The interplay between symmetry-breaking and symmetry-preserving bifurca-
tions in soft dielectric films and the emergence of giant electro-actuation
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Soft elastomers that can exhibit extremely large deformations under the action of an electric field are essential for applications such as soft

robotics, stretchable and flexible electronics, energy harvesting among others. The critical limiting factor in conventional electro-actuation

of such materials is the occurrence of the so-called pull-in instability. In this work, we demonstrate an extraordinarily simple way to coax
a dielectric thin film towards a symmetry-breaking pitchfork bifurcation state while avoiding pull-in instability. Through the nonlinear
interplay between the two bifurcation modes, we predict electro-actuation strains that exceed what is conventionally possible by 200%,

and at significantly lower applied electric fields.

1 Introduction

Soft materials such as elastomers have elastic moduli that can be
several orders of magnitude smaller than conventional polymers.
Consequently, materials like silicone are able to easily sustain large
deformations under the action of relatively modest forces. For sev-
eral applications e.g. soft robotics -2 37
the deformation to take place in response to an electric field. In
a well-known study, Keplinger et al.8 obtained an areal increase
of almost 1700 % for a specially fabricated acrylic membrane
under the action of a suitably high electric field. Over the past
two decades, research on electro-active dielectric elastomers has
significantly intensified due to potential applications like energy
harvesting ®-13, adaptive optics 14, and stretchable electronics 1516,

or actuators , We require

With the large deformations and highly nonlinear behav-
ior characteristic of elastomers, we must also contend with
the inevitability of instabilities such as surface wrinkles!7-1,
creases 2022 folds23-24 electro-buckling23-26, pull-in instability,
bursting drops in solid dielectrics%?, and so on. We specifically
highlight the pull-in instability?-34 due to its singular role as a
“failure mode" in dielectric elastomers and the key limiting factor
that limits electro-actuation and energy harvesting.

Consider a thin dielectric film subjected to a fixed potential
difference across its thickness. The applied field will compress the
film — due to Maxwell stress, or more generally electrostriction
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Fig. 1 Schematic of the central idea: We consider the various deformation
paths that a circular thin film dielectric elastomer can take under the
combined action of an applied voltage ® in the thickness direction and an
in-plane symmetric radial dead load S. A gradually increasing voltage (®1)
will lead to pull-in instability, however, a gradually increasing dead load
(81) will lead to the so-called Treloar-Kearsley (T-K) instability at which
the stable (circular) film will bifurcate into a stable elliptical configuration.

— thereby decreasing the film thickness and causing a lateral
expansion. The thinning of the film increases the magnitude of the
electric field in the material, in turn leading to a further decrease
in thickness. When the film thickness decreases to a critical value,
this coupling leads to a pull-in instability. At this critical value,
the thinning increases dramatically, and the magnitude of the
electric field causes electrical breakdown. Mathematically, the
pull-in instability can be regarded as a limit point or saddle-node
bifurcation3>. That is, the stable and unstable branches “collide”
at the critical electric field, and subsequently are annihilated as
the electric field increases beyond the critical value.
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Traditionally, researchers have devised strategies to suppress
pull-in instability to improve electro-actuation, e.g., by using
pre-stretch; among many papers, we highlight recent approaches
including36-3°. In this work, we break from the conventional
philosophy of suppressing pull-in instabilities, and instead seek
to exploit an interplay between pull-in instability and another
instability described below. We propose to guide the soft material
system towards an alternate symmetry-breaking instability — a
super-critical pitchfork bifurcation — to obtain an unprecedented
level of electro-actuation not possible with current approaches.

