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Turbulent burning rates are several times higher than their laminar counterparts. In the
flamelet regime of turbulent premixed combustion, numerical and experimental studies
have shown that enhancements in the burning rates originate primarily from surface
wrinkling, while local burning is laminar-like. In this work, we simulate spherical turbu-
lent premixed methane/air flames in decaying isotropic turbulence at various Reynolds
numbers and analyse the data using the surface density function formalism. Surface
wrinkling is quantified in terms of the area ratio, defined as the ratio of the area of the
turbulent flame surface to a reference area. The area ratio is shown to be proportional
to the product of the turbulent flame brush thickness and the peak value of the surface
density function. Because the thickness is proportional to the integral length scale of
turbulence and the surface density is proportional to the inverse of a length scale close
to the Taylor microscale, the area ratio and the burning rate are found to increase with
Rei13.

Key words:

1. Introduction

Technical combustion devices operate in the turbulent regime in order to increase
burning rates and achieve higher power densities than are otherwise possible in laminar
flows. In most laboratory experiments and numerical simulations of turbulent premixed
flames, the primary mechanism responsible for the enhancement in burning rates is flame
wrinkling by turbulence (Driscoll 2008).

A flame is a thin region of space where chemical reactions convert reactants into
products and a premixed flame is most often approximated as an interface propagating
into the unburnt gases (Peters 2000). In most theoretical constructs, the flame interface
is taken to coincide with an iso-surface of the reaction progress variable (Pope 1988),
which is defined as a normalized reactive scalar field varying monotonically across the
flame from zero in the reactants to unity in the products. Instantaneously, the iso-surface
propagates in the direction of its normal with a relative speed set by the local balance
between chemical reactions and diffusive transport (Williams 1994). The relative speed
is referred to as displacement speed.

Unsteady, three-dimensional turbulent fluid motion wrinkles, folds, stretches, and
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compresses the flame surface, causing an increase of its area on average. Because of the
greater area, more mixture is processed as the flame propagates into unburnt reactants,
leading to increased overall burning rates in the presence of turbulence (Damkdhler 1940).
The concept of a propagating surface lies at the basis of several closures for turbulent
premixed combustion, such as the level set method (Williams 1985; Peters 2000), the
flame surface density (Marble & Broadwell 1977; Pope 1988; Candel & Poinsot 1990),
and the extended flame surface density (Veynante & Vervisch 2002).

In this work, we are concerned with the statistics and evolution of the surface area
of spherically expanding turbulent premixed flames and associated burning rates. We
explore how scale separation affects the growth and development of the turbulent flame
surface area. By scale separation, we mean the most distinguishing feature of a turbulent
flow, whereby spatial and temporal scales are organized over a range that widens with
increasing Reynolds number (Frisch 1995). The following questions motivate our work:
Does scale separation, as parametrized by the Reynolds number, affect the burning rates
of turbulent premixed flames? If so, what are the mechanisms?

1.1. Scaling of turbulent burning rates

It is commonly assumed that the dimensionless turbulent flame speed S7 /Sy, depends
primarily on the ratio u'/Sy. Here u' is the turbulent velocity fluctuation, Sy, is the
displacement speed for a freely propagating laminar flame, and the turbulent flame speed
St/Sr is a dimensionless mean burning rate defined based on the volumetric integral
of the rate of consumption of fuel. Within this theoretical framework, first proposed by
Damkohler for large scale turbulence (Damkohler 1940), the ratio /dy, where [ is the
integral scale and d7, is the flame thermal thickness, does not play a role in controlling
mean burning rates. Yet, there exists experimental evidence that suggest a far more
complex dependence of St /Sy, on the properties of turbulence and the Reynolds number
in particular.

Liu et al. (2012) investigated the dependence of turbulent flame speeds in pressurized
premixed methane/air mixtures propagating in homogeneous isotropic turbulence up to
Rey =~ 100. By controlling independently u’ and ! (via fan speed) and the reactants’
kinematic viscosity v (via pressure), the authors were able to measure burning rates for
various values of u'/Sy,, while holding Rey constant and experiments were repeated for
several values of the Reynolds number. The turbulent flame speed Sp/Sp was found
to increase with Reynolds number, remaining nearly constant as u'/Sy varied. Data
across multiple experiments suggest that the Reynolds number, not v’//Sy, is the primary
controlling parameter in spherical turbulent premixed flames.

Kobayashi et al. (1996, 2005) measured mean burning rates in pressurized Bunsen
burners equipped with turbulence generating grids, finding increasing values of St /Sy, for
increasing pressures at constant values of u//Sy,. Since v’ /S, was held constant alongside
the geometry of the burner and grids, giving a nearly constant integral scale [ also,
the increase in Sp/SL may be due to the increase in Reynolds number brought by the
decreasing kinematic viscosity with increasing pressure.

Theoretical support for the dependence of turbulent burning rates on the Reynolds
number was recently presented by Chaudhuri et al. (2011). Starting from the spectral
closure of the level-set equation (Peters 1992), Chaudhuri et al. (2011) proposed and
later confirmed experimentally (Chaudhuri et al. 2012) a Re'/? scaling for Sp /S in
turbulent spherical premixed flames, where Re is based on the turbulent flame radius
and the reactants’ thermal diffusivity. The authors’ experimental evidence in favour of
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a Re'/? scaling includes measurements for a variety of reactive mixtures, pressures, and
turbulence parameters.

Finally, numerous experimental studies of turbulent spherical premixed flames at the
University of Leeds postulated and explored the dependence of St /Sy, from Re ~ u’l
or Rey ~ u'A (Andrews et al. 1975; Abdel-Gayed & Bradley 1977; Abdel-Gayed et al.
1981), although this proposition was later deferred in favour of relating turbulent flame
speeds to u'/Sy, instead.

1.2. Theoretical framework for the Reynolds scaling

Theoretical arguments in support of the dependence of the turbulent flame speed
St/Sr (or dimensionless mean burning rate) from the Reynolds number are possible
and will be put forth within the formalism of the surface density function. Briefly, the
surface density function (SDF) is a statistical measure of the area of a surface per unit
volume. For turbulent premixed flames, the SDF characterizes the statistics of the area
of a wrinkled flame and overall burning rate. The turbulent flame brush is the region of
space where the flame is most likely to be located and the SDF is found to peak in the
middle of the brush, decreasing rapidly on its periphery (Driscoll 2008).

It can be shown that the mean area of a turbulent premixed flame is proportional to
the product of the peak value of the SDF across the brush and the linear extent of the
brush, or its thickness. In other words, all other quantities being equal, the greater the
value of the peak SDF and the wider the brush, the greater the mean flame surface area
and the higher the burning rates of the turbulent flame.

The flame brush thickness is defined as the inverse of the peak gradient magnitude
of the mean progress variable. Because the location of the flame brush and its thickness
depend on the mean progress variable field and its gradient, we may expect the flame
brush to depend primarily on the largest scales of turbulent fluid motion, the geometry
of the flow, and boundary and initial conditions (Lawn & Schefer 2006). For example,
in the case of a Bunsen burner, the brush thickness scales linearly with the diameter
of the nozzle (Lipatnikov & Chomiak 2002), all other relevant dimensionless parameters
held constant. In other words, the turbulent flame brush thickness is proportional to
the largest scales of the flow and largely independent of the Reynolds number. Such
behavior is characteristic of other turbulent flows for which the spatial distribution of the
normalized mean velocity, passive scalar, and their fluctuations do not depend markedly
on the Reynolds number of the flow, e.g. turbulent round jets (Pope 2000).

The relationship between the brush thickness and the integral scale of the flow be-
comes clear if Taylor’s theory of turbulent diffusion of material points (Taylor 1922)
is applied to the evolution of the turbulent flame brush thickness (Lipatnikov 2012).
Within the confines of the analysis, the thickness scales with the integral length scale
as verified experimentally and via direct numerical simulations of turbulent premixed
flames (Lipatnikov 2012).

The flame surface density function is the second quantity of interest to the argument
that burning rates increase with increasing Reynolds number. As mentioned, the SDF
is a statistical quantity representing the expectation of the area of the flame surface per
unit volume (Vervisch et al. 1995) and is found to reach its maximum in the middle of
the turbulent flame brush, decaying rapidly to zero outside of the brush itself (Driscoll
2008; Veynante & Vervisch 2002). When the flame surface is taken to coincide with a
specific iso-surface of the progress variable (Pope 1988), the SDF obeys a transport
equation (Vervisch et al. 1995; Trouvé & Poinsot 1994), which includes terms that
describe turbulent transport by velocity fluctuations, transport by flame propagation, and
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production and destruction of flame surface by two processes, one kinematic and the other
associated with flame propagation in the presence of curvature. Data from experiments
and simulations suggest that the rates of flame surface production and destruction may
be proportional to the inverse of the Kolmogorov time scale 7, (Luca et al. 2018b).

The kinematic mechanism applies to propagating and material surfaces alike as velocity
gradients induce positive (stretch) and negative (compression) tangential strain on the
surface. It is well known (Batchelor 1952; Cocke 1969) that tangential strain on surfaces
is, on average, positive, so that surface elements in turbulent flows are preferentially
stretched and flattened, leading to an increase in their area (Girimaji & Pope 1990;
Drummond & Miinsch 1990; Girimaji & Pope 1992; Drummond 1993; Tabor & Klapper
1994). This result is connected with the statistics of the alignment of the principal
eigenvectors of the velocity gradient tensor with the normal to the surface.

The surface normal is aligned preferentially with the eigenvector associated with the
most compressive eigenvalue of the rate of strain tensor (Tsinober 2009). The alignment
statistics and preferential stretching of surfaces are universal across diverse turbulent
flows and so robust that they occur even in Gaussian random velocity fields, i.e. surface
stretching does not require the velocity field to be the solution to the Navier-Stokes
equations (Tsinober 2009). Further, Attili & Bisetti (2019) showed that the mixture
fraction field displays the same alignment statistics in turbulent nonpremixed jet flames
as in many other isothermal turbulent flows with or without mean shear (Ashurst et al.
1987; She et al. 1991; Tsinober et al. 1992; Vincent & Meneguzzi 1994).

In homogeneous isotropic turbulence, the mean rate of tangential stretch of infinitesi-
mal material surface elements was shown to scale with the inverse of 7,), independently
of the Reynolds number (Girimaji & Pope 1990). The same Kolmogorov scaling was
found to hold for the net rate of tangential strain of the surface of turbulent premixed jet
flames over a range of Reynolds numbers (Luca et al. 2018b), implying that the kinematic
mechanism may apply to surfaces in turbulent flows with density gradients and variable
transport properties also. Experiments with spherically expanding turbulent flames with
varying density ratios, defined as the ratio between the density of the unburnt to burnt
gases, demonstrated that turbulent flame speeds are not affected significantly by the
density ratio (Lipatnikov et al. 2017), further supporting the conclusion that mechanisms
of surface generation by stretch may be largely insensitive to density gradients.

The second mechanism contributing to the generation and destruction of flame surface
requires propagation in the presence of curvature and the rate of change of the surface
area is proportional to the product of the displacement speed and the curvature of the
surface (Candel & Poinsot 1990). The propagative mechanism is responsible for the
destruction of surface area on average as confirmed by recent data from direct numerical
simulations of planar (Nivarti & Cant 2017) and jet (Luca et al. 2018b) turbulent
premixed flames.

The scaling of the propagative term, which is proportional to the product of the local
flame curvature and displacement speed, is far from established, although data from
simulations of turbulent premixed jet flames suggest that the net rate of destruction of
flame surface by the propagative mechanism may be proportional to the inverse of the
Kolmogorov time scale (Luca et al. 2018b).

Numerical studies of the curvature of infinitesimal material surface elements showed
that the first five moments of the probability density function of curvature scale with
the Kolmogorov length scale to a very good approximation (Girimaji 1991). Support for
a relation between curvature and the surface density function in turbulent flames was
advanced by Huh et al. (2013), who argued that the peak value of the surface density
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function is proportional to the mean of the absolute value of the flame curvature and
investigated such postulate via simulations of statistically stationary planar turbulent
premixed flames. The mean magnitude of the curvature was shown to scale proportionally
to the inverse of the Kolmogorov length scale in agreement with Girimaji (1991). Similar
results for the statistics of curvature of propagating surfaces in isotropic turbulence were
reported by Zheng et al. (2017) also. Despite the lack of a comprehensive theory, it ap-
pears reasonable to expect that the smallest scales of turbulence and their characteristic
time are involved in the propagative mechanism.

