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Abstract

We propose a new randomized algorithm for solving L2-regularized least-squares
problems based on sketching. We consider two of the most popular random embed-
dings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard
Transform (SRHT). While current randomized solvers for least-squares optimiza-
tion prescribe an embedding dimension at least greater than the data dimension, we
show that the embedding dimension can be reduced to the effective dimension of
the optimization problem, and still preserve high-probability convergence guaran-
tees. In this regard, we derive sharp matrix deviation inequalities over ellipsoids for
both Gaussian and SRHT embeddings. Specifically, we improve on the constant
of a classical Gaussian concentration bound whereas, for SRHT embeddings, our
deviation inequality involves a novel technical approach. Leveraging these bounds,
we are able to design a practical and adaptive algorithm which does not require
to know the effective dimension beforehand. Our method starts with an initial
embedding dimension equal to 1 and, over iterations, increases the embedding
dimension up to the effective one at most. Hence, our algorithm improves the
state-of-the-art computational complexity for solving regularized least-squares
problems. Further, we show numerically that it outperforms standard iterative
solvers such as the conjugate gradient method and its pre-conditioned version on
several standard machine learning datasets.

1 Introduction

We study the performance of a randomized method, namely, the Hessian sketch [34], in the context
of regularized least-squares problems,

x∗ : = argmin
x∈Rd

{
f(x) : =

1

2
‖Ax− b‖22 +

ν2

2
‖x‖22

}
, (1)

where A ∈ Rn×d is a data matrix and b ∈ Rn is a vector of observations. For clarity purposes and
without loss of generality (by considering instead the dual problem of (1)), we make the assumption
that the problem is over-determined, i.e., n > d and that rank(A) = d.

The regularized solution x∗ can be obtained using direct methods which have computational com-
plexity O(nd2). In the large-scale setting n, d� 1, this is prohibitively large. A linear dependence
Õ(nd) is preferable and this can be obtained by using first-order iterative solvers [18] such as the
conjugate gradient method (CG) for which the per-iteration complexity scales as O(nd). Using the

standard prediction (semi)-norm error 1
2‖A(x̃− x∗)‖22 where A : =

[
A
νId

]
as the evaluation criterion

for an estimator x̃, these iterative methods have time complexity which usually scales proportionally
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to the condition number κ of A (or
√
κ with acceleration) in order to find a solution x̃ with acceptable

accuracy. This also becomes prohibitively large when κ� 1. Besides the computational complexity,
the number of iterations of an iterative solver is also a relevant performance metric in the large-scale
setting, as distributed computation may be necessary at each iteration. In this regard, randomized
preconditioning methods [37, 4, 29] involve using a random matrix S ∈ Rm×n with m � n to
project the data A, and then improve the condition number of A based on a spectral decomposition
of SA. On the other hand, the iterative Hessian sketch (IHS) introduced by [34] and considered
in [30, 25, 26, 31, 35] addresses the conditioning issue differently. Given x0, x1 ∈ Rd, it uses a
pre-conditioned Heavy-ball update with step size µ and momentum parameter β, given by

xt+1 = xt − µH−1
S ∇f(xt) + β(xt−xt−1) (2)

where the Hessian H : = A
>
A of f(x) is approximated by HS = A

>
S
>
S A and S is a sketching

matrix. We refer to the update (2) as the Polyak-IHS method, and, in the absence of acceleration
(β = 0), we call it the gradient-IHS method. In contrast to preconditioning methods [37, 4, 29], the
IHS does not need to pay the full cost O(mdmin{m, d}) for decomposing the matrix SA. Although
solving exactly the linear system HS · z = ∇f(xt) also takes time O(mdmin{m, d}), approximate
solving (using for instance CG) is also efficient and faster in practice [31, 30].

The choice of the sketching matrix S is critical for statistical and computational performances.
A classical sketch is a matrix S with independent and identically distributed (i.i.d.) Gaussian
entries N (0,m−1) for which forming SA requires in general O(mnd) basic operations (using
classical matrix multiplication). On the other hand, it has been observed [27, 16] and also formally
proved [15, 26] in several contexts that random projections with i.i.d. entries degrade the performance
of the approximate solution compared to orthogonal projections. In this regard, the SRHT [1] is
an orthogonal embedding for which the sketch SA can be formed in O(nd logm) time, and this is
much faster than Gaussian projections. Consequently, along with the statistical benefits of orthogonal
projections, this suggests to use the SRHT as a reference point for comparing sketching algorithms.

In the context of unregularized least-squares problems (ν = 0), [25] showed that the error 1
2‖A(xt −

x∗)‖22 of the Polyak-IHS method is smaller than (d/m)t for both Gaussian and SRHT matrices
provided that m ≈ d. More recently, it has been shown in [26] that the scaling (d/m)t is exact for
Gaussian embeddings in the asymptotic regime where we let the relevant dimensions go to infinity,
whereas the exact scaling for the SRHT is slightly smaller than (d/m)t.

In the regularized case (ν > 0), more relevant than the matrix rank is the effective dimension
de : = trace(A(A>A + ν2Id)

−1A>) which always satisfies de 6 d, and it is significantly smaller
than d when the matrix A has a fast spectral decay. It has been shown in [31] that one can pick
m ≈ de and achieve the error rate (de/m)t by using the well-structured approximate Hessian

HS : = A>S>SA+ ν2 · I . (3)
Further, with m ≈ de instead of m ≈ d, the linear system HS · z = ∇f(xt) can be solved in
time O(d2

ed) instead of O(d3) by computing and caching a factorization of SA and then using the
Woodbury matrix identity [20] to invert HS .

However, it is necessary to estimate de (which is usually unknown) to be able to pick m ≈ de and
then achieve these computational and memory space savings. The randomized technique proposed
by [3] can be used to estimate de, but under the restrictive assumption that de is very small (e.g., see
Theorem 60 in [3]). In [31], the authors propose to use a heuristic Hutchinson-type trace estimator [5]
and do not provide any guarantee on the estimation accuracy of de. Consequently, our main goal in
this paper is to design an adaptive algorithm which does not require the knowledge of de, but is still
able to use a sketch size m . de and achieve an error rate (de/m)t.

State-of-the-art randomized preconditioning methods [37, 4, 29] prescribe to use m proportional to
d in the context of unregularized least-squares problems. Since it appears non-trivial to adapt and
analyze these methods to the regularized case with sketch sizes m ≈ de, nor to design an adaptive
scheme which does not require the knowledge of de, we focus our attention to the Polyak-IHS method
in this work.

1.1 Notations

We denote by ‖z‖ or ‖z‖2 the Euclidean norm of a vector z, ‖M‖2 the operator norm of a matrix M
and ‖M‖F its Frobenius norm.
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We introduce the diagonal matrix D : = diag
(

σ1√
σ2
1+ν2

, . . . , σd√
σ2
d+ν2

)
where σ1 > . . . > σd are

the singular values of the matrix A. We define the effective dimension as de : =
‖D‖2F
‖D‖22

. We denote

by U ∈ Rn×d a matrix of left singular vectors of A and by U ∈ R(n+d)×d a matrix of left singular

vectors of A : =

[
A

ν · Id

]
.

Given a sequence of iterates {xt}, we define its error at time t as δt : = 1
2‖A(xt − x∗)‖2.

For a sketching matrix S ∈ Rm×n, we denote the approximate Hessian HS : = A>S>SA+ ν2Id,
and the exact Hessian H : = A

>
A. Critical to our convergence analysis is the matrix CS : =

D(U>S>SU − Id)D + Id.

1.2 Overview of our contributions

Our main contribution is to propose an iterative method that does not require the knowledge of de,
and is still able to achieve the error rate O ((de/m)t). Our method is initialized with an arbitrary m
(e.g, m = 1) and, at each iteration of the Polyak-IHS update (2), it uses an improvement criterion to
decide whether it should increase m or not. We prove that the adaptive sketch size satisfies at each
iteration m . de and that our algorithm improves on the state-of-the-art computational complexity
for solving regularized least-squares problems.

Our algorithmic parameters and improvement criterion depend on the extreme eigenvalues of CS ,
and it is then critical for optimal performance to have a sharp estimation of these. For Gaussian
embeddings, we provide a sharper constant for well-known Gaussian concentration bounds [24].
Our constant is tight in a worst-case sense, and our analysis is based on a recent extension [39]
of Gordon’s min-max theorem [17]. In the SRHT case, although similar concentration bounds
were already obtained (e.g., see Theorem 1 in [13]), we provide a novel technical approach which
generalizes the classical results and analysis proposed in [40].

We evaluate numerically our adaptive algorithm on several standard datasets. We consider two
settings: (i) the regularization parameter ν is fixed; (ii) one aims to compute the several solutions
along a regularization path. The latter setting is more relevant to many practical applications [43, 22]
where estimating a proper regularization parameter is essential. In both cases, we show empirically
that our method is faster than the standard conjugate gradient method and one of the state-of-the-art
randomized preconditioning methods [37].

Finally, we address the underdetermined case d > n. By considering the dual of (1) which is
itself an overdetermined regularized least-squares problem, we show that our adaptive algorithm and
theoretical guarantees apply to this setting. We defer the presentation of these results to Appendix A.2.

1.3 Other related work

Another class of sketch-and-solve algorithms project both A and b, and then computes x̃ : =
argminx

1
2‖SAx − Sb‖

2
2 + λ

2 ‖x‖
2
2 (see e.g. [16, 33, 32, 38, 14, 7, 8]). In [3], the authors showed

that for m ≈ de/ε, the estimate x̃ satisfies f(x̃) 6 (1 + ε)f(x∗). This can result in large m for
even medium accuracy, whereas our method yields an ε-approximate solution with m ≈ de under
the mild requirement that the number of iterations T satisfies T ≈ log(1/ε). Further, the effective
dimension can be efficiently estimated only in limited settings (e.g., see Theorem 60 in [3]). Closely
related to our work is the iterative method proposed by [11] for solving underdetermined ridge
regression problems. It involves a similar approximation of the Hessian A

>
A by HS , where the

sketch size m depends on the effective dimension de as opposed to the data dimension d. However
their proposed method also requires prior knowledge or estimation of de. Several sketch-and-solve
algorithms [10, 44] for ridge regression were not analyzed in terms of de but d. In the context of kernel
ridge regression, it was shown that Nystrom approximations of kernel matrices have performance
guarantees for sketch sizes proportional to the effective dimension [6, 2, 12].