The key concept that we propose has its roots in a purely
mechanical experiment by Treloar about half a century ago?°.
He studied a square rubber sheet stretched (within its plane) by
equal forces on the lateral faces, corresponding to dead loading.
Treolar, however, observed that upon reaching a critical load,
the square sheet deformed into a symmetry-breaking rectangular
sheet. Of course, linear elasticity predicts that the square sheet
remains square regardless of the magnitude of the equibiaxial
forces. This surprising experimental observation motivated a num-
ber of follow-up theoretical and experimental works, c.f.41-44,
Kearsley#!, using nonlinear elasticity, showed theoretically that
indeed, beyond a critical load, the elastic sheet admits a stable
symmetry-breaking deformed state and the symmetric response
becomes unstable. This phenomenon — the Treloar-Kearsley (T-K)
instability — is a supercritical pitchfork bifurcation®®. To date,
this instability has not be investigated in the context of coupled
electro-mechanical behavior of soft materials.

Figure 1 illustrates our key concept. Consider a dielectric elas-
tomer thin film. For both illustration and subsequent calculations,
we will assume the film to be initially circular. If we increase the
applied voltage (1) slightly, the circular film will become thinner
and expand laterally into a larger circular film. If we continue to
increase the voltage (®1), the larger circular film will eventually
undergo a pull-in instability (at some critical voltage that depends
on the material parameters and the film thickness). However, we
may, instead of a voltage difference, apply a radially-symmetric
in-plane dead-load to the thin film, analogous to the experiment
by Treloar. Increasing the magnitude of the dead load (S1)
will also deform the circular film to a larger circular film until
the occurrence of the T-K instability. At that point, the circular
configuration will be unstable and the film will deform into an
ellipse.

The loading configurations depicted in Figure 1 and described
in the preceding paragraph naturally bring up the following ques-
tions, in terms of the various comibations of electromechanical
loads and possible instabilities: (1) Which instability (pull-in or
T-K) will occur first and how does the constitutive law of the
material affect their occurrence? (2) If we continue to increase
the electromechanical load after the onset of T-K instability, what
are the equilibrium states? (3) For a given electromechanical load,
what are the equilibrium solutions, and which are stable? (4)
Most importantly, can we exploit the interplay between the two
instabilities to obtain large electro-actuation? In the remainder of

this paper, we will quantitatively address these questions.

2  Formulation

We briefly summarize the key points of our formulation of the
central problem with details being relegated to Appendix A. We
remark that there have been intriguing recent developments*6:47
that address the electromechanical coupling of dielectric elas-
tomers starting from the monomer level and then upscale to a
coarse-grained description using statistical mechanics. In this
work, we follow a purely phenomenological macroscopic descrip-
tion of the elastomers. To that end, consider a circular dielectric
film with radius R and thickness H in the reference undeformed
state, subject to both an applied potential difference ® across
its thickness and in-plane mechanical tractions. We denote the
reference and deformed coordinates by X and x, and define the
deformation gradient F = dx/dX. We restrict our attention to ho-
mogeneous deformations with F constant, thereby automatically
satisfying force equilibrium if we satisfy the boundary conditions.
We use Cartesian coordinates (Xi,X,X3) with an orthonormal
basis (e, e, e3) that are aligned along the principal directions of
FTF, and e, is the direction of the film normal. The deformation
then has the simple form x = (o X}, 00X>,03X3), where o; > 0,
i = 1,2,3, are the (constant) principal stretches, and we assume
without loss of generality that a; > o,. Further, assuming incom-
pressibility — a very good approximation for elastomers — requires
that the Jacobian J = detF =1, i.e., 03 = 1. We also define
the domain of the circular film in the reference configuration as

Bo=1{X:0<,/X?+X} <R, 0< X3 <H}.

The total nominal stress T within the incompressible dielectric

elastomers is then36-48:
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Here W¢ is the purely mechanical contribution to the energy den-
sity, TM is the nominal electric Maxwell stress, k is the Lagrange
multiplier conjugate to the incompressibility constraint, and F~7
is the inverse of the transpose of F. The nominal Maxwell stress
is given by T™ := leE?a; 2diag (o ', —a; ' a5 '), where € is the
dielectric permittivity and E = ®/H.

