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ABSTRACT 

In this study, non-stationary iterative time-domain deconvolution (CNS-ITD) is 
investigated. The propagating wavelets are first estimated in several overlapping Gabor 
windows of the data. Matrix-vector operations in the time-domain are then performed by 
estimating a small number of columns of the wavelet matrix by interpolation within 
a sparse iterative estimation for the largest reflectivities. The iteration process is stopped 
when a minimum root mean square (RMS) residual or a maximum number of iterations is 
reached. Although initially formulated on the basis of work in earthquake seismology, 
CNS-ITD is a matching pursuit type of approach performed continuously in the time-
domain for the non-stationary case. The results can then be convolved with a higher 
frequency wavelet in order to make the results stationary in time and to increase the 
resolution of the data. We first apply CNS-ITD to synthetic data with a time-varying 
attenuation, where the method successfully identifies the largest reflectors in the data. We 
then apply CNS-ITD to two observed shallow seismic datasets where improved resolution 
is obtained. 

 
Ke y wo rd s :  iterative deconvolution, enhanced resolution, time-series analysis 

1. INTRODUCTION 

Seismic deconvolution can be used to remove the effects of the seismic wavelet and 
increase the frequency bandwidth of the data. It is based on the assumption that the 
seismic trace can be described by a time-invariant convolutional model. In practice, 
however, seismic data are often non-stationary due to changes in the character and 
frequency content of seismic waves as they propagate through the subsurface. Seismic 
waves will lose amplitude and broaden with time from seismic attenuation and scattering 
effects, and are therefore often more appropriately described as a combination of time-
invariant and time-variant processes. 

There are several time-variant deconvolution approaches to estimate the reflectivity. 
To obtain the propagating wavelets at different times, the seismic trace can be divided into 
several overlapping windows. The propagating wavelets estimated in these windows can 
be used to recover the local reflectivity and compensate for the attenuation and scattering 
effects. The windowed segments of the seismic trace can then be blended together to 
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obtain the full reflectivity. Gabor deconvolution (Margrave and Lamoureux, 2001, 2019; 
Margrave et al., 2005) and time-variant spectral whitening (Yilmaz, 2001) have been 
proposed to deal with these non-stationary effects. Inverse Q filtering can be used to 
compensate specifically for the effects of seismic attenuation (Kjartansson, 1979; Hale, 
1981; Wang, 2006, 2008). Von der Baan (2012) applied a combination of phase-only 
inverse Q-filtering and time-varying Wiener deconvolution. Morozov et al. (2018) 
presented an approach for time-varying deconvolution using iterative time-domain 
deconvolution. Their approach is based on forward modeling of the seismic wavelet that 
can be estimated from the early arrivals of the seismic trace using the knowledge of 
a Q model and iteratively removing the modeled seismic wavelet from the seismic trace 
assuming that the propagating wavelet is not changing within short time windows. 

Using Gabor deconvolution based on a non-stationary convolutional model, 
deconvolution and inverse Q filtering can be combined without requiring explicit 
knowledge of Q in a data-driven frequency-domain approach (Margrave, 1998). Similar 
to other frequency-domain deconvolution approaches, Gabor deconvolution can amplify 
the high-frequency noise in the seismic data. It also assumes a stationary propagating 
seismic wavelet over the individual windowed segments, which is not the case for 
a continuously changing propagating wavelet. Enhanced resolution of nonstationary data 
using a molecular Gabor transform was described by Wang et al. (2013). 

Mallat and Zhang (1993) developed a matching pursuit approach to estimate sparse 
signals using time-frequency dictionaries. More recently matching and basis pursuit have 
been applied by a number of researchers for stationary and non-stationary time-series. For 
example, Chai et al. (2014) describe a basis pursuit inversion for nonstationary seismic 
data using frequencies within the seismic bandwidth and a cost function of mixed l1 and l2 
norms without prior inverse Q filtering. Zhang and Castagna (2011) presented a basis 
pursuit inversion using a dictionary of reflectivity patterns. In addition to sparse-spike 
inversions, they developed inversions based on sparse-layer inversions that could be used 
to model thin beds and potentially provide improved resolution of fine layering. 

Wang (2007) performed a matching pursuit for seismic trace decomposition. For 
increased stability Wang (2010) described a multi-channel matching pursuit approach for 
trace decomposition with optimal correlation between nearby seismic traces. Lari and 
Gholami (2019) investigated multichannel non-stationary blind deconvolution using 
a non-stationary block convolutional model and a variational approach in which the 
wavelets are allowed to change in both the vertical and horizontal directions. 