Other versions of the IHS have been proposed in the literature, especially in the context of unregular-
ized least-squares. A fundamentally different version uses the same update (2) but with refreshed
sketching matrices, i.e., a new matrix S is sampled at each iteration and independently of the previous
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ones, and the approximate Hessian HS is re-computed. Surprisingly, refreshing embeddings does
not improve on using a fixed embedding: it results in the same convergence rate in the Gaussian
case [25, 26] and in a slower convergence rate in the SRHT case [26].

2 Preliminaries

We provide deterministic convergence guarantees for the Polyak- and gradient-IHS methods, and we
relate the convergence rates to the extreme eigenvalues of the matrix CS .

Let S ∈ Rm×d be any sketching matrix with arbitrary sketch size m, and denote by γ1 (resp. γd) the
largest (resp. smallest) eigenvalue of CS . Since the matrix D>U>S>SUD is positive semi-definite
and ‖D‖2 < 1, it holds that CS is positive definite. Given two real numbers Λ > λ > 0, we define
the S-measurable event ES : = {λ 6 γd 6 γ1 6 Λ}. The proofs of the two next results are based on
standard analyses of gradient methods [36], and they are deferred to Appendix B.1.
Theorem 1. Consider the step size µgd(λ,Λ) : = 2/( 1

λ + 1
Λ ). Then, conditional on ES , the gradient-

IHS method satisfies at each iteration

δt+1

δt
6 cgd(λ,Λ) , where cgd(λ,Λ) : =

(
Λ− λ
Λ + λ

)2

. (4)

Theorem 2. Consider the step size µp(λ,Λ) : = 4/( 1√
λ

+ 1√
Λ

)2 and momentum parameter βp(λ,Λ) :

=
(√

Λ−
√
λ√

Λ+
√
λ

)2

. Then, conditional on ES , the Polyak-IHS satisfies

lim sup
t→∞

(
δt
δ0

) 1
t

6 cp(λ,Λ) , where cp(λ,Λ) : =

(√
Λ−
√
λ√

Λ +
√
λ

)2

. (5)

The above rates cgd(λ,Λ) and cp(λ,Λ) will play a critical role in the design of our adaptive method.
For the gradient-IHS method, it should be noted that we are able to monitor the improvement ratio
between two consecutive iterates. However, for the Polyak-IHS method, we only obtain an asymptotic
guarantee as t→ +∞. This standard result regarding the Heavy-ball method [36] essentially follows
from the fact that the iterates obey a non-symmetric linear dynamical system so that, according to
Gelfand’s formula, the spectral and operator norms of this linear system only coincide asymptotically.

3 Sharp convergence rates for Gaussian and SRHT embeddings

According to Theorems 1 and 2, we need sharp estimates of the extreme eigenvalues of CS in order
to pick optimal parameters for the Polyak- and gradient-IHS methods.

3.1 The Gaussian case

We provide a concentration bound on the edge eigenvalues γ1 and γd of the matrix CS in terms
of the aspect ratio de

m . Our analysis is based on a generalized Gordon’s Gaussian comparison
theorem [17, 39] and it provides sharper constants than existing results. We defer the proof to
Appendix C.1.
Theorem 3. Let ρ, η > 0 be some parameters, and S ∈ Rm×n be a Gaussian embedding with
m > de

ρ . Then, it holds with probability at least 1− 8e−mρη/2 that{
γ1 6 1− ‖D‖2 + ‖D‖22(1 +

√
cηρ)2

γd > 1− ‖D‖22 + ‖D‖22(1−√cηρ)2 , provided that ρ ∈ (0, 0.18], η ∈ (0.01] .
(6)

where cη : = (1 + 3
√
η)2.

The lower1 and upper bounds (6) are respectively increasing and decreasing in ‖D‖2, so that one can
replace the potentially unknown quantity ‖D‖2 by 1 as follows.

1For the lower bound, we use the restrictions ρ 6 0.18 and η 6 0.01 for the sake of having simple
expressions, while covering a range of values useful in practice. However, similar lower bounds hold for any
ρ ∈ (0, 1) and small enough η.
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Definition 3.1 (Practical parameters for Gaussian embeddings). Given ρ 6 0.18 and η 6 0.01,
we define the bounds λρ,η : = (1 − √cηρ)2 and Λρ,η : = (1 +

√
cηρ)2 where cη = (1 + 3

√
η)2.

We denote the corresponding algorithmic parameters by µgd(ρ, η) : = µgd(λρ,η,Λρ,η), µp(ρ, η) : =
µp(λρ,η,Λρ,η) and βp(ρ, η) : = βp(λρ,η,Λρ,η), and the corresponding convergence rates cgd(ρ, η) :
= cgd(λρ,η,Λρ,η) and cp(ρ, η) : = cp(λρ,η,Λρ,η).

According to Theorems 1 and 2, the closer the bounds on γ1 and γd to 1, the faster the convergence
rates of the Gradient- and Polyak-IHS updates. Consequently, one needs to pick both ρ and η small.
However, this trades off, on the one hand, with a larger sketch sizem (i.e., higher computational costs)
and, on the other hand, with a weaker probabilistic guarantee. For instance, suppose that ρ ≈ 0.1
and η ≈ 0.01 are fixed. This results in m & 103 to get low failure probability e−mρη . Such a choice
of the sketch size is particularly relevant when de/ρ & 103, i.e., de & 102, and min{n, d} � 103.
On the other hand, in the very small de regime, it is harder to keep m close to the target sketch size
de/ρ. Since our sketching-based method relies on measure concentration phenomena, this should be
expected.

Remark 3.1. Letting de,m → +∞ while keeping the aspect ratio ρ : = de
m fixed and taking

η ∼ 1/
√
m, our bounds (6) converge to the respective limits 1 − ‖D‖22 + ‖D‖22(1 − √ρ)2 and

1 − ‖D‖22 + ‖D‖22(1 +
√
ρ)2. When D = ‖D‖2 · Id, these limits are exact as they correspond to

the edges of the support of the Marchenko-Pastur distribution [28], so that our bounds are tight
in a worst-case sense. Further, we have that ‖CS − Id‖2 6 ‖D‖22

(
2
√
ρ+ ρ

)
(1 + 4m−

1
4 ) with

probability at least 1− 8e−
√
mρ
32 , whereas standard Gaussian concentration bounds (e.g., see [24])

states that ‖CS−Id‖2 6 ‖D‖22
(
2
√
ρ+ ρ

)
(1+c0) with high probability for some universal constant

c0 > 0. In contrast, our factor (1 + 4m−
1
4 ) is asymptotically sharper.

3.2 The SRHT case

We provide a concentration bound in terms of the aspect ratioC(n, de)· de log(de)
m where we introduced

the oversampling factorC(n, de) : = 16
3 (1+

√
8 log(den)

de
)2. Under the mild requirement de & log(n),

this factor satisfies C(n, de) = O(1), so that the latter aspect ratio scales as de log(de)
m .

Our proof generalizes the results and analysis techniques from the work of J. Tropp [40] who treated
the specific case D = Id, and it relies on two powerful matrix inequalities, namely, Lieb’s and
the matrix Bernstein inequalities [41, 42]. We defer it to Appendix C.2. We note that similar
concentration bounds were obtained by [13] using different analysis techniques.

Theorem 4. Let ρ ∈ (0, 1) and m > C(n, de) · de log(de)
ρ . Then it holds with probability at least

1− 9/de that λρ 6 γd 6 γ1 6 Λρ where λρ : = 1− ‖D‖22
√
ρ and Λρ : = 1 + ‖D‖22

√
ρ.

As already discussed in the previous section, the operator norm ‖D‖2 might be unknown in practice,
but one can replace ‖D‖2 by 1 as follows.

Definition 3.2 (Practical parameters for the SRHT). Given ρ ∈ (0, 1), we define the bounds λρ :
= 1 − √ρ and Λρ : = 1 +

√
ρ. We denote the corresponding algorithmic parameters by µgd(ρ) :

= µgd(λρ,Λρ), µp(ρ) : = µp(λρ,Λρ) and βp(ρ) : = βp(λρ,Λρ), and the corresponding convergence
rates cgd(ρ) : = cgd(λρ,Λρ) and cp(ρ) : = cp(λρ,Λρ).

4 An adaptive method free of the knowledge of the effective dimension

We propose a novel adaptive method with time-varying sketch size. Our algorithm does not require
the knowledge of de, but still achieves a fast rate of convergence while keeping m . de.

Our method is based on monitoring an approximation of the improvement ratio Ct : = δt+1

δt
. Given

a threshold C, it proceeds as follows. Starting from an arbitrary initial sketch size (say m = 1),
we compute at time t a gradient-IHS update xt+1. If Ct . C, then we accept the update xt+1.
Otherwise, we reject the update xt+1, increase the sketch size by a constant factor (saym← 2m) and
re-compute the sketched matrix SA. Since only updates with sufficient improvement are accepted,
this method achieves a convergence rate smaller than the chosen threshold C. Importantly, with, for
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instance, Gaussian embeddings, according to Theorems 1 and 3, as soon as the sketch size becomes
larger than Ω(de/C) then all the updates are accepted, so that the number of rejected updates K is
finite with K . log(de/C)/ log(2). However, computing the exact improvement ratio Ct requires
the knowledge of Ax∗, and we alleviate this difficulty as described next.

