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ABSTRACT

In this study, non-stationary iterative time-domain deconvolution (CNS-ITD) is
investigated. The propagating wavelets are first estimated in several overlapping Gabor
windows of the data. Matrix-vector operations in the time-domain are then performed by
estimating a small number of columns of the wavelet matrix by interpolation within
a sparse iterative estimation for the largest reflectivities. The iteration process is stopped
when a minimum root mean square (RMS) residual or a maximum number of iterations is
reached. Although initially formulated on the basis of work in earthquake seismology,
CNS-ITD is a matching pursuit type of approach performed continuously in the time-
domain for the non-stationary case. The results can then be convolved with a higher
frequency wavelet in order to make the results stationary in time and to increase the
resolution of the data. We first apply CNS-ITD to synthetic data with a time-varying
attenuation, where the method successfully identifies the largest reflectors in the data. We
then apply CNS-ITD to two observed shallow seismic datasets where improved resolution
is obtained.

Keywords: iterative deconvolution, enhanced resolution, time-series analysis
1. INTRODUCTION

Seismic deconvolution can be used to remove the effects of the seismic wavelet and
increase the frequency bandwidth of the data. It is based on the assumption that the
seismic trace can be described by a time-invariant convolutional model. In practice,
however, seismic data are often non-stationary due to changes in the character and
frequency content of seismic waves as they propagate through the subsurface. Seismic
waves will lose amplitude and broaden with time from seismic attenuation and scattering
effects, and are therefore often more appropriately described as a combination of time-
invariant and time-variant processes.

There are several time-variant deconvolution approaches to estimate the reflectivity.
To obtain the propagating wavelets at different times, the seismic trace can be divided into
several overlapping windows. The propagating wavelets estimated in these windows can
be used to recover the local reflectivity and compensate for the attenuation and scattering
effects. The windowed segments of the seismic trace can then be blended together to
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obtain the full reflectivity. Gabor deconvolution (Margrave and Lamoureux, 2001, 2019;
Margrave et al., 2005) and time-variant spectral whitening (Yilmaz, 2001) have been
proposed to deal with these non-stationary effects. Inverse Q filtering can be used to
compensate specifically for the effects of seismic attenuation (Kjartansson, 1979; Hale,
1981; Wang, 2006, 2008). Von der Baan (2012) applied a combination of phase-only
inverse Q-filtering and time-varying Wiener deconvolution. Morozov et al. (2018)
presented an approach for time-varying deconvolution using iterative time-domain
deconvolution. Their approach is based on forward modeling of the seismic wavelet that
can be estimated from the early arrivals of the seismic trace using the knowledge of
a Q model and iteratively removing the modeled seismic wavelet from the seismic trace
assuming that the propagating wavelet is not changing within short time windows.

Using Gabor deconvolution based on a non-stationary convolutional model,
deconvolution and inverse Q filtering can be combined without requiring explicit
knowledge of Q in a data-driven frequency-domain approach (Margrave, 1998). Similar
to other frequency-domain deconvolution approaches, Gabor deconvolution can amplify
the high-frequency noise in the seismic data. It also assumes a stationary propagating
seismic wavelet over the individual windowed segments, which is not the case for
a continuously changing propagating wavelet. Enhanced resolution of nonstationary data
using a molecular Gabor transform was described by Wang et al. (2013).

Mallat and Zhang (1993) developed a matching pursuit approach to estimate sparse
signals using time-frequency dictionaries. More recently matching and basis pursuit have
been applied by a number of researchers for stationary and non-stationary time-series. For
example, Chai et al. (2014) describe a basis pursuit inversion for nonstationary seismic
data using frequencies within the seismic bandwidth and a cost function of mixed /; and /,
norms without prior inverse Q filtering. Zhang and Castagna (2011) presented a basis
pursuit inversion using a dictionary of reflectivity patterns. In addition to sparse-spike
inversions, they developed inversions based on sparse-layer inversions that could be used
to model thin beds and potentially provide improved resolution of fine layering.

Wang (2007) performed a matching pursuit for seismic trace decomposition. For
increased stability Wang (2010) described a multi-channel matching pursuit approach for
trace decomposition with optimal correlation between nearby seismic traces. Lari and
Gholami (2019) investigated multichannel non-stationary blind deconvolution using
a non-stationary block convolutional model and a variational approach in which the
wavelets are allowed to change in both the vertical and horizontal directions.

