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further studies examining local reactivation
during sleep: presenting auditory
information to only one ear during sleep
also primarily activates one hemisphere.
Thus, auditory stimuli such as sounds and
words may also be useful to reactivate
memories locally during sleep.

It also provides further evidence that
sniffing a scent with only one nostril does
indeed selectively activate one
hemisphere. This local selectivity might be
particularly strong during NREM sleep, as
connectivity between cortical regions is
reduced during these sleep stages. This
brings me to one of my favorite research
questions: How does the nasal cycle
influence oscillatory activity and the
processes of memory consolidation
during sleep? The nasal cycle refers to a
particularity of our nose: typically we
preferentially sniff with only one nostril.
You can try it yourself right now: which
nostril has an easier airflow in this
moment? Interestingly, the preferential
nostril regularly switches sides, with
varying duration mostly between 1.5and 4
hours [10]. While its function is not
completely clear, it might serve optimal
olfactory perception. Importantly, some
authors additionally suspect an
association between the nasal cycle and
left or right sided activation of our brain
[11]. And it occurs during sleep: changes
in nostril side occur mostly during REM
sleep or with postural changes, but very
seldom during deep sleep [12]. Thus, we
naturally sniff mostly with our left or right
nostril during deep sleep. Does this also
relate to differences in slow wave activity
in the activated hemisphere? If so, does
this relate to differential consolidation
and/or reactivation of memories in the
stimulated hemisphere? | hope future
studies will answer these questions.

Can we translate the reported findings in
applied settings, e.g. learning in real-life?
First attempts to reactivate foreign
vocabulary during sleep at home were not
very successful, probably due to sleep
disturbances induced by the words [13].
Furthermore, precise presentation of
scents is complicated and requires large
and expensive olfactometers and nasal
masks. However, even very simple ways of
presenting odors during sleep at home,
using scent diffusers, have revealed
promising results [14]. Moreover, engineers
have started to develop mobile scent-
delivery devices: for example, the device

‘Essence’ can be worn like a necklace [15].
It releases scent either via a smart-phone
application or based on physiological
parametersincluding sleep stage. Because
scents do not disturb our sleep, these user-
friendly devices will help us greatly to
reactivate and boost memories during
sleep alsoin ahome setting — be it withthe
left or right nostril or both.
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Recombination rates vary between species and individuals, but the
evolutionary significance of this variation remains unknown. A new
study demonstrates that recombination rate divergence in two natural
populations of Drosophila pseudoobscura has been driven by

adaptive evolution.

Homologous recombination is the
hallmark event of meiosis and a critical
force in evolution. By shuffling genetic
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variants between homologous
chromosomes, recombination shapes
patterns of genetic diversity within
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populations. In addition, recombination
can influence the efficacy of natural
selection by decoupling linked variants
with unequal fitness effects, thereby
reducing selective interference. At the
same time, the proper genomic
distribution and frequency of
recombination events safeguard the
fidelity of meiosis. Excessively low
recombination rates or mal-

positioned recombination events
confer increased risk for chromosome
segregation errors and aneuploidy,
whereas high recombination rates
may promote ectopic exchanges

that lead to deleterious genomic
rearrangements [1].

The clear fitness costs associated with
extreme recombination rates, coupled
with their central importance for
evolution, give way to a logical
hypothesis: recombination rates
should be subject to strong selective
constraints that limit the range of this trait
in nature. In perplexing contrast to this
prediction, recombination rates are
remarkably variable between species,
individuals, and sexes [2]. The
presence of variation in recombination
rate has intrigued geneticists for more
than a century [3] and classical genetic
experiments established its heritable
basis nearly 50 years ago [4]. The
emergence and application of modern
genomic technologies has further
energized this research field by
refining the scale and scope of
recombination rate variation in nature
and enabling the identification of loci that
influence recombination rates in diverse
organisms [5].

Despite these advances, an
understanding of the evolutionary forces
that give rise to variation in this
fundamental meiotic phenotype
continues to elude us. Theoretical
models have defined potential
scenarios under which increases or
decreases in recombination rates may be
favored by natural selection, but few
empirical tests have sought to confirm
whether such conditions are realized in
nature [6]. Recent studies have
uncovered genetic signatures of adaptive
evolution in genes that function in
the recombination pathway [7,8].
However, it remains unclear whether the
recombination phenotype is adaptively
evolving.

In this issue of Current Biology,
Samuk et al. present technological and
conceptual advances that make
significant in-roads toward closing
this knowledge gap [9]. The authors
develop a novel targeted amplicon
sequencing approach to construct
genome-wide recombination maps for
17 inbred lines of Drosophila
pseudoobscura derived from
populations of wild-caught flies
from American Fork Canyon,

Utah and Madera Canyon, Arizona,
USA. Their innovative strategy uses
dual sample indexing to permit
pooling, targeted sequencing, and
subsequent demultiplexing of large
numbers of progeny from multiple
mapping populations. With a

single library preparation step, the
authors genotype thousands of
individual flies at hundreds of
informative SNPs, obviating two long-
standing obstacles to estimating
recombination rates: cost and
throughput.