Assuming isotropy, W¢ in (1) depends on F only through the
principal stretches a;, ap and o3. Using the fact that the top
and bottom faces are traction-free, i.e. Tez =0, we can readily
solve for the Lagrange multiplier x = ozdW°/dos + sEzaS’ 2/2.
The given radial traction with magnitude S applied on the lateral
faces, together with the constraint of incompressibility, forms a
system of algebraic equations with unknowns (o, ®,03) for a
given applied stimulus (£, S).

The material constitutive law is implicit in the specification of
the strain-energy function. In what follows, we will consider a
Mooney-Rivlin solid® (W¢ = §¥3 | { (1) +y (ai_z - 1) })
which also subsumes the often used neo-Hookean model. Here
u and y are the elastic material constants. The case of y =10



corresponds to a neo-Hookean solid. We refer the reader to
Appendix B regarding the choice of the constitutive law for the
problem at hand.

Since both the mechanical loads and the applied electrical field
are consistent with radial symmetry in the plane, we might an-
ticipate that the equilibrium configuration will also be symmetric,
i.e., oy = ap. However, to allow for the possibility of symmetry-
breaking deformations, we allow a; # o, and find the following
relation using the equilibrium condition (see Appendix A for de-
tails): ~2

0= (0 —p) x [1+ (ify)alag
g @)

+a %0 {1+y<a12+a1a2+a22)n.

The key point is that the second term on the right of (2) can be
zero under some conditions, and hence allows for a; # 0. For the
case of neo-Hookean solids (y = 0), it is evident that the second
term on the right of (2) is always positive, which then mandates
o = op. In contrast, the more general Mooney-Rivlin solid
can admit both symmetric and symmetry-breaking equilibrium
solution.

3 Linear bifurcation analysis

We next use a linear bifurcation analysis, before turning to a
numerical approach further below. While the linear bifurcation
analysis can only give us the necessary conditions for the onset
of bifurcation and will not allow us to distinguish between
pull-in instability (a limit point bifurcation) and T-K instability
(a pitchfork bifurcation), the closed-form calculations provide
physical insights and also guide the numerical calculations.

In the linearized setting, the equilibrium equations reduce to:

Li(o,00:E,8) =Tj(oy,00:E) =S =0, 3

where j = 1,2 and T; are the principal stresses. We can determine
the onset of bifurcation by examining the conditions for det( gé'] )
0. At the onset of bifurcation, we have that o = op = « since we
are linearizing about the symmetric state. The condition for the

onset of bifurcation then becomes (see Appendix C):

)
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@
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Using that y > 0 for real materials, we can distinguish three
cases:

1. When 8752 =7, the equality (4) does not hold for any a > 0
since both the first and second terms in (4) are positive. In
other words, this case implies the nonexistence of bifurca-
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Fig. 2 The bifurcation diagram. (a) The stretch @; as a function of the
dead load $. The solid curves are the stable equilibrium states, corre-
sponding to either a circular film (o = ) or an elliptical film (o # ).
The dashed curves are the unstable equilibrium states, corresponding to
the T-K instability. The critical point for the onset of T-K instability is
marked by 0. (b) The contours of the total energy in the a; — a plane
at ($,E) = (5,0). The point labeled K; is the stable asymmetric elliptical
configuration, and K is the unstable symmetric circular configuration.

tions, and neither the T-K instability nor pull-in instability will
occur.

2. When SMLZ > 7, the second term on the right of (4) is always
positive while the first term may be zero under some condi-
tions. Setting the first term on the right of (4) to zero and
using also the equilibrium equations, we can determine the
threshold and the corresponding value of & > 1 at which the
bifurcation occurs. Since the second term on the right of (2)
is positive, this case only admits the solution a; = o, and the
bifurcation point corresponds to a limit point, i.e., the onset
of pull-in instability.

