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Abstract 

The surface of turbulent premixed flames is fractal within a finite range of scales and the fractal dimension 
and inner cutoff scale are key components of fractal turbulent combustion closures. In such closures, the 
estimate for the surface area is sensitive to the value of the inner fractal cutoff scale, whose modeling re- 
mains unclear and for which both experimental and numerical contradictory evidence exists. In this work, 
we analyze data from six direct numerical simulations of spherically expanding turbulent premixed flames at 
varying Reynolds and Karlovitz numbers. The flames propagate in decaying isotropic turbulence and fall in 
the flamelet regime. Past an initial transient, we find that the fractal dimension reaches an asymptotic value 
between 2.3 and 2.4 in good agreement with previous results at similar conditions. A minor dependence of 
the fractal dimension on the Reynolds and Karlovitz numbers is observed and explained by the relatively low 

values of the Reynolds number and narrow inertial and fractal ranges. The inner fractal cutoff scale �∗ is 
found to scale as �∗/l ∼ Re −1 . 14 

λ , where l is the integral scale of turbulence and Re λ is the Reynolds number 
based on the Taylor micro-scale computed in the turbulence on the reactants’ side. The scaling is robust and 
insensitive to the Karlovitz number over the range of values considered in this study. An important implica- 
tion is that the ratio �∗/ η grows with Reynolds number ( η is the Kolmogorov scale), albeit at a rather slow 

rate that may explain the widespread observation that 4 ≤ �∗/ η ≤ 10. This suggests that �∗, although smaller 
than λ, is not a dissipative length scale for the flame surface and scaled solely by η. Finally, a dissipative 
threshold scale that remains constant once normalized by η is identified. 
© 2020 Published by Elsevier Inc. on behalf of The Combustion Institute. 
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. Introduction 

The surface of a turbulent premixed flame is
rinkled by turbulence over a range of scales and
isplays a fractal behavior in a subset of this
ange [1–3] . Within the fractal range, the area of 
he flame surface depends on the size of the mea-
urement scale according to a power law with an
xponent related to the fractal dimension . As the
easurement scale decreases, the measured area of 
he fractal surface increases. At scales smaller than
hese in the fractal range, the area becomes inde-
endent of the measurement scale and equal to the
rea of the flame surface. The measurement scale
here this smooth transition occurs is the inner
ractal cutoff scale . 
The cutoff scale and the fractal dimension are

wo inputs required by fractal models in turbulent
remixed combustion closures [4] . Fractal models
xtrapolate the area measured at a resolved scale,
ypically equal to the spatial resolution of the com-
utational mesh, to the inner cutoff scale, where
he area is equal to the flame surface area. Despite
heir robust theoretical foundation, uncertainties
n either the fractal dimension or the inner fractal
utoff scale compromise the models’ accuracy. 
The fractal dimension of the surface of turbu-

ent premixed flames is observed to lie in the range
.3 to 2.7 [5,6] . In the corrugated flamelet limit,
heoretical considerations suggest 7 / 3 = 2 . 33 [2] ,
onsistent with Kolmogorov’s -5/3 scaling and iso-
urfaces in isothermal turbulent flows [3] . Others
ave shown that high Karlovitz numbers lead to an
ncrease in the fractal dimension and provided the-
retical arguments in support of 8 / 3 = 2 . 67 [5] . In
ractice, the fractal dimension of turbulent flames
aries in space and time, at least during the early
tages of flame development, possibly contributing
o the relatively broad range of values reported. 
The estimate of the inner fractal cutoff scale re-

ains even more controversial. While it is accepted
hat dissipation is responsible for suppressing the
ractal morphology of surfaces at the small scales,
t is unclear if the inner cutoff scale is simply a
ultiple of η by a constant factor and indepen-
ent of Reynolds and Karlovitz numbers or not.
ractal cutoff scale values between 4 η and 10 η
re consistently reported, but proposed models
hat scale the cutoff scale with the flame thermal
hickness or the Kolmogorov scale are unable to
xplain the scatter in the data convincingly [5,6] . 
In this work, we investigate the fractal proper-