In this study, we investigate a matching pursuit type of approach using a continuous 
non-stationary iterative time-domain deconvolution (CNS-ITD), where the propagating 
seismic wavelet is allowed to vary along the seismic trace. CNS-ITD was initially 
developed based on earlier studies by Kikuchi and Kanamori (1982) for the inversion of 
complex body-waves and Ligorría and Ammon (1999) for the estimation of seismic 
receiver functions, where the work of Kikuchi and Kanamori (1982) predates that of 
Mallat and Zhang (1993) on matching pursuit. However, instead of using a dictionary of 
functions for the sparse inversion, here the propagating wavelets for the CSN-ITD are first 
estimated in several overlapping Gabor windows of the data using a statistical approach. 

Although the propagating wavelets could be used to estimate attenuation or scattering, 
here these are utilized to increase the resolution of the deconvolved data. Matrix-vector 
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operations in the time-domain are performed by interpolating in an efficient manner 
a small number of columns of the wavelet matrix for the sparse iterative estimation of the 
largest reflectivities. In this way, the method is less sensitive to variations of the small 
amplitudes in the time series in contrast to frequency-domain approaches. The iteration 
process is stopped when a minimum root mean square (RMS) residual or a maximum 
number of iterations is reached. We then convolve the results with a higher frequency 
wavelet in order to make the results more stationary in time and to increase the resolution 
of the data. We first apply CNS-ITD to synthetic data with a time-varying attenuation, 
where the method successfully identified the largest reflectors in the data. We then apply 
CNS-ITD to two observed shallow seismic datasets where improved resolution was 
obtained. 

2. INITIAL OVERVIEW 

Seismic data are often described by a convolutional model of the Earth’s reflectivity 
with a seismic wavelet as 

          y t s t r t s t r d  




    , (1) 

where ∗ is the convolution operator,  y t  is the seismic trace,  s t  is the seismic 

wavelet, and  r t  is the reflectivity. Seismic deconvolution can then be used to remove 
the effects of the seismic wavelet and to estimate the reflectivity corresponding to 
a layered Earth. Performing seismic deconvolution, however, often has two unknown 
functions, the seismic wavelet and the reflectivity series, and only one known function, 
the seismic trace. However, if the reflectivity is statistically white, any variability of the 
power spectrum of the seismic trace can be attributed to the seismic wavelet (Webster, 
1978; Yilmaz, 2001). Another assumption is that the casual seismic wavelet has minimum 
phase, and this enables the calculation of the seismic wavelet’s phase spectrum from the 
power spectrum. When this is not the case, other techniques can be applied (Webster, 
1978; Robinson and Osman, 1996). However, here we will emphasize either causal or pre-
processed zero phase wavelets. 

In conventional seismic processing, the seismic wavelet is assumed to be invariant 
along the seismic trace, and the amplitude and shape of the seismic wavelet do not change 
as it propagates in the subsurface. In practice, however, the seismic wavelet can change 
due to seismic attenuation and scattering effects in the Earth. Thus, the conventional 
convolutional model is often insufficient in representing non-stationary effects on the 
seismic data. The stationary convolution model can, however, be extended to the non-
stationary case using more general matrix-vector operations (Margrave, 1998; Margrave 
and Lamoureux, 2019).  

Equation (1) can be implemented numerically as a matrix multiplication by assigning 
the seismic trace (t) and the reflectivity  r t  as column vectors, y and r respectively, and 
by constructing an S matrix which includes the seismic wavelet as 

 y rS . (2) 
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For the stationary case, S is a Toeplitz matrix formed by progressively time-shifted 
versions of the same seismic wavelet (t) along the columns of S. The matrix multiplication 
in Eq. (2) involves multiplying each sample of the reflectivity series by the columns of the 
S matrix. Superpositions of the scaled and delayed seismic wavelets are then produced, 
and this represents the convolution process. 

When the seismic wavelet changes in time, for example when attenuation is present, 
the matrix-vector multiplication above can still be applied, however in this case the S 
matrix no longer has Toeplitz symmetry (Margrave, 1998; Margrave and Lamoureux, 
2019). The columns of the S matrix represent the propagating seismic wavelet changing in 
time. The non-stationary character of the seismic trace may be caused not only by 
attenuation but also by other effects, such as seismic scattering, that can alter the 
propagating seismic wavelet resulting in an amplitude reduction and a loss of frequencies. 

3. METHOD 

Iterative time-domain deconvolution (ITD) was developed by Kikuchi and Kanamori 
(1982) for the inversion of complex body-waves, and Ligorría and Ammon (1999) applied 
this to the estimation of seismic receiver functions for crustal structure. The ITD approach 
can also be used to iteratively reconstruct the seismic reflectivity series. ITD is a type of 
matching pursuit but was developed prior to the work of Mallat and Zhang (1993). To 
implement this, the seismic wavelet and the seismic trace are first cross-correlated, and 
the maximum is found to locate the strongest reflectivities. These estimates of the 
reflectivity are then convolved with the seismic wavelet to obtain a predicted output trace, 
and the result is subtracted from the seismic trace to form a residual trace. This process is 
iterated until the mean square error (MSE) between the observed and predicted trace has 
sufficiently decreased. This is illustrated in Fig. 1 that shows a synthetic seismic trace 
formed by the convolution of a seismic wavelet with a reflectivity series including 
4 reflectors. One percent Gaussian noise has also been added to the seismic trace. The 
estimated reflectivity at the final iteration is shown in Fig. 1 and is a good match with the 
true reflectivity. 