If surface generation and destruction occur at the smallest scales of the flow, it is
possible that the entire spectrum of turbulence contributes to the wrinkling, stretching,
and folding of surfaces. Further support for this hypothesis comes from the fractal geom-
etry of interfaces and scalar iso-surfaces in turbulence (Mandelbrot 1975; Sreenivasan &
Meneveau 1986; Sreenivasan 1991). Recent experiments focusing on the turbulent/non-
turbulent (T/NT) interface in a turbulent boundary layer at high Reynolds number have
shown conclusively that the T/NT interface is fractal with power-law behaviour over
nearly two decades in the inertial range (de Silva et al. 2013). Thus, the geometrical
features of an interface embedded in a turbulent field reflect all motions of turbulence in
the inertial range, down to a fractal cut-off length scale similar in size to the Kolmogorov
length.

It is very likely that turbulent premixed flames possess a similar fractal nature (Gouldin
1987; Chatakonda et al. 2013), although available data are not conclusive on the account
of the modest values of the Reynolds number and limited scale separation, which make
it difficult to identify power laws and fractal dimension.

Based on the discussion above, the thickness of the brush of a turbulent premixed flame
is found to scale proportionally to the integral scale of the flow, while there is evidence
that rates of surface generation (and destruction) may increase as the dissipative scales
of turbulence become smaller. Thus, it is certainly possible that the higher the Reynolds
number and the broader the separation between the large and small scales of turbulence,
the greater the value of the dimensionless product between the brush thickness and the
peak SDF, leading to greater values of St /S and enhancement to the burning rates.

1.3. Spherical turbulent premized flames

We explore the above postulate with Direct Numerical Simulations (DNS) of spherical
turbulent premixed flames in decaying isotropic turbulence at various values of the
Reynolds number. The flame configurations have low values of the Karlovitz num-
ber, so that turbulent combustion occurs in the flamelet limit (Peters 2000; Libby
& Williams 1994; Libby & Bray 1980), where modifications to flame propagation are
negligible (Driscoll 2008).

Spherical turbulent premixed flames are a canonical configuration in the experimental
study of turbulent premixed combustion (Fairweather et al. 2009; Renou et al. 2002;
Liu et al. 2012; Chaudhuri et al. 2012). In a typical setup, a closed vessel is filled with
premixed reactants and the mixture is stirred by fans. When arranged properly, the fans
generate nearly homogeneous and isotropic turbulence in the centre of the vessel, where
a spark ignites the reactive mixture. The flame propagates outwards into the reactants
as its surface is wrinkled by turbulence. Most often, the fans are operating during flame
propagation, so that turbulence in the reactants is nearly statistically stationary.

For the purpose of conducting numerical simulations, this configuration offers the
following two advantages. Firstly, the turbulent statistics are a function of time and
radial distance from the centre of the spherical flame only, so that ensemble averages
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are gathered over the polar and azimuthal angles at each instant in time. Secondly, the
statistical state of turbulence encountered by the propagating flame is characterized by
the velocity fluctuation v/, integral length scale I, and kinematic viscosity v. Further, the
Reynolds number based on the Taylor microscale Re)y is a unique measure of the ratio
of the integral to the Kolmogorov scales.

The rest of the article is organized as follows. §2 describes the governing equations
and numerical methods. The configuration is presented in §3. The temporal evolution
of integral properties of the turbulent flames, such as burning rates, flame radius, and
flame surface area are discussed in §4. §5 presents the analysis of the evolution of the peak
surface density function and turbulent flame brush thickness. Scaling laws are proposed
for both quantities separately in §6 and a scaling law for the evolution of the flame area
ratio as a function of the Reynolds number is discussed. The article concludes in §7 with
a summary of the results and prominent findings.

2. Governing equations

The evolution of the flow is described by the reactive multi-component Navier-Stokes
equations in the low Mach number limit (Tomboulides et al. 1997; Mueller 1999). The
continuity and momentum equations read

Dp
and
Du

respectively. Here D/Dt = /0t + u - V denotes the material derivative, where w is the
mass averaged bulk velocity (Bird et al. 2006). In the momentum equation, T is the
viscous shear stress tensor and m = m(x, t) is the hydrodynamic pressure, which is small
compared to the spatially homogeneous background thermodynamic pressure p = p(t).
The mixture density p obeys the equation of state for a mixture of ideal gases

p = pRT/W, (2.3)

where R is the universal gas constant and W the molar mass of the mixture and T
is temperature. Thus, spatial variations in density are related to spatial variations in
temperature and mixture composition, but not in pressure.

A Newtonian fluid model is used for closure of the viscous shear stress tensor

T=pu(Vu+ (Vu)') - ;M(V -u)l, (2.4)

where Vu is the velocity gradient tensor and [ is the identity tensor. A mixture averaged
model is employed for the dynamic viscosity of the mixture p (Wilke 1950; Bird et al.
2006).
The species densities are p; = pY;, where Y; is the mass fraction of the i-th species,
and obey the following transport equations (i = 1,..., M)
DY;

==V (piV, iy 2.
Py =V (Vi) +w (2.5)

where w; and V; refer to the net rate of production of species i due to chemical
reactions and the mass diffusion velocity, respectively. Diffusive transport of species is
modelled with the Hirschfelder-Curtiss approximation (Hirschfelder et al. 1954; Poinsot
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& Veynante 2012)
V. X, =-D;VX,, (2.6)

where

M
D; = (1-Y3)/( D X,/Dy). (2.7)
j=1
i
X; denotes the mole fraction of the i-th species. In the above equations, D;; and D; are
the binary and species diffusion coefficients, respectively. Closure for the mass diffusion
velocity reads
MURD
W
This approximation is complemented by a small correction velocity u¢ in order to ensure
total mass conservation, yielding

Y;
%

Opi .
0[; + V- (pi(u+u)) ==V (pVi) +w, (2.9)
where
M M VW X
u'=-) YiVi=) DYi——+) DiVY 2.10
2NN L P2 o

The equation for the conservation of enthalpy is manipulated into a differential equa-
tion for temperature

DT dp
perpyr =3 TV (AVT) = Zcplpzv VT — thwz (2.11)

The equation above assumes that viscous heating is negligible on the account of the
low speed of the fluid and that the pressure field p is spatially homogeneous, albeit
varying in time. A mixture averaged model is employed for the thermal conductivity
A (Mathur et al. 1967). The specific enthalpy and the specific heat at constant pressure
for species i are h; = h;(T) and ¢, ; = ¢, ;(T), respectively, and are evaluated from NASA
tables (McBride et al. 1993).

Closure for the source terms w; is provided by a chemical kinetics mechanism fea-
turing 16 species and 73 elementary reactions of the Arrhenius type, which model the
combustion of methane in air at 800 K and 4 atm accurately. More details on the kinetics
mechanism and a comprehensive suite of validation cases are given in Luca et al. (2018a).

The configuration is a closed vessel of constant volume V', so that an ordinary differ-
ential equation for the evolution of the background pressure p(t) is obtained from the
conservation of mass in the vessel:

p_l%z—(/ —dV) dt/ —dV. (2.12)

2.1. Numerical methods

Equations (2.1), (2.2), (2.5), and (2.11) are integrated in time with the finite difference
solver “NGA” on a homogeneous Cartesian grid (Desjardins et al. 2008). The convective
and viscous terms in the momentum equation and the diffusive terms in the scalar equa-
tions are discretized with second order centred finite difference formulas on a staggered
grid. The third order Weighted Essentially Non-Oscillatory (WENQO) scheme (Liu et al.
1994) is used for the convective terms in the scalar transport equations. Mass conservation



Page 8 of 44

8 T. Kulkarni, A. Attili, F. Bisetti

is enforced by solving a variable coefficients Poisson equation for the hydrodynamic
pressure 7 instead of the continuity equation. The discrete form of the pressure equation
is obtained with centred second order finite difference formulas.

The advancement in time of the governing equations follows a splitting approach
(Tomboulides et al. 1997; Pierce 2001; MacArt & Mueller 2016). The momentum and
pressure equations are coupled with the classic pressure-correction method (Chorin 1968).
The momentum equation is integrated in time with a semi-implicit method featuring the
explicit second order Adams-Bashforth method for the convective terms and the implicit
Crank-Nicolson method for the linear viscous terms (Kim & Moin 1985). The linear
system ensuing from the viscous terms is solved in factored form with the Alternating
Direction Implicit (ADI) method (Peaceman & Rachford 1955). The time advancement
of the temperature and mass fractions is performed with a first-order Lie splitting
approach, whereby the integration of the convective and diffusive terms is performed
first for each scalar field independently and that of the reactive source terms is handled
at each grid point next. The temporal integration of the convective and diffusive terms is
semi-implicit with the convective terms treated explicitly and the linear diffusive terms
with the implicit Crank-Nicolson method and ADI factorization. The integration of the
reactive source terms is performed point-wise with adaptive backward differentiation
formula (BDF) methods as implemented in the CVODE solver for systems of ordinary
differential equations (Hindmarsh et al. 2005).

The variable coefficients pressure equation is solved with the library HYPRE (Falgout
et al. 2006) using the preconditioned conjugate gradient (PCG) iterative solver coupled
with the parallel alternating semi-coarsening multi-grid V-cycle (PFMG) preconditioner.
All governing equations are coupled together with an outer iteration loop and convergence
is found to be adequate after two iterations (Pierce 2001).

The grid is homogeneous and isotropic with spacing A = 20 um and the time step
size is constant at At = 0.2 us. The spatial and temporal resolution are adequate, since
n/A > 0.5 and 7,/At > 20, where  and 7,, are the Kolmogorov length and time scale,
respectively. Moreover, é5,/A > 6, where 0, is the thermal thickness of the flame, as
defined later in §3. Extensive numerical tests to confirm adequate spatial resolution for
the reactive fronts were carried out for turbulent premixed jet flames (Luca et al. 2018b)
and are not repeated here.

3. Flow configuration

The configuration consists of a cubic box filled with reactive mixture and initialized
with homogeneous isotropic turbulence. A spherical kernel of burnt gases is initialized at
the centre of the domain and a turbulent flame propagates outward into freely decaying
turbulence. Periodic boundary conditions are imposed in all three directions, so that the
computational domain represents a closed vessel. As burnt gases are produced behind the
flame, the background pressure increases and the mixture is compressed isentropically.
A schematic of the configuration is shown in figure 1.

The reactants are a fully premixed mixture of methane and air with equivalence ratio
0.7. At the onset of the simulation, the temperature and pressure are 800 K and 4
atm, respectively. At these thermo-chemical conditions, the laminar flame speed is S, =
1 m s™!, the thermal thickness is §;, = (T — T3,)/ max{|VT|} = 0.11 mm, and the
characteristic flame time 7, = §1,/Sr = 0.11 ms. Here, T} and T, are the temperatures
of the products and reactants, respectively, and max{|VT|} is the maximum value of the
temperature gradient across the laminar flame.

In this study, a set of three primary simulations, denoted by R1, R2 and R3 are
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FIGURE 1. Turbulent spherical premixed flame in a cubic box of side L with periodic boundary
conditions. The instantaneous flame surface (orange colour) is surrounded by homogeneous
isotropic turbulence, represented by iso-surfaces of vorticity (blue colour). The flame surface
corresponds to an iso-surface of the progress variable. The kernel of burnt gases at the onset of
the simulation is shown as a sphere of radius Ry in the cut-out (red colour).

performed at increasing Reynolds number (see table 1). The Reynolds number is adjusted
by varying the initial values of the fluctuation «’ and integral scale I. Thus, the initial
Reynolds number increases due to both «’ and [ increasing from R1 to R3. On the other
hand, the Kolmogorov length scale 7, velocity scale u,, and time scale 7, are unchanged.
Since the reactive mixture and associated flame scales Sp, dr, and 71 are unchanged
also, this results in a constant initial Karlovitz number Ka = 71 /7, = 25 for all three
simulations.

