falconer mapping
function (48) and assuming a 1% residual genotyping error rate.
Single QTL mapping of recombinant B6CASTF2.Prdm9” females
was performed using the linear mixed model framework implemented
in the R/qtl2 package. Conditional genotype probabilities were cal-
culated from the downsized marker dataset without the inclusion of
any pseudomarkers. The nonrandom genetic structure among sam-
ples was specified via a kinship matrix computed using the leave-
one-chromosome-out method. QTL significance thresholds were
determined by 1000 permutations of the data. To improve fit to nor-
mality, follicle counts were natural log transformed before mapping.

Ml spreads

MI spreads and staining were performed as previously described (49).
Briefly, pregnant mare’s serum gonadotropin (5 IU) was injected to
4-week-old female mice 48 hours before time of collection of oocytes.

10of 14

0202 ‘2z Jaquieoa( uo /610 Bewaousios ssoueApe//:diy Wwolj papeojuMo(]


http://rsbweb.nih.gov/ij/
http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

Cumulus-oocyte complex or single germinal vesicle oocytes were
collected in minimal essential medium (MEM)/polyvinylpyrrolidone
(PVP) medium [25 mM Hepes, PVP (3 mg/ml), 2.5 pM milri-
none]. After removing cumulus cells, denuded oocytes were ma-
tured for MI by incubating in a single drop of CZB (Chatot Ziomek
Bavister)/glutamine [81.62 mM NaCl, 4.83 mM KCl, 1.18 mM KH-
2POy4, 1.18 mM MgSO4 7H,0, 25.12 mM NaHCO3, 1.7 mM CaCl
2H,0, 31.3 mM sodium lactate, 0.27 mM sodium pyruvate, 0.11 mM
EDTA, BSA (3 mg/ml), 7 mM taurine, gentamicin (10 pg/ml), phenol
red (10 ug/ml), and 1 mM glutamine]. Zona pellucida was removed
from matured MI oocytes by using EmbryoMax Acidic Tyrodes
solution (Millipore), and then oocytes were placed in spread solu-
tion (H,O, 0.16% Triton X-100, 6 mM dithiothreitol, 0.64% PFA).
After slides were completely dried, slides were incubated with block-
ing solution (3% BSA in PBS) for 10 min, at room temperature.
Immunostaining was performed by incubating slides in anti-CREST
antibody (Anti-Centromere Antibodies derived from human CREST
patient serum) (Antibodies Inc., 15-234-0001) diluted in blocking
buffer for 3 hours. After washing with blocking buffer, secondary
antibody (anti-human Alexa Fluor 647) incubation was performed
for 1.5 hours. Slides were mounted in Vectashield with DAPL

H3K4me3 ChiP-seq

ChIP-seq for H3K4me3 was performed with spermatocytes isolated
from 14 dpp (days postpartum) Prdm9™" " animals, as previously
reported (15), using a commercially available polyclonal a-H3K4me3
antibody (EMD Millipore Cat# 07-473). DNA samples were sequenced
on the Illumina NextSeq 500 platform, with 75-bp reads and trimmed
for quality using trimmomatic. Sequence data were aligned to the
mouse mm10 genome using BWA (Burrows-Wheeler aligner) v0.7.9a,
and duplicate reads and reads which failed to align to unique posi-
tions in the genome were discarded. This resulted in a total of
26,209,084 and 28,910,782 aligned reads, respectively, for each of
two biological replicates. The raw Fastq files were merged and aligned
to mm10 by the same procedure for analysis, yielding a total of
45,931,625 aligned reads in the merged sample. Sequence data are
available at National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) under
accession number GSE144144.

For the wild-type B6 sample, the sequence data used were previously
reported by Baker et al. (15). Data are available under GEO acces-
sion number GSE52628 (sample accession numbers GSM1273023
and GSM1273024). These data were merged and mapped to mm10
using the above procedure, resulting in 39,973,027 total aligned reads.

H3K4me3 peak calling

H3K4me3 peaks were called using MACS v1.4, default parameters,
with a P value cutoff of 0.01, using treatment and control samples.
For a control sample, the merged file with the two input B6 biological
replicates from Baker et al. (15), mapped to mm10 and described
above, was used. To determine overlap between known PRDM9-
dependent H3K4me3 peaks and ChIP-seq peak sets, we used
BedTools (v2.27.0) intersect with default parameters, except for a
requirement for 20% overlap (f= 0.20).

We classified H3K4me3 peaks in spermatocytes as PRDM9-
dependent based on a previously published H3K4me3 ChIP-seq ex-
periment from our lab. This experiment compared H3K4me3 peaks
in spermatocytes isolated from wild-type B6 males to those from
B6.Prdm9“*" knock-in males, in which the DNA binding domain of
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the highly divergent Prdm9“* allele replaces that of the endogenous
Prdm9°°™ allele in an otherwise B6 genetic background. PRDMY-
dependent H3K4me3 sites are defined as those present in B6 spermato-
cytes but absent in B6.Prdm9“*" spermatocytes. These PRDM9-dependent
H3K4me3 peak locations for B6 were previously described by Baker
et al. (15); files with these hotspot locations are available under GEO
accession number GSE52628. For the present analysis, their positions
were converted to mm10 using the UCSC (University of California,
Santa Cruz) Genome Browser tool LiftOver; this file is available un-
der GEO accession number GSE144144.