We provide a proxy of the improvement ratio which is especially compatible with the Gradient- and
Polyak-IHS updates. We introduce the approximate error rt : = 1

2‖C
− 1

2

S U
>
A(xt − x∗)‖2, and the

approximate ratio ct : = rt+1

rt
. In the next result, we relate the approximate error vector rt with a

quantity that can be efficiently computed. We defer the proof to Appendix D.1.

Lemma 1 (Sketched Newton decrement). It holds that rt = 1
2g
>
t H

−1
S gt, where gt : = ∇f(xt).

Since the IHS forms at each iteration the descent directionH−1
S gt, it is fast to additionally compute the

sketched Newton decrement2 rt = 1
2g
>
t H

−1
S gt and the approximate improvement ratio ct = rt+1/rt.

Consequently, we can efficiently monitor the ratio ct as opposed to Ct in order to adapt the sketch
size. Provided that ct and Ct are close enough, this would yield the desired performance. We describe
our proposed method in Algorithm 1.

Algorithm 1: Adaptive Polyak-IHS method.

Input :A ∈ Rn×d, b ∈ Rn, ν > 0, initial sketch size m > 1, initial points x0, x1 ∈ Rd, target
convergence rates cgd, cp ∈ (0, 1), gradient descent step size µgd, Polyak step size µp > 0
and momentum parameter βp > 0

1 Sample S ∈ Rm×n and compute SA = SA.
2 Compute g1 = ∇f(x1), g̃1 = H−1

S g1 and r1 = 1
2g
>
1 g̃1.

3 for t = 1, 2, . . . , T − 1 do
4 Compute x+

p = xt − µp g̃t + βp(xt−xt−1), g+
p = ∇f(x+

p ), g̃+
p = H−1

S g+
p , r+

p = 1
2g

+
p
>
g̃+
p .

5 Compute the Polyak-IHS improvement ratio c+p =

(
r+p
r1

) 1
t

.

6 if c+p 6 cp then
7 Set xt+1 = x+

p , gt+1 = g+
p , g̃t+1 = g̃+

p and rt+1 = r+
p .

8 else
9 Compute x+

gd = xt − µgd g̃t, g+
gd = ∇f(x+

gd), g̃+
gd = H−1

S g+
gd and r+

gd = 1
2g

+
gd
>
g̃+

gd.

10 Compute the gradient-IHS improvement ratio c+gd =
r+gd

rt
.

11 if c+gd 6 cgd then
12 Set xt+1 = x+

gd, gt+1 = g+
gd, g̃t+1 = g̃+

gd and rt+1 = r+
gd.

13 else
14 Set m : = 2m, sample S ∈ Rm×n and compute SA = S ·A.
15 Set g̃t : = H−1

S gt and return to Step 4.
16 end
17 end
18 end
19 Return xT .

Note that Algorithm 1 computes first a Polyak-IHS update. According to Theorem 2, the relative
error of the Polyak-IHS update cannot be tightly controlled in finite-time, but only asymptotically as
t → +∞. This makes difficult to provide guarantees using only the Polyak-IHS update based on
monitoring an approximate improvement ratio. Therefore, if the Polyak-IHS update fails, Algorithm 1
computes a gradient-IHS update, whose improvement between two successive iterates can be tightly
controlled according to Theorem 1. Hence, Algorithm 1 may compute both updates in order to benefit
either from the acceleration of the latter or from the hard convergence guarantees of the former. If
both updates do not make enough progress then the sketch size is increased.

2In the optimization literature [9], the Newton decrement at x of a twice differentiable, convex function f is
defined as 1

2
∇f(x)>∇2f(x)−1∇f(x).
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4.1 Convergence guarantees

We now state high-probability guarantees on the performance of Algorithm 1. We show that the sketch
size and the number of rejected steps remain bounded, i.e., m = O(de/ρ) and K = O(log(de/ρ))
for Gaussian embeddings, whereas m = O(de log(de)/ρ) and K = O(log(de log(de)/ρ)) for the
SRHT. Further, the convergence rate roughly scales as ρt. We defer the proofs of the next two results
to Appendices B.2 and B.3.
Theorem 5 (Gaussian embeddings). Let ρ 6 0.18 and η 6 0.01. Suppose that we run Algorithm 1
with cgd = cgd(ρ, η), cp = cp(ρ, η), µgd = µgd(ρ, η), µp = µp(ρ, η) and βp = βp(ρ, η) (see
Definition 3.1), and, with an initial sketch size minitial > 1. Then, it holds with probability at least
1− 8e−deη/2 that, across all iterations, the sketch size remains bounded as

m 6 2 c0 ·
de
ρ
, (7)

where c0 is a numerical constant which satisfies c0 6 5. Further, the number of rejected updates is
upper bounded as

K 6
log
(
c0 de
minitialρ

)
log 2

+ 1 . (8)

Moreover, at any fixed iteration t > 1, it holds with probability at least 1− 8e−deη/2 that the relative
error satisfies

δt
δ1

6 9

(
1 +

σ2
1

ν2

)
max

{
1,

de
minitial

}
cgd(ρ, η)t−1 . (9)

Theorem 6 (SRHT). Fix ρ ∈ (0, 1). Suppose that we run Algorithm 1 with cgd = cgd(ρ), cp = cp(ρ),
µgd = µgd(ρ), µp = µp(ρ) and βp = βp(ρ) (see Definition 3.2), and, with an initial sketch size
minitial > 1. Denote aρ : =

1+
√
ρ

1−√ρ . Then, it holds with probability at least 1 − 9
de

that, across all
iterations, the sketch size remains bounded as

m 6 2 aρC(n, de)
de log de

ρ
, (10)

and the number of rejected updates is upper bounded as

K 6
log
(
aρC(n, de)

de log de
minitialρ

)
log 2

+ 1 . (11)

Moreover, it holds almost surely that, across all iterations, the relative error satisfies

δt
δ1

6 2

(
1 +

σ2
1

ν2

)
cgd(ρ)t−1 . (12)

The bound (10) on the sketch size is weaker with the SRHT, which requires an additional factor
log de. This logarithmic oversampling factor was shown to be necessary for other concentration
bounds (see, for instance, the discussions in [21, 40]). On the other hand, the bound (9) on the relative
error has an additional factor de

minitial
when minitial 6 de with Gaussian embeddings. According to our

proof of Theorem 6, this follows from the orthogonality of the SRHT which causes less distortions
than an i.i.d. Gaussian embedding, especially when the embedding dimension is small.

4.2 Time and space complexity

We consider here the SRHT for which computing SA is faster than Gaussian projections. We have
the following complexity result, whose proof is deferred to Appendix B.4.

Theorem 7. Let ε ∈ (0, 1/2) be a given precision such that ε 6 ν2

ν2+σ2
1

. Under the hypotheses of

Theorem 6, it holds with probability at least 1− 9
de

that the number of iterations to reach a solution

xT such that δT /δ1 6 ε satisfies T = O( log(1/ε)
log(1/ρ) ). Thus the total time complexity Cε of Algorithm 1

verifies

Cε = O
(

log(de/ρ) (nd log(de/ρ) +
d2
e log2de
ρ2

d) + nd
log(1/ε)

log(1/ρ)

)
.
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The time complexity Cε is decomposed into three terms. Sketching the data matrix takes
O(nd log(de/ρ)) time. The costO(

d2e log2de
ρ2 d) corresponds to computing a factorization ofHS using

the Woodbury identity (see Appendix B.4 for details). These two costs are multiplied by an extra fac-
tor O(log(de/ρ)) which is the maximum number of rejected steps. The last term is the per-iteration
complexity O(nd) times the number of iterations T = O( log(1/ε)

log(1/ρ) ). In contrast, other state-of-the-art

randomized preconditioning methods [37, 4, 29] prescribe the sketch size m = d log d
ρ and they are

also decomposed into three steps: sketching, factoring, and iterating. Sketching with the SRHT
also costs O(nd log(d/ρ)) and the factoring step takes O(d

3 log2d
ρ2 ) time. The iteration part costs

O(nd log(1/ε)
log(1/ρ) ). This yields the total complexity Cother = O(nd log(d/ρ) + d3 log2d

ρ2 + nd log(1/ε)
log(1/ρ) ).

Thus, even with the extra factor log(de/ρ) due to the rejected steps, our adaptive method improves
on the sketching plus factor costs especially when the effective dimension de is much smaller than
the data dimension d and thus, on the total complexity.

Regarding space complexity, our method requires O(d · de log de/ρ) space to store the sketched
matrix SA whereas the other preconditioning methods needs O(d2 log d/ρ). This is a significant
improvement when de is much smaller than d.

Remark 4.1. Our results developed so far are relevant for a dense data matrix A. On the other
hand, it is also of great practical interest to develop efficient methods which address the case of
sparse data matrices. If the data matrix A has a few non-zero entries, then embeddings for which
the computational complexity of forming SA scales as O(nnz(A)) may be more relevant for our
adaptive method. Many deviation bounds similar to those we present in Theorems 3 and 4 exist for
sparse embeddings (see, for instance, [11, 23, 13]). We leave the analysis of our adaptive method
with sparse embeddings to future work.

5 Numerical experiments

We carry out numerical simulations of Algorithm 1 and we compare it to standard iterative solvers,
that is, the CG method and the randomized preconditioned CG (pCG) [37]. Numerical simulations
were carried out on a 512Gb desktop station and implemented in Python using its standard numerical
linear algebra modules3.

We consider two evaluation criteria: (i) the cumulative time to compute the solutions up to a given
precision ε > 0 along an entire regularization path (several values of ν in decreasing order) and the
memory space required by each sketching-based algorithm as measured by the sketch size m, and,
(ii) the same criteria but for a fixed value of ν > 0.

We present in Figures 1 and 2 results for two standard datasets (see Appendix A.1 for additional
experiments): (i) one-vs-all classification of MNIST digits and (ii) one-vs-all classification of
CIFAR10 images.