Turbulence decays freely as the flame front moves from the centre outwards. The
statistical state of turbulence encountered by the propagating flame is characterized solely
by the velocity fluctuation u’, integral length scale | = u’3 /e based on the mean dissipation
rate € of the turbulent kinetic energy k, and kinematic viscosity v, which all evolve in
time. The eddy turnover time 7 = k/e is taken to represent a characteristic time for the
motion of the largest scales. The relevant Reynolds number characterizing turbulence is
Rey = u/\/v, based on the transverse Taylor micro-scale A2 = 15vu'? /e (Taylor 1935).

Unless otherwise noted, all characteristic scales of turbulence are evaluated with
samples gathered in the volume occupied by the unburnt reactants only. Fluctuations
are evaluated by subtracting the mean from the instantaneous field and the mean
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Simulation N QRL/ZO 2R0/lo RL/RO u'/SL lO/(SL 6L/T] Re)\ Ka To/TL
R1 5123 33.8 6.9 4.9 7.4 34 11.3 44 25 0.69
R2 10243 438 6.7 6.5 8.5 52 11.3 59 25 091
R3 2048%  59.4 6.3 9.4 9.8 7.8 115 77 25 1.18
R3s 1024%  29.7 6.3 4.7 9.8 7.8 115 77 25 1.18
R2a 1024°  36.7 6.7 5.5 7.4 6.3 965 59 18 1.29

TABLE 1. Turbulence parameters at the onset of the simulations. N is the number of grid points.
The effective domain radius Ry = (3/47'[)1/3L ~ 0.62L is defined based on L, the length of the
side of the cubic domain. The flame properties are §;, = 0.11 mm, S;, =1 m s~ !, and 7, = 0.11
ms. The Karlovitz number is defined as Ka = 71 /7.

1/61

FIGURE 2. Instantaneous values of u'/Sr and [/§;, on the Borghi-Peters diagram of turbulent
premixed combustion (Peters 2000): R1 (O), R2 (O), R2a (<), and R3 (A). The arrow points
in the direction of increasing time. Also shown are lines of constant Re) = u/)\/l/ and Ka =
L/ Th-

is obtained by ensemble averaging as appropriate (see §4.3). As turbulence decays
freely while the flame propagates, the ratios v//Sy and [/§; vary in time as shown
in figure 2. It is apparent that u’/Sy, decreases as time progresses, while [/d;, increases
slightly. The Karlovitz number decreases to Ka ~ 4. According to the Borghi-Peters
classification (Peters 2000), all turbulent premixed flames belong to the flamelet regime.

The computational domain is a cube with side of length L. For reasons that will
become clear later, we define the radius of a sphere, whose volume is equal to that of
the cubic domain, Ry, = (3/47)'/3L ~ 0.62L. It is apparent from table 1 that the size of
the computational domain is large compared to the integral length scale. For example,
2Ry, /1 > 30 across all simulations. In particular, the extent of the domain is much larger
than typically required for DNS of isothermal homogeneous isotropic turbulence at the
same Reynolds number. Because the computational domain is large, the extent of the
flame’s surface may be initialized (and later grow to be) large compared to the integral
length scale [. Although a rigorous quantitative definition will be given later in the article,
the term “extent” refers to R, the average radial distance of the turbulent flame kernel
from the centre of the domain. Since R > [ throughout the evolution of the flame, the
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flame is wrinkled by many eddies, the statistics are converged and spherically symmetric,
and the flame remains centred in the middle of the domain (see §4.3).

The fact that the flame is large compared to the integral scale of the flow allows
for motions over the entire turbulent spectrum to interact with the surface and affect
its evolution. In other words, the entire spectrum of turbulence contributes to flame
wrinkling, folding, and stretching. As articulated by Chaudhuri et al. (2011), if the
integral scale were larger than the spherical flame, it is reasonable to expect that the
flame’s linear extent would act as a cut-off scale, limiting the interaction between the
flame and turbulence to those scales smaller than the flame itself.

In keeping with the requirement that the initial flame kernel be large compared to
the integral scale, the radius of the spherical kernel of burnt gases at the onset of the
simulations Ry is rescaled to be consistent with [, so that the ratio 2R/l ~ 7 remains
approximately constant across configurations.

When changing the Reynolds number of the flow, it is desirable to maintain as many
dimensionless groups as possible constant in order to satisfy physical similarity (Buck-
ingham 1914; Barenblatt 1996) and isolate the effect of scale separation as parametrized
by the Reynolds number. In practice, compromises need to be made. For example, Ry, /1,
varies across simulations, although it is always large, as discussed. Similarly, the ratio
R /Ry, which controls the extent of the pressure rise in the closed vessel, also varies
across simulations, although the variation is inconsequential.

Two additional simulations, denoted by R2a and R3s, were conducted. Simulation R2a
features the same initial Reynolds number as R2, but the fluctuation v’ is lower, matching
that of R1 and lowering the Karlovitz number. Comparisons between R1, R2a, and R2
help elucidate select aspects of the dependence of the turbulent burning rates on u'/ Sy,
1/0r, and Rey.

In order to investigate the effect of domain size on the propagation of the turbulent
spherical premixed flame, simulation R3 was repeated with a domain of half the size
and labelled R3s. Simulation R3s showed that the domain size Rz /Il does not have any
noticeable affect on the statistics pertaining to the evolution of the flame surface, although
the size does affect the mean radial velocity induced by combustion (see §4.3).

3.1. Initial conditions and turbulence decay

The initial homogeneous isotropic turbulence (HIT) is generated as follows. First,
preliminary HIT simulations at Re) are performed with the linear forcing scheme of Ros-
ales & Meneveau (2005). Second, the velocity and dimensions are scaled to obtain the
desired values of u’ and ! and several independent realizations of the velocity field are
patched together into a larger domain. The motivation for patching boxes of homogeneous
isotropic turbulence, rather than simulating fluid flow in the larger box, is due to a well
known outcome of the forcing scheme, i.e. when a statistically stationary state is attained,
the integral scale [ is approximately 20% of the side of the cubic domain. Discontinuities
in the velocity field across patches disappeared upon advancing the state over 27,.

This patching strategy does not compromise the evolution of turbulence during decay
as shown by previous studies (Albin 2010; Albin & DAngelo 2012). The kinetic energy
spectra at different times during the isothermal decaying turbulence simulations conform
to the expected Kolmogorov —5/3 scaling (see figure 3), but display a low value of the
Kolmogorov constant Cy, = E(k)e~2/3,%/3 in the small inertial range. Such differences
are to be expected, since the value C;, = 1.5 is observed only at high Reynolds num-
bers (Sreenivasan 1995).

Despite these differences in the Kolmogorov constant, all other turbulence statistics
are consistent with the theory of decaying turbulence. In particular, the decay of the
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FIGURE 3. (a) Turbulent kinetic energy spectra at four instances (lines of same type and colour)
during the decay of isothermal homogeneous isotropic turbulence for each of the three primary
simulations: R1 (blue thin lines), R2 (red dashed lines), and R3 (green dot-dashed lines). (b)
Compensated kinetic energy spectrum E(H)e_z/sms/S. The thick solid line marks the Kolmogorov
constant Cy, = E(r)e~*/?x%/® for high Reynolds number flows (Sreenivasan 1995).

turbulent kinetic energy follows the power law (Batchelor & Townsend 1948a,b; Sinhuber
et al. 2015),

k/ko = (1+t/t))™", (3.1)

where ¢ is the virtual origin, ky the turbulent kinetic energy at ¢ = 0, and n is the decay
exponent. The integral length scales of the flow evolves as

lp = (14t/te) ™2, (3.2)

where [y denotes the integral scale at the onset of the simulations.

Experimentally, n is found to lie between 1 and 1.5. For decaying turbulence behind
passive grids, Batchelor & Townsend (1948a) find n = 1, Comte-Bellot & Corrsin (1971)
report 1.16 < n < 1.37, while Baines & Peterson (1951) find a higher value of n = 1.43.
Mohamed & Larue (1990) report that n = 1.25 fitted their data best. Here, instead of
fitting the parameters in (3.1) directly, we use the expression for the eddy turnover time

T=k/e=to/n(l+1t/ty) =to/n+1t/n, (3.3)

so that n and ¢ty = n7y are related to the slope and intercept of a least-squares fit to 7(t).

Figure 4(a) shows fits and power laws for k/ko and €/¢g. In all simulations, we find n =
1.55, which is slightly higher than the values reported in the literature. This discrepancy
may be due to the low Reynolds number of our configurations or the dependence of the
exponent on geometry, which differs between grid generated turbulence and simulations
of homogeneous isotropic decaying turbulence.

Figure 4(d) compares the decay of Reynolds number in reactive and isothermal sim-
ulations from the same initial conditions. Statistics in the isothermal simulations are
consistent with the power law decay, while in the reactive simulations, the changes in
the background pressure and temperature cause minor deviations. While higher pressure
and temperature lead to modifications to the density and the viscosity of the mixture,
they are minor on the account of the fact that the maximum pressure rise is less than
20% across all simulations. Further, the differences at the end of the simulations are
due in part to a decreasing number of samples available for statistics, since the unburnt
gases occupy a region that decreases in volume as time progresses. We conclude that,
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FIGURE 4. Statistics of the decaying turbulence in the reactants. (a) Exponential decay of
turbulent kinetic energy k/ko and its mean rate of dissipation €/eg versus 1+t /to, where to = nro.
Lines represent power law expressions with n = 1.55. Evolution of (b) «'/St, (c) 1/62, and (d)
Rey = u/A/v. Lines represent decay in isothermal simulations, symbols represent data from
reactive simulations: R1 (), R2 (O), R2a (<), R3 (A), and R3s (V).

apart from minor differences that become more apparent at later times, the presence of
a propagating flame does not change appreciably the decay of turbulence.

Finally, we notice that the data for simulations R3 and R3s prove that changes in the
domain size do not have any noticeable effect on the statistics of decaying turbulence
with or without a propagating flame.

4. Overview of the evolution of the turbulent premixed flames
4.1. Basic definitions

Within the scope of the present study, the flame surface corresponds to an iso-surface
of the reaction progress variable C(x,t) = ¢*, which is defined as follows:

Yo, — Yé’z

C=1-—2 2 (4.1)
u _ yvb ?
YO2 Y02

where Yo, is the mass fraction of molecular oxygen and Yy and Yob2 are the mass fraction
of oxygen in the reactants and products, respectively. By definition, the progress variable
C increases monotonically from 0 in the reactants to 1 in the products. We let the iso-
level ¢* = 0.73 define the flame surface. This particular value of the progress variable
corresponds to the maximum value of the heat release rate, which is taken to mark the
middle of the reaction zone. The normal to the flame surface is defined as

n=-VC/|VC|, (4.2)
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FIGURE 5. Instantaneous flame surface shown at various dimensionless times for the simulations
R1, R2, and R3. The Reynolds number increases from top to bottom, while the simulation
time increases from left to right. Since 7',0, is the same all three simulations, the flame surface is
compared at the same physical time across simulations. The physical dimension is the same for
all three flames also.

such that it points into the reactants. The flame propagates in the direction n with a
displacement speed S relative to the local fluid velocity (Pope 1988; Chakraborty & Cant
2005)

g_ L DC_ 1 (ac

~|vC] Dt |vC| \ ot

The displacement speed is computed from instantaneous numerical solutions as follows.
The temporal derivative C/0t is computed at the intermediate time ¢,/ = t, + At/2
with a central finite difference formula based on two solutions at t,, and t,+1 = t, + At.
The velocity and scalar fields are interpolated linearly in time to ¢/, the staggered
velocity components are interpolated linearly onto the centred grid used for the progress
variable scalar field, and a high-order central finite difference formula is used to evaluate
the gradient of C'.

+u~VC>. (4.3)

4.2. The evolution of the turbulent premized flames

Figure 5 illustrates the evolution of the turbulent spherical premixed flame during
simulations R1, R2, and R3. The surface of the flame is visualized by the iso-surface
C(x,t) = c¢*, which marks the thin reaction zone of the flame. The flame, which is
initialized as a spherical kernel of products centred in the middle of the computational
domain, propagates radially outwards into the premixed reactants.

