
ARTICLE IN PRESS 

JID: PROCI [mNS; July 25, 2020;9:41 ] 

Available online at www.sciencedirect.com 

Proceedings of the Combustion Institute 000 (2020) 1–8 
www.elsevier.com/locate/proci 

Evolution and scaling of the peak flame surface density 

in spherical turbulent premixed flames subjected to 

decaying isotropic turbulence 

Tejas Kulkarni ∗, Fabrizio Bisetti 

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, 
USA 

Received 7 November 2019; accepted 2 June 2020 
Available online xxx 

Abstract 

The peak flame surface density within the turbulent flame brush is central to turbulent premixed combustion 
models in the flamelet regime. This work investigates the evolution of the peak surface density in spherically 
expanding turbulent premixed flames with the help of direct numerical simulations at various values of the 
Reynolds and Karlovitz number. The flames propagate in decaying isotropic turbulence inside a closed vessel. 
The effects of turbulent transport, transport due to mean velocity gradient, and flame stretch on the peak 
surface density are identified and characterized with an analysis based on the transport equation for the flame 
surface density function. The three mechanisms are governed by distinct flow time scales; turbulent transport 
by the eddy turnover time, mean transport by a time scale related to the pressure rise in the closed chamber, 
and flame stretch by the Kolmogorov time scale. Appropriate scaling of the terms is proposed and shown 
to collapse the data despite variations in the dimensionless groups. Overall, the transport terms lead to a 
reduction in the peak value of the surface density, while flame stretch has the opposite effect. In the present 
configuration, a small imbalance between the two leads to an exponential decay of the peak surface density 
in time. The dimensionless decay rate is found to be consistent with the evolution of the wrinkling scale as 
defined in the Bray-Moss-Libby model. 
© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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1. Introduction 

The flamelet regime of turbulent premixed com-
bustion is characterized by an enhancement of the
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flame surface area, while the local flame structure 
remains similar to that of a laminar flame. Un- 
derstanding the mechanisms responsible for the in- 
crease of the surface area is critical to the design of 
combustion devices. 

The evolution of the flame surface is often an- 
alyzed within the surface density formalism. The 
flame surface density function (SDF) is defined as 
ier Inc. All rights reserved. 
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Table 1 
Simulation parameters. All parameters are at the initial 
time. Flame scales remain constant in time and across 
simulations: laminar flame speed S L = 1 . 0 m/s, thermal 
thickness δL = 0 . 11 mm, flame time scale τL = δL /S L = 

0 . 11 ms. 

R1K1 R2K1 R3K1 R3K2 

N 512 3 1024 3 1024 3 1024 3 

�x ( μm) 20 20 20 13.3 
u ′ / S L 7.4 8.5 9.8 14.7 
l / δL 3.4 5.2 7.8 4.9 
δL / η 11.3 11.3 11.5 17.4 
R 0 / l 3.5 3.4 3.2 3.2 
Re λ 44 59 77 77 
Ka 25 25 25 59 
Da 0.69 0.91 1.12 0.49 
Symbol � � ♦
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he mean flame surface area per unit volume. The
DF peaks in the middle of the turbulent flame
rush and decays rapidly to zero at its edges [1] . The
verall burning rate is proportional to the product
f the peak surface density and the thickness of the
ame brush [2] . While the theory of turbulent diffu-
ion adequately explains the evolution of the flame
rush thickness for various configurations [3] , at
east qualitatively, no such comprehensive theory
or the peak surface density exists. 