The authors’ recombination maps
localize most crossover events to
genomic windows less than 300 kb.
While not sufficient to detect fine-scale
recombination rate differences, this
precision permits comparisons of both
global and intermediate-scale
recombination rates within and between
the Utah and Arizona populations.
Samuk et al. document significant
variation for recombination rate
within each population. However, flies
from the Utah population have, on
average, 8% higher recombination
rates than flies from the Arizona
population. Intriguingly, this between-
population difference is driven by a
near-uniform increase in recombination
across the genome, rather than
localized differences in recombination
rate at a select number of loci.

This finding suggests a comparatively
larger impact of global (as

opposed to local) modifiers on the
evolution of recombination rates in this
system.

Samuk and team then used this
set of 17 recombination maps to carry
out one of the first direct tests for
adaptive evolution of recombination
rates. To do so, they adopt a powerful
and widely used paradigm in quantitative
genetics — Qgr-Fst analysis — to ask
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whether the phenotypic variation

for recombination rate between
populations exceeds the level of
variation expected under neutral
evolution [10]. Although the Utah and
Arizona populations exhibit a modest
(~8%) difference in global recombination
rates, the authors show that this
difference exceeds the level of
divergence predicted in the face of
genetic drift alone. This finding provides
compelling evidence that population-
level differences in recombination rate
have been driven by adaptive evolution
in this system.

Samuk et al. were then motivated
to identify genetic determinants
of this population-level divergence in
global recombination rate. Using a
candidate-gene driven approach, they
identified nonsynonymous differences in
two genes, asp and mei-41, that are
associated with moderate (5-7%)
differences in global recombination rate
between lines. Both genes have
biological functions consistent with
their plausible role as recombination
rate modifiers: asp is involved in
microtubule organization and
spindle formation at meiosis and
mei-41 is the Drosophila homolog
of ATR, a gene involved in DNA
damage surveillance and response.
Both asp and mei-41 are strongly linked
in the populations surveyed, precluding
further efforts to assess their
independent effects or identify causal
variants.

Samuk et al.’s work provides key new
insight into the modes of recombination
rate evolution and the nature of the
evolutionary forces that operate on
recombination rates. However, their
findings simultaneously raise several
new questions.

First, does recombination rate
evolution largely proceed via uniform,
global shifts in recombination rate,
as opposed to localized changes, in
other species? Many theoretical
models of recombination rate evolution
invoke the action of globally acting
modifiers [11]. Thus, determining
whether global changes are the
prevailing mode of evolution across
diverse taxa is paramount to assessing
the validity of model assumptions. In
particular, recombination events in most
mammals, including humans, are
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restricted to short 1-2 kb ‘hotspots’
defined by the zinc-finger DNA-binding
domain of a histone methyltransferase,
PRDM9 [12,13]. Although Drosophila
exhibit fine-scale variation in
recombination rates, they lack Prmd9
and do not harbor bona fide hotspots
[14]. Whether recombination rate
evolution in species with and

without hotspots proceeds via

distinct modalities requires further
investigation.

Second, what selective pressures
drive adaptive differences in
recombination rate? Prior studies have
demonstrated plastic shifts in
recombination rate in response to
diverse external stressors [15],
including temperature [3,16].

These observations raise the

possibility that different recombination
rates may be optimal under specific
climatic conditions. It is noteworthy that
mean average temperature differs by
11°C in the Arizona and Utah
populations profiled in this study.
Although tempting to speculate that
temperature could drive local
adaptation in recombination rate
between these two populations, further
studies are clearly needed to test this
hypothesis. Of course, it is also possible
that recombination rates evolve as a
correlated response to adaptive
changes in a cryptic, secondary trait.
Indeed, strong directional selection

for unrelated phenotypes can

yield correlated changes in
recombination rate [17,18].

Additionally, demographic

differences between populations

[11] and variation in life history traits [19]
may also create population genomic
environments in which distinct
recombination rate values are adaptively
favored.

Finally, what is the relationship
between variation in recombination
rate and evolutionary fitness?
Recombination rates and offspring
number are significantly positively
correlated in humans [20]. However,
the presence of significant variation
for recombination within
populations, including those studied
by Samuk et al., would seem to
suggest that departures from the
adaptive optimum may not be

associated with large fitness losses.
Further work is needed to determine the
intensity of the selection response
across a range of recombination rate
values.

An extension of this final question
concerns whether the relationship
between fitness and recombination rate
differs between the sexes. If so,
recombination rates could serve
as a battleground for sexually
antagonistic genetic variants that
exert opposite effects on male and
female fitness. Addressing this
possibility will require studies of
recombination rate evolution in
species other than Drosophila, as
recombination is restricted to female
meiosis in flies. Importantly, the
methodological and conceptual
framework developed by Samuk et al.
can be adapted to test for sex-specific
mechanisms of recombination rate
evolution, as well as experimental tests
of recombination rate evolution in other
taxa. In this way, Samuk et al.’s work
moves us significantly closer to
understanding of the biological
mechanisms that underpin the puzzling
diversity of recombination rates in
nature.
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