The ITD approach can also be viewed as a matching pursuit type of algorithm for 
a seismic wavelet across the seismic trace. When there is a match, the algorithm removes 
the seismic wavelet and puts a spike at that location. Like other deconvolution methods, 
the ITD method is typically designed for stationary signals. However, by modifying the 
algorithm, it can also be applied to remove non-stationary propagating seismic wavelets 
(Morozov et al., 2018). The reflectivity series can then be iteratively updated from non-
stationary template matching. The ITD approach has several desirable characteristics, 
which include finding the largest reflectivities first in a time window, and also providing 
control over when to stop adding smaller peaks to the inversion, and can result in less 
sensitivity to lower amplitude noise as compared to frequency-domain deconvolution 
methods. 

The reflectivity series can be iteratively found as 

  1
column

i i
i jr   y y S , (3) 
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where * denotes convolution, i is the iteration number, column jS  is the j-th column of the 

S matrix, and the reflection coefficient ir  is then found by 

 
 

   

T
column

T
column column

i
j

i
j j

r 
yS

S S
,   i = 1, 2, 3, …, N . (4) 

The largest peaks in the dot product  Tcolumn
i

j yS  can be used to determine the 

sequential values for the reflection coefficient ir  at the i-th iteration. The location of the 
peak value of this multiplication gives the arrival time for this event and the result is then 
normalized by the dot product of the j-th column of S with itself to obtain an estimate of 
the reflection coefficient ir  at the i-th iteration. After finding the first reflectivity 
coefficient and its location, we convolve it with the j-th column of the S, and subtract this 
from the seismic trace to find 1iy  for the next iteration. 

The construction of the S matrix, and therefore knowledge of the seismic wavelet is 
required to implement the algorithm given above. However, once the seismic wavelets 
have been estimated, specific columns of S can be efficiently obtained by interpolation at 
each iteration. There are a number of ways of estimating the seismic wavelet. Here we use 
an approach that assumes that the reflectivity is statistically white, and the power 
spectrum of the seismic wavelet can then be estimated from the tapered autocorrelation of 
the seismic trace. This can be applied either to the entire trace for the stationary case, or in 
overlapping Gabor windows of the data in the non-stationary case. 

 
Fig. 1. Illustration of iterative time-domain deconvolution for the stationary case where 1% 
random noise has been added to the seismic trace. At each iteration, the reflectivity is determined by 
finding the maximum of the cross-correlation, denoted by , with the seismic wavelet shown on the 
left and the residual seismic trace is formed. To the right the iteratively updated reflectivity is shown 
with the true reflectivity displayed at the bottom. The reduction of the mean square error (MSE) is 
shown on the far right for each iteration. The final output of the iterative time-domain deconvolution 
is seen to be a good match to the true reflectivity (gray). 



Non-stationary iterative time-domain deconvolution 

Stud. Geophys. Geod., 64 (2020) 81 
 

Figure 2 illustrates the wavelet estimation process for the stationary case. First, using 
the reflectivity series shown in Fig. 2a, a synthetic trace in Fig. 2b is formed by 
convolving the reflectivity series with a seismic wavelet. The autocorrelation of the 
seismic trace is found, and this is then windowed around zero lag as in Fig. 2c. Here, 
a shorter window length produces a smoother power spectrum, however, this may lack the 
full characteristics of the seismic wavelet. Thus, an appropriate window length needs to be 
chosen. For an impulsive source, the second zero-crossing of the autocorrelogram can 
sometimes be used to produce a good estimation of seismic wavelet as in predictive 
deconvolution (Yilmaz, 2001). Figure 2d shows the resulting zero phase windowed 
autocorrelation. To obtain a casual wavelet, a minimum phase can be added to obtain 
a minimum phase seismic wavelet. 

If the seismic wavelet is minimum phase, then its phase spectrum can be uniquely 
obtained from its amplitude spectrum. The minimum phase estimate is obtained by taking 
the Hilbert transform of the log amplitude spectrum (Webster, 1978). Figure 2e shows the 
true minimum phase seismic wavelet for the synthetics (grey dashed) and the estimated 
seismic wavelet (black). 