ies of spherical turbulent premixed flames burning
n decaying isotropic turbulence. The configuration
resents an opportunity to a study the develop-
ent of a smooth spherical kernel of burnt gases
s it evolves into a wrinkled turbulent premixed
ame and allows for the investigation of the depen-
ence of the fractal properties of turbulent flames
ver a wide range of Reynolds and Karlovitz
umbers with emphasis on the scaling of the inner
Please cite this article as: T. Kulkarni and F. Bisetti, Surface 
turbulent premixed flames in decaying isotropic turbulence, Pro
1016/j.proci.2020.06.117 
fractal cutoff scale from these two dimensionless
groups. 

2. Governing equations, models, and methods 

The evolution of the flame is described by
the multi-component reactive Navier–Stokes equa-
tions, which are solved in the low Mach num-
ber limit. Heat and mass fluxes are closed by the
Hirschfelder-Curtiss model with mixture-average
transport coefficients [7–9] . Reactions are mod-
eled by a finite rate skeletal mechanism consist-
ing of 16 species and 73 elementary reactions for
lean methane/air combustion at 800 K and 4 atm.
The mechanism was reduced from GRI Mech 3.0
and validated for use in simulations of turbulent
combustion [10] . 

The equations are discretized on a staggered
finite difference homogeneous Cartesian mesh
and solved with the massively parallel solver
“NGA” [11] . All spatial discretizations are second
and third order accurate for the momentum and re-
active scalar fields, respectively. Coupling between
pressure and momentum is enforced by a pressure-
correction approach. Time integration is explicit
for the convective terms and implicit for the vis-
cous and diffusive terms. Chemical sources are in-
tegrated in time separately from transport with first
order Lie-splitting. Third-party libraries are used
for the solution of the variable coefficients Pois-
son pressure equation (Hypre) and the system of 
ordinary differential equations for chemical reac-
tions (CVODE) at each mesh point. More details
are available in Refs. [8,9] . 

The simulations are performed in a cubic do-
main with periodic boundary conditions. The
mesh spacing is �x = �y = �z = h and such that
h / η ≤ 0.5 and δL / h ≥ 5.5 at all times, where η is the
Kolmogorov length scale and δL is the thermal
thickness of the laminar flame. Similarly, the time
step size is such that τ η/ �t ≥ 20, where τ η is the Kol-
mogorov time scale. The adequacy of spatial and
temporal resolution of turbulence and flame front
were previously demonstrated for turbulent pre-
mixed jet flames under identical thermo-chemical
conditions by performing extensive numerical con-
vergence tests [9] . 

3. Configurations and overview 

The configuration consist in a closed cubic do-
main, initially filled with a reactive mixture of lean
methane/air (equivalence ratio of 0.7) at 800 K and
4 atm. The initial turbulent velocity field is obtained
with auxiliary simulations of statistically station-
ary homogeneous isotropic turbulence, which are
patched together and scaled appropriately in order
to obtain the desired turbulence parameters and
domain size. Once the velocity field is prescribed, a
morphology and inner fractal cutoff scale of spherical 
ceedings of the Combustion Institute, https://doi.org/10. 
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Table 1 
Simulation parameters: Re λ = u ′ λ/ν, and Ka = τL /τη. Here u ′ is the velocity fluctuation, λ the Taylor micro- 
scale, ν the kinematic viscosity of the reactants, τ0 = k 0 /ε0 is the eddy turnover time at the onset of the 
simulation with k 0 indicating the turbulent kinetic energy and ε0 its mean rate of dissipation, and τη the 
Kolmogorov time scale. The ratio of maximum flame radius R max to the domain size L is also listed. Laminar 
flame speed S L = 1 . 0 m/s, thermal thickness δL = 0 . 11 mm, and flame time τL = δL /S L = 0 . 11 ms are the 
same across simulations and do not vary appreciably in time. 

