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Soft elastomers that can exhibit extremely large deformations under the action of an electric �eld are essential for applications such as soft

robotics, stretchable and �exible electronics, energy harvesting among others. The critical limiting factor in conventional electro-actuation

of such materials is the occurrence of the so-called pull-in instability. In this work, we demonstrate an extraordinarily simple way to coax

a dielectric thin �lm towards a symmetry-breaking pitchfork bifurcation state while avoiding pull-in instability. Through the nonlinear

interplay between the two bifurcation modes, we predict electro-actuation strains that exceed what is conventionally possible by 200%,

and at signi�cantly lower applied electric �elds.

1 Introduction

Soft materials such as elastomers have elastic moduli that can be
several orders of magnitude smaller than conventional polymers.
Consequently, materials like silicone are able to easily sustain large
deformations under the action of relatively modest forces. For sev-
eral applications e.g. soft robotics1,2 or actuators3–7, we require
the deformation to take place in response to an electric field. In
a well-known study, Keplinger et al.8 obtained an areal increase
of almost 1700 % for a specially fabricated acrylic membrane
under the action of a suitably high electric field. Over the past
two decades, research on electro-active dielectric elastomers has
significantly intensified due to potential applications like energy
harvesting9–13, adaptive optics14, and stretchable electronics15,16.

With the large deformations and highly nonlinear behav-
ior characteristic of elastomers, we must also contend with
the inevitability of instabilities such as surface wrinkles17–19,
creases20–22, folds23,24, electro-buckling25,26, pull-in instability,
bursting drops in solid dielectrics27, and so on. We specifically
highlight the pull-in instability28–34 due to its singular role as a
“failure mode" in dielectric elastomers and the key limiting factor
that limits electro-actuation and energy harvesting.

Consider a thin dielectric film subjected to a fixed potential
difference across its thickness. The applied field will compress the
film – due to Maxwell stress, or more generally electrostriction
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Fig. 1 Schematic of the central idea: We consider the various deformation

paths that a circular thin �lm dielectric elastomer can take under the

combined action of an applied voltage Φ in the thickness direction and an

in-plane symmetric radial dead load S. A gradually increasing voltage (Φ↑)
will lead to pull-in instability, however, a gradually increasing dead load

(S↑) will lead to the so-called Treloar-Kearsley (T-K) instability at which

the stable (circular) �lm will bifurcate into a stable elliptical con�guration.

– thereby decreasing the film thickness and causing a lateral
expansion. The thinning of the film increases the magnitude of the
electric field in the material, in turn leading to a further decrease
in thickness. When the film thickness decreases to a critical value,
this coupling leads to a pull-in instability. At this critical value,
the thinning increases dramatically, and the magnitude of the
electric field causes electrical breakdown. Mathematically, the
pull-in instability can be regarded as a limit point or saddle-node
bifurcation35. That is, the stable and unstable branches “collide”
at the critical electric field, and subsequently are annihilated as
the electric field increases beyond the critical value.
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Traditionally, researchers have devised strategies to suppress
pull-in instability to improve electro-actuation, e.g., by using
pre-stretch; among many papers, we highlight recent approaches
including36–39. In this work, we break from the conventional
philosophy of suppressing pull-in instabilities, and instead seek
to exploit an interplay between pull-in instability and another
instability described below. We propose to guide the soft material
system towards an alternate symmetry-breaking instability – a
super-critical pitchfork bifurcation – to obtain an unprecedented
level of electro-actuation not possible with current approaches.

The key concept that we propose has its roots in a purely
mechanical experiment by Treloar about half a century ago40.
He studied a square rubber sheet stretched (within its plane) by
equal forces on the lateral faces, corresponding to dead loading.
Treolar, however, observed that upon reaching a critical load,
the square sheet deformed into a symmetry-breaking rectangular
sheet. Of course, linear elasticity predicts that the square sheet
remains square regardless of the magnitude of the equibiaxial
forces. This surprising experimental observation motivated a num-
ber of follow-up theoretical and experimental works, c.f.41–44.
Kearsley41, using nonlinear elasticity, showed theoretically that
indeed, beyond a critical load, the elastic sheet admits a stable
symmetry-breaking deformed state and the symmetric response
becomes unstable. This phenomenon – the Treloar-Kearsley (T-K)
instability – is a supercritical pitchfork bifurcation45. To date,
this instability has not be investigated in the context of coupled
electro-mechanical behavior of soft materials.