In the case of a stationary seismic wavelet, the S matrix can be built using only one 
estimated seismic wavelet, and the auto- and cross-correlations can be performed using 
the fast Fourier transform, FFT. If the seismic wavelet is not stationary, non-stationary 
deconvolution requires different propagating seismic wavelets at different times to 
compensate for the changing characteristics of the wavelet along the seismic trace. One 
way to construct a non-stationary S matrix is to move a properly chosen time window 
across the seismic trace one time sample at a time, and estimating the propagating seismic 
wavelet in each time window. These can then be assigned to the related columns of S. 
Although this provides a way for obtaining the changing seismic wavelet continuously, it 
is not an efficient time-domain implementation, especially for long seismic traces. Instead, 
here we initially divide the trace into a smaller number of overlapping windows for the 
estimation of the propagating wavelet in different time windows (Margrave and 
Lamoureux, 2001, 2019; Grossman et al., 2002). This can be written as 

        
1 1

, ,
M M

k c k c
k k

y t y t t t t y t
 

    , (5) 

where  ,k cy t t  is the windowed segment of the seismic trace, k  is the window 
function and M is the number of windows. The windowed segments of the seismic trace 
can be thought of as resulting from the convolution of propagating seismic wavelets and 
local reflectivity in that window, and this can be represented as 

      , , ,k c c cy t t s t t r t t  , (6) 

where  , cs t t  is the locally stationary seismic wavelet in the window centered at tc and 

 , cr t t  is the local reflectivity in that window. The seismic wavelet,  , ct t , can then be 
estimated in each window and this carries information about the local propagating 
wavelet. 
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This approach assumes that the individual windowed segments of the seismic trace are 
locally stationary, and a stationary deconvolution can be applied within each window. For 
continuously varying propagating wavelets, such as from seismic attenuation or scattering, 
locally stationary deconvolution would be less accurate unless the windows lengths are 
chosen to be small enough. However, the matrix-vector version of the non-stationary 

 
Fig. 2. Illustration of the wavelet estimation process in the stationary case. a) The reflectivity 
series, and b) the seismic trace including where 1% Gaussian noise has also been added; c) the 
autocorrelation of the seismic trace. A Gaussian window is applied (dashed gray line) to the 
autocorrelation of the trace around the zero lag. d) The windowed autocorrelation of the seismic 
trace, and e) a minimum phase version of the estimated wavelet (black), and the true seismic 
wavelet (gray dashed) which for this example is also minimum phase. 
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convolution model can still be applied. To perform non-stationary deconvolution for 
a continuously varying seismic wavelet, the propagating seismic wavelets can be 
interpolated in time so as to change smoothly along the seismic trace. Once the 
propagating wavelets are estimated in each window, these can then be assigned to 
corresponding columns of the S matrix at the center times of the windows. In this way, 
only a small number of columns of the S matrix are estimated. Other columns of the S 
matrix can then be found in an efficient manner by interpolation within the iterative 
process from a smaller number of estimated propagating wavelets. Here, we determine the 
corresponding columns of the S matrix from the peaks of the envelope of the seismic 
trace, instead of the peaks of the cross-correlation. 

The distinction between the approach followed here and that of Margrave et al. (2011) 
and Margrave and Lamoureux (2019) in the frequency-domain, and Morozov et al. (2018) 
using the iterative time-domain approach is that the propagating wavelet is allowed to 
vary continuously along the seismic trace. The individual columns of the wavelet matrix 
can be quickly determined by interpolation within the sparse iterative time-domain 
estimation for the largest reflecitivities in the time series. We refer to this as continuous 
non-stationary iterative time-domain deconvolution (CNS-ITD). 

3 . 1 .  S y n t h e t i c  e x a m p l e  

To illustrate the CNS-ITD process, a synthetic example is used to evaluate our 
approach in both the stationary and non-stationary cases. The seismic wavelets are 
estimated in sub-windows and used to construct the columns of the S matrix 
corresponding to the centers of each window. In the stationary case, the FFT can be used 
to obtain the cross- and auto-correlations for the ITD approach. Here we apply the 
CNS-ITD approach with a matrix-vector approach. 

For the first example, the seismic wavelet is assumed to be stationary along the 
seismic trace, and all the columns of the S matrix can be filled with one estimate of the 
seismic wavelet estimated from the entire seismic trace. Even though we can construct the 
full S matrix, it does not mean that in the iteration process all the columns will be used for 
estimating the reflectivity series. At each iteration of the CNS-ITD process, only one 
column of the S matrix is used and this significantly reduces the computation time 
compared to full matrix-vector multiplications. We estimate the specific columns of the S 
matrix by the maximum peaks of the envelope of the seismic trace. In the case of 
a centered zero-phase wavelet, the location of the reflectivities and the peak of the 
envelope in the seismic trace are at the same location. For a casual seismic wavelet, 
however, there is a time shift between these two times. To address this, we use the 
difference between the beginning time and peak of the envelope of the estimated casual 
seismic wavelet as a time shift to correctly locate the reflectivity at the appropriate times 
as 

 0e
i it t t   , (7) 

where t0 is the initial time and e
it  is the time of the envelope peak of the estimated seismic 

wavelet. Once this time shift is found, the appropriate column of S can be determined. For 
the stationary case, the time shift ti is a constant value along the entire seismic trace 
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since the seismic wavelet is time-invariant. For the non-stationary case, where the 
propagating seismic wavelet is changing in time, the time shift also changes along the 
seismic trace. For a zero phase wavelet, the time shift would be zero. 