3. When S”Lz < 7, the first term on the RHS of (4) is always pos-
itive while the second term can be zero under some condi-



tions. The zero second term on the RHS of (4), together with
the equilibrium condition, we can determine the threshold
and the corresponding value of o > 1 at which the bifurca-
tion occurs. Since the second term on the RHS of (2) and the
second term on the RHS of (4) become zero simultaneously,
the bifurcation point in this case corresponds to the onset of
Treloar-Kearsley instability.

4 Results and discussions

We now turn to numerical calculations to make further progress
(see Appendix D for the details of the approach). In what follows,
we choose the material constant of y = 0.3 for all the numerical
plots, but this particular choice does not impact the central
conclusions drawn in this paper.

Figure 2(a) shows the bifurcation diagram. At zero electric field
and dead load $ in the range of (0,3.898), only the symmetric
state (a; = o) is a stable equilibrium (see the appendices for
more details). The equal stretches both increase monotonically
from 1 to 1.905 as § increases from 0 to 3.898. Once S exceeds
the threshold of 3.898, the circular film bifurcates to an elliptical
configuration with o; > .

We take the case of (S,£) = (5,0) as an illustration. There exist
two equilibrium states that correspond to two points Ky and K; in
Figure 2(a), and the energy contour is shown in Figure 2(b). The
symmetric deformation with stretches o = o, = 2.135 at point K
is an unstable circular film while the symmetry-breaking deforma-
tion with stretches oy =3.939 and a, = 0.958 at point K is a stable
elliptical film. It is clear that the semi-major axis of the ellipse
is about twice the radius of the circle, i.e., 3.939/2.135 = 1.845,
which indicates a relatively large deformation induced by the
instability.

In Figure 2(a), we also find that the electric field will delay
the onset of T-K instability. Without any applied electric field,
TK instability occurs at § = 3.898 and the stretch oy (or o) is
1.905. However, under an electric field of £ = 0.4, T-K instability
occurs at § = 5.428 and the stretch @; (or o) is 2.699; more-
over, there exists only one stable circular film with stretches
oy = op =2.591 at § = 5. This implies the nonexistence of bifurca-
tion and the suppression of T-K instability by using an electric field.

In Figure 3(a), at an applied electric field of £ = 0.7 but a
zero dead load, the film has two equilibrium states of symmetric
deformations, which are denoted by points P; and P,. With the
energy contour shown in Figure 3(b), point P; is a stable node
while point P, is a saddle point. By increasing the electric field,
the two points collide at the threshold of £ = 0.842 and then
pull-in instability occurs.
field in inducing pull-in instability. For example, compared to the
curve of § = 0 with the threshold of 0.842, the curve of § =2 has a
critical electric field of £ = 0.580 for the onset of pull-in instability,
which has a much lower threshold. We note that there is no T-K
instability in these two curves.

The dead load can assist the electric
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Fig. 3 (a) The nominal electric field £ vs. the stretch a;. On each curve,
the critical point for the onset of pull-in instability is marked by a cross
‘x". (b) Contour plot of the total energy of the electrostatic system on
the a; — op plane.

In Figure 3(a), we also observe that a sufficient large dead load
can cause the TK instability to occur on the £ — ; plane, but it
occurs at a lower electric field compared to that of pull-in insta-
bility. For the case of § = 0 (or 2), we only have pull-in instability
that occurs at E¥ = 0.842 (or 0.580). However, for the case of
$ =4, we can have either T-K instability at £7¥ = 0.139 or pull-in
instability at £ = 0.556. For another case of § = 5, T-K instability
occurs at ETX = 0.365 while pull-in instability occurs at £F = 0.553.