It is apparent that the flame surface is wrinkled and folded by turbulence as the flame
propagates. Most patches of the flame surface are flat or posses only a slight curvature.
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Regions of high curvature are much less prevalent and appear as sharp cylindrical folds,
while cusps are infrequent. These qualitative observations are consistent with established
topological features of the surface of turbulent premixed flames (Cifuentes et al. 2014). If
the flames are compared at times when they are of similar size, the flame at the greatest
value of the Reynolds number (R3) displays the highest density of folds and wrinkles.
This is consistent with the qualitative interpretation that scale separation increases with
increasing Reynolds number.

As reactants are converted into products inside the closed domain, the background
pressure increases, leading to an increase in the reactants’ temperature T, also. The
compression is isentropic. The simulations terminate when the mass fraction of burnt
gases is less than 25% of the total, such that the effect of periodic boundary conditions is
negligible. This ensures a small change in T, (< 3%) and p (< 20%) for all simulations. We
verified that such small changes in pressure and temperature lead to negligible changes
in the laminar flame speed Sy, (< 1%) and flame thickness §;, (< 10%).

4.3. Mean velocity field

Under the assumption of spherical symmetry of the mean fields, the Reynolds averaged
continuity equation reads
o) 10,

¢ Tz, leun) =0, (44)

where u, = u - e, is the radial component of velocity and the term (pu,) is unclosed
in general. In the regions occupied solely by reactants and products and away from the
turbulent flame brush, density is spatially homogeneous and (4.4) simplifies to

ldp 1 or?{u,)

Z -\ 4.
pdt 1?2 Or 0 (4.5)

where (u,) is the mean radial component of velocity and the temporal variation of density
is retained due to isentropic compression of the gases.

The isentropic relation ydln p/dt = dlnp/dt, where ~ is the ratio of specific heats, is
substituted into (4.5), which is then solved to give

() = o= Ly 0y, (4.6)

where C; is a constant. In the region occupied by products, C; = 0 since (u,) = 0 at
r = 0, yielding:
1 1dp

=y 4.
() =~ 3= o (47)

where 7, is the ratio of specific heats of the burnt gases. (4.7) shows that (u,) is negative
(dp/dt > 0) and varies linearly with = in the burnt gases.

At the domain boundary, the velocity is zero due to periodicity, but the boundaries’
radial location depends on the polar (©) and azimuthal () angles on the account of
the domain being a cube. Yet, since the mean radial velocity decreases as 1/r%, one
expects the effect of geometry on the radial velocity to be negligible away from the
boundary. Consequently, boundary conditions are imposed at an effective radial distance
R}, defined as the radius of a sphere with volume equal to that of the cubic domain

Rp = (3/4m)'/3L. (4.8)
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FIGURE 6. Reynolds averaged radial velocity (u,) normalized by the initial turbulence intensity
for simulation R2. Data at three times: ¢/70 = 1.50 (), 3.35 (O), and 5.20 (A). Thin lines
represent the expressions in (4.7) and (4.9) evaluated with the instantaneous value of p™'dp/dt.
Data for /Ry, < 0.8 (r/L < 0.5), which corresponds to the minimum distance from the centre
to the boundary.

Then, the mean radial velocity component in the reactants reads

r r\ 2
7 (%)
where 7, is the ratio of specific heats of the unburnt gases.

Figure 6 shows (u,) at three instants in time during the R2 simulation. The mean is
obtained by ensemble averaging over @ and ¢. The mean radial velocity matches the
expressions in (4.9) and (4.7) closely at radial locations occupied by either products or
reactants and away from the brush.

In particular, on the reactants’ side, the theoretical expression for (u,.) is identical to
the data from the simulation up to /L = 0.5 (r/Ry = 0.8), which corresponds to the
minimum distance between the centre and the faces of the cubic domain. We conclude
that the mean flow retains spherical symmetry as if the computational domain were a
spherical vessel with radius Ry. In the remainder of this article, turbulent statistics are
assumed to be spherically symmetric and ensemble averaging is carried out accordingly.

RL 1dp

(ur) =~ 2

_ 4.9
3 p dt ’ (4.9)

4.4. Turbulent flame speed, area ratio, and correction factor

The relation between the linear extent of the flame, the flame’s area and related
fuel burning rate is of paramount importance to the understanding of the role of scale
separation in turbulent premixed combustion applications. In this section, we introduce
suitable statistical measures that facilitate our analysis and present an overview of their
evolution across simulations.

The dimensionless turbulent flame speed St /Sy, is the mean burning rate {2 normalized
by the fuel density in the reactants p,, Y, a reference area A*, and the laminar flame speed
SLZ

St N
St o puYfSLA* ’

Note that {2 is defined here as the volumetric average of the rate of consumption of the

(4.10)
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mass of the fuel in the domain. Further, divide and multiply the r.h.s. of (4.10) by the
mean area of the flame surface A to obtain

St ? A

—_— = 4.11
ST, puYfSLA A* ( )

In the unsteady spherical flame configuration under study, 2 = 2(t), p, = pu(t), A =
A(t), and we let A* = 47 R?, where R(t) is the mean flame radius.

In (4.11), £2, A, and A* are time dependent statistical measures for which suitable es-
timators must be defined in a manner consistent with the ergodicity of the configuration.
In other words, these quantities are neither random variables nor functions of random
variables, rather they are statistics that vary in time due to the unsteadiness of the flow.

Both A and R are tied to the statistics of the progress variable field C(x,t), since the
flame surface is taken to coincide with the iso-surface C'(x,t) = c¢*. Formal definitions
for the mean area A and mean radius R are given later in this Section.

As written, (4.11) shows that the normalized turbulent flame speed is equal to the
product

— =1TIx, (4.12)

where Z = (2/(p.Y;S1A) is the correction or stretch factor (Driscoll 2008) and y = A/A*
is the area ratio. There exists significant evidence in the literature that for turbulent
flames under most circumstances of practical interest Z ~ 1 and x > 1. In other words,
the mean area of the turbulent flame is much greater than the reference area or A > A*.
If 7 = 1, the ratio S7/Sy, is related to x alone and the mean burning rate may be written
as

=~ puYfSLA*X- (413)

While the practical value of (4.13) in scaling and estimating the mean burning rate

{2 is apparent, the dependence of the dimensionless area ratio x from all relevant non-

dimensional groups, including the Reynolds and Karlovitz numbers among others, needs
to be characterized for the flame configuration of interest.

When calculating S7/Sz, x, and Z from numerical simulations, the mean area of the
flame surface A(t) is taken to be equal to A(t), the area of the flame surface at time ¢
during the simulation

A(t) = /A dA, (4.14)

where A, is the iso-surface C'(x,t) = ¢*, which represents the flame surface, and dA is
the area of its differential element. The mean flame radius is taken to be equal to the
average of the distance function |x| over the flame surface at time ¢

- 1
A(t) Ja.
Finally, the mean burning rate 2(t) is taken to be equal to the value of the burning rate
£2(t)
Qt) = — / pwdV, (4.16)
1%

where CH, is the fuel, so that wy = wcn, and Yy = Ycp, .

For the flame configuration considered, one instance of the turbulent flame at time ¢ is
found to be sufficient in order to estimate A, R, and {2 from A, R, and §2, respectively,
and to characterize the variation of relevant statistics, including x and Z, in time and



Page 18 of 44

18 T. Kulkarni, A. Attili, F. Bisetti
(b) t/Tr? (c) t/ﬂ?
0 25 50 75 10 0 25 50 75 100
L B B BB L B L BB
] 5 I ] 5 L N
Ny 1 4 1 4L ]
<t [ [
W 13 1 3L ]
o E R E
~ L
oy LI T A — T S
0 I I 0 L I I 0 I I
0 2 4 6 0 2 4 6 0 2 4
t/To t/To t/To

FIGURE 7. Dimensionless turbulent flame speed St/Sr (Q), area ratio x (O), and correction
factor Z (solid lines with no symbols). (a) R1 with error bars for the area ratio x representing
the standard deviation across four simulations, (b) R2 (open symbols) and R2a (filled symbols)
and (c¢) R3 (open symbols) and R3s (filled symbols).

across simulations. We explain this occurrence by noting that the configuration was
designed so that the extent of the turbulent flame, characterized by its mean radius R, is
large compared to the integral length scale of the flow. Because the surface area, radius,
and burning rate are defined based on integrals over the polar and azimuthal angles, for
which the flow fields display statistical symmetry, such arrangement provides multiple
independent interactions of turbulence with the flame at any given time.

Convergence could be improved further by repeating each simulation multiple times
and gathering several realizations of the same turbulent flow. Repeating each simulation
was found to be computationally prohibitive, except for the R1 simulation, where the
number of grid points was small enough to repeat the simulation four times with
different initial conditions. In the rest of this article, all statistical quantities presented
for simulations R2, R2a and R3 rely on one sample of the turbulent fields at each instant
in time, while statistics for R1 rely on four independent realizations.

Figure 7 shows the temporal evolution of St /Sy, X, and Z for the five simulations. Time
is normalized by the eddy turnover time 7y on the primary axis, and by the Kolmogorov
time T,,? on the secondary independent axis, both calculated at the initial time. Since T,,?
does not vary for R1, R2, R3, and R3s, t/ Tf; is proportional to the dimensional time and
allows comparisons across simulations.

It is apparent that Z is close to unity at all times, so that the normalized turbulent
flame speed St /Sy is effectively equal to the area ratio A/A*, which is greater than one.
The temporal evolution of the area ratio is qualitatively similar across simulations, in
that x grows rapidly and reaches a plateau afterwards. When measured in units of eddy
turnover time 7y, the growth in x lasts approximately 27, for all three simulations. In
physical time units (or units of Tg), the area ratio grows most rapidly for simulation
R3. The asymptotic value reached by x for later times is smallest for R1 (y — 2.8) and
largest for R3 (y — 4.5). Comparisons across R3 and R3s indicate that the size of the
domain does not affect the burning rates. As discussed later, the same is observed for all
other pertinent statistics.

The comparison of turbulent burning rates from R1, R2, and R2a points to the role of
Reynolds number in controlling turbulent burning rates. R1 and R2a feature the same
turbulence intensity u'/Sy, and yet R2a features higher burning rates than R1. On the
other hand, simulations R2 and R2a share the same Reynolds number, differing in both
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u'/Sp and 1/dy, yet they feature identical area ratios y when plotted versus ¢/7. More
discussion on the Reynolds dependence of the area ratio is given in §6.

The remainder of this paper is concerned with the mechanisms responsible for the
evolution of the area ratio A/A* and its differences and similarities across simulations.
The analysis is based on the formalism of the surface density function, which is discussed
in §5.

5. The surface density function
5.1. Basic definitions and mathematical framework

In order to quantify and explain the mechanisms responsible for the growth of the
flame surface area and evolution of the area ratio, we adopt the formalism of the surface
density function. The surface density function (SDF) is defined as the mean of the area
of the flame surface per unit volume and is denoted by Y. Note that X = X(r,t) is a
statistical quantity, which depends on the radial coordinate r and time ¢ for the present
configuration.

The flame surface density of any iso-surface C(x,t) = ¢ reads (Vervisch et al. 1995):

X(r,t;e) =(|VC||C = ¢) Pc, (5.1)

where (|[VC||C = ¢) is the conditional mean of the magnitude of the gradient of the
progress variable and Po(C' = ¢;r,t) is the probability density function (PDF) of C
evaluated at the sample space value c. Although not noted explicitly, the conditional
mean of |V is a function of r and ¢ in general. The SDF obeys the following transport
equation (Vervisch et al. 1995):

ox

5 +V- - ((u+nS),Y)=(K),~. (5.2)
In (5.2), S is the displacement speed as defined in (4.3), n = —VC/|VC] the normal
to the flame surface pointing into the reactants, and K the flame stretch to be defined
below.