Although a local stationary deconvolution could be applied for each windowed 
segment of the seismic trace, it is not ideal since it does not allow for a continuously 
varying seismic wavelet. For seismic attenuation and scattering losses, the seismic 
wavelet evolves continuously as it propagates even within windowed segments of the 
seismic trace, and this can be achieved by interpolation of the propagating seismic 
wavelets along the seismic trace. 

Figure 3 illustrates the approach for the stationary case, where for each iteration, the 
maximum peaks of the envelope of the full seismic trace are sequentially found. The 
corresponding columns of the S matrix are chosen from the estimated seismic wavelet. 
Using the location of the maximum of the envelope of the seismic wavelet, ti can be 
estimated and the columns of the S matrix found. Equation (4) is then applied to find the 
corresponding reflectivity shown on the right on Fig. 3 for each iteration. The estimated 
reflectivities at each iteration are then adaptively removed from the seismic trace by 
applying Eq.(3). Since this is an iterative process, we can terminate the process either by 
specifying the total number of iterations or by the reduction in the MSE between the 
predicted trace and the observed seismic trace. After the iteration process shown in Fig. 3, 
all the reflectivities have been successfully recovered from the seismic trace, and MSE is 
close to the noise level added to the synthetic trace. 

As noted previously, for the stationary case or by assuming stationarity in windows of 
the data, the reflectivity can be determined by calculating cross- and auto-correlations, 
which can be estimated using the FFT. However, in the CNS-ITD only a sparse number of 
columns are required and these can be cost effectively determined by interpolation of 
selective columns of the wavelet matrix within the sparse iterative deconvolution. In the 
context of iterative time-domain deconvolution, we are only estimating the largest 
reflectivities of the full seismic trace, and this helps to reduce the costs of the matrix-
vector operations. 

To deal with the non-stationary case, the propagating seismic wavelets along the 
seismic trace are first estimated for windowed segments of the seismic trace. The length 
of the window is an important parameter that needs to be carefully determined. In 
practice, the window length should be longer than that of propagating seismic wavelet in 
order to get a good estimate. Also, the distance between the window centers should be 
small enough so that changes in the propagating wavelet can be estimated, particularly if 
the seismic attenuation varies rapidly. The propagating seismic wavelets are then 
estimated from the localized windowed segments of the seismic trace in a data-driven 
way, and not assuming a simple attenuation model. The propagating seismic wavelets can 
then be interpolated as required for the iterative estimation to find the largest reflectivities. 

Spectrograms are very useful in analyzing signals whose frequency content is 
changing in time. An example of the spectrogram of a synthetic non-stationary trace 
resulting from attenuation is shown in Fig. 4. The amplitude spectrum is shown on the left 
for the non-stationary seismic trace shown at the bottom. It can be seen both from the 
seismic trace and spectrogram that the bandwidth of frequencies is being reduced by the 
non-stationary filtering. In particular, frequencies greater than 75 Hz are attenuated for 
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later times, along with a loss of amplitude resulting, and this leads to a lower resolution of 
the seismic data for greater times. 

Using window partitions of the seismic trace, estimates of the propagating seismic 
wavelets can be made in each of the windows in order to construct selected columns of the 
S matrix. Figure 5a,b depict the windows and estimated propagating wavelets at the center 
of each window. As can be seen, the estimated seismic wavelets are time-varying, losing 
amplitude and spectral content with time as shown in the spectrogram in Fig. 4. Using the 
center times of the windows, these are assigned to the columns of the S matrix, which are 
shown in Fig. 5c. These can then be interpolated to determine selected columns of the 
S matrix where the maximum values of the envelope of the seismic trace occur, including 
the time shift given in Eq. (7). Continuous non-stationary iterative time-domain 
deconvolution (CNS-ITD) can then be performed to find the largest reflectivities in time 
along the seismic trace. As noted previously, an advantage of this approach is that it 
allows one to find any desired number of the strongest reflectivities, leading to a sparse 
deconvolution of the seismic trace. 