R1K1 R2K1 R2a R3K1 R3K2 R3K3 

N 
3 512 3 1024 3 1024 3 2048 3 1024 3 1024 3 

u / S L 7.3 8.6 7.3 9.8 14.7 19.7 
l / δL 3.3 5.2 6.3 7.8 4.9 3.9 
Re λ 43 58 58 77 77 77 
Ka 25 25 18 25 58 100 
2 R max / L 0.53 0.44 0.57 0.33 0.46 0.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spherical kernel of burnt gases is placed at the cen-
ter of the domain. The ensuing spherical turbulent
premixed flame propagates outward and grows in
size as turbulence decays. 

The configuration is advantageous for this study
as it is amenable to direct experimental validation
and retains the complexity of a real flow with two
inhomogeneous directions (time and radial coordi-
nates). At the same time, the temporal evolution
of the mean velocity field and fluctuations in this
configuration are very well understood, which sim-
plifies the analysis. Although the pressure increases
because the domain is closed, the increase is minor
on the account of the large domain size and incon-
sequential to the analysis. 

The simulations and analysis are conducted
for six spherical turbulent premixed flames with
different initial conditions ( Table 1 ). Altogether,
the configurations allow to investigate the effect
of Reynolds number (at constant Ka) and of 
Karlovitz number (at constant Re λ) on flame mor-
phology. More details of the simulation database
are provided in [8,12] , along with an analysis of the
flame surface area, surface density function, and
turbulent burning rates. 

In order to avoid the effects of periodic bound-
aries, only the data for which the linear size of the
flame is less than 50% of the domain are considered
(2 R max / L � 0.5). Unless otherwise noted, all turbu-
lence parameters are evaluated in the reactants. 

Representative three-dimensional renders of the
flame surface C(x , t) = c ∗ = 0 . 73 are shown in
Fig. 1 a. In this work, C is defined based on the
mass fraction of molecular oxygen and the value
c ∗ = 0 . 73 identifies peak heat release rate and the
flame’s reaction zone. No appreciable changes to
the analysis were observed for values of c ∗ within
the range 0.1 to 0.9. As shown, the flame surface is
wrinkled over a multitude of scales and folded by
turbulence with most regions being flat or charac-
terized by a slight curvature. Patches of high curva-
ture present as sharp cylindrical folds. 

Turbulence decays in time and the appro-
priate time coordinate is the logarithmic time
Please cite this article as: T. Kulkarni and F. Bisetti, Surface 
turbulent premixed flames in decaying isotropic turbulence, Pro
1016/j.proci.2020.06.117 
s = log (1 + t/mτ0 ) , where m is the exponent that 
governs the exponential decay of turbulent kinetic 
energy as k/k 0 = (1 + t/mτ0 ) −m . We find m = 1 . 55 
for all flames, so that comparisons across flames are 
conducted at the same values of t / τ 0 (or s ). Isother- 
mal simulations of decaying turbulence confirmed 
that the statistics of turbulence in the reactants are 
not affected by the presence of the turbulent flame 
nor by the minor increase in pressure. 

The mean flame radius is R = R (t) and the tur- 
bulent flame brush is δ = δ(t) = 

√ 

2 πσ, where σ is 
the standard deviation of the flame distance from 

the origin, and its evolution is shown in Fig. 1 c. 
When scaled by the instantaneous value of the inte- 
gral scale l = u ′ 3 /ε and plotted versus t / τ 0 , the tem- 
poral evolution of δ/ l is self-similar with a minor 
dependence on Re λ. This conclusion is supported 
by the fact that δ/ l is nearly the same for flames 
with the same Reynolds number: R2K1 and R2a 
( Re λ = 58 ) and R3K1, R3K2, and R3K3 ( Re λ = 

77 ). Differences appear at later times across all 
flames: ± 35% of the mean at t/τ0 = 3 . 6 . 