Except for very large values of the regularization parameter ν > 0 for which the regularized least-
squares problem (1) is well-conditioned so that the conjugate gradient method is very efficient, we
observe that our method is the fastest and requires less memory space than pCG for computing
both the solutions of the entire regularization path and for a fixed value of ν. In particular, pCG
uses m = d

ρ for Gaussian embeddings and m = d log d
ρ for the SRHT. Note that, without a priori

knowledge or estimation of the effective dimension de, these are the best statistical lower bounds on
the sketch size known for pCG in order to guarantee convergence. Thus pCG is especially slower at
the beginning because the factorization cost scales as O(d3) and it requires memory space O(d2). In
contrast, our method starts with m = 1 and m does not exceed O(de/ρ) for Gaussian embeddings
and O(de log de/ρ) for the SRHT, as predicted by Theorems 5 and 6. Our adaptive sketch size
remains sometimes much smaller than these theoretical upper bounds, and we still have a fast rate of
convergence.

We observe in practice that, in Algorithm 1, the Polyak-IHS update is often rejected compared to the
gradient-IHS update, especially with the SRHT. Therefore, in addition to Algorithm 1, we consider
a variant which does not compute the Polyak-IHS update but only the gradient-IHS update. This

3Code is publicly available at https://github.com/jonathanlctt/eff_dim_solver

8



variant enjoys exactly the same convergence guarantees as presented in Theorems 5 and 6. Since it
computes only a single candidate update, this variant is faster than Algorithm 1 in the case where the
Polyak-IHS update is often rejected.
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Figure 1: CIFAR10 and MNIST datasets: comparison of CG, pCG, Algorithm 1 and a variant of
Algorithm 1 which only computes gradient-IHS updates. We consider an entire regularization path
ν ∈ {10j | j = 4, . . . ,−2}. For each algorithm, we start with the largest value ν = 104. For j 6 3,
we initialize each algorithm at the previous solution x̃ found for j + 1. For each value of ν, we stop
the algorithm once ε = 10−10-precision is reached. Each run is averaged over 30 independent trials.
Mean standard deviations are reported in the form of error bars.
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Figure 2: CIFAR10 and MNIST datasets: comparison of CG, pCG, Algorithm 1 and our variant
of Algorithm 1 using gradient-IHS updates only. We fix the value of the regularization parameter
ν = 10. Each run is averaged over 30 independent trials.

Broader Impact

We believe that the proposed method in this work can have positive societal impacts. Our algorithm
can be applied in massive scale distributed learning and optimization problems encountered in real-life
problems. The computational effort can be significantly lowered as a result of adaptive dimension
reduction. Consequently energy costs for optimization can be significantly reduced.
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A Additional results

A.1 Numerical experiments with synthetic datasets

Here, we consider a synthetic dataset with A having exponential spectral decay σj = 0.95j for
j = 1, . . . , d. The observation vector is generated as follows, b = Axpl + η, where xpl is a planted
vector with 1√

d
N (0, 1) independent entries and η is a vector of Gaussian noise 1√

n
N (0, In). We

also consider the similar synthetic dataset but with polynomially decaying singular values σj = 1/j
for j = 1, . . . , d. Results are reported in Figure 3.
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Figure 3: Exponential and polynomial spectral decays: comparison of CG, pCG, Algorithm 1
and a variant of Algorithm 1 which only computes gradient-IHS updates. We consider an entire
regularization path ν ∈ {10j | j = 0, . . . ,−4}. For each algorithm, we start with the largest value
ν = 1. For j 6 3, we initialize each algorithm at the previous solution x̃ found for j + 1. For each
value of ν, we stop the algorithm once ε = 10−10-precision is met. We observe that pCG is slow at
the beginning due to forming and factoring the m× d sketched matrix S ·A with m ≈ d. In contrast,
our methods start with m = 1 and the varying sketch size remains much smaller than that of pCG.
This leads to better time and memory space performance, except for the case of Gaussian embeddings
and polynomial decays. In the latter case, our method is slowed down by Gaussian projections which
are expensive. But with the SRHT, our method has the best performance. Each run is averaged over
30 independent trials. Mean standard deviations are reported in the form of error bars.

A.2 The underdetermined case n 6 d

A dual of the problem (1) is

z∗ : = argmin
z∈Rn

{
1

2
‖A>z‖2 +

ν2

2
‖z‖2 − b>z

}
,

and one can map the optimal dual solution z∗ to the primal one using the relationship

x∗ = A>z∗ . (13)

The dual problem fits into the primal overdetermined framework we consider in the main body of this
manuscript. Indeed, we have that

z∗ = argmin
z∈Rn

{
g(z) : =

1

2
‖A>z − b̂‖2 +

ν2

2
‖z‖2

}
, (14)

where b̂ = A†b and A† is the pseudo-inverse of A. One might wonder whether b̂ needs to be
computed in order to apply the previous framework to the dual overdetermined case: this is not
the case. Indeed, in Algorithm 1, the observation vector b only appears in the gradient formula, as
∇f(xt) = A>(Axt − b). For the dual problem (14), we have

∇g(zt) = A(A>zt − b̂) = AA>zt − b .
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That is, the gradient is easily computed and Algorithm 1 can be applied to the dual problem (14)
with the exact same guarantees for the sketch size and the number of rejected steps as in Theorems 5
and 6, while having guarantees on the error

εt : =
1

2
‖A>(zt − z∗)‖2 +

ν2

2
‖zt − z∗‖2 ,

Using the map xt = A>zt, the notation δt = 1
2‖A(xt − x∗)‖2 + ν2

2 ‖xt − x
∗‖2 and assuming that

z0 = 0 so that ε0 = f(x∗)/ν2, we obtain with Algorithm 1 that εt . ρtε0, and consequently

1

2
‖A(xt − x∗)‖2 +

ν2

2
‖xt − x∗‖2 =

1

2
‖AA>(zt − z∗)‖2 +

ν2

2
‖A>(zt − z∗)‖2

6 σ1(A)2 · εt

6
σ1(A)2f(x∗)

ν2
· ρt .

Thus, the total number of iterations to reach ε-relative accuracy for xt becomes

T = O
(

log(1/ε) + log(σ1(A)2/ν2) + log(f(x∗)/δ0))

log(1/ρ)

)
.

Under the hypothesis ε 6 ν2

ν2+σ1(A)2 of Theorem 7 and the additional hypothesis f(x∗)
δ0

6 ε−1, this
number of iterations scales as

T = O (log(1/ε)/ log(1/ρ)) .

Consequently, we obtain the same total computational complexity (both in time and space) as stated
in Theorem 7 to reach an approximate solution xt with ε-relative accuracy.

B Proof of main results

B.1 Proof of Theorems 1 and 2

We denote byA = UΣV > a singular value decomposition of the matrixA, whereU = [u1, . . . , ud] ∈
Rn×d has orthonormal columns, V = [v1, . . . , vd] ∈ Rd×d has orthonormal columns, and Σ =
diag(σ1, . . . , σd), with σ1 > . . . > σd > 0.

We denote D = diag
(

σ1√
σ2
1+ν2

, . . . , σd√
σ2
d+ν2

)
, D′ = diag

(
ν√
σ2
1+ν2

, . . . , ν√
σ2
d+ν2

)
, and further,

Ū : =

[
UD
VD′

]
, Σ̄ : = diag

(√
σ2

1 + ν2, . . . ,
√
σ2
d + ν2

)
.

Note that Ā = Ū Σ̄V >. Indeed,

Ū Σ̄V > =

[
UDΣ̄V >

V D′Σ̄V >

]
=

[
UΣV >

V (ν · Id)V >
]

=

[
A

ν · Id

]
.

Further, the columns of Ū are orthonormal, and the matrix Σ̄ is diagonal with non-negative entries,
so that Ū Σ̄V > is a singular value decomposition of Ā.

Given an embedding S ∈ Rm×n, denote by S̄ the (m+d)× (n+d) block-diagonal matrix
[
S 0
0 Id

]
.

Denote b̄ =

[
b
0

]
. We have that Ā>S̄>S̄Ā = A>S>SA+ ν2Id = HS . Consequently, given a step

size µ ∈ R and a momentum parameter β ∈ R, the update formula (2) of the Polyak-IHS method can
be equivalently written as

xt+1 = xt − µ(Ā>S̄>S̄Ā)−1Ā>(Āxt − b̄) + β(xt − xt−1) . (15)
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Multiplying the update formula (15) by Ū>Ā, subtracting Ū>Āx∗, using the normal equation
Ā>b̄ = Ā>Āx∗ and using the notation et : = Ū>Ā(xt − x∗), we obtain that

et+1 = et − µŪ>Ā(Ā>S̄>S̄Ā)−1Ā>Ūet + β(et − et−1)

=
(
I − µ(Ū>S̄>S̄Ū)−1

)
et + β(et − et−1) .

Further, unrolling the expression Ū>S̄>S̄Ū = D(U>S>SU − Id)D + Id = CS , we find the error
recursion [

et+1

et

]
=

[
(1 + β)Id − µC−1

S −βId
Id 0

]
︸ ︷︷ ︸

: =M(µ,β)

[
et
et−1

]
. (16)

B.1.1 Gradient-IHS method

For the gradient-IHS method, we have that β = 0 so that the dynamics (16) simplifies to

et+1 = (Id − µC−1
S )et .

Using the fact that δt = 1
2‖et‖

2, we obtain that for any t > 0,

δt+1

δt
6 ‖Id − µC−1

S ‖
2
2 .

The eigenvalues of the matrix Id − µC−1
S are given by 1− µ

γi
where the γi’s are the eigenvalues of

CS indexed in non-increasing order. Then,

‖Id − µC−1
S ‖2 = max

{
|1− µ

γ1
|, |1− µ

γd
|
}
.

If λ,Λ > 0 are two real numbers such that λ 6 γd 6 γ1 6 Λ, then it holds that for any µ > 0,

max

{
|1− µ

γ1
|, |1− µ

γd
|
}

6 max
{
|1− µ

Λ
|, |1− µ

λ
|
}
.