To systematically explore the interplay between T-K instability
and pull-in instability, we plot the phase diagram in Figure 4(a).
The thresholds of T-K instability (blue curve) and pull-in instability
(red curve) in Figure 4(a) can be determined by using linear bifur-
cation analysis (see the appendices). The two thresholds, i.e., the
red and blue curves, separate the load-plane into three regions:
region#l, region#2, and region#3. To visualize the deformation
process, we select some points on the load-plane and illustrate the
corresponding deformations in Figure 4(b). Note that the equi-



librium states are obtained by solving the two algebraic equations
(A.8) and their stability is investigated by using the energy method
(see the appendices). The number of equilibrium solutions, their
stabilities, and the shapes of the equilibrium solutions in each re-
gion on the load-plane in Figure 4 are summarized as follows:

* In region#l, the horizontal line £* = /¥ separates it into two
subregions: region#la and region#1b. In region#la, the di-
electric film only has one equilibrium state—a stable circular
film. In contrast, the film in region#15 has two equilibrium
states: the stable state is a smaller circular film and the un-
stable state is a larger circular film.

* In region#2, the dielectric film encounters T-K instability and
has two equilibrium states: one unstable state is a circular
film and the other state is the elliptical configuration.

* In region#3, the dielectric film encounters pull-in instability
and has no equilibrium solutions.

Using the deformation in Figure 4(b) as a guide, we can
now highlight the prospects of giant electro-actuation induced
by the electromechanical instability. At a given pair of loads
(8%, E*) = (5,0.4), the original circular film (with a radius of 1)
deforms to a stable circular film with a larger radius of 2.591.
Interestingly, if we fix the dead load but decrease the electric field
from 0.4 to 0.2, the original film deforms to a stable elliptical film
with a semi-major axis of 3.813 and a semi-minor axis of 1.103.
The ratio of the semi-major axis to the radius is 1.472; however, we
have merely used half of the electric field. It shows that a relatively
large electro-actuation can be achieved by using a relatively small
electric field but suitably harnessing electromechanical instability.

5 Concluding remarks

In conclusion, we have shown that either a pitchfork bifurcation
(TK instability) or a limit point bifurcation (pull-in instability),
are achievable for a soft dielectric film. The applied electric field
delays the onset of symmetry-breaking deformations and, more
interesting, after the onset of T-K instability, an increased electric
field can induce the symmetry-breaking state to revert back to
the symmetric deformation prior to the onset of pull-in instability.
The possibility of the rapid change of shapes between circular
and elliptical films is capable of providing large actuation; in
the conventional setting, the actuation is severely limited by the
pull-in instability.
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Appendices
A. Details of the Formulation

Consider a circular dielectric film with radius R and thickness H in
the undeformed state. Taking the Cartesian coordinates (X,X>,X3)
with an orthonormal basis (e, e;,e3), the domain of the circular
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Fig. 4 (a) Phase diagram of a circular film subjected to the mechanical and
electric loads. (b) The original circular film at ($*,£*) = (0,0) is denoted
by a solid gray circle. The deformed shapes at some selected points are
presented.

film in the reference configuration is represented by %, = {X €
R3:0<\/X? +X3 <R, 0< X3 <H}. We consider the homogeneous
thinning in which the deformation x has the following component
form:

x| = o X, (A.1)

Xy =Xy, x3=03X3,

where o; > 0, i = 1,2,3, are constant stretches. By the deformation
(A.1), the deformation gradient F = Vx in the Cartesian coordi-
nates is given by

F = diag ((117062,063)7 (A.2)

which is represented by a diagonal matrix. For incompressible elas-
tomers, the constraint of incompressibility requires that the Jaco-

bian J = detF must be one, i.e.,
ooz =1. (A.3)

The total nominal stress T within the incompressible dielectric
elastomers can be written as follows36:48:



oWe
T="+TM _xF T,

=oF (A.4)

Here W¢ is the strain-energy function of the purely elastic
part, T™ is the nominal Maxwell stress, k serves as the Lagrange
multiplier, and F~7 is the inverse of the transpose F'. For a
linear dielectric film subjected to an applied voltage ® in the
thickness direction, the nominal Maxwell stress is given by
™ .= leE2a;?diag(—o; ', —a; ', 05 "), where ¢ is the material
permittivity and E = ®/H.