 
Fig. 3. Iterative time domain deconvolution for the stationary case. The synthetic trace is shown 
on the top left and 1% Gaussian random noise has been added. At each iteration, the location of the 
maximum peak of the envelope of the seismic trace is found which is denoted by black dot, and the 
corresponding propagating wavelet is chosen from the column of the S accounting for the time shift 
t described in Eq. (7). Using the seismic trace and the propagating wavelet, Eq. (4) is applied to 
estimate the reflectivity shown on the right. The estimated reflectivity is then subtracted from the 
seismic trace for the next iteration using Eq. (3). After a sufficient number of iterations, all the 
reflectivities are recovered from the seismic trace. The true reflectivity is shown on the bottom right. 
MSE – mean square error. 
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Figure 6 illustrates the CNS-ITD of the seismic trace shown in Fig. 5a where 1% 
Gaussian random noise has been added. The addition of further random noise can affect 
the estimation of the smaller reflectivities, but less so for the sparse larger reflectivities. 
We used a different number of iterations as shown in Fig. 6b to estimate the full 
reflectivity series. For iteration 5, this gives five reflectivity estimates along the seismic 
trace. The residual traces in Fig. 6a are then found by iteratively subtracting the predicted 
traces at each iteration. The residuals become smaller with an increasing number of 
iterations, and the MSE is reduced shown on the left. Figure 5d shows the estimated 
columns of the S matrix determined as part of the iteration process. Since we are 
performing a sparse iterative inversion for the larger reflectivites, the fewer number of 
columns utilized in the S matrix makes the time-domain implementation cost effective. 
We used both linear and spline interpolation, but the differences were not significant for 
the cases given here and the results for a spline interpolation are used. 

 

 
Fig. 4. The spectrogram of a non-stationary seismic trace. The Fourier amplitude spectrum is 
shown on the left for the non-stationary seismic trace shown at the bottom. 1% Gaussian random 
noise has also been added to the non-stationary seismic trace. It can be seen that frequencies greater 
than 75 Hz are being reduced for increasing time for this example. 
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After 30 iterations, the full reflectivity series has been recovered. Note, however, that 
several smaller additional reflectivity values have also been found. Since the estimation of 
the propagating wavelets includes some errors in terms of waveform and amplitude, some 
residuals will be present between the predicted and true reflectivities resulting from this. If 
we further increase the iteration number, the ITD approach will treat the remaining 

 
Fig. 5. a) Non-stationary seismic trace along with window functions used to window the seismic 
trace; b) the estimated propagating seismic wavelets for each of the windows. c) The columns of the 
S matrix, where the propagating wavelets are assigned at the centers of the window functions shown 
in a). These are displayed by short vertical pulses. The dashed lines are shown for reference at every 
0.1 seconds. d) The columns of the S matrix resulting from the sparse CNS-ITD inversion. These 
are again shown by short vertical pulses, and are obtained by interpolation of the propagating 
wavelets shown in b). The dashed lines are shown for reference at every 0.1 seconds. 
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residuals as signal and try to produce new reflectivities. However, since all the strongest 
reflectivities have been estimated and removed from the seismic trace, remaining 
reflectivities will be small. The estimated reflectivities can then be re-convolved with 
a stationary wavelet to construct a stationary and higher resolution seismic trace. 

Since our approach iteratively estimates the largest reflectivities that are assumed to be 
sparse, the inclusion of small amounts of random noise does not affect the estimation of 
the largest reflectivities. This is appropriate for models that have either a white spectrum 
or a red-shifted spectrum for the larger reflectivities. This might result from blocky 
structures where the sparse larger reflectivities dominate. However for smaller more 
densely sampled reflectivities then false envelope peaks could result. Nonetheless, small 
artifact reflectivities can be avoided by limiting the MSE error between the observed and 
predicted seismic trace. 

In general for more densely sampled but stronger reflectivities, then other approaches 
may be more appropriate. Zheng et al. (2019) investigated thin-bed layers in the BoHai 
oilfield resulting in a non-white, blue spectrum for the reflectivity. Zhang and Castagna 
(2011) performed sparse-layer reflectivity inversion instead of spare-spike inversions to 
better model thin layers. This could also be investigated here with a suitable dictionary of 
thin-layer responses, but for this study we have only inverted for sparse inversions for the 
strongest reflectivities with responses estimated in the individual Gabor windows 
assuming a white spectrum.  

4. OBSERVED DATA APPLICATIONS 

We apply the CNS-ITD approach to two observed shallow seismic datasets from 
Baker (1999). The first dataset was collected in an alluvial valley of the Thames River, 
England in 1989 to image bedrock stratigraphy and examine the structure and geometry. 

 
Fig. 6. Continuous non-stationary iterative time-domain deconvolution (CNS-ITD) is performed 
along the seismic trace shown in Fig. 5a) for different numbers of iterations. For iteration 5, five 
reflectivities are found along the seismic trace, and these are increased until all the reflectivities 
have been recovered. As the number of iterations is increased, the mean square error of the residual 
trace is decreased which can be seen in a). When the number of iterations is increased, the CNS-ITD 
approach will try to recover more reflectivities in b) from the residuals shown in a). 
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Figure 7a shows the observed zero offset stacked data from Baker (1999). The horizontal 
axis in this figure is trace number and the spacing between the traces is 1.25 m. The 
vertical axis is two-way reflection time down to 0.25 s. The processing steps applied to 
the data by Baker (1999) were pre-processing (geometry definition, killing the noisy 
traces), filtering the ground roll and air wave, static corrections, velocity analysis and 
stacking. To increase the lateral coherence, we have also applied a small amount of 
frequency-wavenumber (f-k) filtering to enhance the continuity and coherence between 
traces (Fig. 7b). 