Figure 1 illustrates our key concept. Consider a dielectric elas-
tomer thin film. For both illustration and subsequent calculations,
we will assume the film to be initially circular. If we increase the
applied voltage (Φ↑) slightly, the circular film will become thinner
and expand laterally into a larger circular film. If we continue to
increase the voltage (Φ↑), the larger circular film will eventually
undergo a pull-in instability (at some critical voltage that depends
on the material parameters and the film thickness). However, we
may, instead of a voltage difference, apply a radially-symmetric
in-plane dead-load to the thin film, analogous to the experiment
by Treloar. Increasing the magnitude of the dead load (S↑)
will also deform the circular film to a larger circular film until
the occurrence of the T-K instability. At that point, the circular
configuration will be unstable and the film will deform into an
ellipse.

The loading configurations depicted in Figure 1 and described
in the preceding paragraph naturally bring up the following ques-
tions, in terms of the various comibations of electromechanical
loads and possible instabilities: (1) Which instability (pull-in or
T-K) will occur first and how does the constitutive law of the
material affect their occurrence? (2) If we continue to increase
the electromechanical load after the onset of T-K instability, what
are the equilibrium states? (3) For a given electromechanical load,
what are the equilibrium solutions, and which are stable? (4)
Most importantly, can we exploit the interplay between the two
instabilities to obtain large electro-actuation? In the remainder of

this paper, we will quantitatively address these questions.

2 Formulation

We briefly summarize the key points of our formulation of the
central problem with details being relegated to Appendix A. We
remark that there have been intriguing recent developments46,47

that address the electromechanical coupling of dielectric elas-
tomers starting from the monomer level and then upscale to a
coarse-grained description using statistical mechanics. In this
work, we follow a purely phenomenological macroscopic descrip-
tion of the elastomers. To that end, consider a circular dielectric
film with radius R and thickness H in the reference undeformed
state, subject to both an applied potential difference Φ across
its thickness and in-plane mechanical tractions. We denote the
reference and deformed coordinates by XXX and xxx, and define the
deformation gradient FFF = ∂xxx/∂XXX . We restrict our attention to ho-
mogeneous deformations with FFF constant, thereby automatically
satisfying force equilibrium if we satisfy the boundary conditions.
We use Cartesian coordinates (X1,X2,X3) with an orthonormal
basis (eee1,eee2,eee3) that are aligned along the principal directions of
FFFT FFF , and eee1 is the direction of the film normal. The deformation
then has the simple form xxx = (α1X1,α2X2,α3X3), where αi > 0,
i = 1,2,3, are the (constant) principal stretches, and we assume
without loss of generality that α1 ≥ α2. Further, assuming incom-
pressibility – a very good approximation for elastomers – requires
that the Jacobian J = detFFF = 1, i.e., α1α2α3 = 1. We also define
the domain of the circular film in the reference configuration as

B0 = {XXX : 0≤
√

X2
1 +X2

2 ≤ R, 0≤ X3 ≤ H}.

The total nominal stress TTT within the incompressible dielectric
elastomers is then36,48:

TTT =
∂W e

∂FFF
+TTT M−κFFF−T . (1)

Here W e is the purely mechanical contribution to the energy den-
sity, TTT M is the nominal electric Maxwell stress, κ is the Lagrange
multiplier conjugate to the incompressibility constraint, and FFF−T

is the inverse of the transpose of FFF . The nominal Maxwell stress
is given by TTT M := 1

2 εẼ2α
−2
3 diag(−α

−1
1 ,−α

−1
2 ,α−1

3 ), where ε is the
dielectric permittivity and Ẽ = Φ/H.

Assuming isotropy, W e in (1) depends on FFF only through the
principal stretches α1, α2 and α3. Using the fact that the top
and bottom faces are traction-free, i.e. TTT eee3 = 000, we can readily
solve for the Lagrange multiplier κ = α3∂W e/∂α3 + εẼ2α

−2
3 /2.

The given radial traction with magnitude S applied on the lateral
faces, together with the constraint of incompressibility, forms a
system of algebraic equations with unknowns (α1,α2,α3) for a
given applied stimulus (Ẽ,S).

The material constitutive law is implicit in the specification of
the strain-energy function. In what follows, we will consider a
Mooney-Rivlin solid49 (W e = µ

2 ∑
3
i=1

{(
α2

i −1
)
+ γ

(
α
−2
i −1

)}
)

which also subsumes the often used neo-Hookean model. Here
µ and γ are the elastic material constants. The case of γ = 0
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corresponds to a neo-Hookean solid. We refer the reader to
Appendix B regarding the choice of the constitutive law for the
problem at hand.