Bray et al. [2] modeled the flame as an infinites-
mally thin interface separating the reactants and
roducts. They related the flame surface density
unction to the flamelet crossing frequency, which
s inversely proportional to an integral length scale
ased on the two-point autocorrelation of the re-
ction progress variable. This length scale is termed
he wrinkling scale L 

∗. Dependence of the ratio L 
∗/ l

where l is the flow integral length scale) on the
elative turbulence intensity, u ′ / S L has been postu-
ated, but no conclusive evidence exists [4] . Here u ′

s the velocity fluctuation, and S L the laminar flame
peed. 
Alternatively, an evolution equation for the

ame surface density may be derived from the fine
rained PDF formalism [5,6] . The unclosed terms
an be modeled to predict the evolution of the sur-
ace density. Following this approach, Huh et al.
7] identified the location of the peak surface den-
ity and subsequently related the peak value to the
tatistics of the flame curvature. 
In this article, we use an approach inspired

y Huh et al. [7] to analyze the evolution of the
eak surface density in turbulent premixed flames.
e use data from direct numerical simulations
f spherical turbulent premixed flames in decay-
ng isotropic turbulence and identify the governing
echanisms affecting the peak value of the surface
ensity function. 
Particularly, we seek to address the following

uestions: How does the peak flame surface density
volve in this configuration? Which quantities con-
rol each mechanism? We will relate our findings to
he evolution of the wrinkling scale as defined in
he Bray-Moss-Libby model [2] . 

. Numerical setup 

The unsteady reactive Navier–Stokes equations
re solved on a Cartesian grid with the massively
arallel finite difference solver “NGA” [8] in the
ow Mach number limit. The spatial discretization
or the momentum equation is second order accu-
ate and that for the reactive scalar equations is
hird order accurate. The time advancement scheme
s second order accurate and explicit for the convec-
ive terms, while implicit for the diffusive and vis-
ous terms. The variable coefficient pressure Pois-
on equation is solved instead of the continuity
quation using the third party library HYPRE.
Please cite this article as: T. Kulkarni and F. Bisetti, Evolution a
turbulent premixed flames subjected to decaying isotropic turb
//doi.org/10.1016/j.proci.2020.06.042 
The system of ordinary differential equations aris-
ing from the integration of the chemical sources is
advanced in time using CVODE. All simulations
are performed in a cubic domain of side L , with
periodic boundary conditions in the three direc-
tions. Chemical reactions are modeled with a ki-
netics mechanism featuring a network of 16 species
and 73 Arrhenius type reactions, reduced from the
GRI 3.0 mechanism [9] . 

A homogeneous grid with spacing �x and a
constant time step �t = 0 . 2 μs are used. The spa-
tial and temporal resolution of turbulence is en-
sured with η/ �x ≥ 0.5 and τ η/ �t ≥ 20 for all cases.
Here, η and τ η denote the Kolmogorov length and
time scales, respectively. The reactive front is re-
solved with δL / �x ≈ 5.5 and τL / �t ≈ 550, where
δL and τL = δL /S L denote the laminar thermal
thickness and flame time, respectively. The ad-
equacy of the spatial and temporal resolution
of the flame front was previously demonstrated
for turbulent premixed jet flames under identical
thermo-chemical conditions with extensive numer-
ical tests [10] . 

A premixed methane/air mixture is considered
at equivalence ratio 0.7, initial pressure of 4 atm,
and temperature 800 K. Four simulations of spher-
ical flames were conducted by varying the initial
turbulence parameters ( Table 1 ). Three simulations,
namely R1K1, R2K1 and R3K1, were conducted
at different initial Reynolds number Re λ = u ′ λ/ν,
where λ denotes the Taylor micro-scale, u ′ the ve-
locity fluctuation, and ν the kinematic viscosity of 
the reactants. The initial Reynolds number varied
from 44 to 77, while keeping the initial Karlovitz
number Ka = τL /τη constant and equal to 25. Here
τL denotes the flame time scale. A fourth simulation
was conducted at a higher Karlovitz number for the
highest Reynolds number (R3K2). The Damköh-
ler number Da = τ/τL at the onset is different for
all simulations, where τ = k/ε is the initial eddy
turnover time scale. Here k is the turbulent kinetic
energy, and ε its mean rate of dissipation. 
nd scaling of the peak flame surface density in spherical 
ulence, Proceedings of the Combustion Institute, https: 
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The initial velocity field was obtained with aux-
iliary simulations of homogeneous isotropic tur-
bulence in a smaller domain via the linear forc-
ing scheme. Multiple independent instances were
patched together to form a larger domain and dis-
continuities in the patched state were removed by
advancing the fields by 2 τ η. A spherical kernel of 
burned gases of radius R 0 was introduced at the ori-
gin. The ratio of the kernel radius to integral length
scale was kept between 3.2 ≤R 0 / l ≤ 3.5 across cases
(see Table 1 ), so that the entire spectrum of turbu-
lent length scales contributes to flame wrinkling at
all times. 