In this study, we investigate a matching pursuit type of approach using a continuous
non-stationary iterative time-domain deconvolution (CNS-ITD), where the propagating
seismic wavelet is allowed to vary along the seismic trace. CNS-ITD was initially
developed based on earlier studies by Kikuchi and Kanamori (1982) for the inversion of
complex body-waves and Ligorria and Ammon (1999) for the estimation of seismic
receiver functions, where the work of Kikuchi and Kanamori (1982) predates that of
Mallat and Zhang (1993) on matching pursuit. However, instead of using a dictionary of
functions for the sparse inversion, here the propagating wavelets for the CSN-ITD are first
estimated in several overlapping Gabor windows of the data using a statistical approach.

Although the propagating wavelets could be used to estimate attenuation or scattering,
here these are utilized to increase the resolution of the deconvolved data. Matrix-vector
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operations in the time-domain are performed by interpolating in an efficient manner
a small number of columns of the wavelet matrix for the sparse iterative estimation of the
largest reflectivities. In this way, the method is less sensitive to variations of the small
amplitudes in the time series in contrast to frequency-domain approaches. The iteration
process is stopped when a minimum root mean square (RMS) residual or a maximum
number of iterations is reached. We then convolve the results with a higher frequency
wavelet in order to make the results more stationary in time and to increase the resolution
of the data. We first apply CNS-ITD to synthetic data with a time-varying attenuation,
where the method successfully identified the largest reflectors in the data. We then apply
CNS-ITD to two observed shallow seismic datasets where improved resolution was
obtained.

2. INITIAL OVERVIEW

Seismic data are often described by a convolutional model of the Earth’s reflectivity
with a seismic wavelet as

y(t)zs(t)*r(t):_ofs(t—z')r(r)dz', (1)

where * is the convolution operator, y(¢) is the seismic trace, s(7) is the seismic

wavelet, and r(t) is the reflectivity. Seismic deconvolution can then be used to remove

the effects of the seismic wavelet and to estimate the reflectivity corresponding to
a layered Earth. Performing seismic deconvolution, however, often has two unknown
functions, the seismic wavelet and the reflectivity series, and only one known function,
the seismic trace. However, if the reflectivity is statistically white, any variability of the
power spectrum of the seismic trace can be attributed to the seismic wavelet (Webster,
1978; Yilmaz, 2001). Another assumption is that the casual seismic wavelet has minimum
phase, and this enables the calculation of the seismic wavelet’s phase spectrum from the
power spectrum. When this is not the case, other techniques can be applied (Webster,
1978; Robinson and Osman, 1996). However, here we will emphasize either causal or pre-
processed zero phase wavelets.

In conventional seismic processing, the seismic wavelet is assumed to be invariant
along the seismic trace, and the amplitude and shape of the seismic wavelet do not change
as it propagates in the subsurface. In practice, however, the seismic wavelet can change
due to seismic attenuation and scattering effects in the Earth. Thus, the conventional
convolutional model is often insufficient in representing non-stationary effects on the
seismic data. The stationary convolution model can, however, be extended to the non-
stationary case using more general matrix-vector operations (Margrave, 1998; Margrave
and Lamoureux, 2019).

Equation (1) can be implemented numerically as a matrix multiplication by assigning

the seismic trace (¢) and the reflectivity r(t) as column vectors, y and r respectively, and

by constructing an S matrix which includes the seismic wavelet as

y=Sr. 2)
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For the stationary case, S is a Toeplitz matrix formed by progressively time-shifted
versions of the same seismic wavelet (7) along the columns of S. The matrix multiplication
in Eq. (2) involves multiplying each sample of the reflectivity series by the columns of the
S matrix. Superpositions of the scaled and delayed seismic wavelets are then produced,
and this represents the convolution process.

When the seismic wavelet changes in time, for example when attenuation is present,
the matrix-vector multiplication above can still be applied, however in this case the S
matrix no longer has Toeplitz symmetry (Margrave, 1998; Margrave and Lamoureux,
2019). The columns of the S matrix represent the propagating seismic wavelet changing in
time. The non-stationary character of the seismic trace may be caused not only by
attenuation but also by other effects, such as seismic scattering, that can alter the
propagating seismic wavelet resulting in an amplitude reduction and a loss of frequencies.

3. METHOD

Iterative time-domain deconvolution (ITD) was developed by Kikuchi and Kanamori
(1982) for the inversion of complex body-waves, and Ligorria and Ammon (1999) applied
this to the estimation of seismic receiver functions for crustal structure. The ITD approach
can also be used to iteratively reconstruct the seismic reflectivity series. ITD is a type of
matching pursuit but was developed prior to the work of Mallat and Zhang (1993). To
implement this, the seismic wavelet and the seismic trace are first cross-correlated, and
the maximum is found to locate the strongest reflectivities. These estimates of the
reflectivity are then convolved with the seismic wavelet to obtain a predicted output trace,
and the result is subtracted from the seismic trace to form a residual trace. This process is
iterated until the mean square error (MSE) between the observed and predicted trace has
sufficiently decreased. This is illustrated in Fig. 1 that shows a synthetic seismic trace
formed by the convolution of a seismic wavelet with a reflectivity series including
4 reflectors. One percent Gaussian noise has also been added to the seismic trace. The
estimated reflectivity at the final iteration is shown in Fig. 1 and is a good match with the
true reflectivity.