4. Results 

The first step of the analysis consists in extract- 
ing a triangle mesh of the iso-surface C(x , t) = c ∗

from the discrete solution C 
n 
i jk via the marching 

cubes algorithm [13] . A dual mesh of cubic vol- 
umes, each of side h and centered at ( x i , y j , z k ), 
is generated also, together with a corresponding 
voxel grid, whereby each voxel is set equal to one 
if the corresponding dual mesh volume contains 
the triangle mesh and zero otherwise. This second 
step provides a digitized representation of the 
flame surface on a voxel grid consistent with the 
finite difference mesh. The voxel values are stored 
in a three-dimensional matrix of zeros and ones. 
Third, the box-counting algorithm [14] is used on 
the voxel grid to characterize the morphology of 
the digitized surface by finding N s , defined as the 
number of boxes of integer size 2 s ( s = 0 , 1 , . . . ) 
required to cover the set of unit voxels. Because 
morphology and inner fractal cutoff scale of spherical 
ceedings of the Combustion Institute, https://doi.org/10. 
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Fig. 1. (a) Turbulent flame R3K1 represented by iso-surface C(x , t) = c ∗ = 0 . 73 . (b) Iso-contour C(x , t) = c ∗ at t/τ0 = 3 . 2 
on a plane with flame radius R (solid blue line) and R ± δ/2 (dashed blue line). Only a small portion of the domain is shown. 
(c) Turbulent flame brush δ/ l versus t / τ 0 . 
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Fig. 2. A �/ A versus �/ δ ( Eq. (1) with C 1 = 2 / 3 ), where 
δ is the turbulent brush thickness and A is the flame sur- 
face area. Data for R3K1 at t/τ0 = 2 . See the commentary 
for a definition of all scales marked by vertical lines. The 
solid line corresponds to the power law fit N ∼ �−D 3 with 
D 3 = 2 . 42 in the range 0.2 ≤ �/ δ ≤ 0.5. The inset shows ξ
( Eq. (2) ) and the horizontal line marks the plateau asso- 
ciated with fractal morphology with D 3 = 2 . 42 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ox s corresponds to a cube with dimensional side
 
s h , the procedure returns box counts N = N(�)
t increasing measurement scale � = h, 2 h, 4 h, . . . .
The three steps above are performed multiple

imes for each discrete field C 
n 
i jk , rotating the finite

ifference mesh by angles chosen at random and in-
erpolating C 

n 
i jk onto the rotated mesh with a cubic

nterpolant prior to data reduction. The box counts
 ( �) at scale � are averaged over 100 random
otations. 
The entire process, including rotations, is per-

ormed Q + 1 times starting from interpolated dis-
rete scalar fields (C 

n 
i jk ) 

q , each new field obtained by
nterpolating the discrete solution from the primi-
ive mesh with spacing h onto a mesh with larger
pacing αq h , where α = 2 1 / (Q +1) and q = 0 , . . . , Q
 Q = 3 in this work). Interpolation onto coarser
eshes was found to be inconsequential to the tri-
ngle mesh generated by the marching cubes algo-
ithm because the coarsest mesh of spacing 2 3/4 h is
ufficiently resolved. This approach allows for box
ounts at scales other than the primitive set. 
The box counts are used to characterize the

orphology of the flame surface and to infer the
inkowski–Bouligand (or box-counting) fractal
imension [14] as follows. The quantity 

 � = C 1 N�2 (1)

s defined as the flame surface area measured at scale
and C 1 is a dimensionless constant. If the surface

s fractal, the box counts follow a power law N =
 2 �

−D 3 , where C 2 is a dimensional constant, and
 3 ≥ 2 is the fractal dimension of the surface em-
edded in three dimensions. In such case, the area
t scale � follows a power law A � = C 1 C 2 �

2 −D 3 =
 3 �

2 −D 3 ( C 3 = C 1 C 2 ). Because a flame surface is
ot fractal at all measurement scales, the logarith-
ic derivative of the box counts N with respect
o �

= ξ (�) = −d log N(�) 
d log �

(2)
Please cite this article as: T. Kulkarni and F. Bisetti, Surface 
turbulent premixed flames in decaying isotropic turbulence, Pro
1016/j.proci.2020.06.117 
represents the local fractal dimension at scale
�. Should ξ be constant over a finite range of 
measurement scales, the surface displays fractal
morphology with fractal dimension D 3 = ξ within
that range. 

Fig. 2 shows A �/ A in Eq. (1) versus the nor-
malized measurement scale �/ δ, where δ is the
turbulent brush thickness, C 1 = 2 / 3 , and A is the
area of the flame surface. The inset in Fig. 2 shows
the logarithmic derivative ξ = −d log N/d log �
evaluated with a centered finite difference formula.