The operator (-),, denotes a conditional average weighted by the magnitude of the

gradient of the progress variable:

(@)w = (QIVC|IC =)/(IVC|IC =), (5-3)

where Q = Q(z,t) is any random field. Such statistic is referred to as surface aver-
age (Pope 1988).
The source term on the r.h.s. of (5.2) represents the surface average of stretch K:

K =a—2Sk. (5.4)
The first term is hydrodynamic in nature
a=-nVun+V - u, (5.5)

where a is the tangential strain rate, which depends solely on the velocity field w and
the orientation of the velocity gradient tensor Vu with respect to the flame normal n.
The second term consists of the product of the mean flame curvature x and displacement
speed S

—28k =S5V - n. (5.6)
This term is referred to as the propagative term or the curvature term as it is non-zero
only for surfaces that propagate (S # 0) in the presence of curvature (k # 0). In the



Page 20 of 44

20 T. Kulkarni, A. Attili, F. Bisetti

case of a material surface, K = a and surface stretch is due to tangential strain only.
Recall that a material surface is associated with a scalar field for which both diffusion
and reactions are absent.

By definition of the surface density function, the mean surface area A is the volumetric
integral of the surface density function for C' = ¢*,

A(t) = 4m / h r2 X (r,t) dr, (5.7)
0

where C' = ¢* is the iso-surface that identifies the flame front as outlined earlier. Note
that the mean area in (5.7) depends on time only since the radial dependence of the SDF
is lost in the integration.

Again, the surface density function is a statistical quantity estimated here based on a
single realization of the turbulent flow, exploiting the ergodicity of the flow with respect
to the polar and azimuthal angles. Convergence of simulation R1 is further improved
by using four independent realizations. The definitions of A in (4.14) and (5.7) are
mathematically equivalent (Maz’ja 1985) and less than 1% difference between the two is
observed when they directly computed directly from DNS data in all cases.

The evolution equation for the flame surface area is readily obtained by volumetric
integration of (5.2)

/ $dv = 7471/ L (uy + Sn) ) dr+4ﬂ/ r(K)wXdr.  (5.8)
dt dr 0

The first term on the right hand side of (5.8) is zero since X' goes to zero at both extremes
of integration. Then, the global stretch, defined as the logarithmic time derivative of the
surface area A, is written as

Ko = (1/A)dA/dt = /OOO r25(K )y, dr (/OOO r22d7“) - : (5.9)

Finally, the area ratio x is expressed in terms of X as

x(t) = /OOO(T/R)QE(T, t) dr. (5.10)

5.2. PDF of radial distance of the flame surface

We now consider the probability density function associated with the distance of the
flame surface, which is denoted by Py4. Here ¢ is the random variable representing the
distance of the flame surface from the origin. With this formalism, the mean flame radius
R and the thickness of turbulent brush ¢ are defined as moments of Py and their governing
equations derived from the SDF transport equation. This points to the importance of
the flame radial distance PDF in analysing the evolution of the area ratio.

The mean area the surface inside the sphere of radius ¢ is

%)
A, = 47t/ r2X(r,t) dr, (5.11)
0

so that the ratio A, /A represents the probability P(¢ < ¢) and describes the cumulative
density function associated with Pg. The PDF is obtained by differentiation with respect
to the sample space variable ¢

Pol(d = @it) = d(A,/A)/dp =AM AT Q> X(r = @,1), (5.12)
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with support ¢ € [0, 00). In light of (5.12), the rate of change of P, reads

OPy/0t = (4mr® JA) {02 /0t — (X /A) dA/dt} . (5.13)
Substituting X' /0t from (5.2) and K¢ from (5.9) into (5.13), we obtain
OPy/0t = —0/0r {(ur + Snr)wPy} + ((K)w — Ka)Po. (5.14)

The mean p and standard deviation o of ¢ are the mean radial distance and a scaled
flame brush thickness o = §/v/27:

R=(0) = [ ePueitide
=4nA~! /OOO X (r,t) dr (5.15)
and
= (- @P) = [ (o= PPy
=4nA~! /Ooo(r — R)*r*5(r,t) dr. (5.16)

With the above definition,
§ = V2mo = 1/ max{d(C)/dr}, (5.17)

where (C')(r, t) is the mean progress variable and d(C') /dr its gradient under the hypothe-
sis of spherical symmetry. The two definitions of the brush thickness are equivalent under
the assumption that the surface is normally distributed around the mean location (e.g. see
Chp. 4 in Lipatnikov 2012).

5.3. Characterization of Py and X

The mathematical framework in §5.1 and §5.2 demonstrates that the mean area A,
mean radius R, turbulent flame brush §, and area ratio y are related functionally to the
surface density function X. Further, (5.12) points to an equivalence between X and the
probability density function Py.

The evolution of the first two moments of Py is shown in figure 8. The flame radius is
normalized by the radius of the initial spherical kernel, Ry, while the brush is normalized
by the initial integral length scale, ly. Time is normalized by 7y, the eddy turnover time
at the onset of each simulation (see table 1).

It is apparent that the evolution of R/Ry is similar across simulations and that each
simulation lasts about 4 to 5 eddy turnover times. During this time, the flame radius
changes by a factor of 2.5 (R1) to 3 (R2 and R3). The data illustrate that there are
two phases in the evolution of the flame radius. Early on, the radius increases slowly,
yet its growth rate increases steadily, while later R grows linearly in time. Although the
temporal evolution of R/Ry does not collapse across simulations when plotted against
t/70, these data do show that the onset of this second phase of linear growth occurs at
t/7o ~ 1 for all configurations and that the non-dimensional growth rate Ry modR/dt
differs, being greatest for R3 and smallest for R1.

The flame brush §/ly increases monotonically in time across simulations as shown in
figure 8(b) and similar across simulations, which is a result of the scaling of the flame
brush thickness with the integral length scale of the flow as discussed later in §6.1.

The PDF P4 can be closely approximated by a Gaussian distribution. This is demon-
strated in figure 9, which shows P, at four times for three simulations. Here we plot the
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FIGURE 8. Evolution of (a) mean flame radius and (b) flame brush thickness for various
simulations. The mean flame radius is normalized by the initial kernel size Ro, while the brush
thickness is normalized with the initial integral length scale lo: R1 (), R2 (O), R2a (¢), R3
(A), and R3s (V). Error-bars shown for R1 simulation are based on four different realizations.

y/RL (b)

(a)
Rio 0.47

Pyo

0.2 |

2 =
\
q
=
—_
o
o

0.2 1 107t L i
o F
©
& 2
R 10 =
1073 :
0 L L L L | L 4
0 0.2 0.4 z/Rr 0= (p—p))o

FIGURE 9. (a) Planar slices of the instantaneous flame surface for simulation R2 at t/70 = 4.2.
The mean flame radius (thick red line) and several C' = ¢* iso-contours (thin black lines) are
shown alonside the shaded region = R + o. Also shown in (b) and (c¢) is the oP, at four
times for simulations R1 (), R2 (O) and R3 (A) with the standard normal distribution for
comparison (thick black lines).

PDF normalized by ¢ and against ¢, a sample space variable of the normalized brush
coordinate 0 = (¢ —p)/o. It is apparent that 0Py is well described by a standard normal
distribution N(0, 1), consistently with previous data reported in the literature for various
flame configurations (Lipatnikov & Chomiak 2002). The inset shows that the tails of the
PDF are also well approximated by the normal distribution, although the comparison
becomes less satisfactory for || > 2, possibly due to statistical convergence.

Figure 10 shows X at select times for simulations R1, R2, R3, and R2a. The SDF is
shown normalized by the initial thermal thickness 6 and plotted versus /Ry, where
Ry is the effective domain radius (see table 1). The surface density distribution is
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FIGURE 10. Surface density function at select times for (a) R1, (b) R2 (c) R3, and (d) R2a. The
normalized time ¢/79 is shown next to each profile. The surface density distribution broadens
and the peak reduces as the time progresses. Symbols denote evaluation of X using (5.1) directly,

while solid lines show surface density estimation based on (5.12) and a normal distribution model
for Py.

transported radially outward, broadens, and its maximum value X, decreases with time.
This behaviour is common across all cases. The broadening of Y is consistent with the
increase in the flame brush and with experimental observations of spherical turbulent
premixed flames evolving in freely decaying turbulence (Renou et al. 2002; Fries et al.
2019). Since the area ratio x is related to the volumetric integral of X, broadening appears
to be closely related to the observed increase of y in time. Yet, the peak of X decreases
in time, so that a more quantitative analysis is in order.

Using a Gaussian distribution as a model for Py, the surface density function is
obtained according to (5.12) and shown in figure 10 also. X' obtained assuming that Py
is a normal distribution is compared to its direct evaluation as in (5.1). The comparison
is very satisfactory, indicating that the two methodologies are consistent and further
validating our approach. Nonetheless, X' computed from conditional statistics displays
residual statistical noise, and therefore we rely on the model to analyse the peak value
of the surface density function.

5.4. Model for the area ratio

We begin by noting that the surface density function admits a local maximum at radial
location 7, which is the root of the equation
ox o~ o~
S| = 2P+ Py =0 (5.15)
or|,_;

2Py (F) — 7Py (F) = 0, (5.19)
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where we let P; indicate the derivative with respect to ¢. Based on (5.12), the maximum
value attained by the surface density function is

Ym = X(Ft) = (471)*1,47)‘/;5:2) = (471)*1/17)"1—@. (5.20)
Substitution of (5.12) and (5.20) into (5.10) gives
X = 2mdf, (5.21)
where
1 7\’
=7 () 5

is a shape factor related solely to the functional form of Py(p;t). Equation (5.21)
illustrates that the area ratio x is proportional to the product of the maximum value of
the surface density function, the thickness of the flame brush, and a shape factor.

As shown in figure 9, Py(p;t) is well approximated by a normal distribution. On the
account that Py is defined in [0, 00), a truncated normal distribution with parameters i
and o2 (Johnson et al. 1994) is required formally, rather than a normal distribution with
infinite support ¢ € (—o00,00). However, we find that for all simulations, @ > 37 (see
figure 9), so that ji ~ u, 5% ~ o2, and the normalization factor Z = 1 — F(—ji/5) ~ 1,
where F'(z) is the cumulative distribution function of the standard normal distribution.

Thus, for all practical purposes, the truncated normal distribution and the underlying
normal distribution are identical on the account of the negligible probability of ¢ taking
negative values. For simplicity, we ignore the small differences arising from the truncated
sample space at ¢ = 0 and model Py as a normal distribution with parameters p = R
and % = §2/(2m). This results in the following root of (5.19)

P = 2Py (#)/P,(F) = R (1 +V/1- 8a2) /2, (5.23)

where a = o/p (a0 < 0.33 for all times and simulations) is the relative standard deviation
of the radial distance. Substituting (5.23) into (5.22), the shape factor reads

B = B(a) =0.25 (1 + /1 — 8a2)2 exp {a2(\/1 —8aZ — 1)2/8} . (5.24)

Equation (5.24) indicates that the shape factor is a monotonic function of . For av — 0,
8 — 1 and decreases as « increases. For all simulations and times, we find 0.875 < 5 < 1.

Together with the fact that 5 ~ 1, (5.21) illustrates that the area ratio x is equal to
the product of the maximum value of the surface density function X, and the thickness
of the flame brush §. In particular, the temporal evolution of these two quantities across
simulations with varying Reynolds number is explored closely.

6. Scaling of the area ratio in spherical turbulent premixed flames
6.1. Scaling of the turbulent flame brush thickness

As defined in (5.17), the flame brush thickness 4(t) is a statistical measure of the
distance of the flame surface from its mean location. The brush thickness grows from
zero as time progresses and turbulence wrinkles the flame (figure 8(b)).

Under rather stringent assumptions and important approximations, Taylor’s theory
of turbulent diffusion has been applied to the evolution of the flame brush thick-
ness (Lipatnikov & Chomiak 2002). First, the flame surface is assumed to evolve as
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a collection of infinitesimal material surface elements and the variance of the distance of
the surface elements from their mean location is taken to represent the brush thickness.
Second, turbulence is assumed to be homogeneous and isotropic, although not necessarily
stationary. Under these assumptions, the rate of change of the variance of the distance is

do?/dt = 2u/ () /Ot o' (p) fr(p,t) dp, (6.1)

where f; denotes the Lagrangian velocity autocorrelation function and «'(t) is the
turbulence intensity at time t. For stationary turbulence, (6.1) is integrated assuming
that the autocorrelation function is exponential (Hinze 1975) to give

o217 = 2t{1 —t'[1 — exp(—1)]}, (6.2)

where t = ¢/71 and 7 = [/u’ is a constant reference time scale. The short and long time
behaviours described by (6.2) are 02 ~ ¢? for t < 71 and 02 ~ t for t > 71, respectively.