The simulation was advanced for a time inter-
val over which changes in pressure ( < 20%) and
temperature ( < 5%) are small. This ensures that the
laminar flame speed remains constant ( < 1% vari-
ation). Similarly, the kinematic viscosity of the re-
actants changes by less than 10%. 

During the outward propagation of the flame,
turbulence on the reactants’ side decays as in an
isothermal decaying isotropic turbulence simula-
tion. The turbulent kinetic energy k decays accord-
ing to the power law k/k 0 = ( 1 + t/t 0 ) 

−m 
, where k 0 ,

t 0 , and m are the initial turbulent kinetic energy, vir-
tual origin, and the decay exponent, respectively.
The decay exponent m is 1.55 for all simulations,
while the virtual origin t 0 is related to the initial
eddy turnover time as t 0 = mτ0 . This value of the
exponent is higher than that typically observed in
grid generated turbulence [11] , but consistent with
decaying turbulence simulations at low to moderate
Reynolds numbers [12] . 

The evolution of any turbulence length scale ψ 

is described by ψ/ψ 0 = ( 1 + t/t 0 ) 
α
, indicating that

the changes brought by small temporal variations
in the kinematic viscosity are inconsequential. The
exponent α is 0.64 for the Kolmogorov length scale
η, 1/2 for the Taylor micro-scale λ, and 0.225 for
l = u ′ 3 /ε. We define a transformed logarithmic time
scale s ≡ log (1 + t/t 0 ) so that ds = dt/τ . All length
and time scales of turbulence are exponential func-
tions of s . 

3. Results 

The propagation of the turbulent spherical
flame is described by the reaction progress variable
C ( x , t ), defined as C = 1 − (Y O 2 −Y 

b 
O 2 
) / (Y 

u 
O 2 

−
 
b 
O 2 
) . Here Y O 2 is the mass fraction of molecular

oxygen, and superscripts u and b indicate the val-
ues in the reactants and products, respectively. The
flame surface is taken to coincide with the isosur-
face C = c = 0 . 73 , the location of maximum heat
release rate. The flame surface normal is defined as
n = −∇ C/ |∇ C| and points towards the reactants.
The propagation speed S of the flame surface is
given by S ≡ (|∇C| ) −1 (DC/Dt) , where D / Dt de-
notes the Lagrangian derivative. 
Please cite this article as: T. Kulkarni and F. Bisetti, Evolution a
turbulent premixed flames subjected to decaying isotropic turb
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All relevant statistics depend only on ( r, t ) due 
to spherically symmetry, which is retained since the 
flame surface is sufficiently away from the bound- 
aries at all times. The statistics are gathered from 

a single realization of the flame using spherical av- 
erages. During the simulations, the linear extent of 
the flame R is large compared to the integral scale 
l by design, so that an adequate number of inde- 
pendent samples are collected. This follows from 

R 0 / l ≈ 3.3 at t = 0 and that the flame radius R 

grows faster than the integral scale l as turbulence 
decays. 

The propagating flame is described by the 
probability density function (PDF) of the radial 
distance of the flame surface from the origin, 
P (r, t) dr = dA r (r, t) /A (t) , where dA r is the differ- 
ential flame surface area within the spherical shell 
r ± dr /2 and A ( t ) the total flame surface area at time 
t . 