Picking µ = 2/( 1
λ + 1

Λ ) yields that

‖Id − µC−1
S ‖2 6

(
Λ− λ
Λ + λ

)
,

which is the result claimed in Theorem 1.

B.1.2 Polyak-IHS method

Using (16) and the fact that δt = 1
2‖et‖

2, we immediately find by recursion that(
δt+1 + δt
δ1 + δ0

) 1
t

6 ‖M(µ, β)t‖
2
t
2 .

From Gelfand formula, we obtain that

lim sup
t→∞

(
δt
δ0

) 1
t

6 ρ(M(µ, β))
2
,

where ρ(M(µ, β)) is the spectral radius4 of the matrix M(µ, β). Let CS = TΛT> be an eigenvalue
decomposition of the positive definite matrix CS – where Λ = diag(γ1, . . . , γd) and γ1 > . . . γd > 0
–, and define the (2d)× (2d) permutation matrix Π as

Πi,j =


1 if i odd , j = i

1 if i even , j = n+ i

0 otherwise

4The spectral radius of a complex-valued matrix is the largest module of its complex eigenvalues.
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Then, it holds that

Π

[
T 0
0 T

]>
M(µ, β)

[
T 0
0 T

]
Π> =


M1(µ, β) 0 . . . 0

0 M2(µ, β) . . . 0
...

. . .
...

0 0 . . . Md(µ, β)


where Mi(µ, β) =

[
1 + β − µγ−1

i −β
1 0

]
. That is, M(µ, β) is similar to the block diagonal matrix

with 2× 2 diagonal blocks Mi(µ, β). To compute the eigenvalues of M(µ, β), it suffices to compute
the eigenvalues of all of the Mi(µ, β). For fixed i, the eigenvalues of the 2 × 2 matrix are roots
of the equation u2 − (1 + β − µ/γi)u + β = 0. In the case that 1 > β > (1 −

√
µ/γi)

2, the
roots of the characteristics equations are imaginary, and both have magnitude

√
β. Pick µ = µ∗ :

= 4/(1/
√

Λ + 1/
√
λ)2 and β = β∗ : =

(√
Λ−
√
λ√

Λ+
√
λ

)2

, where λ,Λ > 0 are respectively any lower

and upper bounds of γd and γ1. Then, we have that β > (1−
√
µ/γi)

2 for all i = 1, . . . , d, so that
ρ(M(µ, β)) 6

√
β, and this yields the claimed result.

B.2 Proof of Theorem 5

We introduce the notation m = 5 · deρ .

Either the sketch size always remains smaller than m, which is equivalent to

K 6
log(m/minitial)

log(2)
, (17)

in which case the statements (7) and (8) of Theorem 5 on the sketch size and the number of rejected
steps hold almost surely.

Otherwise, suppose that for some iteration t > 1, we have m > m. Let t > 1 be the first such
iteration, so that m 6 2m and K 6 log(m/minitial)

log(2) + 1.

Denote S the sketching matrix sampled at time t. Let λρ/5,η and Λρ/5,η be the bounds as given in
Definition 3.1 (where ρ is replaced by ρ/5), and consider the event

Eρ/5 : =
{
λρ/5,η 6 σmin(CS) 6 σmax(CS) 6 Λρ/5,η

}
, (18)

which, according to Theorem 3 and the fact that m > m, holds with probability at least 1− 8e−deη/2.

We assume, from now on, that the event Eρ/5 holds. Let t > t be any time such that between t and
t, all updates were accepted (either Polyak- or gradient-IHS), so that the sketch size and sketching
matrix are still the same. We claim that it suffices to prove that the gradient-IHS update at time t is
accepted.

Denote xt the current iterate, δt = 1
2‖A(xt − x∗)‖2 and rt = 1

2‖C
− 1

2

S U
>
A(xt − x∗)‖2. Let

x+
gd be the gradient-IHS update of Algorithm 1, and denote δ+ : = 1

2‖A(x+
gd − x∗)‖2 and r+ : =

1
2‖C

− 1
2

S U
>
A(x+

gd − x∗)‖2. Recall from Lemma 1 that rt and r+ are also the sketched Newton
decrements at xt and x+, so that the gradient-IHS improvement ratio computed in Algorithm 1 is
equal to r+

rt
.

We need the following technical result whose proof is deferred to Appendix D.2.
Lemma 2. Suppose that ρ 6 0.18 and η 6 0.01. Then, on the event Eρ/5, it holds that

σmax(CS)

σmin(CS)
· cgd(ρ/5, η) 6 cgd(ρ, η) . (19)

We have that
δ+

δt
6
(i)
cgd(ρ/5, η) 6

(ii)

σmin(CS)

σmax(CS)
cgd(ρ, η) ,
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where inequality (i) follows from Theorem 1, and, inequality (ii) from Lemma 2. Using r+ 6 δ+

σmin(CS)

and rt > δt
σmax(CS) , it follows that

r+

rt
6
σmax(CS)

σmin(CS)
· δ

+

δt
6 cgd(ρ, η) .

Consequently, the gradient-IHS update x+
gd verifies the improvement criterion r+

rt
6 cgd(ρ, η), and

the update x+
gd is not rejected.

In summary, as soon as m > m and provided that Eρ/5 holds, future updates are not rejected. This
holds with probability at least 1− 8e−deη/2, which concludes the proof of the statements (7) and (8)
on the sketch size and the number of rejected steps.

We turn to showing statement (9). Fix any iteration t > 1. By construction of Algorithm 1, it holds
almost surely that

rt
r1

6 max{cgd(ρ, η)t−1, cp(ρ, η)t−1} = cgd(ρ, η)t−1 .

Denoting by S the sketching matrix at time t, and using that δt 6 σmax(CS)·rt and δ1 > σmin(CSinitial)·
r1, it follows that

δt
δ1

6
σmax(CS)

σmin(CSinitial)
· rt
r1

6
σmax(CS)

σmin(CSinitial)
· cgd(ρ, η)

t−1
.

On the one hand, according to Theorem 3, we have that

σmax(CS) 6
ν2

σ2
1 + ν2

+
σ2

1

σ2
1 + ν2

·

(
1 +

√
(1 + 3

√
η)2

de
minitial

)2

.

with probability at least 1− 8e−ηde/2. Using that η 6 0.01, (1 + 3
√
η) 6 3/2 and (1 +

√
de
m )2 6

4 max{1, de
minitial

}, we obtain

σmax(CS) 6 9

(
ν2

σ2
1 + ν2

+
σ2

1

σ2
1 + ν2

max{1, de
minitial

}
)
.

On the other hand, it holds almost surely that

σmin(CSinitial) > 1− ‖D‖22 =
ν2

σ2
1 + ν2

.

Combining the latter inequalities, it holds with probability at least 1− 8e−deη/2 that

δt
δ1

6 9

(
1 +

σ2
1

ν2

)
max

{
1,

de
minitial

}
cgd(ρ, η)t−1 ,

which concludes the proof.

B.3 Proof of Theorem 6

The proof for the SRHT follows steps similar to the Gaussian case. We introduce the notation

m = aρ · C(n, de)
de log(de)

ρ
, (20)

and we recall that aρ : =
1+
√
ρ

1−√ρ .

Either the sketch size always remains smaller than m. The latter is equivalent to

K 6
log(m/minitial)

log(2)
, (21)
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in which case the statements (10) and (11) of Theorem 6 on the sketch size and the number of rejected
steps hold almost surely.

Otherwise, suppose that for some iteration t > 1, we have m > m. Let t > 1 be the first such
iteration, so that m 6 2m and K 6 log(m/minitial)

log(2) + 1.

Denote S the sketching matrix sampled at time t. Define λρ/aρ : = 1−
√

ρ
aρ

and Λρ/aρ : = 1+
√

ρ
aρ

,

and consider the event

Eρ/aρ : =
{
λρ/aρ 6 σmin(CS) 6 σmax(CS) 6 Λρ/aρ

}
, (22)

which, according to Theorem 4 and the fact that m > m, holds with probability at least 1− de
9 .

We assume, from now on, that the event Eρ/aρ holds. Let t > t be any time such that between t and
t, all updates were accepted (either Polyak- or gradient-IHS), so that the sketch size and sketching
matrix are the same. We claim that it suffices to prove that the gradient-IHS update at time t is
accepted.

Denote xt the current iterate, δt = 1
2‖A(xt − x∗)‖2 and rt = 1

2‖C
− 1

2

S U
>
A(xt − x∗)‖2. Let

x+
gd be the gradient-IHS update of Algorithm 1, and denote δ+ : = 1

2‖A(x+
gd − x∗)‖2 and r+ : =

1
2‖C

− 1
2

S U
>
A(x+

gd − x∗)‖2. Recall from Lemma 1 that rt and r+ are also the sketched Newton
decrements at xt and x+, so that the gradient-IHS improvement ratio computed in Algorithm 1 is
equal to r+

rt
.

We need the following technical result whose proof is deferred to Appendix D.3.

Lemma 3. On the event Eρ/aρ , it holds that σmax(CS)
σmin(CS) 6 aρ and cgd(ρ/aρ) =

cgd(ρ)
aρ

.

We have that

δ+

δt
6
(i)
cgd(ρ/aρ) =

(ii)

cgd(ρ)

aρ
,

where inequality (i) follows from Theorem 1, and, equality (ii) from the second part of Lemma 3.
Using r+ 6 δ+

σmin(CS) and rt > δt
σmax(CS) , it follows that

r+

rt
6
σmax(CS)

σmin(CS)
· δ

+

δt
6
σmax(CS)

σmin(CS)
·
cgd(ρ)

aρ
6
(i)
aρ ·

cgd(ρ)

aρ
= cgd(ρ) ,

where inequality (i) follows from the first part of Lemma 3. Consequently, the gradient-IHS update
x+

gd verifies the improvement criterion r+

rt
6 cgd(ρ), and the update x+

gd is not rejected.