DMC1 ChiP-seq

Two biological DMC1 ChIP replicates were performed with
B6.Prdm9*"FP males using a previously described method (17, 50).
Briefly, testes from two euthanized adult mice (one per replicate) were
removed, decapsulated, and cross-linked with 1% paraformaldehyde
solution for 10 min. The tissue was homogenized and filtered with
a 70-um cell strainer to obtain germ cells. Cells were washed with
lysis buffer 1 [0.25% Triton X-100, 10 mM EDTA, 0.5 mM EGTA,
and 10 mM tris-HCI (pH 8.0)] and lysis buffer 2 [0.2 M NaCl, 1 mM
EDTA, 0.5 mM EGTA, and 10 mM tris-HCI (pH 8.0] and resus-
pended in lysis buffer 3 [1% SDS, 10 mM EDTA, and 50 mM tris-
HCI (pH 8.0)] with 1x protease inhibitor cocktail. The chromatin
was then sheared to ~1000 bp by sonication and dialyzed against
ChIP buffer [0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM
tris-HCI, (pH 8.0), and 167 mM NaCl] for at least 6 hours. Ten micro-
liters of chromatin were saved as input. The rest of the chromatin was
incubated with an antibody against DMCI1 (Santa Cruz, sc-8973)
overnight at 4°C. The mixture was then incubated with Protein G
Dynabeads (Thermo Fisher Scientific, 10004D) for 4 hours at 4°C.
The beads were washed with wash buffer 1 [0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 20 mM tris-HCI, (pH 8.0), and 150 mM NaCl],
wash buffer 2 [0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM
tris-HCl, (pH 8.0), and 500 mM NaCl], wash buffer 3 [0.25 M LiCl,
1% NP-40, 1 mM EDTA, 10mM tris-HCI, (pH 8.0), and 1% deoxy-
cholic acid] and twice with TE (Tris-EDTA) buffer. The chromatin
was eluted with dilution buffer [1% SDS and 0.1 M NaHCO?3 (pH 9.0)]
at 65°C for 30 min and reverse-cross-linked by adding 200 mM
NaCl and incubating overnight at 65°C. ChIP and input DNA were
purified by the MinElute Reaction Cleanup Kit (Qiagen, 28006). For
library preparation, DNA was first end-repaired by incubation with
1x T4 DNA Ligase Reaction Buffer with 0.25 mM deoxynucleotide
triphosphates (ANTPs) 3 U of T4 DNA polymerase (NEB, M0203S), 1 U
of Klenow Enzyme [New England Biolabs, Inc. (NEB), M0210S],
and 10 U of T4 PNK (NEB, B0202S) at 20°C for 30 min, followed
by addition of 3’-A overhangs using Klenow Fragment 3’-5" exo-
(NEB, M0212S). After denaturation of DNA at 95°C for 3 min,
adapters from the TruSeq Nano DNA LD Library Prep Kit (set A,
Ilumina, FC-121-4001) were ligated with a Quick Ligation kit
(New England Biolabs (NEB), M2200S). The libraries then were
amplified using polymerase chain reaction enhancer mix and
primer cocktail (Illumina, FC-121-4001) for 12 cycles. For each
step, DNA was purified by the MinElute Reaction Cleanup Kit. Li-
braries were sequenced on the Illumina NextSeq 500 platform, with
75-bp paired-end reads.

DMC1 analysis
Fastq files for paired-end sequenced DMCI1 samples were processed
with pipelines similar to Brick et al. (51). Briefly, Fastq files for
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paired-end sequenced DMCI1 samples were trimmed using Trimmo-
matic (v0.32) and subsequently parsed for detection and selection
of paired reads having homology at the 5" and 3’ ends as established
by protocols for single strand DNA enrichment. These selected
paired-end reads represent the detectable single-stranded DNA reads.
The microhomology sequence was removed from the read sequences,
and they were subsequently aligned to the mm10 genome using
BWA (v0.5.10-tpx). Bam files from this alignment were parsed for
detection and subsequent selection of single-ended reads contain-
ing true genomic sequence versus fill-in sequence at the micro-
homologous region. Strandedness could be detected by the alignment
flags, and no biases were found between strands. Fastq files were
subsequently created containing only the Watson and Crick strand
sequences and subsequently processed using nonpaired-end align-
ment pipelines. Peaks were called using MACS 2.0 with the read
extension parameter set to 800 to force pileups.