The non-stationary character of the seismic traces can be seen from the spectrogram 
for trace 10 shown in Fig. 8 where the spectrogram amplitudes show a slight decrease in 
frequency with time. This frequency decrease in time is evident even with relatively small 
reflection travel-times due to the alluvial medium at the site that can result in higher 
attenuation (Steeples, 2005). 

Before applying CNS-ITD to the seismic section, we perform it on a single trace in 
order to determine the window size and iteration number to be applied for each of the 
traces. Figure 9a shows trace 10 used for the spectrogram in Fig. 8 and the windows that 
were used for partitioning of the trace to estimate the propagating wavelet for different 
travel-times. Figure 9b shows the estimated propagating wavelets for each of the 

 
Fig. 7. a) Stacked section of the Thames River data obtained from Baker (1999); b) the seismic 
stacked section with frequency-wavenumber filtering applied to slightly increase the lateral 
coherence. 
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windows. In this case, since the data have been previously processed by Baker (1999), we 
assume here that the non-stationary propagating seismic wavelets are zero phase and 
normalized to unit amplitude. These are then continuously interpolated along the trace 
iteratively within the CNS-ITD process to find the largest reflectivities. 

We have used both the MSE and the total number of iterations as stopping criteria in 
the iteration process. Thus, if the maximum iteration number is reached or the MSE 
between observed and predicted traces is below a specific level, the process is terminated. 
Figure 9c shows trace 10 and residual traces calculated after application of CNS-ITD with 
different numbers of iterations given on the right side of the subplot, where iteration 10 
signifies that ten iterations have been performed. The estimated spike diagrams for 
different numbers of iterations are shown in Fig. 9d. After ten iterations, only the 
strongest reflectivities have been determined. When the number of iterations is increased, 
a larger number of smaller reflectivities are obtained. When the iteration number has 
reached 60, the mean square error of the residual trace has been reduced to about 2%. 

 
Fig. 8. Spectrogram of trace 10 from the stacked seismic section of the Thames River dataset 
shown in Fig. 7b). The non-stationary character of the seismic trace can be seen where the 
amplitudes of the spectrum show a decrease in frequency with time. 
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We then applied CNS-ITD to the full seismic section for the Thames River dataset. 
The output of the CNS-ITD are the deconvolved reflectivities similar to that shown in 
Fig. 9d for each trace. Seismic sections can then be obtained using a stationary Ricker 
wavelet with a particular dominant frequency. Figure 10a shows the deconvolution results 
of the CNS-ITD applied to the stacked seismic section in Fig. 7b. Figure 10b shows the 
results of the CNS-ITD after re-convolving with a stationary 250 Hz Ricker wavelet. To 
see the effect of the CNS-ITD on the seismic traces, we plot the spectrogram of the 
deconvolved trace 10 after CNS-ITD, and re-convolved with a stationary 250 Hz Ricker 
wavelet in Fig. 11. Comparing Figs 8 and 11, it can be seen that the frequency bandwidth 
of the trace has been improved with more uniform and higher frequency content. 

The second observed dataset was located in Kansas to image whether there was 
a glacial meltwater channel cut into the bedrock, and then later covered by sediments 
(Baker et al., 1998; Baker, 1999). Similar processing steps applied to first dataset were 
also applied to the Kansas dataset by Baker (1999). Figure 12a shows the original stacked 
section from Baker (1999) with some additional gain applied and Fig. 12b shows stacked 
section after f-k filter has been applied to increase lateral coherency. The horizontal axis in 
this figure is trace number and the spacing between the traces is 0.25 m. The vertical axis 
is two-way reflection time down to 0.2 s, with the near surface speeds this corresponds to 
a depth of approximately 40 m (Baker, 1999). 

 
Fig. 9. An application of continuous non-stationary iterative time-domain deconvolution to 
trace 10 from seismic section shown in Fig. 7b). a) The seismic trace together with window 
functions, and b) the estimated propagating wavelets for each window. c) Trace 10 on the top and 
residual traces for different numbers of iterations; d) the spike diagram produced after performing 
ten iterations performed on the trace. Similarly, the results for different numbers of iterations for the 
residual traces and the mean square errors (MSE) are shown in c). 
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We again selected a particular trace, here trace 75, to display a spectrogram of the 
frequency content with time, and this is shown in Fig. 13. As can be seen, the frequency 
content of the trace decreases with time. Figure 14 shows the CNS-ITD applied to this 
trace for different numbers of iterations. Figure 14a shows the seismic trace along with the 
window functions, and Fig. 14b shows the estimated propagating wavelets for each 
window. These are continuously interpolated within the CNS-ITD iterative process. 
Figure 14c shows the residual traces for different numbers of iterations along with the 
MSE. After 20 iterations the MSE has decreased to around one percent. The resulting 
deconvolved reflectivities are shown in Fig. 14d for different numbers of iterations. Since 
the data has been previously processed, the estimated propagating wavelets is assumed to 
be zero phase and normalized to unity.  