From Fig. 2 , it is apparent that A � increases as
� decreases, eventually reaching a constant at the
smallest values of the measurement scale. In this
limit, the value taken by A � is equal to the flame
surface area A , indicating that the flame surface
is topologically smooth [14] at the smallest scale
morphology and inner fractal cutoff scale of spherical 
ceedings of the Combustion Institute, https://doi.org/10. 
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Fig. 3. (a) Fractal dimension D 3 versus time t / τ 0 for all 
flames. Temporal evolution of (b) Re λ, and (c) Ka. 
considered. Further, ξ → 2 as � → 0, consistent
with a smooth surface. As � increases, ξ increases
also, reaching a plateau where it is maximum. In the
range 0.2 ≤�/ δ ≤ 0.5, ξ ≈ const and the box counts
display a power law dependence as N ∼ �−D 3 with
D 3 = 2 . 42 , consistent with fractal morphology and
power law A �/A ∼ (�/δ) 2 −D 3 . The range where N
and � are related by a power law is rather narrow.
This is due to the limited range of scales involved
in the deformation of the flame surface at the low
to moderate Re λ afforded by the simulations. 

The choice of the brush thickness δ as a normal-
izing length is consistent with the fact that the flame
surface may not display fractal properties at scales
larger than the turbulent brush, which bounds the
turbulent flame statistically. This choice is common
for fractal interfaces (e.g. see de Silva et. al. [15] )
as the measurement scale cannot possibly be larger
than the brush. Furthermore, the fractal character
of a surface is defined for a volume filled uniformly
(in a statistical sense) by a wrinkled surface [1] .
Note that � > δ/2 brings a sudden drop in ξ (see
inset in Fig. 2 ), so that δ/2 is taken to represent the
outer fractal cutoff scale [1] for spherical turbulent
premixed flames. 

The transition between fractal morphology as
described by a power law to a topologically smooth
surface is not abrupt, rather it occurs over a range
of scales. The intersection of the horizontal A �/ A
= 1 and the power law identifies the inner fractal
cutoff scale �∗ [1,5,6] . Here, an additional scale is
defined such that A �(�99 ) /A = 0 . 99 , i.e. the mea-
surement scale for which 99% of the flame surface
area is accounted for. For reasons that will become
clearer later, �99 is termed the dissipative threshold
scale . 

In Fig. 2 , the following length scales are also
shown: η < �99 < δL < �∗ < λ < l < δ, where δ is the
brush thickness, l the integral length scale, λ the
Taylor micro-scale, δL the thermal thickness of the
laminar flame, and η the Kolmogorov length scale.
Their ordering and significance are addressed later.

Fig. 3 shows the evolution of the fractal dimen-
sion D 3 for all flames. The Reynolds and Karlovitz
numbers decrease in time as shown in Fig. 3 b and
Fig. 3 c, respectively. By design (see Table 1 ), flames
R1K1, R2K1, and R3K1 share the exact same
temporal evolution of Ka = Ka (t/τ0 ) , while flames
R3K1, R3K2, and R3K3 share the same evolu-
tion of Re λ = Re λ(t/τ0 ) and so do flames R2a and
R2K1. Flames R1K1 and R2a share the same evo-
lution of u ′ / S L (not shown). Although neither Re λ
nor Ka are constant in time, their values across sim-
ulations are scaled by a factor that does not vary
during the decay of turbulence. 

As shown, D 3 grows rapidly, reaching a plateau
for t / τ 0 > 2 in all flames. One notable exception is
flame R3K3, for which the fractal dimension keeps
increasing, albeit at a much lower rate (in units of 
τ 0 ). For R3K1, D 3 peaks before decreasing slightly
Please cite this article as: T. Kulkarni and F. Bisetti, Surface 
turbulent premixed flames in decaying isotropic turbulence, Pro
1016/j.proci.2020.06.117 
towards its asymptotic value. Such early and rapid 
increase in the fractal dimension is consistent with 
the flames evolving from smooth spherical kernels 
of burnt gases. Time is required for the flame ra- 
dius R and its brush δ to grow and for the flame’s 
surface to attain fractal morphology. It is reason- 
able to expect that the fractal range may develop if 
and only if the ratio δ/ η is sufficiently large, as δ is 
an upper cutoff and η bounds from below the size 
of turbulent motions. 