Assuming isotropy, the strain-energy function W¢(F) in (A.4)
depends on the deformation gradient through the principal
stretches o, o and o3.
(A.4) is expressed as T := diag(7},T»,T3). The principal stresses
are Tj = oW/da; — (eE%a5%/2+ k)a; !, where j = 1,2, and
T3 = OW®/dag + (eE*05% /2 — x)o; ', With the boundary con-
ditions Te; = 0 on the top and bottom surfaces, we obtain the

Thus, the total nominal stress in

Lagrange multiplier ¥ = ozdW¢/daz + 8E2a3_ 2/2.  Then the
in-plane principal stresses are
ow¢ awe “0 o\ g
U= e, ~ (on5gq 27057 )a " (A-5)

where j = 1,2. Since the principal stresses are independent of
the coordinates, the equilibrium equation, DivT = 0 that are
differential equations in general, are automatically satisfied here.

Finally, we only have to consider the traction boundary con-
\/X? +X} =R, ie., Te, = Se, with the normal e, =
cosfe; + sinfe,.  Together with the diagonal matrix T :=
diag (T1,T»,T3), we obtain

ditions at

S=T;, (A.6)
where j = 1,2. The two algebraic equations (A.6), together
with the constraint of incompressibility (A.3), form a system of
algebraic equations with unknowns (o, o, o3) for a given pair of
loads (E,S).

In this paper, we consider a Mooney-Rivlin solid4® of which the
strain-energy function in (A.5) is

v E () vt )}

where oy, i = 1,2,3, are the principal stretches, yu and y are
material constants. Typically, the case of y = 0 corresponds to the
strain-energy function of a neo-Hookean solid. Both neo-Hookean
and Mooney-Rivlin models are able to give good agreement with

(A7)

the experiment data at small and moderate strains. However, an
apparent discrepancy is found at large strains. The Gent model is
usually used to capture the stress-strain relation of an elastomer
with nearly full stretched molecular chains>°.

It follows from (A.5)-(A.7) that

— <aj —yocj‘3> - [a32+ (ﬁ - y) %—2} aj". (A.8)

At a given pair of dead load and electric field, we seek the
solution of @, @ and a3 from the two algebraic equations (A.8),
together with the constraint a;op 03 = 1.

Bearing in mind that the traction dead load S is symmetric, and
the applied electric field is homogeneous and is only applied in
the thickness direction, a common assumption would be that the
deformations of equilibrium states are symmetric, i.e., @; = .
However, we try to seek the possibility of symmetry-breaking de-
formations and discuss the ensuing electromechanical behavior. To
directly show the relation between «; and oy, we factor out S and
use oyop o3 = 1 in (A.8), then

i
0= (a1 — o) x [1+ (gf}/)al(xz
H (A.9)

+o o [l—i—y(alz—kalaz—i—azz)ﬂ.

Of interest is that the second term on the RHS of (A.9) is zero
under some circumstances, which may allow the existence of equi-
librium states with a symmetry-breaking deformation, i.e., o) # ;.
For neo-Hookean solids (y = 0), it is evident that the second term
on RHS of (A.9) is always positive, then the identity (A.9) holds
if and only if @ = . In contrast, Mooney-Rivlin solids can give
both symmetric and symmetry-breaking equilibrium solutions un-
der some circumstances. The aforementioned statement highlights
that too simple a constitutive choice (i.e. Neo-Hookean) may pre-
clude observation of certain types of bifurcations.

B. Details of the linear bifurcation analysis

The linear bifurcation analysis here is actually the analysis of the
uniqueness solutions (o, ) to the two algebraic equations (6) in
the main article. To proceed with the linear bifurcation analysis,
we rewrite the two equations here:

Lj(ou,00;E,S) = Tj(ou, 00:E) =S =0, (B.1)

where j = 1,2. It should be noted that £ and S are loading
parameters while a; and a, are the unknown variables. For a
given pair of loads (E, S), the deformed film possesses the stretches
(a4, ap) through the solutions of the two algebraic equations (B.1).