The PDF is well approximated by a normal dis- 
tribution P = N (R, σ ) , where N (R, σ ) denotes the 
normal distribution with mean R and standard de- 
viation σ . The flame radius R is the mean radial dis- 
tance of the flame surface, 

R (t) ≡ A 
−1 

∫ 
A 

| x | dA , (1) 

where | x | is the Euclidean distance of the surface 
element dA from the origin, and the integration is 
carried out over the flame surface A . Similarly σ is 
given by 

σ 2 (t) ≡ A 
−1 

∫ 
A 
(| x | − R ) 2 dA , (2) 

and is termed the flame brush thickness . The effects 
of flame propagation on the temporal variation of 
R and σ are compensated by defining a brush co- 
ordinate θ = (r − R ) /σ . Comparison of P (θ ) with 
the model is shown in Fig. 1 , and found to be satis- 
factory. 

3.1. Evolution of the peak surface density 

The flame surface density function 
 of the 
flame surface C = c is given by [6] 


 = P C (C = c ) 〈 |∇C| | C = c 〉 , (3) 

where P C is the PDF of the reaction progress vari- 
able. Here, the angular brackets denote ensem- 
ble average, evaluated as averages over spherical 
shells. The evolution of the flame surface density 
for spherical flames is described by [6] 

∂


∂t 
+ 

1 
r 2 

∂ 

∂r 

(
r 2 〈 u r + Sn r 〉 s 


) = 〈 K 〉 s 
, (4) 

where u r and n r denote the radial projections of the 
velocity vector u and the surface normal, respec- 
tively. K is the flame stretch rate. Subscript s denotes 
surface averages, defined as 〈 Q 〉 s = 〈 Q |∇C| | C = 

c 〉 / 〈 |∇C| | C = c 〉 for any field Q . 
nd scaling of the peak flame surface density in spherical 
ulence, Proceedings of the Combustion Institute, https: 
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Fig. 1. (a) Normalized PDF of the radial distance versus 
the brush coordinate. Evolution of (b) the flame radius R 

and (c) brush thickness σ . Symbols defined as in Table 1 . 

Fig. 2. (a) Comparison of the surface density evaluation 
with Eq. (3) (symbols), and the model from Eq. (5) (lines). 
Data shown for flame R2K1 at three instants during its 
evolution. Time increases from left to right. (b) Terms in 
the evolution equation, Eq. (8) . 
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An evolution equation for the peak surface den-
ity 
m may be obtained by evaluating Eq. (4) at
he radial distance where ∂ 
/∂ r = 0 . Determina-
ion of the radial location of the peak in this man-
er and using the surface density evaluated with
q. (3) suffers from statistical noise, so that it is de-
irable to work with a smooth approximation to 

ased on P . The two are related as P = 4 πr 2 
/A,
ince the differential area d A r = 4 πr 2 
d r . The
ame surface density is then modeled as 

= (A/ 4 πr 2 ) N (R, σ ) . (5)

ig. 2 a compares Eqs. (5) and (3) and good agree-
ent is seen between the two. 
With this model, the location of the peak ˆ r (t) is

ˆ  /R = 0 . 5 
[ 
1 + 

(
1 − 8 σ 2 /R 

2 
)1 / 2 ] 

. (6)

ince the ratio σ / R is small at all times ( Fig. 1 c),
t follows that ˆ r ≈ R . Subsequently, the evolution
Please cite this article as: T. Kulkarni and F. Bisetti, Evolution a
turbulent premixed flames subjected to decaying isotropic turb
//doi.org/10.1016/j.proci.2020.06.042 
equation for 
m is obtained: 

1 

m 

d
m 

dt 
= 

{
− 1 
r 2 

∂ 

∂r 
(r 2 〈 u r + Sn r 〉 s ) + 〈 K 〉 s 

}
ˆ r (t) 

, 

(7)

where the terms on the right hand side (r.h.s.) are
evaluated at ˆ r (t) . 