Since both the mechanical loads and the applied electrical field
are consistent with radial symmetry in the plane, we might an-
ticipate that the equilibrium configuration will also be symmetric,
i.e., α1 = α2. However, to allow for the possibility of symmetry-
breaking deformations, we allow α1 6= α2, and find the following
relation using the equilibrium condition (see Appendix A for de-
tails):

0 = (α1−α2)×
[
1+
(

εẼ2

µ
− γ

)
α1α2

+α
−3
1 α

−3
2

[
1+ γ

(
α

2
1 +α1α2 +α

2
2

)]]
.

(2)

The key point is that the second term on the right of (2) can be
zero under some conditions, and hence allows for α1 6= α2. For the
case of neo-Hookean solids (γ = 0), it is evident that the second
term on the right of (2) is always positive, which then mandates
α1 = α2. In contrast, the more general Mooney-Rivlin solid
can admit both symmetric and symmetry-breaking equilibrium
solution.

3 Linear bifurcation analysis

We next use a linear bifurcation analysis, before turning to a
numerical approach further below. While the linear bifurcation
analysis can only give us the necessary conditions for the onset
of bifurcation and will not allow us to distinguish between
pull-in instability (a limit point bifurcation) and T-K instability
(a pitchfork bifurcation), the closed-form calculations provide
physical insights and also guide the numerical calculations.

In the linearized setting, the equilibrium equations reduce to:

L j(α1,α2; Ẽ,S) = Tj(α1,α2; Ẽ)−S = 0, (3)

where j = 1,2 and Tj are the principal stresses. We can determine
the onset of bifurcation by examining the conditions for det( ∂Li

∂α j
) =

0. At the onset of bifurcation, we have that α1 = α2 = α since we
are linearizing about the symmetric state. The condition for the
onset of bifurcation then becomes (see Appendix C):

0 =

(
1+3γα

−4 +5α
−6 +3(γ− εẼ2

µ
)α2
)

×
(

1+3γα
−4 +α

−6− (γ− εẼ2

µ
)α2
)
.

(4)

Using that γ ≥ 0 for real materials, we can distinguish three
cases:

1. When εẼ2

µ
= γ, the equality (4) does not hold for any α > 0

since both the first and second terms in (4) are positive. In
other words, this case implies the nonexistence of bifurca-

(a)

(b)

Fig. 2 The bifurcation diagram. (a) The stretch α1 as a function of the

dead load Ŝ. The solid curves are the stable equilibrium states, corre-

sponding to either a circular �lm (α1 = α2) or an elliptical �lm (α1 6= α2).

The dashed curves are the unstable equilibrium states, corresponding to

the T-K instability. The critical point for the onset of T-K instability is

marked by �. (b) The contours of the total energy in the α1−α2 plane

at (Ŝ, Ê) = (5,0). The point labeled K1 is the stable asymmetric elliptical

con�guration, and K0 is the unstable symmetric circular con�guration.

tions, and neither the T-K instability nor pull-in instability will
occur.

2. When εẼ2

µ
> γ, the second term on the right of (4) is always

positive while the first term may be zero under some condi-
tions. Setting the first term on the right of (4) to zero and
using also the equilibrium equations, we can determine the
threshold and the corresponding value of α > 1 at which the
bifurcation occurs. Since the second term on the right of (2)
is positive, this case only admits the solution α1 = α2 and the
bifurcation point corresponds to a limit point, i.e., the onset
of pull-in instability.

3. When εẼ2

µ
< γ, the first term on the RHS of (4) is always pos-

itive while the second term can be zero under some condi-
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tions. The zero second term on the RHS of (4), together with
the equilibrium condition, we can determine the threshold
and the corresponding value of α > 1 at which the bifurca-
tion occurs. Since the second term on the RHS of (2) and the
second term on the RHS of (4) become zero simultaneously,
the bifurcation point in this case corresponds to the onset of
Treloar-Kearsley instability.

4 Results and discussions

We now turn to numerical calculations to make further progress
(see Appendix D for the details of the approach). In what follows,
we choose the material constant of γ = 0.3 for all the numerical
plots, but this particular choice does not impact the central
conclusions drawn in this paper.