In summary, as soon as m > m and provided that Eρ/aρ holds, future updates are not rejected. This
holds with probability at least 1− 9

de
, which concludes the proof of the statements (10) and (11) on

the sketch size and the number of rejected steps.

We turn to showing statement (12). Fix any iteration t > 1. By construction of Algorithm 1, it holds
almost surely that

rt
r1

6 max{cgd(ρ)t−1, cp(ρ)t−1} = cgd(ρ)t−1 .

Denoting by S the sketching matrix at time t, and using that δt 6 σmax(CS)·rt and δ1 > σmin(CSinitial)·
r1, it follows that

δt
δ1

6
σmax(CS)

σmin(CSinitial)
· rt
r1

6
σmax(CS)

σmin(CSinitial)
· cgd(ρ)t−1 .
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On the one hand, it holds almost surely that

σmax(CS) = sup
‖x‖2=1

‖x‖22 + 〈Dx, (U>S>SU − Id)Dx〉

6
(i)

1 + sup
‖x‖261

〈x, (U>S>SU − Id)x〉

6 1 + sup
‖x‖261

〈x, U>S>SUx〉

6
(ii)

2 ,

where inequality (i) follows from the fact that ‖D‖2 6 1, and inequality (ii) from the fact that SU is
a partial orthogonal matrix so that ‖SU‖2 6 1. On the other hand, it holds almost surely that

σmin(CSinitial) > 1− ‖D‖22 =
ν2

σ2
1 + ν2

.

Combining the latter inequalities, it holds almost surely that

δt
δ0

6 2

(
1 +

σ2
1

ν2

)
cgd(ρ)t−1 ,

which concludes the proof.

B.4 Proof of Theorem 7

According to Theorem 6, we have with probability at least 1− 9
de

that over an entire trajectory, the
sketch size and the number of rejected steps satisfy

m = O(de log de/ρ) , K = O(log(de/ρ)) .

From now on, we assume that the above event holds.

Then, forming the sketched matrix SA costs at most O(nd log de) at any iteration. Using the
Woodbury matrix identity, the inverse of HS verifies

H−1
S =

(
(SA)>SA+ ν2Id

)−1
=

1

ν2

(
Id − (SA)>(ν2Im + SA(SA)>)−1SA

)
.

To reduce the complexity of solving at each iteration the linear system HS · z = ∇f(xt), one
can simply compute and cache a factorization of the matrix (ν2Im + SA(SA)>) which takes time
O(

d2e log2de
ρ2 d). Consequently, the total sketching and factor costs scale asO(log(de/ρ) · (d

2
e log2de
ρ2 d+

nd log(de/ρ))).

The per-iteration cost is that of computing the matrix-vector products Axt and A>(Axt − b), which
is given by O(nd). Note that the other main numerical operation consists in solving the linear
system HS · z = ∇f(xt). Using the cached factorization of the matrix (ν2Im + SA(SA)>) and
the Woodbury identity, this linear system can be solved in time O(de log de

ρ d), which is negligible
compared to O(nd).

According to Theorem 6, we have almost surely that over an entire trajectory,

δt+1

δ1
6 2 · (1 +

σ2
1

ν2
) · cgd(ρ)

t
.

A simple calculation yields that cgd(ρ) = ρ. Therefore, a sufficient number of iterations T to reach
an ε-accurate solution is exactly given by

T =

⌈
log 2 + log(1 +

σ2
1

ν2 ) + log(1/ε)

log(1/ρ)

⌉
.
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For ε 6 min{ ν2

σ2
1+ν2 , 1/2}, this reduces to

T = O
(

log(1/ε)

log(1/ρ)

)
.

Thus, we obtain the total time complexity

Cε = O
(

log(de/ρ) · (d
2
e log2de
ρ2

d+ nd log(de/ρ)) + nd
log(1/ε)

log(1/ρ)

)
,

which is the claimed result.

C Proofs of concentration inequalities

C.1 Gaussian concentration over ellipsoids – Proof of Theorem 3

Let ρ > 0 and m > de
ρ . Let S ∈ Rm×n be a random matrix with i.i.d. entriesN (0, 1/m). We aim to

control the quantities

γ1 = sup
‖x‖=1

1 + 〈x,D(U>S>SU − Id)Dx〉

γd = inf
‖x‖=1

1 + 〈x,D(U>S>SU − Id)Dx〉 .

Upper bound on the largest eigenvalue γ1

We introduce the re-scaled matrix D̄ = D
‖D‖2 , so that ‖D̄‖2F = de and ‖D̄‖2 = 1. We have that

γ1 − 1

‖D‖22
d
= sup
‖x‖=1

〈x, D̄(
1

m
G>G− I)D̄x〉 = sup

‖x‖=1

1

m
‖GD̄x‖2 − ‖D̄x‖2

=
2

m
sup
z∈C

sup
u∈Rm

u>Gz + ψ(u, z) ,

where we introduced the random matrix G ∈ Rm×d with i.i.d. Gaussian entries N (0, 1) and the
first equality holds since SU d

= 1√
m
G. We also used the notations C =

{
D̄x | ‖x‖ = 1

}
and

ψ(u, z) : = − 1
2 (‖u‖2 +m‖z‖2). We introduce the auxiliary random variable

Y : =
2

m
sup
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z + ψ(u, z) ,

where g ∈ Rm and h ∈ Rd are random vectors with i.i.d. entries N (0, 1). Using Theorem 9 (see
Appendix C.1.1), it holds that for any c ∈ R,

P
(
γ1 − 1

‖D‖22
> c

)
6 2P(Y > c) . (23)

Consequently, it suffices to control the upper tail of Y in order to control that of γ1. First, we recall a
few basic facts on the concentration of Gaussian random vectors (see, for instance, Theorems 3.1.1
and 6.3.2 in [42]). That is, for any η > 0, the following event holds with probability at least
1− 4e−mρη/2,

Eη : =
{
|‖g‖ −

√
m| 6 √mηρ , |‖g‖2 −m| 6 m

√
ηρ , ‖D̄h‖ 6 √mρ(1 +

√
η)
}
,
(24)
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On the event Eη , we have

Y =
2

m
sup
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z − 1

2
‖u‖2 − m

2
‖z‖2

(i)
=

2

m
sup
z∈C

sup
t>0

t ‖z‖‖g‖+ t h>z − 1

2
t2 − m

2
‖z‖2

(ii)

6
2

m
sup
z∈C

sup
t∈R

t(‖z‖‖g‖+ |h>z|)− 1

2
t2 − m

2
‖z‖2

(iii)

6
2

m
sup
z∈C

‖z‖2

2
|‖g‖2 −m|+ 1

2
|h>z|2 + ‖z‖‖g‖|h>z|

(iv)

6
2

m
sup
z∈C

|‖g‖2 −m|
2

+
1

2
|h>z|2 + ‖g‖|h>z|

(v)
=
|‖g‖2 −m|

m
+
‖D̄h‖2

m
+

2‖D̄h‖‖g‖
m

(vi)

6
√
ρη + ρ(1 +

√
η)2 + 2

√
ρ(1 +

√
η)(1 +

√
ρη)

= ρ(1 +
√
η)(1 + 3

√
η) + 2

√
ρ(1 +

3

2

√
η)

6
(
1 +
√
ρcη
)2 − 1 ,

where cη : = (1 + 3
√
η)2. In equality (i), we used the fact that for a vector u with fixed norm

‖u‖ = t, the maximum of g>u is equal to ‖g‖t. In inequality (ii), we bounded h>z by |h>z|
and then relaxed the constraint t > 0 to t ∈ R. In inequality (iii), we plugged-in the value of the
maximizer t∗ = ‖z‖‖g‖ + |h>z|. In inequality (iv), we used the fact that for z ∈ C, ‖z‖ 6 1. In
(v), we used the fact that supz∈C |h>z| = ‖D̄h‖. In (vi), we used that, on the event Eη, we have
|‖g‖2−m|

m 6
√
ηm, ‖D̄h‖ 6 √mρ(1 +

√
η) and ‖g‖ 6

√
m(1 +

√
ηρ). Consequently, we have that

P
[
γ1 − 1

‖D‖22
> (1 +

√
ρcη)2 − 1

]
6 2P

[
Y > (1 +

√
ρcη)2 − 1

]
6 2(1− P[Eη])

6 8 · e−mρη/2 ,

which is the claimed upper bound (6) on γ1.

Controlling the smallest eigenvalue γd

Here we assume that ρ ∈ (0, 0.18] and η ∈ (0, 0.01]. We make this assumption in order to provide
explicit and simple statements.

We consider the same definitions D̄, C, ϕ and Eη introduced in the proof of the upper bound on γ1.
We have that

γd − 1

‖D‖22
d
= inf
‖x‖=1

〈x, D̄(
1

m
G>G− I)D̄x〉 = inf

‖x‖=1

1

m
‖GD̄x‖2 − ‖D̄x‖2

=
2

m
inf
z∈C

sup
u∈Rm

u>Gz + ψ(u, z) .

We introduce the auxiliary random variable

Y : =
2

m
inf
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z + ψ(u, z) ,

where g ∈ Rm and h ∈ Rd are random vectors with i.i.d. entries N (0, 1). Using Theorem II.1
from [39], it holds that for any c ∈ R,

P(
γd − 1

‖D‖22
< c) 6 2P(Y < c) . (25)
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Consequently, it suffices to control the lower tail of Y in order to control that of γd. It holds that

Y =
2

m
inf
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z − 1

2
‖u‖2 − m

2
‖z‖2

=
2

m
inf
z∈C

sup
t>0

t ‖z‖‖g‖+ t h>z − 1

2
t2 − m

2
‖z‖2

= inf
z∈C

{
−‖z‖2 , if ‖z‖‖g‖+ h>z 6 0
‖z‖2
m (‖g‖2 −m) + (h>z)2

m + 2
m‖z‖‖g‖(h

>z) , otherwise.