Because the flame radius grows and turbulence
decays in time, it is most appropriate to normal-
ize and transform time t and radial distance r as
follows: s = log (1 + t/t 0 ) ,θ = (r − R (t )) /σ (t ) . The
dimensionless form of Eq. (7) reads 

d log 
m 

ds 
= − τ

σ ˆ r 2 

{
∂ 

∂θ
(θσ + R ) 2 〈 u ′ r 〉 s 

}
ˆ θ

− τ

σ ˆ r 2 

{
∂ 

∂θ
(θσ + R ) 2 〈 u r 〉 

}
ˆ θ

− τ

σ ˆ r 2 

{
∂ 

∂θ
(θσ + R ) 2 〈 Sn r 〉 s 

}
ˆ θ
+ τ 〈 K 〉 s , (8)

where the derivative with respect to θ is to be taken
while holding time t constant. 

Here, the contributions of the mean velocity
field and turbulent fluctuations are separated using
the Reynolds decomposition u r = 〈 u r 〉 + u ′ r . Note
that 〈 u ′ r 〉 s � = 0 , since 〈 u r 〉 is the unconditional mean
radial velocity. 

The four terms on the r.h.s. of Eq. (8) repre-
sent four mechanisms affecting the evolution of 
the peak flame surface density: turbulent transport
( �1 ), mean transport ( �2 ), propagation ( �3 ), and
flame stretch ( �4 ). These are shown in Fig. 2 b for
flame R2K1. 

3.2. Transport terms 

As seen in Fig. 2 b, all transport terms ( �1 , �2
and �3 ) contribute to reducing 
m . The turbulent
transport term ( �1 ) dominates early on, but the
mean transport term ( �2 ) surpasses it later as tur-
bulence decays with time. Propagation (term �3 )
has only a minor influence on the evolution of the
peak surface density and its role is primarily to
change the peak location ˆ r . 

Turbulent transport 
Fig. 3 a shows the evolution of the magnitude

of term �1 across simulations. The evolution of 
this term is identical across different simulations,
even though the turbulence intensity is different
(see Table 1 ). To explain this observation, we de-
compose �1 as 

�1 = − τ

σ

{
2 〈 u ′ r 〉 s 
θσ + R 

+ 

∂〈 u ′ r 〉 s 
∂θ

}
ˆ θ

. (9)

Fig. 3 b shows the surface averaged radial fluctu-
ation 〈 u ′ r 〉 s , normalized by the turbulence intensity
u ′ ( t ) at three instants for each simulation. The self-
similarity of the normalized fluctuation 〈 u ′ 〉 s /u ′
r 

nd scaling of the peak flame surface density in spherical 
ulence, Proceedings of the Combustion Institute, https: 
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Fig. 3. (a) Absolute value of the term �1 and the nor- 
malized brush thickness and (b) surface weighted radial 
fluctuation normalized by reactant side turbulence inten- 
sity. Symbols defined as in Table 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Mean radial transport of surface density at peak 
location: (a) mean radial velocity field in the domain (line 
with symbols), compared to the eqn. (11) (thin lines), (b) 
term �2 of Eq. (8) , (c) scaled term ˜ �2 . 
across simulations and in time, along with the ob-
servation that 〈 u ′ r 〉 s is small at ˆ θ ( ≈ 0), allows for
the approximation 

�1 ≈ −3 
2 
l 
σ

{
∂〈 u ′ r 〉 s /u ′ 

∂θ

}
ˆ θ

, (10)

where we have used the relation τu ′ = 3 u ′ 3 / 2 ε =
3 l/ 2 u ′ . The term inside braces is unchanged across
simulations, and the first term on the r.h.s. of 
Eq. (9) is negligible compared to the second term. 

The above result shows that the turbulent trans-
port term is inversely proportional to the normal-
ized brush thickness σ / l . Because the evolution of 
σ / l in the time coordinate s is nearly identical across
simulations as shown in Fig. 3 a , �1 collapses across
simulations also. 

The scaling of flame brush thickness with the in-
tegral scale l is consistent with the literature. The
early growth of the flame brush follows Taylor’s
theory of turbulent diffusion in many turbulent
premixed flame configurations [3] . As such, sim-
ilar scaling of the turbulent transport term �1
across different flame configurations is expected,
once appropriate modification for the spatial and 
temporal evolution of turbulence are made. For ex-
ample, in the present configuration, the early devel-
opment ( s < 0.5) of the brush is broadly consistent
with the turbulent diffusion theory in decaying tur-
bulence [13] . Differences appear across simulations
later ( s > 1.2) due to several additional effects such
as the gradient of the mean radial velocity [14] and
differential flame stretch effects, wherein surface is
produced mainly at the leading edge and destroyed
at the trailing edge. Nevertheless, these differences
are small and are ignored in the context of the term
�1 . 