Figure 2(a) shows the bifurcation diagram. At zero electric field
and dead load Ŝ in the range of (0,3.898), only the symmetric
state (α1 = α2) is a stable equilibrium (see the appendices for
more details). The equal stretches both increase monotonically
from 1 to 1.905 as Ŝ increases from 0 to 3.898. Once Ŝ exceeds
the threshold of 3.898, the circular film bifurcates to an elliptical
configuration with α1 > α2.

We take the case of (Ŝ, Ê) = (5,0) as an illustration. There exist
two equilibrium states that correspond to two points K0 and K1 in
Figure 2(a), and the energy contour is shown in Figure 2(b). The
symmetric deformation with stretches α1 = α2 = 2.135 at point K0

is an unstable circular film while the symmetry-breaking deforma-
tion with stretches α1 = 3.939 and α2 = 0.958 at point K1 is a stable
elliptical film. It is clear that the semi-major axis of the ellipse
is about twice the radius of the circle, i.e., 3.939/2.135 = 1.845,
which indicates a relatively large deformation induced by the
instability.

In Figure 2(a), we also find that the electric field will delay
the onset of T-K instability. Without any applied electric field,
T-K instability occurs at Ŝ = 3.898 and the stretch α1 (or α2) is
1.905. However, under an electric field of Ê = 0.4, T-K instability
occurs at Ŝ = 5.428 and the stretch α1 (or α2) is 2.699; more-
over, there exists only one stable circular film with stretches
α1 = α2 = 2.591 at Ŝ = 5. This implies the nonexistence of bifurca-
tion and the suppression of T-K instability by using an electric field.

In Figure 3(a), at an applied electric field of Ê = 0.7 but a
zero dead load, the film has two equilibrium states of symmetric
deformations, which are denoted by points P1 and P2. With the
energy contour shown in Figure 3(b), point P1 is a stable node
while point P2 is a saddle point. By increasing the electric field,
the two points collide at the threshold of Ê = 0.842 and then
pull-in instability occurs. The dead load can assist the electric
field in inducing pull-in instability. For example, compared to the
curve of Ŝ = 0 with the threshold of 0.842, the curve of Ŝ = 2 has a
critical electric field of Ê = 0.580 for the onset of pull-in instability,
which has a much lower threshold. We note that there is no T-K
instability in these two curves.

P1

P2

(a)

5

(b)

Fig. 3 (a) The nominal electric �eld Ê vs. the stretch α1. On each curve,

the critical point for the onset of pull-in instability is marked by a cross

`×'. (b) Contour plot of the total energy of the electrostatic system on

the α1−α2 plane.

In Figure 3(a), we also observe that a sufficient large dead load
can cause the T-K instability to occur on the Ê −α1 plane, but it
occurs at a lower electric field compared to that of pull-in insta-
bility. For the case of Ŝ = 0 (or 2), we only have pull-in instability
that occurs at ÊP = 0.842 (or 0.580). However, for the case of
Ŝ = 4, we can have either T-K instability at ÊT K = 0.139 or pull-in
instability at ÊP = 0.556. For another case of Ŝ = 5, T-K instability
occurs at ÊT K = 0.365 while pull-in instability occurs at ÊP = 0.553.

To systematically explore the interplay between T-K instability
and pull-in instability, we plot the phase diagram in Figure 4(a).
The thresholds of T-K instability (blue curve) and pull-in instability
(red curve) in Figure 4(a) can be determined by using linear bifur-
cation analysis (see the appendices). The two thresholds, i.e., the
red and blue curves, separate the load-plane into three regions:
region#1, region#2, and region#3. To visualize the deformation
process, we select some points on the load-plane and illustrate the
corresponding deformations in Figure 4(b). Note that the equi-
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librium states are obtained by solving the two algebraic equations
(A.8) and their stability is investigated by using the energy method
(see the appendices). The number of equilibrium solutions, their
stabilities, and the shapes of the equilibrium solutions in each re-
gion on the load-plane in Figure 4 are summarized as follows:

• In region#1, the horizontal line Ê? =
√

γ separates it into two
subregions: region#1a and region#1b. In region#1a, the di-
electric film only has one equilibrium state—a stable circular
film. In contrast, the film in region#1b has two equilibrium
states: the stable state is a smaller circular film and the un-
stable state is a larger circular film.

• In region#2, the dielectric film encounters T-K instability and
has two equilibrium states: one unstable state is a circular
film and the other state is the elliptical configuration.