The asymptotic value of the fractal dimension 
falls in the range 2.32 to 2.42 and these values are 
consistent with the fractal dimension of turbulent 
premixed flames in the flamelet regime [2] as well 
as with the theory and experiments on constant 
property surfaces in isothermal turbulent flows. In 
both cases, theoretical arguments support the value 
of 7 / 3 = 2 . 33 [2,3] . Chatakonda et al. [5] have re- 
ported much higher values of the fractal dimension 
(2.6 ≤D 3 ≤ 2.7) of low Damköhler, high Karlovitz, 
and high Reynolds number turbulent premixed 
flames, consistent with their theoretical estimate of 
8 / 3 = 2 . 67 . 

The data in Fig. 3 a allow to conclude the fol- 
lowing. First, the higher the Reynolds number (at 
constant Ka), the higher the value of the fractal 
dimension throughout the evolution of the flame 
(R1K1, R2K1, and R3K1). Because the value of 
D 3 in flames R3K1 and R2K1 are rather similar 
( D 3 ≈ 2.4) compared to its lower value in flame 
R1K1 ( D 3 ≈ 2.3), the fractal dimension appears 
to be converging to a value independent of the 
Reynolds number provided that Re λ is sufficiently 
large. The value D 3 = 2 . 4 seems plausible and more 
consistent with values reported in the literature [6] . 
Second, varying u ′ / S L (at constant Re λ) does not 
change the evolution of D 3 at low values of Ka 
(R2K1 and R2a). Conversely, varying Re λ (at con- 
stant u ′ / S L and low values of Ka) does change D 3 
morphology and inner fractal cutoff scale of spherical 
ceedings of the Combustion Institute, https://doi.org/10. 
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Fig. 4. Logarithmic derivative ξ ( Eq. (2) ) for all simula- 
tions at t/τ0 = 3 . 6 : (a) constant Ka and varying Re λ (with 
the exception of R2a, for which Ka is slightly lower), and 
(b) constant Re λ and varying Ka. Symbols are as in Fig. 3 . 
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Fig. 5. (a) Inner fractal cutoff scale �∗/ l versus Re λ (line 
is power law fit). (b) Data and power law fits C Re αλ (lines): 
7 η/ l ( α = −1 . 500 and C = 7 × 7 . 6159 ), λ/ l ( α = −1 . 000 
and C = 15 ), and �∗/ l ( α = −1 . 140 , C = 21 . 18978 ). Data 
for t / τ 0 ≥ 1 are fit and shown. 

Fig. 6. Inner fractal cutoff scale �∗/ l compensated by the 
proposed Reynolds scaling ( C = 0 . 047193 ) and plotted 
versus Ka for t / τ 0 ≥ 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

onsiderably (R1K1 and R2a). Third, higher val-
es of Ka correlate with lower values of D 3 dur-
ng the flame’s development, although flames R3K1
 Ka = 25 ) and R3K2 ( Ka = 58 ) asymptote to the
ame value of the fractal dimension D 3 . Conversely,
ame R3K3 ( Ka = 100 ) experiences high values of 
a throughout its evolution and has lower values
f D 3 . 
We postulate that the dependence of D 3 on

e λ and Ka is due to a narrow inertial range and
ot a fundamental property of turbulent premixed
ames in the flamelet regime. Recall that turbulence
heory relates the fractal morphology of interfaces
n turbulent flows to the multi-scale nature of tur-
ulence in the inertial range, so that, barring other
ffects, the fractal dimension is tied to the universal
5 / 3 Kolmogorov scaling [3] . 
The data in Fig. 4 shows the effect of Re λ and