This yielded 3,348,889 and 4,119,326 aligned DMCI reads for the
two B6.Prdm9""/FF replicates, respectively. We merged these two rep-
licates for analysis, yielding 7,468,215 aligned DMCI reads in the
merged file. For comparison to wild type, we used previously re-
ported DMCI1 sequence data from wild-type C57BL/6 N males (17).
We merged three biological replicates for analysis; these replicates
had 2,845,239, 2,938,318, and 5,108,836 aligned DMCI1 reads, re-
spectively, yielding a merged file with 10,712,776 aligned DMC1 reads
(GEO accession GSE112110; samples SRX3825301, SRX3825302,
and SRX3825303).

Peak calling was performed using MACS (v.2.0) with standard
treatment (ChIP) and control (input) samples with a false discovery
rate value of 0.01. For an input sample, we used previously reported
wild-type input data from C57BL/6 N males (17). For analysis, we
merged two biological replicates, containing 13,651,687 and 11,604,547
aligned reads, yielding a merged input file with 25,256,234 aligned
reads (GEO accession GSE112110; samples SRX3825309 and
SRX3825310). This input file was used as the peak calling control
for both the wild-type and B6.Prdm9""" merged ChIP files. Our
set of PRDM9-independent DMC1 peaks is the set of peaks from
Brick et al. (7) in which the authors performed DMCI1 ChIP-seq in
Prdm9-null mice (GEO accession GSE35498). We mapped this file
to mm10 for our analysis; our remapped file is available at GEO
accession GSE144144.

MA plots

To generate MA plots [M (log ratio) and A (mean average) Bland-
Altman plot], we first counted the number of sequencing reads within
each peak using Bedtools (v2.27.0) coverage, using the -counts
function with default parameters. We then normalized these counts
to RPM mapped reads and used the normalized counts as input for
MA plots. The actual plots were generated using the plotMA function
of the R package limma (www.r-project.org/), with default parameters.

B6xWSB-Prdm9t"/f” crossover analysis

Wild-type WSB/Ei] males were crossed with B6.Prdm9*'=" hetero-
zygous females to generate B6WSBF1.Prdm9"™ mice. These F1 mice
were crossed together to produce BEWSBF2.Prdm9"""™ homozygotes.
Female B6WSBF2.Prdm9™*'*¥ homozygotes were then crossed to
wild-type C57BL/6] males to generate ((B6xWSB)F2xB6)F3 back-
crossed progeny. Three B&XWSBF2.Prdm9™”" females and 20 of their
((B6xWSB)F2xB6)F3 offspring were genotyped on the GigaMUGA
SNP array. Crossovers were called on the basis of informative SNPs
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between B6 and WSB, using an in-house R script (available upon
request). We defined a crossover as having at least five consecutive
informative markers (markers differing in genotype between B6 and
WSB) of the appropriate genotype on each side of the event. Cross-
over calls were confirmed using HaploQA—software developed at
The Jackson Laboratory that calls crossovers based on a Hidden
Markov Model. Individual chromosomes with more than five cross-
overs were excluded from analysis. Crossovers present in the mothers
were subtracted from those in the offspring. The 94 informative
offspring-specific crossover intervals were assessed for overlap with
known hotspots—defined as PRDM9-dependent H3K4me3 peaks
in the B6 genetic background (n = 18,838) (15)—using bedtools
intersect (v2.27.0) with default parameters.

The WSB sequences (ENSEMBL) of crossover intervals with no
B6 hotspot were searched for 11-bp PRDM9°™ binding motifs using
the MEME suite tool FIMO. The PRDM9”°™ motif table was based
on the empirically determined consensus motif (19). The WSB and
B6 motif lists were compared, and those WSB intervals with no novel
PRDM9”°™ binding motifs relative to the cognate B6 intervals were
noted as such.

Testis extract preparation and Western blotting

Crude testis extract was prepared as reported previously (17) from
12 dpp male mice with the denoted genotypes. Samples were sub-
jected to standard SDS-polyacrylamide gel electrophoresis and
Western blotting for detection of PRDM9 (1:1000), using a guinea
pig anti-PRDMO9 antibody produced in-house (2). Subsequently, the
blot was stripped and reprobed with mouse anti-B-tubulin primary
antibody (1:10,000, Sigma-Aldrich Cat# T4026). Primary antibodies
were detected with horseradish peroxidase (HRP)-conjugated anti-
guinea pig (1:5000, Cat# AP193P) and HRP-conjugated anti-mouse
secondary antibodies (1:20,000, Bio-Rad Cat# 170-6516), respectively.

Sequence alignment analysis

The DNA sequence for Rnf212 and Chk2 for mm10 reference, CAST/EI],
and C57BL/6N] was obtained from published sequence datasets
at www.sanger.ac.uk/science/data/mouse-genomes-project and
http://useast.ensembl.org/Mus_musculus/Info/Index. The alignment
was performed using Blastn. Data were visualized using dot ma-
trix plots.

Quantification and statistical analysis
Statistical tests were performed using GraphPad Prism version 7.0
and R statistical packages.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/43/eabb6606/DC1
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