• In region#3, the dielectric film encounters pull-in instability
and has no equilibrium solutions.

Using the deformation in Figure 4(b) as a guide, we can
now highlight the prospects of giant electro-actuation induced
by the electromechanical instability. At a given pair of loads
(Ŝ?, Ê?) = (5,0.4), the original circular film (with a radius of 1)
deforms to a stable circular film with a larger radius of 2.591.
Interestingly, if we fix the dead load but decrease the electric field
from 0.4 to 0.2, the original film deforms to a stable elliptical film
with a semi-major axis of 3.813 and a semi-minor axis of 1.103.
The ratio of the semi-major axis to the radius is 1.472; however, we
have merely used half of the electric field. It shows that a relatively
large electro-actuation can be achieved by using a relatively small
electric field but suitably harnessing electromechanical instability.

5 Concluding remarks

In conclusion, we have shown that either a pitchfork bifurcation
(T-K instability) or a limit point bifurcation (pull-in instability),
are achievable for a soft dielectric film. The applied electric field
delays the onset of symmetry-breaking deformations and, more
interesting, after the onset of T-K instability, an increased electric
field can induce the symmetry-breaking state to revert back to
the symmetric deformation prior to the onset of pull-in instability.
The possibility of the rapid change of shapes between circular
and elliptical films is capable of providing large actuation; in
the conventional setting, the actuation is severely limited by the
pull-in instability.

Con�icts of interest
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Appendices

A. Details of the Formulation

Consider a circular dielectric film with radius R and thickness H in
the undeformed state. Taking the Cartesian coordinates (X1,X2,X3)

with an orthonormal basis (eee1,eee2,eee3), the domain of the circular

Region #3

Region #2Region #1a

#1b

(a)

(b)

Fig. 4 (a) Phase diagram of a circular �lm subjected to the mechanical and

electric loads. (b) The original circular �lm at (Ŝ?, Ê?) = (0,0) is denoted
by a solid gray circle. The deformed shapes at some selected points are

presented.

film in the reference configuration is represented by B0 = {XXX ∈
R3 : 0≤

√
X2

1 +X2
2 ≤R, 0≤X3≤H}. We consider the homogeneous

thinning in which the deformation xxx has the following component
form:

x1 = α1X1, x2 = α2X2, x3 = α3X3, (A.1)

where αi > 0, i = 1,2,3, are constant stretches. By the deformation
(A.1), the deformation gradient FFF = ∇xxx in the Cartesian coordi-
nates is given by

FFF := diag (α1,α2,α3) , (A.2)

which is represented by a diagonal matrix. For incompressible elas-
tomers, the constraint of incompressibility requires that the Jaco-
bian J = detFFF must be one, i.e.,

α1α2α3 = 1. (A.3)

The total nominal stress TTT within the incompressible dielectric
elastomers can be written as follows36,48:
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TTT =
∂W e

∂FFF
+TTT M−κFFF−T . (A.4)

Here W e is the strain-energy function of the purely elastic
part, TTT M is the nominal Maxwell stress, κ serves as the Lagrange
multiplier, and FFF−T is the inverse of the transpose FFFT . For a
linear dielectric film subjected to an applied voltage Φ in the
thickness direction, the nominal Maxwell stress is given by
TTT M := 1

2 εẼ2α
−2
3 diag(−α

−1
1 ,−α

−1
2 ,α−1

3 ), where ε is the material
permittivity and Ẽ = Φ/H.

Assuming isotropy, the strain-energy function W e(FFF) in (A.4)
depends on the deformation gradient through the principal
stretches α1, α2 and α3. Thus, the total nominal stress in
(A.4) is expressed as TTT := diag(T1,T2,T3). The principal stresses
are Tj = ∂W e/∂α j − (εẼ2α

−2
3 /2 + κ)α−1

j , where j = 1,2, and

T3 = ∂W e/∂α3 + (εẼ2α
−2
3 /2− κ)α−1

3 . With the boundary con-
ditions TTT eee3 = 000 on the top and bottom surfaces, we obtain the
Lagrange multiplier κ = α3∂W e/∂α3 + εẼ2α

−2
3 /2. Then the

in-plane principal stresses are

Tj =
∂W e

∂α j
−
(

α3
∂W e

∂α3
+ εẼ2

α
−2
3

)
α
−1
j , (A.5)

where j = 1,2. Since the principal stresses are independent of
the coordinates, the equilibrium equation, DivTTT = 000 that are
differential equations in general, are automatically satisfied here.