The short time limit has been shown to explain reasonably well the early and near-
field evolution of the brush for various experimental and numerical flame configurations,
including spherically expanding flames and turbulent Bunsen flames (Lipatnikov &
Chomiak 2002). For spatially inhomogeneous turbulent flows with a dominant direction,
a convective time related to distance is used in place of time. This model suggests that
the flame brush thickness scales with large, energy containing scales of turbulence, since
the ratio o/l is a function of the normalized time ¢/71 alone.

Minor adjustments to (6.1) and (6.2) are required for spherical expanding flames in
decaying turbulence. Firstly, the brush thickness is defined in terms of the variance of
the radial distance, so that only the radial component of the velocity vector along the
Lagrangian trajectories should be considered. Since the radial direction varies along a
Lagrangian trajectory, the integrand includes an orientation factor also and reads

do?/dt = 2u'(t) /0 o' (p) fr.(p,t){cos ayp+) dp, (6.3)

where (cosay:) is the expectation of «,., the angle between two position vectors
on a Lagrangian trajectory at times p and t¢. The derivation of (6.3) is presented in
Appendix A.

Since cosap: < 1, (6.1) over-estimates the rate of change of the brush thickness
compared to (6.3). Nonetheless, the correction is small if the lateral movement on a
Lagrangian trajectory during temporal intervals for which the velocity remains correlated
is small compared to the radial distance of the material point. A comprehensive analysis
of the correction factor requires an investigation of Lagrangian statistics and is outside
the scope of the present study. Thus, we interpret (6.1) as an upper bound on the rate
of change of the brush thickness in spherically expanding flames as approximated by
Taylor’s theory of turbulent diffusion.

A second aspect is related to the fact that turbulence in not stationary, rather it
decays in time. Batchelor & Townsend (1956) postulated that the Lagrangian velocity
autocorrelation in decaying isotropic turbulence is self-similar and argued that, if the
decay of the turbulent kinetic energy follows a power law (see §3.1), there exits a
characteristic time scale 7, for which u(t)(1 + t/tq)~"/? is a stationary random variable
in the transformed time coordinate s, defined so that ds = dt/7,. Batchelor & Townsend
(1956) suggested 75 = t + tg, which was supported later by Huang & Leonard (1995)
based on a model spectrum of the Lagrangian velocity autocorrelation at high Reynolds
numbers. Letting s = log(1+t/to) with ¢y = ng, all length and velocity scales in decaying
turbulence are exponential functions of s. Further, as shown by Huang & Leonard (1995),
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FIGURE 11. Temporal evolution of the flame brush thickness. (a) Brush thickness normalized
by the thermal thickness of the laminar flame, 62, versus time normalized by the initial eddy
turnover time. (b) Normalized flame brush thickness ¢/l versus the transformed time coordinate
s =log(1+t/to), where to = n7o. The solid line shows the expression in (6.4). Symbols identify
data from different simulations: R1 (O), R2 (O), R2a (<), R3 (A), and R3s (V).

the Lagrangian autocorrelation function depends on the lag between two transformed
time coordinates, i.e. f1(t1,t2) = fr(s1 — $2). The methodology for the estimation of the
parameters to and n was outlined in §3.1.

Substituting the expressions for the turbulent kinetic energy (3.1) and eddy turnover
time (3.3), the temporal evolution of 4% reads

512 = (9rn?) / "dp / U fola - pyesp{(l—n/D(ptq-25)}.  (6.4)

The factor in front of the integral in the above expression originates from the definition
of the eddy turnover time 7 = 31/2u’ = 377/2 and 7, = n7. Equation (6.4) suggests
that §/1 = f(s) alone and that the instantaneous integral length scale of the flow [ is the
obvious length to normalize the brush thickness §.

Figure 11 shows the temporal evolution of the normalized flame brush 6/ for all
simulations alongside the theoretical prediction from (6.4). The expression for the La-
grangian autocorrelation function given in Huang & Leonard (1995) was used to evaluate
the integrals on the r.h.s. of (6.4).

Consistent with the observations in the literature, we report good agreement of the
brush thickness with the theory of turbulent diffusion early on (s < 0.2 or ¢/79 < 0.5) and
a near collapse across simulations. This agreement is rather remarkable considering that
the flame surface is defined based on the iso-surface of a reactive scalar and propagates in
a variable density and variable properties flow, while Taylor’s theory of turbulent diffusion
applies to an ensemble of material points convected by an isothermal fluid. Nonetheless,
the agreement is best at early times and deviations from theory are apparent later. More
importantly, the evolution of §/I appears to saturate towards a limit value, while theory
predicts continuous growth even in decaying turbulence.

To investigate the deviations from the turbulent diffusion theory, we consider the
evolution equation for the brush, which is derived next. Despite the deviations, the scaling
of § with [ is robust, as the evolution of ¢/ is nearly the same across different simulations.
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6.1.1. Ewolution equation for turbulent brush thickness

The evolution equation for the flame brush thickness is readily obtained by taking the
second central moment of (5.14) and reads
ds? e o
T 47'[/0 (U + Sn) o (r — R)Pydr + 27'[/0 (K')o(r — R)?Pydr, (6.5)
where K/ = K — K¢ is the differential stretch rate. The first term on the r.h.s of (6.5)
describes the effect of transport on the brush and consists of contributions by the mean
radial velocity, velocity fluctuations, and flame propagation.
We decompose the radial velocity as u, = (u,) + u,., where (u,) is the unconditional
Reynolds average, so that (u'.),, is not zero, and the evolution equation is manipulated
to read:

dé

i (21/6) /Ooo<u'r>w(r — R)Py dr + (2m/0) /Ooo<ur>(r — R)Pydr

+(2n/5) /O (S (r — RYPy dr + (/) /O CUK W — R)?Pydr. (6.6

In the order in which they appear on the r.h.s. of (6.6), the terms represent contributions
from velocity fluctuations or turbulent transport (term I), transport due to mean radial
velocity (term II) and flame propagation (term IIT), and differential stretch (term IV).

Figure 12 shows dd/dt and the four terms on the right hand side of (6.6). All terms are
normalized by the initial turbulence intensity u(. The rate of change of § is positive for all
simulations, indicating that the brush grows throughout the evolution of the turbulent
flame and the behaviour and contribution of each term is similar across simulations, once
normalized by the initial turbulence intensity. As time progresses, dd/dt approaches zero,
indicating that the brush thickness reaches a limit value, consistent with the temporal
evolution of § in figure 8(b).

Early in the evolution, turbulent transport (term I) dominates and contributes to the
growth of the flame brush. The contribution of term I decreases in magnitude as time
progresses due to the decay of turbulence and associated decrease in the fluctuation u’.
Throughout the simulations, differential stretch (term IV) is negative, slowing down the
rate of growth of the brush. Its magnitude grows in absolute value as time progresses. The
sum of terms IT (mean velocity) and III (flame propagation) is positive, but of limited
importance until much later in all simulations, when v’ is small.

This analysis demonstrates that the growth rate of the flame brush thickness in this
configuration is controlled by the balance between two mechanisms: turbulent transport
contributing to the growth of the brush and differential flame stretch impeding the
growth. The turbulent flame brush approaches a constant thickness when the two
contributions become equal in magnitude, but opposite in sign. These two primary
mechanisms are discussed separately next.

6.1.2. Turbulent transport (term I)

The turbulent transport term is purely hydrodynamic and largely consistent with the
theory of turbulent diffusion in isothermal flows. Multiplying and dividing term I by u/(¢)
and changing the variable of integration from 7 to 1}, we obtain

term I = (27t/9) /Ooo<u;>w (r—R)Pydr

- \/%u’/oo %#19{0%(19)} . (6.7)

—n/o
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FIGURE 12. Contributions of different mechanisms in (6.6) to the growth of the flame brush
thickness: dd/dt , turbulent transport (term I) —()—, mean convection and mean
propagation (sum of terms II and IIT) — - —, and differential stretch (term IV) —O— .
All terms are normalized by the initial turbulence intensity ug. Data shown for (a) R1, (b) R2,
(c) R3, and (d) R2a.

Samples of the normalized surface averaged radial velocity fluctuation (u..),,/u’ versus
the normalized distance ¢ are shown in figure 13(a), demonstrating a convincing collapse
in time and across simulations. Especially in the middle of the brush for |¢] < 2, (ul.),, /v’
is a function of ¥ only. Further, since 0Py is well approximated by the standard normal
distribution (see §5.3) and constant in time, the integral in (6.7) is constant and term I is
proportional to u’ and depends on time only due to the fact that v’ = «/(¢) in decaying
turbulence.

The fact that term I brings dd/dt ~ u’(t) is consistent with turbulent diffusion theory
and (6.1). Indeed, figure 13(b) demonstrates a very close agreement between term I
and (6.1) where the integral is evaluated with a model for Lagrangian autocorrelation
coefficient in decaying turbulence (Huang & Leonard 1995). Further, the agreement in
figure 13(b) points to the fact that the orientation factor (cos ;) in (6.3) is sufficiently
close to unity for all practical purposes.

6.1.3. Differential flame stretch (term IV)

The differential flame stretch term reads

term IV = (5/ (K'Y 9?0 Py di (6.8)
—p/o
= 5/ (@) — K&)9? 0Py dV + 5/ ((—2SK)y — K&)D?0Pe di),  (6.9)
—p/o —n/o
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FIGURE 13. (a) Surface average of the radial velocity fluctuation scaled by the instantaneous
fluctuation u'(t) (b) Comparison of (6.7) (symbols) with the prediction from (6.4) (solid line):
R1 (O), R2 (O), R2a (©), and R3 (A).
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FIGURE 14. Analysis of the contributions to term IV for simulation R2 at a representative time.
(a) Differential stretch (K). — K¢ (O) and its components across the flame brush: (a), — K&
(0) and (—2Sk)w — K¢ (A). Normalization is by 7. (b) The integrand in (6.8) (O) and the
integrands in terms IVa () and IVb (A), all normalized by initial turbulence intensity ug.

where
o0
K& = (4m/A) / r25(a), dr (6.10)
OOO
K& = (47I/A)/ 2 5(—28K),y, dr (6.11)
0
are the two components of the global stretch K¢ = K&+ K due to tangential strain and

the propagative mechanism, respectively. The first and second terms on the r.h.s of (6.9)
will be referred to as term IVa and term IVb, respectively.

Term IV depends on time because both ¢ and (K’),, depend on time, while o/Py is well
approximated by the standard normal distribution and constant. From the definition of
(K" = (K — Kg)w = (K)y — Kg, it is apparent that if the statistics of flame stretch
were spatially homogeneous, i.e. (K),, = Kg, surface stretch would not contribute to
variations in the turbulent brush thickness. Instead, figure 14(a) shows that (K'),, is
negative for ¥ < 0 and positive for ¥ > 0, changing its sign at a location that is close to
the flame’s mean radius (9 = 0).

Furthermore, it is only the contribution of the propagative term —(2Sk),, to differential
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FIGURE 15. Conditional statistics of the gradient magnitude. Data from simulation R2. (a)
Conditional mean gradient magnitude from DNS (blue and red lines), one-dimensional laminar
flame (black lines) at two different times, normalized by the thermal thickness of the laminar
flame 6%. Data shown at t/79 = 0.75 (blue line with open circles) and /79 = 5.25 (red line
with open squares). The error bars represent the conditional standard deviation. (b) Radial
distribution of the conditional mean gradient magnitude (C' = c*) at t/79 = 5.25. Scatter of
samples is represented with small solid circles. Gradients are multiplied by the laminar flame
thermal thickness dr(¢).

stretch that is non-zero and governs the sign of (K’),,. This is due to the fact that the
tangential rate of strain (a),, is spatially homogeneous, so that the difference between
its local and global (or volume-averaged) value is zero. Conversely, —(2Sk),, is negative
at the trailing edge of the brush and positive at the leading edge, as well documented
in spherical (Shy et al. 1999, 2000) and planar (Trouvé & Poinsot 1994; Chakraborty &
Cant 2005) flames.