By the implicit function theorem>!:>2, the necessary condition
for the onset of bifurcation requires a zero determinant, namely

L, IL,
day  dop
—0. (B.2)
A, Iy
doy



For Mooney-Rivlin solids, the explicit forms of equations (B.1) are

2

-3 -2 eE 2 S
o, “+(y——)oqay —— =0,
5+ ”) m

Li=a;—ya;° — o (B.3a)
50

2.3 eE”, o S
o3+ (y— —)atay — = =0.
L+ (y “)12 I

Ly=o0p— ya2’3 - (B.3b)

To make a straightforward presentation of the relation between
oy and o in equilibrium, we subtract the two equations (B.3a)
and (B.3b), then we obtain

eE?
0=(a;— ) x [H— (T—y>a1a2
(B.3¢)

+oc]’3oc2’3 {l+y<a12+a1a2+a22>”,

which is exactly equation (A.9). For the three equations (B.3a)-
(B.3c), any two can yield the solutions of (¢, 0,). The linear
bifurcation analysis provides the conditions for the uniqueness
solution. We now consider the entries of the matrix in (B.2). It
follows from (B.3a) and (B.3b) that

dL —4 —4 -2 ek’

Ern =143y " +30a; "0y "+ (y— i Yo,

3L1 aLz -3 -3 8E2

— =—==20,« 2(y— —)oy o B.4
aaz aal 1 2 + (’y m ) 162, ( )
Ly —4 - ek, ,

Consider a trivial solution that corresponds to the symmetric
stretching o = ap = . Equations (B.3a) and (B.3b) reduce to

3 EEZ 3 S

- -5
o—ya -+ (y-—)o’ —— =0, (B.5)
Y (v i ) p
the entries (B.4) become
aLl o aLz o —4 —6 SEZ 2
Tm_Tw_l+3ya +3a” "+ (y T)a ,
(B.6)
dLy _ dL, 6 eE? )
T%—T%—za +2(}/ 7)(1 R
and the condition (B.2) gives
—4 -6 eE*
0=(14+3y0 " +5a +3(y—7)a
(B.7)

£2
X (1 +3y0 a0 — (y— %)(xz) .

C. Neo-Hookean vs Mooney-Rivlin Constitutive Law

In this section, we briefly contrast two types of hyperelastic consti-
tutive laws—the Neo-Hookean vs Mooney-Rivlin by examining the
loading of a cube. Specifically, We show how the material param-

eters affect the stress-strain curve, especially the unusual stress-
strain response in Mooney-Rivlin solids with a negative parameter
(y < 0). That is the reason we drop the discussion of the case of
¥ < 0 in the main article.

C.1 Uniaxial loading
Subjected to a uniaxial loading in the X; direction, the cube de-
forms from 1 to A in the X; direction. Due to the constraint of
incompressibility, the cube deforms from 1 to A~'/2 in the X, and
X3 directions, respectively. Consider the neo-Hookean model of
hyperelastic materials. The strain-energy function of the cube can
be expressed as

we=2 (2242471 -3), €.1)
where p is the shear modulus at small deformation. The nominal
stress T in the X direction is
= (A —272).

T — (C.2)

i
Consider the Mooney-Rivlin model that makes the strain-energy

function of the cube as

We:%{(124—2&’1—3)+y<l’2+2/1—3>}, (C.3)

where 1 and y are material constants. The nominal stress T in the
X, direction becomes

7awei
-5 =

T u{(x—ﬁz)ﬂ(—rhl)}. (C.4)

C.2 Equibiaxial loading

Subjected to the equibiaxial loading, the cube deforms from 1 to
A in both the X; and X, directions. Due to the constraint, the
cube deforms from 1 to A2 in the X3 directions. In this example,
we exclude the discussion of asymmetric deformation. Consider
the neo-Hookean model of hyperelastic materials. Then the strain-
energy function of the cube is expressed as