a on the logarithmic derivative ξ . Recall that for
he flame to exhibit fractal morphology, ξ should
dmit a plateau over a sufficiently wide range
f measurement scales. As the Reynolds number
ecreases at constant Ka ( Fig. 4 a), η/ δ increases,
elaying the increase of ξ with �/ δ and suppressing
he maximum value attained by ξ , i.e. the fractal di-
ension. As Ka increases at constant Re λ ( Fig. 4 b),
 similar shift and suppression of ξ occurs, this
ime due to increasing laminar flame thickness δL / δ
t constant η/ δ. At low Reynolds numbers, the low
egree of separation between η and δ, which was
hown to be ∝ l , exacerbates these effects. 
A much debated issue pertains to the scaling

f the inner fractal cutoff scale �∗, which is often
ssumed to be a multiple of η or of the thermal
ame thickness δL . Dependence of the ratio �∗/ δL 
n the Karlovitz number has long been postulated,
lthough the proposed models are unable to ex-
lain the very broad scatter, often across orders of 
agnitude, in the data [6] . Other authors report
 ≤�∗/ η ≤ 10 without any clear dependence on tur-
ulence parameters and Karlovitz number [5,16] . 
Please cite this article as: T. Kulkarni and F. Bisetti, Surface 
turbulent premixed flames in decaying isotropic turbulence, Pro
1016/j.proci.2020.06.117 
Fig. 5 shows the ratio �∗/ l versus Reynolds
number. On the same plot, 7 η, a multiple of the
Kolmogorov scale consistent with previously re-
ported values of �∗ [16] , and the Taylor micro-
scale λ are shown also. Both η/l ∼ Re −1 . 5 

λ and λ/l ∼
Re −1 

λ follow the expected scaling with the instan-
taneous value of Re λ. Across all simulations and
at all times, �∗ lies between the Taylor micro-scale
and the Kolmogorov scale. Most importantly, once
normalized by l , the power law scaling �∗/l ∼
Re −1 . 14 

λ is rather convincing, especially because it
holds in time, across simulations, and with varying
Karlovitz number also (R3K1, R3K2, and R3K3).

There exist some residual scatter, illustrated in
Fig. 6 , where �∗/ l is compensated by the Re λ scal-
ing and plotted versus Ka. It appears that varia-
tions around unity are small ( ± 10%) and do not
correlate with Ka. 

The scaling of �∗/ l implies that �∗/η ∼ Re 0 . 36 λ ,
i.e. the ratio �∗/ η increases with Re λ. Thus, our data
do not support the notion that �∗ is greater than η
by a constant factor, independent of the Reynolds
number. The fact that the exponent of the power
law is rather small (0.36) may explain the observa-
tion that �∗ ≈ 4 − 10 η across multiple studies as
morphology and inner fractal cutoff scale of spherical 
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Fig. 7. (a,b) Kolmogorov scale η and integral scale l and 
(c,d) mean kinematic viscosity 〈 ν〉 and velocity fluctu- 
ation u ′ computed at the normalized radial coordinate 
ϑ = (r − R ) /σ and normalized by their respective values 
in the reactants, which depend on time. Subscript c indi- 
cates that the statistics are conditioned on C = c ∗ also. 
Once normalized, the statistics do not vary in time and 
convergence is improved by averaging fields in time also. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Inner fractal cutoff scale �∗ and dissipative 
threshold scale �99 scaled by (a-b) η and (c-d) δL . Sym- 
bols as in Fig. 6 . 
large variations in Re λ are required to elicit signif-
icant changes in �∗/ η. For example, a variation in
�∗/ η by a factor of 2 requires a variation in Re λ by
≈ 7 and in Re = u ′ l/ν by ≈ 50, which is challenging
to realize in experiments and simulations alike. 

It is well known that turbulence parameters
differ at locations ahead and behind flames on
the account of the increase in temperature. A
reasonable question is whether the results shown in
Fig. 5 are a manifestation of these changes. Fig. 7
shows relevant statistics for all flames at radial
locations and at the flame surface via conditioning
on C = c ∗. The quantities are normalized by their
values in the reactants, which have been used
thusfar for scaling purposes. The nearly perfect
collapse of all normalized variables demonstrates
that the variation of turbulence statistics across
the brush is identical for all flames. Consequently,
alternative choices of reference scales at other
flame locations would not change the exponent of 
the power law scaling �∗/ l in Fig. 5 . 