Mean transport 
The propagation of the reactive front induces

a mean radial velocity due to thermal expansion
across the flame. The gradient of the mean ra-
dial velocity in turn affects the peak surface den-
sity through the term �2 . An analytical expres-
Please cite this article as: T. Kulkarni and F. Bisetti, Evolution a
turbulent premixed flames subjected to decaying isotropic turb
//doi.org/10.1016/j.proci.2020.06.042 
sion for the mean radial velocity outside the tur- 
bulent brush is readily obtained by solving the 
Reynolds averaged continuity equation, assuming 
uniform density in reactants and products. The 
density changes isentropically in time with pressure. 
A general solution for the mean radial velocity field 
is 〈 u r 〉 = −(r/ 3 γ p) d p/dt + C u r −2 , where C u is a 
constant and γ is the specific heat ratio. 

On the products’ side, 〈 u r 〉 = 0 at r = 0 im- 
plies C u = 0 . The distance to the boundary in the 
reactants depends on the azimuthal and polar 
angles. However, the mean radial velocity in the 
reactants decreases as r −2 and the field can be as- 
sumed symmetric when the flame surface is far 
from the boundaries. By imposing the zero ve- 
locity boundary condition at an effective domain 
radiusR L ≡L (3/4 π ) 1/3 ≈ 0.62 L , the mean radial ve- 
locity in the reactant and product sides is given by 

〈 u r 〉 (r, t) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

− R L 

3 γp p 
d p 
dt 

(
r 
R L 

)
Products 

− R L 

3 γr p 
d p 
dt 

[ 

r 
R L 

−
(

r 
R L 

)−2 
] 

Reactants 

(11) 

In the above expression, γ p and γ r are the spe- 
cific heat ratios of the products and reactants, re- 
spectively. Fig. 4 a shows that the mean radial ve- 
locity is well approximated by Eq. (11) outside the 
brush. 

The previous analysis does not model the mean 
velocity field within the brush, but highlights the 
relevant quantities that control �2 . The expression 
for �2 reads 

�2 = − τ

σ ˆ r 2 

{
∂ 

∂θ
(θσ + R ) 2 〈 u r 〉 

}
ˆ θ

. (12) 

The factor of R L / τ p , where τp ≡ p(d p/dt) −1 ap- 
pears in front of radial velocity in both reactants 
nd scaling of the peak flame surface density in spherical 
ulence, Proceedings of the Combustion Institute, https: 
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Fig. 5. Flame stretch and components (a) normalized by 
flame time 〈 K 〉 s τL and (b) by the instantaneous Kol- 
mogorov time scale 〈 K 〉 s τη. Solid line marks aτη = 0 . 165 
found for infinitesimal elements in isothermal turbu- 
lence [15] . Symbols as defined in Table 1 . 
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Fig. 6. (a) Correlation coefficient �s, κ and (b) Scaling of 
standard deviations of s and κ with the respective Kol- 
mogorov scales. Symbols as defined in Table 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nd products and can be expected to affect �2 as
ell. The re-scaled term 

˜ �2 ≡ �2 (τp /τ ) (σ/R L ) is
hown to collapse across simulations in Fig. 4 c.
imilarity of ˜ �2 across simulations indicates that
he mean transport term depends on the ratio of 
he flame brush thickness to the effective domain
adius ( σ / R L ) and the ratio of the pressure rise time
cale to the eddy turnover time ( τ p / τ ). 