The ITD approach can also be viewed as a matching pursuit type of algorithm for
a seismic wavelet across the seismic trace. When there is a match, the algorithm removes
the seismic wavelet and puts a spike at that location. Like other deconvolution methods,
the ITD method is typically designed for stationary signals. However, by modifying the
algorithm, it can also be applied to remove non-stationary propagating seismic wavelets
(Morozov et al., 2018). The reflectivity series can then be iteratively updated from non-
stationary template matching. The ITD approach has several desirable characteristics,
which include finding the largest reflectivities first in a time window, and also providing
control over when to stop adding smaller peaks to the inversion, and can result in less
sensitivity to lower amplitude noise as compared to frequency-domain deconvolution
methods.

The reflectivity series can be iteratively found as

i1 .
yl+ zyl_ri*(scolumnj)ﬂ 3)
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Fig. 1. Illustration of iterative time-domain deconvolution for the stationary case where 1%
random noise has been added to the seismic trace. At each iteration, the reflectivity is determined by
finding the maximum of the cross-correlation, denoted by ®, with the seismic wavelet shown on the
left and the residual seismic trace is formed. To the right the iteratively updated reflectivity is shown
with the true reflectivity displayed at the bottom. The reduction of the mean square error (MSE) is
shown on the far right for each iteration. The final output of the iterative time-domain deconvolution
is seen to be a good match to the true reflectivity (gray).

where * denotes convolution, 7 is the iteration number, S;qjymy, ; is the j-th column of the

S matrix, and the reflection coefficient 7; is then found by

(Scotamn )" ¥
- column j , i=1,2,3,..,N. (4)

l (Scolumn J )T (Scolumn J )

T .
The largest peaks in the dot product (Scolumn j) y' can be used to determine the

sequential values for the reflection coefficient 7; at the i-th iteration. The location of the

peak value of this multiplication gives the arrival time for this event and the result is then
normalized by the dot product of the j-th column of S with itself to obtain an estimate of
the reflection coefficient 7; at the i-th iteration. After finding the first reflectivity

coefficient and its location, we convolve it with the j-th column of the S, and subtract this

from the seismic trace to find yiJrl for the next iteration.

The construction of the S matrix, and therefore knowledge of the seismic wavelet is
required to implement the algorithm given above. However, once the seismic wavelets
have been estimated, specific columns of S can be efficiently obtained by interpolation at
each iteration. There are a number of ways of estimating the seismic wavelet. Here we use
an approach that assumes that the reflectivity is statistically white, and the power
spectrum of the seismic wavelet can then be estimated from the tapered autocorrelation of
the seismic trace. This can be applied either to the entire trace for the stationary case, or in
overlapping Gabor windows of the data in the non-stationary case.
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Figure 2 illustrates the wavelet estimation process for the stationary case. First, using
the reflectivity series shown in Fig.2a, a synthetic trace in Fig. 2b is formed by
convolving the reflectivity series with a seismic wavelet. The autocorrelation of the
seismic trace is found, and this is then windowed around zero lag as in Fig. 2c. Here,
a shorter window length produces a smoother power spectrum, however, this may lack the
full characteristics of the seismic wavelet. Thus, an appropriate window length needs to be
chosen. For an impulsive source, the second zero-crossing of the autocorrelogram can
sometimes be used to produce a good estimation of seismic wavelet as in predictive
deconvolution (Yilmaz, 2001). Figure 2d shows the resulting zero phase windowed
autocorrelation. To obtain a casual wavelet, a minimum phase can be added to obtain
a minimum phase seismic wavelet.

If the seismic wavelet is minimum phase, then its phase spectrum can be uniquely
obtained from its amplitude spectrum. The minimum phase estimate is obtained by taking
the Hilbert transform of the log amplitude spectrum (Webster, 1978). Figure 2e shows the
true minimum phase seismic wavelet for the synthetics (grey dashed) and the estimated
seismic wavelet (black).