Fig. 8 shows both �∗ and �99 normalized by the
Kolmogorov scale η and the laminar flame thermal
thickness δL . Fig. 8 a shows that �∗/ η is not con-
stant, rather displays trends consistent with �∗/ η
increasing across cases with increasing Reynolds
number. Instead, �99 shows a convincing collapse
with η, independent of Re λ, with a minor depen-
dence on Ka and a minor dependence on time t / τ 0
( Fig. 8 b). This observation is supported by the fact
that �99 / η is identical for R1K1, R2K1, and R3K1,
which share the same Ka, but have different Re λ. 

We note that �99 is analogous to the dissipa-
tive threshold scale defined by Chatakonda et al. [5]
(defined by the authors for 95% of the area), which
Please cite this article as: T. Kulkarni and F. Bisetti, Surface 
turbulent premixed flames in decaying isotropic turbulence, Pro
1016/j.proci.2020.06.117 
was reported to be ≈ 3 η and constant in high 
Damköhler number hydrogen/air turbulent pre- 
mixed flames. Our analysis, which confirms the con- 
clusions in Ref. [5] , suggests that �99 , not the inner 
fractal cutoff scale �∗, acts as a dissipative scale 
for the fractal morphology of turbulent premixed 
flames. 

These results allow us to attribute to the dis- 
sipative threshold scale �99 , defined as the scale 
such that A �(�99 ) /A = 0 . 99 , a dissipative role in 
the fractal behavior of the flame surface, closely 
related to the role of η in the velocity spectrum. 
When Ka changes at constant Re λ (R3K1, R3K2, 
and R3K3), �99 / η shows a minor increase ( Fig. 8 b), 
consistent with the notion that flames with a larger 
thermal thickness push the flame’s smallest wrin- 
kles towards larger measurement scales. 

Finally, both �∗/ δL and �99 / δL ( Fig. 8 c and 
Fig. 8 d) show variations over a factor of 3 across 
simulations and in time, indicating that neither �∗

nor �99 are likely to be scaled by δL alone, at least 
for the flame configurations considered. We remark 
that the thermal flame thickness remains approxi- 
mately constant at all times and in all flames. 

5. Conclusions 

An analysis of the fractal morphology of spher- 
ically turbulent premixed flames expanding into de- 
caying turbulence is conducted leveraging several 
large-scale direct numerical simulations at varying 
Reynolds and Karlovitz numbers. The flames be- 
long to the flamelet regime of turbulent premixed 
combustion. 

Following an initial transient, the fractal di- 
mension grows to asymptotic values between 2.3 
and 2.4, depending on the Reynolds and Karlovitz 
numbers. The dependence of the fractal dimension 
on these dimensionless groups is likely due to the 
morphology and inner fractal cutoff scale of spherical 
ceedings of the Combustion Institute, https://doi.org/10. 
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arrow inertial and fractal ranges and not a funda-
ental property. The ratio between the inner cutoff 
cale and the integral length scale of turbulence ex-
ibits a dependence on the instantaneous Reynolds
umber with an exponent equal to 1.14, placing
he cutoff scale between the Taylor and the Kol-
ogorov scales. This result holds for a broad range
f values of the Karlovitz number. Thus, our data
uggest that the inner cutoff scale is not equal to a
ultiple of the Kolmogorov scale, independent of 
he Reynolds number. Confirming recent results by
thers in the literature, a true dissipative threshold
cale for the surface’s morphology is defined and
hown to be a multiple of the Kolmogorov scale,
egardless of Reynolds number. 
If shown to be general and confirmed over a

roader range of configurations and dimensionless
roups, the Reynolds number in particular, our re-
ults may have important implications for fractal
losures in turbulent premixed combustion, in that
hey suggest a model for the inner fractal cutoff 
cale and point to the fact that the transition from
ractal to smooth surface morphology may occur
ver a range of measurement scales that widens
ith increasing Reynolds number. 
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