.3. Flame stretch 

Flame stretch acts as a source of sur-
ace density and contributes to increasing
ts peak. Stretch consists of two terms [5]
4 = 〈 K 〉 s τ = 〈 a 〉 s τ + 〈 S∇ · n 〉 s τ. The tan-
ential strain rate a ≡ −nn : ∇u + ∇ · u describes
he effect of turbulent straining, while the second
erm describes the effect of propagation in the
resence of curvature. The two terms are shown
n Fig. 5 a for all simulations, normalized by the
ame time scale. The flame stretch is positive
verall and small in magnitude compared to its
wo contributions. The magnitude of both terms
ecreases in time. 
It has been shown that the tangential strain

ate for infinitesimal material surface in homoge-
eous isotropic turbulence is governed by the Kol-
ogorov time scale. Girimaji and Pope [15] con-
luded that a τ η is independent of Reynolds num-
er in the range Re λ = 38 − 90 . This behavior was
ttributed to the alignment of the surface normal
long the direction of the eigenvector correspond-
ng to the most compressive eigenvalue of the veloc-
ty gradient tensor [15,16] , which leads to persistent
training of the surface. 
Fig. 5 b shows the two terms and flame stretch

ormalized by τ η, evaluated in the reactants. The
urbulence statistics at the flame surface C = c
volve similarly to that in the reactants to within a
onstant (not shown). As with infinitesimal mate-
ial surfaces, we observe 〈 a 〉 s τ η ≈ 0.2, independent
Please cite this article as: T. Kulkarni and F. Bisetti, Evolution a
turbulent premixed flames subjected to decaying isotropic turb
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of Reynolds number. Once normalized by τ η, the
tangential strain rate term is constant in time to
within 20%, compared to a twofold change in a τL .
The origin of the residual temporal dependence is
unclear at the moment and may be related to some
large scale effects specific to this flame configura-
tion. It appears that this slow evolution is slightly
different across simulations and smaller for larger
Reynolds numbers. 

The normalized curvature term is given by 

〈 S∇ · n 〉 s τ = 〈 −2 Sκ 〉 s τ = τ
〈 Sκ|∇C| | C = c 〉 
〈 |∇C| | C = c 〉 

(13)

and shows a much larger temporal variation, al-
though the temporal evolution across simulations
is similar. This term is mainly controlled by fluctu-
ations in the curvature and the displacement speed,
since the flame surface is mostly flat in the middle
of the brush, and 〈 κ 〉 s ≈ 0 at peak location ˆ r (t) . 

To analyze the fluctuation term, we
define a gradient weighted flame speed
˜ S (r, t) = S|∇ C| / 〈 |∇ C| | C = c 〉 and its corre-
sponding fluctuation S ′ . The decomposition
S ≡ ˜ S + S ′ in Eq. (13) leads to the expression:
−2 〈 Sκ 〉 s = −2 〈 S ′ κ 〉 s = −2�s,κσs σκ . Here �s, κ is
the correlation coefficient between ˜ S and κ, and σ s

and σ k are the corresponding standard deviations. 
The correlation coefficient �s, κ is nearly unity,

and changes by about 30% in time ( Fig. 6 a). On
the other hand, the normalized quantities σ s / u η and
σ κη are roughly constant in time and across simula-
tions as shown in Fig. 6 b. Specifically, the collapse
across R3K1 and R3K2 is convincing where η and
u η differ by a factor of 1.5. 

It is clear from the above analysis that the flame
stretch is governed by τ η for the most part and that
the product 〈 K 〉 s τ η changes in time due to changes
in the correlation coefficient �s, κ . The reasons be-
hind this behavior are not clear at present and war-
nd scaling of the peak flame surface density in spherical 
ulence, Proceedings of the Combustion Institute, https: 
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Fig. 7. (a) Length scale ratios l / η, l / λ and l / L ∗ versus 
Taylor Reynolds number. (b) Balance of all terms that 
control the evolution of 
m . Stretch ( �4 ) and transport 
( �1 + �2 + �3 ) terms (lines) are shown for R2K1. The 
sum of all four terms is also shown (symbols) for all sim- 
ulations, and thin line marks α
 = −0 . 5357 according to 
Eq. (14) . Symbols as defined in Table 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rant further investigation, over a broader range of 
the dimensionless parameters. As a consequence of 
the above analysis, the flame stretch term may be
modeled as �4 = f (s ) (τ/τη ) = C η f (s ) Re λ, where
the function f( s ) captures the temporal dependence
of �s, κ and C η is the proportionality constant be-
tween τ / τ η and Re λ. 