In the case of a stationary seismic wavelet, the S matrix can be built using only one
estimated seismic wavelet, and the auto- and cross-correlations can be performed using
the fast Fourier transform, FFT. If the seismic wavelet is not stationary, non-stationary
deconvolution requires different propagating seismic wavelets at different times to
compensate for the changing characteristics of the wavelet along the seismic trace. One
way to construct a non-stationary S matrix is to move a properly chosen time window
across the seismic trace one time sample at a time, and estimating the propagating seismic
wavelet in each time window. These can then be assigned to the related columns of S.
Although this provides a way for obtaining the changing seismic wavelet continuously, it
is not an efficient time-domain implementation, especially for long seismic traces. Instead,
here we initially divide the trace into a smaller number of overlapping windows for the
estimation of the propagating wavelet in different time windows (Margrave and
Lamoureux, 2001, 2019; Grossman et al., 2002). This can be written as

y<r>=k§=1yk(r,zc)=k§szk<r, L )3(0), )

where y; (2,1, ) is the windowed segment of the seismic trace, € is the window

function and M is the number of windows. The windowed segments of the seismic trace
can be thought of as resulting from the convolution of propagating seismic wavelets and
local reflectivity in that window, and this can be represented as

yk(t’tc)zs(t’tc)*r(t’tc)’ (6)

where s(t, t, ) is the locally stationary seismic wavelet in the window centered at 7. and

r(t, t. ) is the local reflectivity in that window. The seismic wavelet, (t, ¢, ) , can then be

estimated in each window and this carries information about the local propagating
wavelet.
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Fig.2. [Illustration of the wavelet estimation process in the stationary case. a) The reflectivity
series, and b) the seismic trace including where 1% Gaussian noise has also been added; c) the
autocorrelation of the seismic trace. A Gaussian window is applied (dashed gray line) to the
autocorrelation of the trace around the zero lag. d) The windowed autocorrelation of the seismic
trace, and e) a minimum phase version of the estimated wavelet (black), and the true seismic
wavelet (gray dashed) which for this example is also minimum phase.

This approach assumes that the individual windowed segments of the seismic trace are
locally stationary, and a stationary deconvolution can be applied within each window. For
continuously varying propagating wavelets, such as from seismic attenuation or scattering,
locally stationary deconvolution would be less accurate unless the windows lengths are
chosen to be small enough. However, the matrix-vector version of the non-stationary
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convolution model can still be applied. To perform non-stationary deconvolution for
a continuously varying seismic wavelet, the propagating seismic wavelets can be
interpolated in time so as to change smoothly along the seismic trace. Once the
propagating wavelets are estimated in each window, these can then be assigned to
corresponding columns of the S matrix at the center times of the windows. In this way,
only a small number of columns of the S matrix are estimated. Other columns of the S
matrix can then be found in an efficient manner by interpolation within the iterative
process from a smaller number of estimated propagating wavelets. Here, we determine the
corresponding columns of the S matrix from the peaks of the envelope of the seismic
trace, instead of the peaks of the cross-correlation.

The distinction between the approach followed here and that of Margrave et al. (2011)
and Margrave and Lamoureux (2019) in the frequency-domain, and Morozov et al. (2018)
using the iterative time-domain approach is that the propagating wavelet is allowed to
vary continuously along the seismic trace. The individual columns of the wavelet matrix
can be quickly determined by interpolation within the sparse iterative time-domain
estimation for the largest reflecitivities in the time series. We refer to this as continuous
non-stationary iterative time-domain deconvolution (CNS-ITD).

3.1. Synthetic example

To illustrate the CNS-ITD process, a synthetic example is used to evaluate our
approach in both the stationary and non-stationary cases. The seismic wavelets are
estimated in sub-windows and used to construct the columns of the S matrix
corresponding to the centers of each window. In the stationary case, the FFT can be used
to obtain the cross- and auto-correlations for the ITD approach. Here we apply the
CNS-ITD approach with a matrix-vector approach.

For the first example, the seismic wavelet is assumed to be stationary along the
seismic trace, and all the columns of the S matrix can be filled with one estimate of the
seismic wavelet estimated from the entire seismic trace. Even though we can construct the
full S matrix, it does not mean that in the iteration process all the columns will be used for
estimating the reflectivity series. At each iteration of the CNS-ITD process, only one
column of the S matrix is used and this significantly reduces the computation time
compared to full matrix-vector multiplications. We estimate the specific columns of the S
matrix by the maximum peaks of the envelope of the seismic trace. In the case of
a centered zero-phase wavelet, the location of the reflectivities and the peak of the
envelope in the seismic trace are at the same location. For a casual seismic wavelet,
however, there is a time shift between these two times. To address this, we use the
difference between the beginning time and peak of the envelope of the estimated casual
seismic wavelet as a time shift to correctly locate the reflectivity at the appropriate times
as

A =18 =10, 7

14 1

where 0 is the initial time and & is the time of the envelope peak of the estimated seismic

wavelet. Once this time shift is found, the appropriate column of S can be determined. For
the stationary case, the time shift A#; is a constant value along the entire seismic trace
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since the seismic wavelet is time-invariant. For the non-stationary case, where the
propagating seismic wavelet is changing in time, the time shift also changes along the
seismic trace. For a zero phase wavelet, the time shift would be zero.