As a result of the spatial distribution of (K'),,, the integrand on the r.h.s. of (6.8)
is mostly negative inside the flame brush as shown in figure 14(b), resulting in term IV
being negative (see figure 12). The negative contribution of term IV to dé/dt indicates
that differential flame stretch (K'),, induces a reduction in the thickness of the turbulent
flame brush.

6.2. Scaling of peak value of the surface density function

Next, we address the variation of the peak value of the surface density function across
simulations with varying Reynolds number. The surface density function associated with
the iso-surface C' = ¢ (Vervisch et al. 1995) reads:

X(r,t;c) = (|VC||C = ¢)Pc(c;r,t), (6.12)

where P is the probability density function (PDF) of the progress variable C and angular
brackets denote ensemble averaging.

Figure 15(a) shows (|[VC||C = ¢) as a function of ¢ at early times (t/79 = 0.75) and
towards the end (t/79 = 5.25) of simulation R2. The conditional mean of the gradient is
very close to that found across the one-dimensional laminar flame, confirming that the
turbulent flames belong to the thin flamelet regime (Peters 2000). Furthermore, at each
instant, the gradient is normalized by 69 in order to highlight that the effect of pressure
on the flame structure is minor as the peak value of the gradient changes by 10% only.
Figure 15(b) shows the radial variation of (|VC||C = ¢*) across the brush at t/7y = 5.25,
indicating that the conditional gradient magnitude grows only very slightly across the
brush and may be considered constant for all practical purposes.

Thus, we conclude that the conditional gradient magnitude (|VC||C = ¢*) is indepen-
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FIGURE 16. Flame surface crossings in a plane for simulation R2 at t/79 = 4.5. (a) Cut of the
flame surface C' = ¢*. (b) Progress variable field along a circle of radius r versus the normalized
arc length q/r.

dent of radial location r and time t also, so that any spatial and temporal dependence
of the surface density function X is due to Po(c*;r,t).

In order to investigate the scaling and spatial dependence of Pc, we consider an
ensemble of two-dimensional plane cuts, whereby each plane contains the origin and its
normal is oriented randomly. On each plane cut, we consider a circle of radius r, centred
at the origin, and let e; be the unit vector along the tangential direction. Let g be the
arc length distance from an arbitrary point along the circle (0 < ¢ < 27r). Figure 16(a)
shows a schematic representation of one such planar cut. The progress variable C' as a
function of the coordinate ¢ along one such circles is shown in figure 16(b).

Given the spherical symmetry of the statistics, the progress variable C' and its gradient
VC are ergodic along e;. The probability P that C' takes a value between ¢ — de¢/2 and
¢+ dc/2 on the circle is

my

p
> das, (6.13)

j=11i=1

Plc —de/2 < C < c+de/2] = Pole;r, t)d

p27‘t7°

where dg;; is an infinitesimal arc length centred at location g;; such that C(g;;) = ¢
and ¢ — de/2 < C(q) < ¢+ de/2 for g;; — dgi;/2 < ¢ < ¢ij + dg;;/2 and m; is the
number of locations along circle j (j = 1,...,p). Similar to the nomenclature used in the
Bray-Moss-Libby (BML) model (Bray & Moss 1977; Libby & Bray 1980), each of the g;;
locations is referred to as a flame crossing.

Each infinitesimal arc length dg;; is related to the projection of the gradient VC' onto
the tangential vector e; at the flame crossing ¢ with circle of radius r on plane j:

dqij = dC/|VC . et|ij. (614)

Letting m indicate the total number of flame crossings summed over all planes

P
m= ij, (6.15)
j=1
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FIGURE 17. (a) Correction factor 7" and (b) alignment (| cos an¢||C = ¢) statistics for three
simulations at two select times: R1 (), R2 (O), and R3 (A). (c) Peak surface density function
Yy (thick line), PDF of progress variable Pc (O), and conditional mean of the gradient
magnitude (|VC||C = ¢) (O) at r = R(t), normalized by their corresponding values for ¢ = ¢*.
Data from simulation R2.

rearranging (6.13), and dividing by dc, we have

p My

Pcler,t) p27rr — ;; Ve - et| (6.16)
=w(rt) (VO e '|C =), (6.17)

where w(r,t) = m/(p27mr) is the flame crossing frequency, defined as the number of flame
crossings per unit length. The average of |[VC'-e;| ™! over all crossings on circles of radius
r is simply the conditional average of [VC - e;|~! at the radial location r.

Since the expression for X' involves the conditional mean of |VC]|, it is beneficial to
relate the conditional mean of the inverse |[VC - e;|~! to the inverse of the conditional
mean directly as

(IVC e HC =¢) =T (|IVC - e4]|C =) F, (6.18)
where 7 is a correction factor
T =1+ Var{|VC - &||C = ¢} /{IVC - &]|C =c)* +.... (6.19)

We find that 7 =~ 1.35 for 0.5 < ¢ < 0.9 across all simulations at all times as shown in
figure 17(a). In the limit of infinitesimally thin turbulent premixed flames, 7" — 1.

Assuming that the projection of the flame normal n onto e; and the gradient magnitude
are uncorrelated, we write

(IVC| Im - e||C = ¢) = (|[VC||C = ¢){In - e:]|C = ¢). (6.20)
The assumption that the two are uncorrelated appears to be reasonable on the account
that turbulence in the reactants is isotropic. Then, Pc reads
w(r, )T
(IVCI|C = e){] cosani||C = c)’

Pc(cr,t) = (6.21)
where |n - e;] = |cosan:| and a,: is the angle between the normal n and the ergodic
direction e; and represents the orientation of the flamelets with respect to the ergodic
direction. We find that the orientation angle s is nearly constant in time, independent of
the conditioning value ¢, and the same across simulations. As a result, X is independent
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FIGURE 18. Comparison between the two expressions for X in (6.22) and (5.1) for three
simulations at five times: (a) R1 (b) R2 and (c¢) R3. Time increases from left to right.

of the conditioning value ¢ for 0.1 < ¢ < 0.9 as shown in figure 17(c), since Po ~
1/{VC||C = ¢).

Based on the above analysis, an approximate expression for the surface density function
is

X(r t;e) = w(r,t)T/{| cos ant||C = c). (6.22)
Figure 18 compares the left and right hand sides of (6.22) for ¢ = 0.73, which are found to
be in good agreement. Since the factor 7'/{| cos a,,:||C = ¢) is approximately constant in
space, time, and across simulations, the spatial and temporal dependence of X' = X(r,t)
is solely due to that of the crossing frequency w = w(r, t).

This result is consistent with the Bray-Moss-Libby theory of turbulent premixed
combustion, whereby the surface density function is modeled in terms of the spatial
crossing frequency and a mean cosine factor as X' = w/(|cosan:|) (Bray et al. 1984; Bray
& Libby 1986). Here we find a similar expression with the additional factor " = O(1),
which provides a correction for the fact that premixed flames are not infinitesimally thin
and 7" is not strictly unity.

For a statistically stationary and planar turbulent premixed flame, the BML model
relates the crossing frequency w to the two-point, one-time autocorrelation function of
the progress variable

Flgs@1) = (C'(z,)C" (2 + gea, t)) /ot (6.23)

w=w(21) =—-20F/0q|,_q (6.24)

where 27 is the inhomogeneous coordinate normal to the plane of the flame, C' = C—(C)
is the fluctuation field, 0% = ((C — (C))?) is the variance, and e, is a unit vector in the
plane of the flame that identifies an ergodic direction. Under specific assumptions on the
functional form of the autocorrelation function F, the crossing frequency and surface
density function read

@ = Az (C)(1 - (C))/L7, (6.25)

¥ = Ag(C)1 — (€))L, (6.26)

where (C) = (C)(z1), Aw and Ax are constants of order unity, and L* is the so-called
wrinkling scale.

Since the crossing frequency is closely related to the autocorrelation function of the

progress variable (Bray et al. 1984; Bray & Libby 1986), L* likely reflects the entire
spectrum of the progress variable turbulent field C'(x,t), although it is not clear how L*
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FIGURE 19. (a) Peak flame surface density X,,, normalized by the thermal flame thickness 62. (b)
Ratio of length scales and power law fits aRe3 (solid lines). We observe I/n ~ Re5®, /A ~ Re}°,
and I/L* ~ Re}*3. Thus, L* lies between n and )\ with separation increasing with Rey. Symbols
in both (a) and (b) represent data from various simulations: R1 (O), R2 (O), R2a (<), R3 (4),
and R3s (V).

should scale with the Reynolds number and how a suitable autocorrelation length could
be defined from the autocorrelation function.

There exists significant controversy on the origin and values taken by the wrinkling
scale in the literature. Cant & Bray (1989) proposed the following closure for the
wrinkling scale,

L* o k32671, (6.27)

thereby advancing the hypothesis that the wrinkling scale is proportional to the integral
scale defined as [ = u'3/e and controlled by turbulence and energy-containing fluid
motions, rather than flame propagation. Deschamps et al. (1992) observed L* ~ [ for
conical turbulent premixed flames, while others (Veynante et al. 1994; Shy et al. 2000)
found that the wrinkling scale is about five times smaller than the integral scale for V-
shaped and planar turbulent premixed flames. Further, Shy et al. (2000) reported that
the wrinkling scale remained constant for two different turbulence intensities, while the
integral length scale changed by ~ 50%. However, inadequate resolution of the turbulent
flame surface may be responsible for this observation, as the wrinkling scale was found to
be of the size as the width of the averaging box used for the measurement of the surface
density function. Finally, dependence of L* on w’/Sy, has been postulated also, yet no
conclusive evidence exists.

Given that L* and 1/X are related to within constants of order unity, we define the
wrinkling scale as L* = (4X,,)~!, where X, is the peak surface density in (5.20). The
factor of 4 is included so as to be consistent with (6.26), since the peak surface density X,
occurs near (C) = 0.5. The proportionality L* o« 1/X,, highlights that both quantities
obey the same scaling laws.

Figure 19(a) shows the temporal evolution of ¥, normalized by the thermal thickness
of the laminar premixed flame. It is apparent that X, decreases in time several-fold for
each simulation. Because 69 is constant across simulations and the variation in the flame
thickness is minimal during the propagation of the turbulent flames, figure 19(a) shows
conclusively that Y, does not scale with the thermal thickness of the laminar flame.

This behavior is consistent with experiments on turbulent spherical flames in decaying
turbulence behind grids (Renou et al. 2002; Fries et al. 2019). However, other experi-
mental studies on turbulent propane/air flames in fan stirred spherical vessels (Bradley
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et al. 2009) found that the peak surface density increased with time for some cases (rich
mixtures at atmospheric pressures), while it decreased for others (at elevated pressures).

Figure 19(b) shows L* normalized by the integral scale [ and plotted against Rey. Data
from all flame configurations and several times during each simulation are shown. It is
apparent that over the range 30 < Re) < 85, L* is about 5 to 10 times smaller than the
integral length scale. Further, the wrinkling scale falls between the Taylor scale A and
Kolmogorov scale 7, albeit closer to the former than to the latter. When scaled with [,
the data suggest the following power law fit for the wrinkling scale

1/L* = 45,1 = 0.0756 Re 3. (6.28)

Note that only data for ¢/79 > 0.5 have been used in the fit since it is necessary for
turbulent motions to wrinkle the flame past an initial transient, during which a power
law scaling for I/L* is not warranted.

The power law scaling from (6.28) shown in figure 19(b) is rather convincing, especially
because it holds across simulations and instantaneously even as Rey and [ vary in time
during the decay of turbulence. Nonetheless, studies over a broader range of Reynolds
number are obviously desirable.