We then performed the CNS-ITD on the full Kansas dataset. The resulting 
deconvolved reflectivities for each of the traces are then re-convolved with a stationary 
100 Hz Ricker wavelet. An f-k filter was applied to slightly increase the lateral coherency. 
Figure 15a shows the deconvolution results of the CNS-ITD applied to the seismic section 
is Fig. 12b. Figure 15b shows the deconvolved results after re-convolving with 

 
Fig. 10. a) The continuous nonstationary iterative time-domain deconvolution of the seismic 
section in Fig. 7b. b) The deconvolved results that have been re-convolved with a stationary 250 Hz 
Ricker wavelet, and an frequency-wavenumber filter has been applied to slightly increase lateral 
coherence. 
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a stationary 150 Hz Ricker wavelet. Some consolidation of reflectivities has resulted in 
part from the removal of the propagating wavelets within the iterative inversion process. 
There is also lateral variability along the profile and this could result in some of the 
deconvolved events being consolidated or a lost along the profile. However a majority of 
the largest reflectivities have been determined. 

It can be seen that the resolution has been improved by applying CNS-ITD. This can 
be verified by the spectrogram of trace 75 after CNS-ITD re-convolved with a stationary 
150 Hz Ricker wavelet, which is shown in Fig. 16. Although the overall frequencies of the 
spectrum have been increased, the lower and upper ranges of the spectrum are also 
affected by the re-convolution by the new stationary Ricker wavelet. 

 

 
Fig. 11. Trace 10 from the seismic section shown in Fig. 7b after continuous nonstationary 
iterative time-domain deconvolution and re-convolved with a stationary 250 Hz Ricker wavelet. 
Comparing with Fig. 8, it can be seen from the seismic trace, the spectrum and the spectrogram that 
the frequency content has been increased and is more uniform with frequency after the 
deconvolution and re-convolution with a stationary 250 Hz Ricker wavelet. 
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Fig. 12. a) Stacked seismic section of the Kansas dataset obtained from Baker (1999) with an 
additional gain applied, and b) the seismic stacked section with an frequency-wavenumber filter 
applied to increase lateral coherency. 
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5. CONCLUSIONS 

In this study, a continuous non-stationary iterative time-domain deconvolution (CNS-
ITD) has been investigated. This a type of matching pursuit algorithm, but was initially 
develop based on earlier studies by Kikuchi and Kanamori (1982) and Ligorria and 
Ammon (1999) in earthquake seismology. For CNS-ITD the propagating wavelets are 
first estimated in several overlapping Gabor windows of the data. Matrix-vector 
operations in the time-domain are then performed by estimating a small number of 
columns of the wavelet matrix by interpolation within a sparse iterative estimation for the 
largest reflectivities in the data. In this way, the method is less sensitive to variations of 
the smallest amplitudes in the time series in contrast to frequency-domain approaches. 
The iteration process is stopped when a minimum RMS residual or a maximum number of 

 
Fig. 13. Spectrogram of trace 75 from the stacked seismic section of Kansas dataset from Baker 
(1999) shown in Fig.12b. The non-stationary character of the seismic trace can be seen where the 
amplitudes of the spectrogram show a decrease in frequency with time. 
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iterations is reached. The results are then convolved with a higher frequency wavelet in 
order to make the results stationary in time and to increase the resolution of the data. We 
tested CNS-ITD on both synthetic and observed data. For the synthetic data, we were able 
to successfully estimate the largest reflectivities in the data. Applying CNS-ITD to the 
observed data, higher frequencies were recovered and the resolution of the data was 
improved. 
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Fig. 14. An application of continuous non-stationary iterative time-domain deconvolution to trace 
75 from the stacked section of Kansas dataset shown in Fig. 12b. a) The seismic trace together with 
window functions; b) the estimated propagating wavelets for each window. c) Trace 75 on the top 
and residual traces for different numbers of iterations; d) spike diagram produced after five 
iterations have been performed along the trace. Similarly, the results for different numbers of 
iterations are also shown in d), and the residual traces along with the mean square errors (MSE) are 
shown in c). 
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Fig. 15. a) Results of the continuous non-stationary iterative time-domain deconvolution of the 
seismic section in Fig. 12b. b) The deconvolved results, which have been re-convolved with 
a stationary 150 Hz Ricker wavelet. An frequency-wavenumber filter has also been applied slightly 
to increase lateral coherence. 
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Fig. 16. Spectrogram of trace 75 from the stacked seismic section of the Kansas dataset from 
Fig. 12b after continuous non-stationary iterative time-domain deconvolution and re-convolved with 
a stationary 150 Hz Ricker wavelet. 
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