Although a local stationary deconvolution could be applied for each windowed
segment of the seismic trace, it is not ideal since it does not allow for a continuously
varying seismic wavelet. For seismic attenuation and scattering losses, the seismic
wavelet evolves continuously as it propagates even within windowed segments of the
seismic trace, and this can be achieved by interpolation of the propagating seismic
wavelets along the seismic trace.

Figure 3 illustrates the approach for the stationary case, where for each iteration, the
maximum peaks of the envelope of the full seismic trace are sequentially found. The
corresponding columns of the S matrix are chosen from the estimated seismic wavelet.
Using the location of the maximum of the envelope of the seismic wavelet, Az; can be
estimated and the columns of the S matrix found. Equation (4) is then applied to find the
corresponding reflectivity shown on the right on Fig. 3 for each iteration. The estimated
reflectivities at each iteration are then adaptively removed from the seismic trace by
applying Eq.(3). Since this is an iterative process, we can terminate the process either by
specifying the total number of iterations or by the reduction in the MSE between the
predicted trace and the observed seismic trace. After the iteration process shown in Fig. 3,
all the reflectivities have been successfully recovered from the seismic trace, and MSE is
close to the noise level added to the synthetic trace.

As noted previously, for the stationary case or by assuming stationarity in windows of
the data, the reflectivity can be determined by calculating cross- and auto-correlations,
which can be estimated using the FFT. However, in the CNS-ITD only a sparse number of
columns are required and these can be cost effectively determined by interpolation of
selective columns of the wavelet matrix within the sparse iterative deconvolution. In the
context of iterative time-domain deconvolution, we are only estimating the largest
reflectivities of the full seismic trace, and this helps to reduce the costs of the matrix-
vector operations.

To deal with the non-stationary case, the propagating seismic wavelets along the
seismic trace are first estimated for windowed segments of the seismic trace. The length
of the window is an important parameter that needs to be carefully determined. In
practice, the window length should be longer than that of propagating seismic wavelet in
order to get a good estimate. Also, the distance between the window centers should be
small enough so that changes in the propagating wavelet can be estimated, particularly if
the seismic attenuation varies rapidly. The propagating seismic wavelets are then
estimated from the localized windowed segments of the seismic trace in a data-driven
way, and not assuming a simple attenuation model. The propagating seismic wavelets can
then be interpolated as required for the iterative estimation to find the largest reflectivities.

Spectrograms are very useful in analyzing signals whose frequency content is
changing in time. An example of the spectrogram of a synthetic non-stationary trace
resulting from attenuation is shown in Fig. 4. The amplitude spectrum is shown on the left
for the non-stationary seismic trace shown at the bottom. It can be seen both from the
seismic trace and spectrogram that the bandwidth of frequencies is being reduced by the
non-stationary filtering. In particular, frequencies greater than 75 Hz are attenuated for
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Fig. 3. Iterative time domain deconvolution for the stationary case. The synthetic trace is shown

on the top left and 1% Gaussian random noise has been added. At each iteration, the location of the
maximum peak of the envelope of the seismic trace is found which is denoted by black dot, and the
corresponding propagating wavelet is chosen from the column of the S accounting for the time shift
At described in Eq. (7). Using the seismic trace and the propagating wavelet, Eq. (4) is applied to
estimate the reflectivity shown on the right. The estimated reflectivity is then subtracted from the
seismic trace for the next iteration using Eq. (3). After a sufficient number of iterations, all the
reflectivities are recovered from the seismic trace. The true reflectivity is shown on the bottom right.
MSE — mean square error.

later times, along with a loss of amplitude resulting, and this leads to a lower resolution of
the seismic data for greater times.

Using window partitions of the seismic trace, estimates of the propagating seismic
wavelets can be made in each of the windows in order to construct selected columns of the
S matrix. Figure 5a,b depict the windows and estimated propagating wavelets at the center
of each window. As can be seen, the estimated seismic wavelets are time-varying, losing
amplitude and spectral content with time as shown in the spectrogram in Fig. 4. Using the
center times of the windows, these are assigned to the columns of the S matrix, which are
shown in Fig. 5c. These can then be interpolated to determine selected columns of the
S matrix where the maximum values of the envelope of the seismic trace occur, including
the time shift given in Eq. (7). Continuous non-stationary iterative time-domain
deconvolution (CNS-ITD) can then be performed to find the largest reflectivities in time
along the seismic trace. As noted previously, an advantage of this approach is that it
allows one to find any desired number of the strongest reflectivities, leading to a sparse
deconvolution of the seismic trace.
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Figure 6 illustrates the CNS-ITD of the seismic trace shown in Fig. 5a where 1%
Gaussian random noise has been added. The addition of further random noise can affect
the estimation of the smaller reflectivities, but less so for the sparse larger reflectivities.
We used a different number of iterations as shown in Fig. 6b to estimate the full
reflectivity series. For iteration 5, this gives five reflectivity estimates along the seismic
trace. The residual traces in Fig. 6a are then found by iteratively subtracting the predicted
traces at each iteration. The residuals become smaller with an increasing number of
iterations, and the MSE is reduced shown on the left. Figure 5d shows the estimated
columns of the S matrix determined as part of the iteration process. Since we are
performing a sparse iterative inversion for the larger reflectivites, the fewer number of
columns utilized in the S matrix makes the time-domain implementation cost effective.
We used both linear and spline interpolation, but the differences were not significant for
the cases given here and the results for a spline interpolation are used.