The observation that n < L* < A\ suggests that the peak surface density is governed
by small scales. The importance of small scales in controlling Y,,, has been postulated by
Huh et al. (2013), who analysed the surface density transport equation for statistically
planar flames and proposed that X, scales with the inverse of the mean flame surface
curvature. Since Zheng et al. (2017) demonstrated that the PDF of the flame surface
curvature is independent of the Reynolds number when normalized with the Kolmogorov
length, a case could be made that X,, o< n~!, independently of Rey. Our data do not
support this conclusion, although they do highlight the fact that L* is smaller than A
and its evolution is most likely related to processes at the dissipative end of the inertial
range of the turbulence spectrum.

6.3. Scaling of the area ratio

The findings in §6.1 and §6.2 have critical implications with regard to the evolution of
the area ratio y and its values across flame configurations. We begin by rearranging (5.21)
into

X = Zndf = (L/AL*) (6/1) B. (6.29)
Recalling that g is a shape factor that is nearly constant and substituting the scaling
laws for the brush and peak surface density function, we obtain

X(t) = Oy Rey P f(s), (6.30)

where C, is a constant and the dependence of §/! on time is captured by f(s) with
s =log(1 + t/tp) indicating the transformed time coordinate. xy and St/Sr ~ x depend
on time directly due to 6/l ~ f(s) and indirectly due to Reyx = Rex(t) in decaying
turbulence. The most important implication of (6.30) is that

X(t)Rex 1% ~ f(s) (6.31)

only, so that if two turbulent spherical flames are compared at the same logarithmic time
5, the area ratio x scales as Rey ' or as Re"% since Re = u/l/v ~ Re3.

Figure 20(a) shows that x varies in time and across flame configurations. For t/m9 > 2,
x reaches a limit value, which differ for each case by as much as a factor of 1.6. The same
data are shown in compensated form as x(t)Rey ' versus s in figure 20(b). Note that
only data for t/79 > 0.5, which corresponds to s > 0.3, are shown because the scaling of
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FIGURE 20. (a) Area ratio versus time ¢/79. (b) Area ratio compensated with the proposed
Reynolds scaling versus the transformed time coordinate s = log(1 + t/to) with to = n7o.
Symbols represent data from simulations: R1 (O), R2 (O), R2a (<), R3 (A), and R3s (V).

X, implies that turbulent motions have had sufficient time to wrinkle the flame past an
initial transient, during which the power law scaling I/L* in (6.28) is not applicable.

The collapse in figure 20(b) is encouraging, albeit not perfect, especially for the data
from simulations R3 and R3s at later times s > 1. Despite minor inconsistencies, which
are related to the imperfect collapse of /I at later times as shown in figure 11(b),
we conclude that scale separation, as parametrized by the Reynolds number, is largely
responsible for increasing the area ratio and the dimensionless turbulent flame speed
St/S1, ~ x across flame configurations.

The fact that Sr/Sp ~ x ~ Re® 56 appears to contradict the notion that St/SL de-
pends on u’/Sy, only. In order to investigate this important implication, three simulations
are considered. These include R2 and R2a, which share the same Reynolds number, but
not the same u'/Sy, and simulations R1 and R2a, which share v//Sp, but not the same
Reynolds number. Note that «’/Sy, changes in time as reported in figure 4(c).

From the evolution of x for R1, R2, and R2a in figure 20(a), it is clear that when
the Reynolds number is held constant and w’/Sr changes (R2 vs. R2a), the area ratio
does not change. On the other hand, when «'/Sy, is held constant and the Reynolds
number changes (R1 vs. R2a), the area ratio is greater for the flame with the higher
Reynolds number. These conclusions and observations support the hypothesis that St /S,
is not a function of u'/Sy, independently of Reynolds number for the flame configuration
considered.

The Reynolds dependence of turbulent burning rates has been observed for spherical
flames elsewhere. Chaudhuri et al. (2011) proposed such scaling starting from the level
set approach. Later, the same authors processed data from the experiments of Kobayashi
et al. (1996, 2005) and showed convincing evidence that burning rates conform to
the scaling Re®5® (Chaudhuri et al. 2012). Similarly, Ahmed & Swaminathan (2013,
2014) reported that S7/S; ~ Re%:®® based on numerical simulations of methane/air
and hydrogen/air flames. Since Rey ~ Rel’? our results are consistent with previous
observations.

In closing, we remark that in most experiments on turbulent premixed flames, the
integral scale of the flow remains approximately constant as u’ is varied by increasing
flow rates or fan speeds. This occurrence is due to the fact that the integral scales are
set by the geometrical details of the burner, turbulence-generating grids, or fans, which
are held fixed for practical reasons. The consequence is that both «’'/S; and Re vary
together in most studies. Assuming that [ remains approximately constant as u’ increases
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holding kinematic viscosity (i.e. pressure) and burner geometry unchanged, one obtains
Sr/Sp ~ (u'/SL)%5 since Sp/Sy, ~ Re®5°.

7. Summary and conclusions

The propagation of spherical turbulent premixed methane/air flames in decaying
turbulence was investigated at different conditions via Direct Numerical Simulations.
Each DNS features detailed finite rate chemistry for methane oxidation and mixture-
average transport. The simulations are repeated for several values of the Taylor-scale
Reynolds number Re), where all properties of isotropic turbulence are defined in the
reactants. By design, the extent of the turbulent flame is large compared to the integral
length scale of turbulence, guaranteeing that the flame surface is wrinkled by motions
across the entire spectrum of turbulence and that statistics are duly converged. The
flames belong to the thin reaction zone regime of turbulent premixed combustion and are
characterized by low values of the Karlovitz number, so that the dimensionless turbulent
flame speed is equal to the area ratio, defined as the ratio of the area of the flame surface
to a reference area based on the mean progress variable. Thus, enhancements to the
burning rate are brought by flame wrinkling, folding, and streching.

The data are analysed within the formalism of the surface density function and under
the assumption of spherical symmetry of the statistics. The analysis shows that the
dimensionless turbulent flame speed is equal to the product of the flame brush thickness,
the peak value of the surface density function and a nondimensional shape factor of
order unity. This decomposition lies at the basis of our postulate that the area ratio of
turbulent premixed flames increases for increasing scale separation.

Once scaled by the instantaneous value of the integral length scale and plotted versus
a stretched logarithmic time coordinate consistent with the evolution of turbulent kinetic
energy in decaying homogeneous isotropic turbulence, the flame brush thickness is found
to be nearly self-similar across simulations, irrespective of the Reynolds number of the
flow. This result is significant because it indicates that the extent of the turbulent flame
brush is governed by the largest scales of the flow as suggested by past experiments.

An ordinary differential equation that describes the evolution of the brush thickness is
derived and indicates that the growth of the brush is controlled primarily by the balance
of two mechanisms. Turbulent diffusion by velocity fluctuations leads to an increase in
the brush thickness, consistent with Taylor’s theory of turbulent diffusion, while spatial
variations of the statistics of flame stretch across the brush lead to a decrease in its
thickness. Early in the evolution, the brush grows rapidly due to turbulent transport,
but later the two contributions balance each other and the brush thickness appears to
reach an asymptotic limit.

The surface density function reaches a maximum in the center of the turbulent
flame brush and its peak value is found to decrease in time as the flame propagates
outwards. Following the framework of the Bray-Moss-Libby model of turbulent premixed
combustion, we relate the peak value of the surface density function to the flamelet
spatial crossing frequency, so that its inverse is the wrinking length scale. The concept
of wrinkling length is noteworthy because it allows to scale the surface density function
across simulations.

For all cases, we find that the wrinking length is larger than the Kolmogorov scale,
but smaller than the Taylor micro-scale, being closer to the latter than to the former.
Most important, the ratio between the wrinking scale and the integral scale of the flow is
proportional to Re;l'13 across all simulations. This result identifies the wrinkling scale
as a hydrodynamic scale related to turbulence and its spectrum.
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The evolution and scaling of the brush and peak surface density function result in
the dimensionless turbulent flame speed scaling as ST/SLRe;LB ~ f(s), where s is the
suitable logarithmic time coordinate for decaying turbulence and f(s) is a function that
describes the growth of the brush normalized by the integral scale. The scaling is shown
to hold to a very good approximation over several cases with 30 < Re) < 80.

At present, the origin of the value of the scaling exponent is unclear and it is possible
that it is somewhat specific to the spherical flame configuration. Futhermore, the results
shown pertain to a modest range of Reynolds numbers and little separation exists between
the dissipative scales and the wrinkling scale. More definitive conclusions require higher
values of the Reynolds number. Finally, the flame configurations feature low values of
the Karlovitz number, so that it is unclear whether the ratio of the Kolmogorov time to
the flame time scale plays an additional role in the scaling.

Despite the limitations in scope, our data indicate that scale separation, as
parametrized by the Reynolds number, is resposible for controlling the burning rates of
the spherical turbulent premixed flames at the conditions explored in the simulations.
Broadly, the fact that Sp/SL ~ Re}\‘13 points to the key role of the integral length scale [
and kinematic viscosity v, in addition to that of the velocity fluctuation «’, which is well
recognized in the literature. Our analysis provides a novel perspective that is consistent
quantitatively with recent experimental results.

This material is based upon work supported in part by the National Science Foundation
(NSF) under Grant No. 1805921. Numerical simulations were carried out on the “Sha-
heen” supercomputer at King Abdullah University of Science and Technology (KAUST)
and on the “Stampede 2” supercomputer at the Texas Advanced Computing Center
(TACC) through allocation TG-CTS18002 under the Extreme Science and Engineer-
ing Discovery Environment (XSEDE). XSEDE is supported by the NSF under Grant
No. ACI-1548562. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the
NSF.

Appendix A. Dispersion relation in spherical coordinate system

Taylor’s theory of turbulent diffusion (Taylor 1922) describes the dispersion of mate-
rial points in homogeneous isotropic turbulence. Its application to dispersion in radial
coordinates requires modifications to account for changes in the radial direction along
Lagrangian trajectories. Consider an ensemble of particles released on a sphere of radius
Ry at time ¢ = 0 in decaying homogeneous isotropic turbulence. The radial distance
r(a,t) of particle with index a at ¢ > 0 is given by

r(a,t) = |x(a,t)|, (A1)

where x is the position vector of the particle with respect to the origin.
The evolution of the particle’s radial distance is governed by
dr(a,t)
dt

where u denotes the local fluid velocity vector at the particle location and %, is the unit
vector in radial direction

=u(x(a,t),t) - i.(a,t), (A2)

o aa
ir(a,t) = (@ )] (A3)

Integrating the ordinary differential equation with initial condition r(a,0) = Ry gives
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the particle’s distance for ¢t > 0

r(a,t) = Ro —|—/O u(z(a,p),p) - ir(a,p) dp. (A4)

Here p represents the dummy variable of integration.
Following Taylor (1922), the variance o2 of the radial distance in the absence of mean
radial velocity is

s ((r(et) = Ro)Ga,)) = (ulert) intat) [ ula,p) i) W) (45)

since the mean radial distance is constant and equal to Ry. In the above expression,
angular brackets denote average over the ensemble of particles and the dependence of u
on x(a,p) is written as u(a,p).

The above integral reads:

7> dp (A6)

)
+/0 <uz(a’t)u2(a’p)i(aTr(a:p))> dp,

where ug, uy, u, and x,y, z denote the Cartesian components of vectors w and x, respec-
tively.

In homogeneous turbulence, the velocity vector u is uncorrelated with the position
vector x. Also, due to isotropicity, the Lagrangian autocorrelation functions of all
components of velocity is the same. In light of these simplifications, the above equation

becomes

with a dependence on the mean cosine of the angle between radial vectors on Lagrangian
trajectories. Simplifying the above as in Taylor (1922), we obtain

1 do? t

S =u(t) | W(p)frp,t){cosap,)dp, (A8)
2 dt 0

where f; denotes the Lagrangian autocorrelation function in decaying isotropic turbu-
lence

<Uz (aa tl)uz (aa t2)>
w(t)u'(t2)
where u(t) the turbulence intensity at time ¢.
In (A8), ap is the angle between position vectors on the Lagrangian trajectory
at times ¢t and p. This implies that Taylor’s theory over-estimates the variance, since
cosap ¢ < 1. The correction factor (cos cy, +) depends on the lateral movement of particles

in the polar and azimuthal directions compared to that in the radial one and is close to
unity for small values of the ratio between the two.

frti,t2) = (A9)
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