3.4. Evolution of the peak surface density 

The logarithmic time rate of change d log 
m / ds
depends on the balance of transport (sum of �1 ,
�2 and �3 ) and stretch ( �4 ) in Eq. (8) . While
the mean velocity term ( �2 ) is configuration spe-
cific, some universality in the scaling of the tur-
bulent transport ( �1 ) and the differential stretch
( �4 ) terms is expected. This postulate is supported
by the observation that the evolution of the flame
brush thickness is broadly consistent with the tur-
bulent diffusion theory, while the flame stretch term
scales with the instantaneous Kolmogorov time
scale, as for material surface elements in isotropic
turbulence [15] . In the present flame configuration,
we observe that a small imbalance between the
transport and the stretch terms results in 
m de-
creasing with time. 

Fig. 7 (a) shows the evolution of the peak sur-
face density, represented as the ratio l / L 

∗. Here, we
take the wrinkling scale as L 

∗ ≡ (4
m ) −1 , consis-
tent with the Bray-Moss-Libby (BML) model [2] .
The length scale ratios l / λ and l / η are also shown
for comparison. A least squares power law fit for
the ratio l / L 

∗ gives l/L 
∗ = 0 . 0756 Re 1 . 13 λ . 

Within this model, d log 
m / ds is a constant,
given by 

α
 ≡ d log 
m 

ds 
= 

d log ( Re 1 . 13 λ l −1 ) 
ds 

= −0 . 5357 

(14)
Please cite this article as: T. Kulkarni and F. Bisetti, Evolution a
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Fig. 7 (b) compares data from simulations with the 
constant α
 . Apart from an initial transient, the 
rate of change d log 
m / ds is consistent with the 
model. The logarithmic rate of change α
 is con- 
stant even as the terms �1 , �2 and �4 show sig- 
nificant temporal variations. The higher Karlovitz 
flame R3K2 features a smaller (in magnitude) rate 
of decay, reasons for which are unclear at this point. 
Such behavior may be due to a dependence on the 
Karlovitz number, Damköhler number, or other di- 
mensionless groups that were not kept constant. 

The Reynolds number dependence of the ratio 
l / L 

∗ may be in part due to that of the stretch term 

�4 . The flame stretch is governed at the dissipa- 
tive scales, while the transport of surface density 
occurs on larger time scales (turbulent transport 
on eddy turnover scale τ and mean transport on 
pressure rise scale τ p ). The evolution of the peak 
surface density appears to be affected by the sep- 
aration of these scales, as parameterized by Re λ. 
The proposed power law fit is based on simulations 
of spherical flames in decaying isotropic turbulence 
and may not be universal. Furthermore, the trends 
observed here should be assessed at higher values 
of the Reynolds number when all scales are more 
separated and the inertial range is broader. 

4. Conclusions 

In this work, we examined the evolution of 
the peak flame surface density in spherical turbu- 
lent premixed flames subjected to freely decaying 
isotropic turbulence in a closed vessel. The evo- 
lution of 
m follows an exponential decay in the 
transformed logarithmic time s , consistent with a 
power law for the wrinkling scale L 

∗ = (4
m ) −1 

given by l/L 
∗ ∼ Re 1 . 13 λ proposed recently by the 

authors [17] . The mechanisms affecting the evo- 
lution of the peak surface density were identi- 
fied and investigated. The evolution of 
m is con- 
trolled by a small imbalance between three mecha- 
nisms, i.e. turbulent transport, mean transport, and 
flame stretch. A Reynolds number dependence of 
the Bray-Moss-Libby wrinkling scale is related to 
the ratio of the eddy turnover time and the Kol- 
mogorov time as it appears in the ordinary differ- 
ential equation governing the evolution of 
m . 
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