Spectrogram of Non-Stationary Signal
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Fig.4. The spectrogram of a non-stationary seismic trace. The Fourier amplitude spectrum is
shown on the left for the non-stationary seismic trace shown at the bottom. 1% Gaussian random
noise has also been added to the non-stationary seismic trace. It can be seen that frequencies greater
than 75 Hz are being reduced for increasing time for this example.
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After 30 iterations, the full reflectivity series has been recovered. Note, however, that
several smaller additional reflectivity values have also been found. Since the estimation of
the propagating wavelets includes some errors in terms of waveform and amplitude, some
residuals will be present between the predicted and true reflectivities resulting from this. If
we further increase the iteration number, the ITD approach will treat the remaining
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Fig. 5. a) Non-stationary seismic trace along with window functions used to window the seismic
trace; b) the estimated propagating seismic wavelets for each of the windows. ¢) The columns of the
S matrix, where the propagating wavelets are assigned at the centers of the window functions shown
in a). These are displayed by short vertical pulses. The dashed lines are shown for reference at every
0.1 seconds. d) The columns of the S matrix resulting from the sparse CNS-ITD inversion. These
are again shown by short vertical pulses, and are obtained by interpolation of the propagating

wavelets shown in b). The dashed lines are shown for reference at every 0.1 seconds.
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Fig. 6. Continuous non-stationary iterative time-domain deconvolution (CNS-ITD) is performed
along the seismic trace shown in Fig. Sa) for different numbers of iterations. For iteration 5, five
reflectivities are found along the seismic trace, and these are increased until all the reflectivities
have been recovered. As the number of iterations is increased, the mean square error of the residual
trace is decreased which can be seen in a). When the number of iterations is increased, the CNS-ITD
approach will try to recover more reflectivities in b) from the residuals shown in a).

residuals as signal and try to produce new reflectivities. However, since all the strongest
reflectivities have been estimated and removed from the seismic trace, remaining
reflectivities will be small. The estimated reflectivities can then be re-convolved with
a stationary wavelet to construct a stationary and higher resolution seismic trace.

Since our approach iteratively estimates the largest reflectivities that are assumed to be
sparse, the inclusion of small amounts of random noise does not affect the estimation of
the largest reflectivities. This is appropriate for models that have either a white spectrum
or a red-shifted spectrum for the larger reflectivities. This might result from blocky
structures where the sparse larger reflectivities dominate. However for smaller more
densely sampled reflectivities then false envelope peaks could result. Nonetheless, small
artifact reflectivities can be avoided by limiting the MSE error between the observed and
predicted seismic trace.

In general for more densely sampled but stronger reflectivities, then other approaches
may be more appropriate. Zheng et al. (2019) investigated thin-bed layers in the BoHai
oilfield resulting in a non-white, blue spectrum for the reflectivity. Zhang and Castagna
(2011) performed sparse-layer reflectivity inversion instead of spare-spike inversions to
better model thin layers. This could also be investigated here with a suitable dictionary of
thin-layer responses, but for this study we have only inverted for sparse inversions for the
strongest reflectivities with responses estimated in the individual Gabor windows
assuming a white spectrum.

4. OBSERVED DATA APPLICATIONS
We apply the CNS-ITD approach to two observed shallow seismic datasets from

Baker (1999). The first dataset was collected in an alluvial valley of the Thames River,
England in 1989 to image bedrock stratigraphy and examine the structure and geometry.
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Figure 7a shows the observed zero offset stacked data from Baker (1999). The horizontal
axis in this figure is trace number and the spacing between the traces is 1.25 m. The
vertical axis is two-way reflection time down to 0.25 s. The processing steps applied to
the data by Baker (1999) were pre-processing (geometry definition, killing the noisy
traces), filtering the ground roll and air wave, static corrections, velocity analysis and
stacking. To increase the lateral coherence, we have also applied a small amount of
frequency-wavenumber (f-k) filtering to enhance the continuity and coherence between
traces (Fig. 7b).