Finally, we only have to consider the traction boundary con-

ditions at
√

X2
1 +X2

2 = R, i.e., TTT eeer = Seeer with the normal eeer =

cosθeee1 + sinθeee2. Together with the diagonal matrix TTT :=
diag(T1,T2,T3), we obtain

S = Tj, (A.6)

where j = 1,2. The two algebraic equations (A.6), together
with the constraint of incompressibility (A.3), form a system of
algebraic equations with unknowns (α1,α2,α3) for a given pair of
loads (Ẽ,S).

In this paper, we consider a Mooney-Rivlin solid49 of which the
strain-energy function in (A.5) is

W e =
µ

2

3

∑
i=1

{(
α

2
i −1

)
+ γ

(
α
−2
i −1

)}
, (A.7)

where αi, i = 1,2,3, are the principal stretches, µ and γ are
material constants. Typically, the case of γ = 0 corresponds to the
strain-energy function of a neo-Hookean solid. Both neo-Hookean
and Mooney-Rivlin models are able to give good agreement with
the experiment data at small and moderate strains. However, an
apparent discrepancy is found at large strains. The Gent model is
usually used to capture the stress-strain relation of an elastomer
with nearly full stretched molecular chains50.

It follows from (A.5)-(A.7) that

S
µ

=
(

α j− γα
−3
j

)
−
[
α

2
3 +
(

εẼ2

µ
− γ

)
α
−2
3

]
α
−1
j . (A.8)

At a given pair of dead load and electric field, we seek the
solution of α1, α2 and α3 from the two algebraic equations (A.8),
together with the constraint α1α2α3 = 1.

Bearing in mind that the traction dead load S is symmetric, and
the applied electric field is homogeneous and is only applied in
the thickness direction, a common assumption would be that the
deformations of equilibrium states are symmetric, i.e., α1 = α2.
However, we try to seek the possibility of symmetry-breaking de-
formations and discuss the ensuing electromechanical behavior. To
directly show the relation between α1 and α2, we factor out S and
use α1α2α3 = 1 in (A.8), then

0 = (α1−α2)×
[
1+
(

εẼ2

µ
− γ

)
α1α2

+α
−3
1 α

−3
2

[
1+ γ

(
α

2
1 +α1α2 +α

2
2

)]]
.

(A.9)

Of interest is that the second term on the RHS of (A.9) is zero
under some circumstances, which may allow the existence of equi-
librium states with a symmetry-breaking deformation, i.e., α1 6=α2.
For neo-Hookean solids (γ = 0), it is evident that the second term
on RHS of (A.9) is always positive, then the identity (A.9) holds
if and only if α1 = α2. In contrast, Mooney-Rivlin solids can give
both symmetric and symmetry-breaking equilibrium solutions un-
der some circumstances. The aforementioned statement highlights
that too simple a constitutive choice (i.e. Neo-Hookean) may pre-
clude observation of certain types of bifurcations.

B. Details of the linear bifurcation analysis

The linear bifurcation analysis here is actually the analysis of the
uniqueness solutions (α1,α2) to the two algebraic equations (6) in
the main article. To proceed with the linear bifurcation analysis,
we rewrite the two equations here:

L j(α1,α2; Ẽ,S) = Tj(α1,α2; Ẽ)−S = 0, (B.1)

where j = 1,2. It should be noted that Ẽ and S are loading
parameters while α1 and α2 are the unknown variables. For a
given pair of loads (Ẽ,S), the deformed film possesses the stretches
(α1,α2) through the solutions of the two algebraic equations (B.1).

By the implicit function theorem51,52, the necessary condition
for the onset of bifurcation requires a zero determinant, namely∣∣∣∣∣∣∣∣∣

∂L1

∂α1

∂L1

∂α2

∂L2

∂α1

∂L2

∂α2

∣∣∣∣∣∣∣∣∣= 0. (B.2)
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For Mooney-Rivlin solids, the explicit forms of equations (B.1) are

L1 = α1− γα
−3
1 −α

−3
1 α

−2
2 +(γ− εẼ2

µ
)α1α

2
2 −

S
µ

= 0, (B.3a)

L2 = α2− γα
−3
2 −α

−2
1 α

−3
2 +(γ− εẼ2

µ
)α2

1 α2−
S
µ

= 0. (B.3b)