Define
Y1 : = inf

z∈C;
‖z‖‖g‖+h>z60

−‖z‖2 ,

Y2 : = inf
z∈C

‖z‖‖g‖+h>z>0

‖z‖2

m
(‖g‖2 −m) +

(h>z)2

m
+

2

m
‖z‖‖g‖(h>z) ,

so that Y = min{Y1, Y2}. For any z ∈ C, it holds that h>z > −‖Dh‖, and consequently

Y1 > inf
z∈C;

‖z‖‖g‖6‖D̄h‖

−‖z‖2 > −‖D̄h‖
2

‖g‖2
.

Hence, conditional on the event Eη , we have

Y1 > −ρ
(

1 +
√
η

1−√ρη

)2

,

On the other hand, we have

Y2 > − 1

m
|‖g‖2 −m|+ inf

z∈C

{
(h>z)2

m
− 2

m
‖g‖|h>z|

}
> − 1

m
|‖g‖2 −m|+ inf

‖x‖=1

{
〈D̄h, x〉2

m
− 2

m
‖g‖|〈D̄h, x〉|

}
= − 1

m
|‖g‖2 −m|+ 2

m
inf

06t6‖D̄h‖

{
t2

2
− ‖g‖t

}
,

where, in the first inequality, we relaxed the constraint set by removing the constraint ‖z‖‖g‖+h>z >
0 and we used the fact that ‖z‖ 6 1. In the second inequality, we used the change of variable z = D̄x
with ‖x‖ = 1. In the third inequality, we used the fact that |〈D̄h, x〉| 6 ‖D̄h‖ and used the change
of variable |〈D̄h, x〉| = t with t ∈ [0, ‖D̄h‖]. On the event Eη , it follows that

Y2 > ρ(1− η)− 2
√
ρ(1 +

3

2

√
η)

>
(i)

(1 + 3
√
η)2ρ− 2

√
ρ(1 + 3

√
η)

= (1−√cηρ)2 − 1 ,

One can verify that inequality (i) is equivalent to
√
ρ 6 1

2+
10
√
η

3

, which always holds under the

assumption that ρ 6 0.18 and η 6 0.01. Then, combining the respective lower bounds on Y1 and Y2,
we obtain that

Y > min

{
−ρ
(

1 +
√
η

1−√η

)2

, (1−√cηρ)2 − 1

}
> (1−√cηρ)2 − 1 ,

One can verify that the last inequality is equivalent to
√
ρ 6

2(1 + 3
√
η)

(1 + 3
√
η)2 +

(
1+
√
η

1−√η

)2 ,

which always holds the assumption that ρ 6 0.18 and η 6 0.01.

Thus, we have proved the claimed lower bound on γ1.
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C.1.1 A new Gaussian comparison inequality

We start with the following well-known comparison inequality, which was first derived in [17].
Theorem 8 (Gordon’s Gaussian comparison theorem). Let I, J ∈ N∗, and {Xij}, {Yij} be two
centered Gaussian processed indexed on I × J , such that for any i, l ∈ I with i 6= l and j, k ∈ J ,

EX2
ij = EY 2

ij

EXijXik > EYijYik
EXijXlk 6 EYijYlk .

Then, for any {λij} ∈ RI×J , we have

P

 I⋂
i=1

J⋃
j=1

[Yij > λij ]

 > P

 I⋂
i=1

J⋃
j=1

[Xij > λij ]


Our next result is a consequence of Gordon’s comparison inequality, and appears to be new. More
specifically, it can be seen as a variant of the Sudakov-Fernique’s inequality (see, for instance,
Theorem 7.2.11 in [42]).
Theorem 9. Let S1 ⊂ Rn and S2 ⊂ Rm be non-empty sets, and ψ : S1 × S2 → R be a continuous
function. Then, for any c ∈ R,

P

(
sup

(x,y)∈S1×S2

y>Gx+ ψ(x, y) > c

)
6 2P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,

Proof. The proof relies on several intermediate results, and is deferred to Section C.1.2.

Lemma 4. Let G ∈ Rm×n, Z ∈ R, g ∈ Rm and h ∈ Rn have independent standard Gaussian
entries. Let I1 ⊂ Rn and I2 ⊂ Rm be finite sets, and ψ be a function defined over I1 × I2. Then, for
any c ∈ R, we have

P
(

max
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) > c

)
6 P

(
max

(x,y)∈I1×I2
‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
.

Proof. We introduce two Gaussian processes X and Y indexed over I1 × I2, defined as

Xxy = ‖x‖g>y + ‖y‖h>x , Yxy = y>Gx+ Z‖x‖‖y‖ ,
for all (x, y) ∈ I1 × I2. It holds that EXxy = EYxy = 0, EX2

xy = 2‖x‖2‖y‖2 = EY 2
xy , and

E[XxyXx′y′ ] = ‖x‖‖x′‖ y>y′ + ‖y‖‖y′‖x>x′ ,
E[YxyYx′y′ ] = ‖x‖ ‖x′‖ ‖y‖ ‖y′‖+ x>x′ y>y′ .

Consequently, we have

E[YxyYx′y′ ]− E[XxyXx′y′ ] =
(
‖x‖ ‖x′‖ − x>x′

) (
‖y‖ ‖y′‖ − y>y′

)
> 0 .

Therefore, applying Gordon’s comparison theorem with I = I1 × I2, J being any finite set, and
λxy = ψ(x, y)− c, we obtain that

P
(

min
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖ − ψ(x, y) > −c
)

> P
(

min
(x,y)∈I1×I2

‖x‖g>y + ‖y‖h>x− ψ(x, y) > −c
)
.

Using the symmetry of the Gaussian distribution, it follows that

P
(

max
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) 6 c

)
> P

(
max

(x,y)∈I1×I2
‖x‖g>y + ‖y‖h>x+ ψ(x, y) 6 c

)
,

and consequently,

P
(

max
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) > c

)
6 P

(
max

(x,y)∈I1×I2
‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,
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Corollary 1. Let S1 ⊂ Rn and S2 ⊂ Rm be non-empty sets, and ψ : S1 × S2 → R be a continuous
function. Then, for any c ∈ R,

P

(
sup

(x,y)∈S1×S2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) > c

)
6 P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,

Proof. According to Lemma 4, the result is true if S1 and S2 are finite. By monotone convergence, it
is immediate to extend it to countable sets. By density arguments and monotone convergence, it also
follows for any sets S1 and S2.

C.1.2 Proof of Theorem 9

We define f1(x, y) = y>Gx+ψ(x, y) and f2(x, y) = y>Gx+Z‖x‖‖y‖+ψ(x, y). If Z > 0, then
f1 6 f2 and supx,y f1(x, y) 6 supx,y f2(x, y). Thus,

P

(
sup

(x,y)∈S1×S2

f1(x, y) > c, Z > 0

)
6 P

(
sup

(x,y)∈S1×S2

f2(x, y) > c

)
.

From Corollary 1, we know that

P

(
sup

(x,y)∈S1×S2

f2(x, y) > c

)
6 P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
.

Consequently, using the independence of f1 and Z, we get

1

2
P

(
sup

(x,y)∈S1×S2

f1(x, y) > c

)
= P

(
sup

(x,y)∈S1×S2

f1(x, y) > c, Z > 0

)

6 P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,

which yields the claim.

C.2 SRHT matrices – matrix deviation inequalities over ellipsoids

C.3 Preliminaries

Let S ∈ Rm×n be a SRHT matrix, that is, S = RHdiag(ε) where R is a row-subsampling matrix
of size m× n, H is the normalized Walsh-Hadamard transform of size n× n and ε is a vector of n
independent Rademacher variables. We introduce the scaled diagonal matrix D̄ = D

‖D‖2 . Note that
‖D̄‖2F = de and ‖D̄‖2 = 1.
Lemma 5. Let ej be the j-th vector of the canonical basis in Rn. Then,

P

{
max

j=1,...,n
‖e>j Hdiag(ε)UD̄‖ >

√
de
n

+

√
8 log(βn)

n

}
6

1

β
. (26)

Proof. We fix a row index j ∈ {1, . . . , n}, and define the function

f(x) : = ‖e>j Hdiag(x)UD̄‖ = ‖x>EUD̄‖ ,

where E : = diag(e>j H). Each entry of E has magnitude n−
1
2 . The function f is convex, and its

Lipschitz constant is upper bounded as follows,

|f(x)− f(y)| 6 ‖(x− y)>EV D̄‖ 6 ‖x− y‖ ‖E‖2 ‖V ‖2 ‖D̄‖2 =
1√
n
‖x− y‖ .

For a Rademacher vector ε, we have

E f(ε) 6
√
E f(ε)2 = ‖EUD̄‖F 6 ‖EU‖2 ‖D̄‖F =

√
de
n
.
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Applying Lipschitz concentration results for Rademacher variables, we obtain

P

{
‖e>j Hdiag(ε)UD̄‖ >

√
de
n

+

√
8 log(βn)

n

}
6

1

nβ
.

Finally, taking a union bound over j ∈ {1, . . . , n}, we obtain the claimed result.

Theorem 10 (Matrix Bernstein). Let X = {X1, . . . , Xn} be a finite set of squared matrices with
dimension d. Fix a dimension m, and suppose that there exists a positive semi-definite matrix V and
a real number K > 0 such that E[XI ] = 0, E[X2

I ] � V , and ‖XI‖2 6 K almost surely, where I is
a uniformly random index over {1, . . . , n}. Let T be a subset of {1, . . . , n} with m indices drawn
uniformly at random without replacement. Then, for any t >

√
m‖V ‖2 +K/3, we have

P

{∥∥∥∑
i∈T

Xi

∥∥∥
2
> t

}
6 8 · de · exp

(
− t2/2

m‖V ‖2 +Kt/3

)
,

where de : = tr(V )/‖V ‖ is the intrinsic dimension of the matrix V .