The non-stationary character of the seismic traces can be seen from the spectrogram
for trace 10 shown in Fig. 8 where the spectrogram amplitudes show a slight decrease in
frequency with time. This frequency decrease in time is evident even with relatively small
reflection travel-times due to the alluvial medium at the site that can result in higher
attenuation (Steeples, 2005).

Before applying CNS-ITD to the seismic section, we perform it on a single trace in
order to determine the window size and iteration number to be applied for each of the
traces. Figure 9a shows trace 10 used for the spectrogram in Fig. 8 and the windows that
were used for partitioning of the trace to estimate the propagating wavelet for different
travel-times. Figure 9b shows the estimated propagating wavelets for each of the

Ilfl (I
="
;i

Fig. 7. a) Stacked section of the Thames River data obtained from Baker (1999); b) the seismic
stacked section with frequency-wavenumber filtering applied to slightly increase the lateral
coherence.
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Fig. 8. Spectrogram of trace 10 from the stacked seismic section of the Thames River dataset
shown in Fig. 7b). The non-stationary character of the seismic trace can be seen where the
amplitudes of the spectrum show a decrease in frequency with time.

windows. In this case, since the data have been previously processed by Baker (1999), we
assume here that the non-stationary propagating seismic wavelets are zero phase and
normalized to unit amplitude. These are then continuously interpolated along the trace
iteratively within the CNS-ITD process to find the largest reflectivities.

We have used both the MSE and the total number of iterations as stopping criteria in
the iteration process. Thus, if the maximum iteration number is reached or the MSE
between observed and predicted traces is below a specific level, the process is terminated.
Figure 9c shows trace 10 and residual traces calculated after application of CNS-ITD with
different numbers of iterations given on the right side of the subplot, where iteration 10
signifies that ten iterations have been performed. The estimated spike diagrams for
different numbers of iterations are shown in Fig. 9d. After ten iterations, only the
strongest reflectivities have been determined. When the number of iterations is increased,
a larger number of smaller reflectivities are obtained. When the iteration number has
reached 60, the mean square error of the residual trace has been reduced to about 2%.
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Fig.9. An application of continuous non-stationary iterative time-domain deconvolution to
trace 10 from seismic section shown in Fig. 7b). a) The seismic trace together with window
functions, and b) the estimated propagating wavelets for each window. ¢) Trace 10 on the top and
residual traces for different numbers of iterations; d) the spike diagram produced after performing
ten iterations performed on the trace. Similarly, the results for different numbers of iterations for the
residual traces and the mean square errors (MSE) are shown in c).

We then applied CNS-ITD to the full seismic section for the Thames River dataset.
The output of the CNS-ITD are the deconvolved reflectivities similar to that shown in
Fig. 9d for each trace. Seismic sections can then be obtained using a stationary Ricker
wavelet with a particular dominant frequency. Figure 10a shows the deconvolution results
of the CNS-ITD applied to the stacked seismic section in Fig. 7b. Figure 10b shows the
results of the CNS-ITD after re-convolving with a stationary 250 Hz Ricker wavelet. To
see the effect of the CNS-ITD on the seismic traces, we plot the spectrogram of the
deconvolved trace 10 after CNS-ITD, and re-convolved with a stationary 250 Hz Ricker
wavelet in Fig. 11. Comparing Figs 8 and 11, it can be seen that the frequency bandwidth
of the trace has been improved with more uniform and higher frequency content.

The second observed dataset was located in Kansas to image whether there was
a glacial meltwater channel cut into the bedrock, and then later covered by sediments
(Baker et al., 1998; Baker, 1999). Similar processing steps applied to first dataset were
also applied to the Kansas dataset by Baker (1999). Figure 12a shows the original stacked
section from Baker (1999) with some additional gain applied and Fig. 12b shows stacked
section after f-k filter has been applied to increase lateral coherency. The horizontal axis in
this figure is trace number and the spacing between the traces is 0.25 m. The vertical axis
is two-way reflection time down to 0.2 s, with the near surface speeds this corresponds to
a depth of approximately 40 m (Baker, 1999).
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Fig. 10. a) The continuous nonstationary iterative time-domain deconvolution of the seismic
section in Fig. 7b. b) The deconvolved results that have been re-convolved with a stationary 250 Hz
Ricker wavelet, and an frequency-wavenumber filter has been applied to slightly increase lateral
coherence.