To make a straightforward presentation of the relation between
α1 and α2 in equilibrium, we subtract the two equations (B.3a)
and (B.3b), then we obtain

0 = (α1−α2)×
[
1+
(

εẼ2

µ
− γ

)
α1α2

+α
−3
1 α

−3
2

[
1+ γ

(
α

2
1 +α1α2 +α

2
2

)]]
,

(B.3c)

which is exactly equation (A.9). For the three equations (B.3a)–
(B.3c), any two can yield the solutions of (α1,α2). The linear
bifurcation analysis provides the conditions for the uniqueness
solution. We now consider the entries of the matrix in (B.2). It
follows from (B.3a) and (B.3b) that

∂L1

∂α1
= 1+3γα

−4
1 +3α

−4
1 α

−2
2 +(γ− εẼ2

µ
)α2

2 ,

∂L1

∂α2
=

∂L2

∂α1
= 2α

−3
1 α

−3
2 +2(γ− εẼ2

µ
)α1α2,

∂L2

∂α2
= 1+3γα

−4
2 +3α

−2
1 α

−4
2 +(γ− εẼ2

µ
)α2

1 .

(B.4)

Consider a trivial solution that corresponds to the symmetric
stretching α1 = α2 = α. Equations (B.3a) and (B.3b) reduce to

α− γα
−3−α

−5 +(γ− εẼ2

µ
)α3− S

µ
= 0, (B.5)

the entries (B.4) become
∂L1

∂α1
=

∂L2

∂α2
= 1+3γα

−4 +3α
−6 +(γ− εẼ2

µ
)α2,

∂L1

∂α2
=

∂L2

∂α1
= 2α

−6 +2(γ− εẼ2

µ
)α2,

(B.6)

and the condition (B.2) gives

0 =

(
1+3γα

−4 +5α
−6 +3(γ− εẼ2

µ
)α2
)

×
(

1+3γα
−4 +α

−6− (γ− εẼ2

µ
)α2
)
.

(B.7)

C. Neo-Hookean vs Mooney-Rivlin Constitutive Law

In this section, we briefly contrast two types of hyperelastic consti-
tutive laws–the Neo-Hookean vs Mooney-Rivlin by examining the
loading of a cube. Specifically, We show how the material param-

eters affect the stress-strain curve, especially the unusual stress-
strain response in Mooney-Rivlin solids with a negative parameter
(γ < 0). That is the reason we drop the discussion of the case of
γ < 0 in the main article.

C.1 Uniaxial loading
Subjected to a uniaxial loading in the X1 direction, the cube de-
forms from 1 to λ in the X1 direction. Due to the constraint of
incompressibility, the cube deforms from 1 to λ−1/2 in the X2 and
X3 directions, respectively. Consider the neo-Hookean model of
hyperelastic materials. The strain-energy function of the cube can
be expressed as

W e =
µ0

2

(
λ

2 +2λ
−1−3

)
, (C.1)

where µ0 is the shear modulus at small deformation. The nominal
stress T in the X1 direction is

T =
∂W e

∂λ
= µ0(λ −λ

−2). (C.2)

Consider the Mooney-Rivlin model that makes the strain-energy
function of the cube as

W e =
µ

2

{(
λ

2 +2λ
−1−3

)
+ γ

(
λ
−2 +2λ −3

)}
, (C.3)

where µ and γ are material constants. The nominal stress T in the
X1 direction becomes

T =
∂W e

∂λ
= µ

{
(λ −λ

−2)+ γ

(
−λ
−3 +1

)}
. (C.4)

C.2 Equibiaxial loading
Subjected to the equibiaxial loading, the cube deforms from 1 to
λ in both the X1 and X2 directions. Due to the constraint, the
cube deforms from 1 to λ−2 in the X3 directions. In this example,
we exclude the discussion of asymmetric deformation. Consider
the neo-Hookean model of hyperelastic materials. Then the strain-
energy function of the cube is expressed as

W e =
µ0

2

(
2λ

2 +λ
−4−3

)
, (C.5)

and the equibiaxial nominal stress T in the X1 and X2 directions is

T =
1
2

∂W e

∂λ
= µ0(λ −λ

−5). (C.6)

If we take the Mooney-Rivlin model, the strain-energy function
of the cube is

W e =
µ

2

{(
2λ

2 +λ
−4−3

)
+ γ

(
2λ
−2 +λ

4−3
)}

, (C.7)

and the nominal stress T in the X1 and X2 directions is

T =
1
2

∂W e

∂λ
= µ

{
(λ −λ

−5)+ γ

(
−λ
−3 +λ

3
)}

. (C.8)