Proof. We denote ST : =
∑
i∈T Xi. Fix θ > 0, define ψ(t) = eθt − θt − 1, and use the Laplace

matrix transform method (e.g., Proposition 7.4.1 in [41]) to obtain

P {λmax(ST ) > t} 6
1

ψ(t)
E trψ(ST )

=
1

eθt − θt− 1
E tr

(
eθST − I

)
,

and the last equality holds due to the fact that EST = mEXI = 0. Let T ′ = {i1, . . . , im} be
a subset of {1, . . . , n}, drawn uniformly at random with replacement. In particular, the indices of
T ′ are independent random variables, and so are the matrices {Xij}mj=1. Write ST ′ : =

∑m
j=1Xij .

Gross and Nesme [19] have shown that for any θ > 0,

E tr exp (θST ) 6 E tr exp (θST ′) .

As a consequence of Lieb’s inequality (e.g., Lemma 3.4 in [41]), it holds that

E tr exp (θST ′) 6 tr exp

 m∑
j=1

log E eθXij

 = tr exp
(
m log E eθXI

)
.

Thus, it remains to bound E eθXI . By assumption, E[XI ] = 0 and ‖XI‖2 6 K almost surely. Then,
using Lemma 5.4.10 from [42], we get E eθXI � exp

(
g(θ)EX2

I

)
, for any |θ| < 3/K and where

g(θ) = θ2/2
1−|θ|K/3 . By monotonicity of the logarithm,m · logE eθXI � m ·g(θ)EX2

I . By assumption,
EX2

I � V and thus, m · logE eθXI � m · g(θ)V . By monotonicity of the trace exponential, it
follows that tr exp

(
m log E eθXI

)
6 tr exp (mg(θ)V ), and further,

P {λmax(ST ) > t} 6
1

eθt − θt− 1
tr
(
emg(θ)V − I

)
=

1

eθt − θt− 1
trϕ(mg(θ)V ) ,

where ϕ(a) = ea − 1. The function ϕ is convex, and the matrix mg(θ)V is positive semidefinite.
Therefore, we can apply Lemma 7.5.1 from [41] and obtain

trϕ(mg(θ)V ) 6 de · ϕ(mg(θ) ‖V ‖2) 6 de · emg(θ) ‖V ‖2 ,

which further implies that

P {λmax(ST ) > t} 6 de ·
eθt

eθt − θt− 1
· e−θt+mg(θ)·‖V ‖2 6 de ·

(
1 +

3

θ2t2

)
· e−θt+mg(θ)·‖V ‖2 .

For the last inequality, we used the fact that ea

ea−a−1 = 1 + 1+a
ea−a−1 6 1 + 3

a2 for all a > 0. Picking
θ = t/(m ‖V ‖2 +Kt/3), we obtain

P {λmax(ST ) > t} 6 de ·
(

1 + 3 · (m‖V ‖2 +Kt/3)2

t4

)
· exp

(
− t2/2

m‖V ‖2 +Kt/3

)
.
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Under the assumption t >
√
m‖V ‖2 +K/3, the parenthesis in the above right-hand side is bounded

by four, which results in

P {λmax(ST ) > t} 6 4 · de · exp

(
− t2/2

m‖V ‖2 +Kt/3

)
.

Repeating the argument for −ST and combining the two bounds, we obtain the claimed result.

C.3.1 Proof of Theorem 4

We write vj : =
√

n
m wj , where wj = e>j Hdiag(ε)UD̄, and ε ∈ {±1}n is a fixed vector. We denote

γ : = max

{
max

j=1,...,n
‖vj‖, m−

1
2

}
and Xi : = viv

>
i −

1

m
D̄2 .

Let I be a uniformly random index over {1, . . . , n}. We have

E[XI ] =
n

m
E[wIw

>
I ]− 1

m
D̄2 =

n

m

(
1

n

n∑
i=1

D̄U>diag(ε)Heie
>
i Hdiag(ε)UD̄

)
− 1

m
D̄2

=
1

m
D̄U>diag(ε)H

n∑
i=1

eie
>
i︸ ︷︷ ︸

=I

Hdiag(ε)UD̄ − 1

m
D̄2

= 0 .

The last equality holds due to the fact thatH2 = I , diag(ε)2 = I and U>U = I . Further, ‖vI‖2 6 γ2

a.s., so that ‖vI‖2vIv>I � γ2vIv
>
I a.s., and consequently, E

[
‖vI‖2vIv>I

]
� γ2 · E[vIv

>
I ]. Thus,

E
[
X2
I

]
= E

[
‖vI‖2vIv>I

]
− 2

m
D̄4 +

1

m2
D̄4

6
γ2

m
D̄2 − 2

m2
D̄4 +

1

m2
D̄4

= γ2 · 1

m
D̄2 − 1

m2
D̄4

� γ2

m
D̄2 .

The first inequality holds due to the fact that E
[
vIv
>
I

]
= m−1D̄2. Further, we have

‖XI‖ = ‖vIv>I −
1

m
D̄2‖ 6 max

{
max

j=1,...,n
‖vj‖2,m−1

}
= γ2 .

Let T be a subset of m indices in {1, . . . , n} drawn uniformly at random, without replacement.
Applying Theorem 10 with V = m−1γ2D̄2 and using the scale invariance of the effective dimension,
we obtain that for any t > γ + γ2/3,

P

{∥∥∥∑
i∈T

Xi

∥∥∥
2
> t

}
6 8de · exp

(
− t2/2

γ2(1 + t/3)

)
.

Suppose now that ε is a vector of independent Rademacher variables. Note that
∑
i∈T Xi

d
=

D̄U>(S>S − I)UD̄. From Lemma 5, we know that γ 6 σ : =
√

de
m +

√
8 log(den)

m with probability

at least 1 − d−1
e . Consequently, with probability at least 1 − d−1

e − 8de · exp
(
− t2/2
σ2(1+t/3)

)
, for

t > σ (1 + σ/3) we have ∥∥∥D̄U>(S>S − I)UD̄
∥∥∥

2
6 t . (27)
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We set t = σ
√

8/3 log de, and ρ = de log(de)C(n,de)
m where C(n, de) = 16

3

(
1 +

√
8 log(den)

de

)2

. We

choose m large enough so that ρ 6
(

1− (8/3 log de)
− 1

2

)2

. Then, we get that

P
{∥∥∥DU>(S>S − I)UD

∥∥∥
2
> ‖D‖22 ·

√
ρ
}

6
9

de
,

which is the claimed result.

D Proofs of auxiliary results

D.1 Proof of Lemma 1

Let {xt} be a sequence of iterates. Let U ΣV
>

be a singular value decomposition of A. Denote

S =

[
S 0
0 Id

]
, so that HS = (SA)>SA+ ν2Id = (S A)>(S A).

We have that gt = A
>
A(xt − x∗) and thus,

g>t H
−1
S gt = 〈A>A(xt − x∗), (A

>
S
>
S A)−1A

>
A(xt − x∗)〉

= 〈A(xt − x∗), A(A
>
S
>
S A)−1A

>
A(xt − x∗)〉

= 〈A(xt − x∗), U ΣV
>

(V ΣU
>
S
>
S U ΣV

>
)−1V ΣU

>
A(xt − x∗)〉

= 〈A(xt − x∗), U(U
>
S
>
S U)−1U

>
A(xt − x∗)〉

= 〈U>A(xt − x∗), (U
>
S
>
S U)−1U

>
A(xt − x∗)〉 .

Observing that U
>
S
>
S U = CS , it follows that 1

2 g
>
t H

−1
S gt = 1

2‖C
− 1

2

S U
>
A(xt − x∗)‖2 = rt,

which concludes the proof.

D.2 Proof of Lemma 2

Fix ρ 6 0.18 and η 6 0.01. Let a > 1 be some numerical constant, and assume that the event Eρ/a,η
holds. Then, we have that√

cgd(ρ/a, η) =
2√
a

√
ρcη

1 +
ρcη
a

,

√
σmax(CS)

σmin(CS)
6

√
a+
√
ρcη√

a−√ρcη
.

Using that√ρcη 6
√

0.18 · 1.32 6 0.56 and ρcη 6 0.31, we obtain that√
cgd(ρ/a, η) ·

√
σmax(CS)

σmin(CS)
6

1√
a

1 + ρcη
1 +

ρcη
a

√
a+
√
ρcη√

a−√ρcη
·
√
cgd(ρ, η)

6
1.31√
a
·
√
a+ 0.56√
a− 0.56

·
√
cgd(ρ, η) .

The function g : x 7→ 1.31√
x
·
√
x+0.56√
x−0.56

is decreasing on (0.562,+∞) and g(5) 6 1. Thus, for any
a > 5, it holds that

cgd(ρ/a, η) · σmax(CS)

σmin(CS)
6 cgd(ρ, η) ,

and this concludes the proof.

D.3 Proof of Lemma 3

By definition, we have on the event Eρ/aρ that

λρ/aρ 6 σmin(CS) 6 σmax(CS) 6 Λρ/aρ ,
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where λρ/aρ = 1−
√

ρ
aρ

and Λρ/aρ = 1 +
√

ρ
aρ

, and aρ =
1+
√
ρ

1−√ρ . It follows that

σmax(CS)

σmin(CS)
6

1 +
√

ρ
aρ

1−
√

ρ
aρ

=

√
aρ +

√
ρ

√
aρ −

√
ρ
.

The function x 7→ x+
√
ρ

x−√ρ is decreasing on [1,+∞). Since aρ > 1, it follows that f(aρ) < f(1), i.e.,
√
aρ+
√
ρ

√
aρ−
√
ρ <

1+
√
ρ

1−√ρ , i.e.,
√
aρ+
√
ρ

√
aρ−
√
ρ < aρ, which yields that

σmax(CS)

σmin(CS)
6 aρ .

Regarding the second statement of Lemma 3, a simple calculation yields that cgd(ρ′) = ρ′ for any
ρ′ ∈ (0, 1). This further implies that cgd(ρ/aρ) = ρ

aρ
=

cgd(ρ)
aρ

, which concludes the proof.
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