We again selected a particular trace, here trace 75, to display a spectrogram of the
frequency content with time, and this is shown in Fig. 13. As can be seen, the frequency
content of the trace decreases with time. Figure 14 shows the CNS-ITD applied to this
trace for different numbers of iterations. Figure 14a shows the seismic trace along with the
window functions, and Fig. 14b shows the estimated propagating wavelets for each
window. These are continuously interpolated within the CNS-ITD iterative process.
Figure 14c shows the residual traces for different numbers of iterations along with the
MSE. After 20 iterations the MSE has decreased to around one percent. The resulting
deconvolved reflectivities are shown in Fig. 14d for different numbers of iterations. Since
the data has been previously processed, the estimated propagating wavelets is assumed to
be zero phase and normalized to unity.

We then performed the CNS-ITD on the full Kansas dataset. The resulting
deconvolved reflectivities for each of the traces are then re-convolved with a stationary
100 Hz Ricker wavelet. An f-k filter was applied to slightly increase the lateral coherency.
Figure 15a shows the deconvolution results of the CNS-ITD applied to the seismic section
is Fig. 12b. Figure 15b shows the deconvolved results after re-convolving with
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Fig. 11. Trace 10 from the seismic section shown in Fig. 7b after continuous nonstationary
iterative time-domain deconvolution and re-convolved with a stationary 250 Hz Ricker wavelet.
Comparing with Fig. 8, it can be seen from the seismic trace, the spectrum and the spectrogram that
the frequency content has been increased and is more uniform with frequency after the
deconvolution and re-convolution with a stationary 250 Hz Ricker wavelet.

a stationary 150 Hz Ricker wavelet. Some consolidation of reflectivities has resulted in
part from the removal of the propagating wavelets within the iterative inversion process.
There is also lateral variability along the profile and this could result in some of the
deconvolved events being consolidated or a lost along the profile. However a majority of
the largest reflectivities have been determined.

It can be seen that the resolution has been improved by applying CNS-ITD. This can
be verified by the spectrogram of trace 75 after CNS-ITD re-convolved with a stationary
150 Hz Ricker wavelet, which is shown in Fig. 16. Although the overall frequencies of the
spectrum have been increased, the lower and upper ranges of the spectrum are also
affected by the re-convolution by the new stationary Ricker wavelet.
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Fig. 12. a) Stacked seismic section of the Kansas dataset obtained from Baker (1999) with an
additional gain applied, and b) the seismic stacked section with an frequency-wavenumber filter
applied to increase lateral coherency.
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Fig. 13. Spectrogram of trace 75 from the stacked seismic section of Kansas dataset from Baker
(1999) shown in Fig.12b. The non-stationary character of the seismic trace can be seen where the
amplitudes of the spectrogram show a decrease in frequency with time.

5. CONCLUSIONS

In this study, a continuous non-stationary iterative time-domain deconvolution (CNS-
ITD) has been investigated. This a type of matching pursuit algorithm, but was initially
develop based on earlier studies by Kikuchi and Kanamori (1982) and Ligorria and
Ammon (1999) in earthquake seismology. For CNS-ITD the propagating wavelets are
first estimated in several overlapping Gabor windows of the data. Matrix-vector
operations in the time-domain are then performed by estimating a small number of
columns of the wavelet matrix by interpolation within a sparse iterative estimation for the
largest reflectivities in the data. In this way, the method is less sensitive to variations of
the smallest amplitudes in the time series in contrast to frequency-domain approaches.
The iteration process is stopped when a minimum RMS residual or a maximum number of
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Fig. 14. An application of continuous non-stationary iterative time-domain deconvolution to trace
75 from the stacked section of Kansas dataset shown in Fig. 12b. a) The seismic trace together with
window functions; b) the estimated propagating wavelets for each window. ¢) Trace 75 on the top
and residual traces for different numbers of iterations; d) spike diagram produced after five
iterations have been performed along the trace. Similarly, the results for different numbers of
iterations are also shown in d), and the residual traces along with the mean square errors (MSE) are
shown in c¢).

iterations is reached. The results are then convolved with a higher frequency wavelet in
order to make the results stationary in time and to increase the resolution of the data. We
tested CNS-ITD on both synthetic and observed data. For the synthetic data, we were able
to successfully estimate the largest reflectivities in the data. Applying CNS-ITD to the
observed data, higher frequencies were recovered and the resolution of the data was
improved.
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Fig. 15. a) Results of the continuous non-stationary iterative time-domain deconvolution of the
seismic section in Fig. 12b. b) The deconvolved results, which have been re-convolved with
a stationary 150 Hz Ricker wavelet. An frequency-wavenumber filter has also been applied slightly
to increase lateral coherence.
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Fig. 16. Spectrogram of trace 75 from the stacked seismic section of the Kansas dataset from
Fig. 12b after continuous non-stationary iterative time-domain deconvolution and re-convolved with
a stationary 150 Hz Ricker wavelet.
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