We — % (2/12 e —3) , (C.5)

and the equibiaxial nominal stress T in the X; and X, directions is

1 0We s
T_EW_MO(JL—/I ). (C.6)
If we take the Mooney-Rivlin model, the strain-energy function

of the cube is

e M 2, -4 —2 24
W 72{<2/1 v 3)+y<2/1 +A 3)} (C.7)
and the nominal stress T in the X; and X, directions is
1 awe _ _5 3 3
=50 =r{ -2 +y (27427 ] C8)

D. Free energy of the electrostatic system

The linear bifurcation analysis can neither distinguish the type of
bifurcation nor determine the stability of the bifurcated branch.
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Fig. Cl Loading of neo-Hookean and Mooney-Rivlin solids with different
material parameters. (a) Stress-stretch curve for uniaxial loading. For neo-
Hookean solids with a shear modulus of iy =0.95u, the stress-stretch curve
can also be represented by a Mooney-Rivlin solid with material parameters
(u,7) = (1,0.3) qualitatively and quantitatively. (b) Stress-stretch curve
for equibiaxial loading. Note that for negative parameters y <0, a tensile
stress (T >0) in (a) can even lead to compression (A < 1); moreover, a
compressive stress (T < 0) in (b) can make a tension (A > 1). To exclude
these unusual stress-stretch responses, we thus omit the discussion of the
case of y< 0 in the electromechanical instabilities in the main article.

We therefore carry out the stability analysis by using the energy
method. Consider the free energy of an electrostatic system 3048,
Then the free energy G of a circular dielectric film subjected to
an applied voltage ® in the thickness direction and an in-plane
symmetric dead load S can be written as

G:nRzHW(al,ocz,D)—/a Se, - (x—X) — O, D.1)
Kz
where 9% is the lateral surface, i.e., 0%y = {X e R®: \/X? + X} =

R, 0 < X3 < H}. Consider the homogeneous thinning (1) in the
main article, i.e., x; = 1 X1,x) = 0 X»,x3 = a3X3. On the boundary
0%, we have the displacement

x—X = (o —1)RcosBe; + (ap — 1)Rsin ey, (D.2)

and the inner product is

Se, - (x—X) = SR[at; cos’ 8 + oy sin® 6 — 1], (D.3)
where 0 < 0 < 2x. Thus,
Se, - (x—X
M2 2 .2 (D.4)
:/ SR°H|[oy cos” 0 + apsin” 6 — 1]d6 :
0
= STR*H(a + 0 —2).
On the other hand, we consider the following form
®Q = nR*HED, (D.5)

where the nominal electric field is £ = ®/H and the nominal elec-
tric displacement is D = Q/(nR?). Now the free energy density is
G

g —W(OCI,OQ,D)—S(OC]+a2—2)—ED.

= (D.6)

For linear dielectrics, the energy function of the Mooney-Rivlin
type dielectrics is

W(al,az,[))zg(alz+a2+al‘2a2‘273)
+ﬁ o2+ l+ola?—3
27 1 n 10 (D.7)
2
+ ooy

By substituting (D.7) into (D.6), the equilibrium in electric quali-
ties, dg/dD =0, gives

E= —al’zaz’z. (D.8)

It follows from (D.7) and (D.8) that the free energy density g in
(D.6) becomes

_H

g=75 0612+0022+0‘f20‘{2—3>

(
+ %y (a;z +o5+afad - 3) (D.9)

ek
—S(oy+0ap—2)— T(xlzoczz.

Consider the normalizations

E
uje

8 5.5
m i

E= (D.10)

o

We then have the normalized free energy density

1
8=5 (a%+a§+a1‘2a2—2 73)

1
+57(er2 052 +afed -3) (D.11)

fS((ler(xsz)f?(xlaz.



For certain loads § and £ with a given material parameter y, we
can plot the contour of the free energy density ¢ on the o —
plane.
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