D. Free energy of the electrostatic system

The linear bifurcation analysis can neither distinguish the type of
bifurcation nor determine the stability of the bifurcated branch.
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(a)

(b)

Fig. C1 Loading of neo-Hookean and Mooney-Rivlin solids with di�erent

material parameters. (a) Stress-stretch curve for uniaxial loading. For neo-

Hookean solids with a shear modulus of µ0 = 0.95µ, the stress-stretch curve

can also be represented by a Mooney-Rivlin solid with material parameters

(µ,γ) = (1,0.3) qualitatively and quantitatively. (b) Stress-stretch curve

for equibiaxial loading. Note that for negative parameters γ < 0, a tensile

stress (T > 0) in (a) can even lead to compression (λ < 1); moreover, a

compressive stress (T < 0) in (b) can make a tension (λ > 1). To exclude

these unusual stress-stretch responses, we thus omit the discussion of the

case of γ < 0 in the electromechanical instabilities in the main article.

We therefore carry out the stability analysis by using the energy
method. Consider the free energy of an electrostatic system30,48.
Then the free energy G of a circular dielectric film subjected to
an applied voltage Φ in the thickness direction and an in-plane
symmetric dead load S can be written as

G = πR2HW (α1,α2, D̃)−
∫

∂B0

Seeer · (xxx−XXX)−ΦQ, (D.1)

where ∂B0 is the lateral surface, i.e., ∂B0 = {XXX ∈R3 :
√

X2
1 +X2

2 =

R, 0 ≤ X3 ≤ H}. Consider the homogeneous thinning (1) in the
main article, i.e., x1 = α1X1,x2 = α2X2,x3 = α3X3. On the boundary
∂B0, we have the displacement

xxx−XXX = (α1−1)Rcosθeee1 +(α2−1)Rsinθeee2, (D.2)

and the inner product is

Seeer · (xxx−XXX) = SR[α1 cos2
θ +α2 sin2

θ −1], (D.3)

where 0≤ θ ≤ 2π. Thus,∫
∂B0

Seeer · (xxx−XXX)

=
∫ 2π

0
SR2H[α1 cos2

θ +α2 sin2
θ −1]dθ

= SπR2H(α1 +α2−2).

(D.4)

On the other hand, we consider the following form

ΦQ = πR2HẼD̃, (D.5)

where the nominal electric field is Ẽ = Φ/H and the nominal elec-
tric displacement is D̃ = Q/(πR2). Now the free energy density is

g =
G

πR2H
=W (α1,α2, D̃)−S(α1 +α2−2)− ẼD̃. (D.6)

For linear dielectrics, the energy function of the Mooney-Rivlin
type dielectrics is

W (α1,α2, D̃) =
µ

2

(
α

2
1 +α

2
2 +α

−2
1 α

−2
2 −3

)
+

µ

2
γ

(
α
−2
1 +α

−2
2 +α

2
1 α

2
2 −3

)
+

D̃2

2ε
α
−2
1 α

−2
2 .

(D.7)

By substituting (D.7) into (D.6), the equilibrium in electric quali-
ties, ∂g/∂ D̃ = 0, gives

Ẽ =
D̃
ε

α
−2
1 α

−2
2 . (D.8)

It follows from (D.7) and (D.8) that the free energy density g in
(D.6) becomes

g =
µ

2

(
α

2
1 +α

2
2 +α

−2
1 α

−2
2 −3

)
+

µ

2
γ

(
α
−2
1 +α

−2
2 +α

2
1 α

2
2 −3

)
−S(α1 +α2−2)− εẼ2

2
α

2
1 α

2
2 .

(D.9)

Consider the normalizations

ĝ =
g
µ
, Ŝ =

S
µ
, Ê =

Ẽ√
µ/ε

. (D.10)

We then have the normalized free energy density

ĝ =
1
2

(
α

2
1 +α

2
2 +α

−2
1 α

−2
2 −3

)
+

1
2

γ

(
α
−2
1 +α

−2
2 +α

2
1 α

2
2 −3

)
− Ŝ(α1 +α2−2)− Ê2

2
α

2
1 α

2
2 .

(D.11)
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For certain loads Ŝ and Ê with a given material parameter γ, we
can plot the contour of the free energy density ĝ on the α1−α2

plane.
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