
ar
X

iv
:1

91
2.

03
51

4v
1 

 [m
at

h.
O

C
]  

7 
D

ec
 2

01
9

REGULARIZED MOMENTUM ITERATIVE HESSIAN SKETCH FOR
LARGE SCALE LINEAR SYSTEM OF EQUATIONS∗

IBRAHIM KURBAN OZASLAN† , MERT PILANCI‡ , AND ORHAN ARIKAN†

Abstract. In this article, Momentum Iterative Hessian Sketch (M-IHS) techniques, a group of
solvers for large scale linear Least Squares (LS) problems, are proposed and analyzed in detail. The
proposed techniques are obtained by incorporating the Heavy Ball Acceleration into the Iterative
Hessian Sketch algorithm and they provide significant improvements over the randomized precondi-
tioning techniques. Through the error analyses of the M-IHS variants, lower bounds on the sketch size
for various randomized distributions to converge at a pre-determined rate with a constant probability
are established. The bounds present the best results in the current literature for obtaining a solution
approximation and they suggest that the sketch size can be chosen proportional to the statistical
dimension of the regularized problem regardless of the size of the coefficient matrix. The statistical
dimension is always smaller than the rank and it gets smaller as the regularization parameter in-
creases. By using approximate solvers along with the iterations, the M-IHS variants are capable of
avoiding all matrix decompositions and inversions, which is one of the main advantages over the alter-
native solvers such as the Blendenpik and the LSRN. Similar to the Chebyshev Semi-iterations, the
M-IHS variants do not use any inner products and eliminate the corresponding synchronizations steps
in hierarchical or distributed memory systems, yet the M-IHS converges faster than the Chebyshev
Semi-iteration based solvers.
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gression, random projection, oblivious subspace embedding, acceleration, parallel and distributed
computing
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1. Introduction. We are presenting a group of solvers, named as Momentum
Iterative Hessian Sketch, M-IHS, that is designed for solving large scale linear system
of equations in the form of

(1.1) Ax0 + ω = b,

where A ∈ R
n×d is the given data or coefficient matrix, b is the given measurement

vector contaminated by the noise or computation/discretization error ω, and x0 is
the vector desired to be recovered. Due to contaminated measurements, solutions
can differ significantly according to the constraints imposed on the problem. In this
article, we are particularly interested in the ℓ2-norm regularized Least Squares (LS)
solution:

x∗ = argmin
x

1

2
‖Ax− b‖22 +

λ

2
‖x‖22

︸ ︷︷ ︸
f(x)

,(1.2)

which is known as the Tikhonov Regularization or the Ridge Regression. The problem
in (1.2) frequently arises in various large scale applications of science and engineer-
ing. For example, it can appear in the discretization of Fredholm Integral Equations
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of the first kind [28]. In those cases, the data matrix might be ill conditioned and
the linear system might be either over-determined or square. When the system is
under-determined, although sparse solutions are more popular due to the Compressed
Sensing [16], the least norm solutions occupy an important place in statistic appli-
cations such as the Support Vector Machines [55, 13]. Solutions to the problem in
both regimes, i.e, n ≥ d and n < d, are often required as intermediate steps of rather
complicated algorithms such as the Interior Point and the ADMM that are widely
used in machine learning and image processing applications [9, 11, 47].

Throughout the manuscript, we are going to assume that a proper regularization
parameter λ estimate is available. In terms of complexity and error performance,
estimating a proper regularization parameter is equally important as obtaining the
regularized solution. Risk estimators such as the Discrepancy Principle, Unbiased
Prediction Risk Estimate, Stein’s Unbiased Risk Estimate and Generalized Cross Val-
idation can be directly used to estimate the regularization parameter of the moderate
size problems [52]. For large scale problems, these risk estimators can be adapted
for the lower dimensional sub-problems that arise during the iteration of the first or-
der iterative solvers [34]. A hybrid scheme that adaptively selects the regularization
parameter along with the iterations is also suitable for the proposed M-IHS solvers.
Indeed, we have developed such a technique, but we will present that study in a
separate manuscript to keep the length of this document in a reasonable size.

The regularized solution in (1.2) can be obtained by using direct methods such as
the Cholesky decomposition for square A, or the QR decomposition for rectangular A.
However, O(ndmin(n, d)) computational complexity of any full matrix decomposition
becomes prohibitively large as the dimensions increase. For large scale problems,
linear dependence on both dimensions is acceptable and can be obtained by using the
first order iterative solvers based on Krylov Subspaces [8]. These methods require
only a few matrix-vector and vector-vector multiplications for each iteration, but the
number of iterations that is needed to reach a certain level of tolerance is highly
sensitive to the condition number of the coefficient matrix. If the largest and the
smallest singular values of A are known, the optimal and un-improvable convergence
rate of the first order iterative solvers is O(1/k2) which can be obtained by using
Nesterov’s Accelerated Gradient Descent or Polyak’s Heavy Ball Method (HBM),
unfortunately such information on the largest and the smallest singular values of A is
rarely available in practice [40, 48]. In the absence of this information, the Conjugate
Gradient (CG) technique achieves the same rate by adaptively tuning the momentum
parameters through additional calculations at each iteration [12]. For the problem
in (1.2), techniques such as the LSQR and LSMR, that are based on Golub-Kahan-
Lanczos Bidiagonalization, produce more stable results than the CG technique with
the same convergence rate [44, 23]. Other techniques that are based on the Krylov
subspace approach with different convergence behaviours can be added to this list
[5, 25]. When these techniques are applied to the problem in (1.2), their common
convergence rate is characterized by the following inequality:

∥∥xi − x∗∥∥
2
≤

(√
κ(ATA+ λId)− 1√
κ(ATA+ λId) + 1

)i ∥∥x1 − x∗∥∥
2
, 1 < i,

where x∗ is the optimal solution of (1.2), x1 is the initial guess, xi is the i-th iterate of
the solver and the condition number κ(·) is defined as the ratio of the largest singular
value to the smallest singular value of its argument. Since for ill conditioned matrices
κ(ATA+ λId) becomes large, the rate of convergence can be extremely slow.
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The computational complexity of Krylov subspace-based iterative solvers is O(nd)
for each iteration, which is significantly less than O(ndmin(n, d)) if the number of
iterations can be significantly fewer than min(n, d). However, in applications such as
big data where A is very large dimensional, the computational complexity is not the
only metric for feasibility of the algorithms. For example, if the coefficient matrix is
too large to fit in a single working memory and it could be merely stored in a number
of distributed computational nodes, then at least two distributed computations of
matrix-vector multiplications are required at each iteration of algorithms such as the
CGLS or the LSQR (please see [31, 6] for such applications). This suggests that the
number of iterations should also be counted as an important metric to measure the
overall complexity of an algorithm. One way to reduce the number of iterations in the
iterative solvers is to use preconditioning which is a linear mapping of the solution
domain for transforming an ill conditioned problem to a well conditioned problem. In
the deterministic settings, finding a low-cost and effective preconditioning matrix is
still a challenging task.

In addition to the number of iterations, the number of inner products at each
iteration also plays an important role in the overall complexity. Each inner product
calculation constitutes a synchronization point in parallel computing and therefore
is undesirable for distributed or hierarchical memory systems [5]. The Chebyshev
Semi-iterative (CS) technique can be preferred in this kind of applications, since it
does not use any inner products and therefore eliminates some of the synchronization
steps that are required by the techniques such as the CG or the GMRES. However,
the CS requires prior information about the ellipsoid that contains all the eigenvalues
of A, which is commonly not available in practice [26].

The Random Projection (RP) techniques that are based on the Johnson-Linden-
strauss Lemma have found diverse field of applications [30, 17]. These algorithms are
capable of both reducing the dimensions and bounding the number of iterations with
statistical guarantees, while they are convenient for parallel and distributed compu-
tations as much as the direct methods. The development and the applications of the
RP based algorithms can be found in [54, 35] and references therein.

In the application of the RP to the regularized LS problem in (1.2), there are
two main approaches. In the first approach, that is referred to as classical sketching,
the coefficient matrix A and the measurement vector b are projected down onto a
lower dimensional (m ≪ n)1 subspace using a randomly constructed sketch matrix
S ∈ R

m×n. Then, the aim is to obtain an ζ-optimal solution with high probability in
terms of the cost approximation [18, 45]:

x̃ = argmin
x

1

2
‖SAx− Sb‖22 +

λ

2
‖x‖22 , such that f(x̃) ≤ (1 + ζ)f(x∗).

The best lower bounds on the sketch size for obtaining an ζ-optimal cost approxi-
mation have been derived for both sparse and dense sketch matrices by Avron et al.
[1]. They showed that the sketch size can be chosen proportional to the statistical di-
mension, which is defined as sdλ(A) = Tr

(
A(ATA+ λId)

−1AT
)
. Although the cost

approximation is sufficient for many machine learning problems, small distance to the
optimal solution, which is defined as the solution approximation, is a more preferable
metric for the problems arisen from, for example, discretization of Fredholm integrals
in the applied linear algebra [8, 52]. However, in [46], the classical sketching is shown

1Without loss of generality we can assume the linear system is over-determined, if it is not, then
we can take a dual of the problem to obtain an over-determined problem as examined later.
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to be sub-optimal in terms of sketch size for obtaining a solution approximation.
In the second approach, that is referred to as randomized preconditioning, the

algorithms with reasonable sketch sizes obtain an η-optimal solution approximation:

‖x̂− x∗‖W ≤ η ‖x∗‖W ,

where W is a positive definite weight matrix, by iteratively solving a number of low
dimensional sub-problems constituted by (SA,∇f(xi)) pairs. To the best of our
knowledge, Rokhlin [49] is the first who uses random projection techniques proposed
in [18] to construct a preconditioning matrix for CG-like algorithms. He used the
inverse of R factor in the QR decomposition of the sketched matrix SA for this pur-
pose. Later, implementation of similar ideas resulted in Blendenpik and LSRN which
have been shown to be faster than some of the deterministic solvers of LAPACK
[3, 36]. To solve the preconditioned problems, as opposed to the Blendenpik which
uses the LSQR, the LSRN uses the CS technique for parallelization purposes and
deduce the prior information about the eigenvalues by using results from the random
matrix theory. The main drawback of the LSRN and Blendenpik is that regardless
of the desired accuracy η, one has to pay the whole cost, O(md2), of a full m × d
dimensional matrix decomposition which is the dominant term in the computational
complexity of both algorithms. Iterative Hessian Sketch (IHS) proposed in [46] elim-
inates the dominant term, O(md2), by using the inverse of the sketched Hessian as
preconditioning matrix in the Gradient Descent method [53]. Therefore, instead of
computing a full decomposition or an inversion, a linear system can be approximately
solved for a pre-determined tolerance2. By adapting this idea into the CG technique,
Accelerated IHS (A-IHS) has been obtained in [53]. Lastly, in [42], it has been showed
that if the linear system is strongly over-determined, then the momentum parameters
of the HBM can be robustly estimated by using Marchenko Pastur (MP) Law [19, 20].
This analysis results in a prototype solver M-IHS that we study here in detail.

The statistical lower bounds in the current literature suggest that the sketch size
in randomized preconditioning algorithms can be chosen proportional to the rank of
the problem which can be much larger than the statistical dimension. Although, some
lower bounds on the sketch size that are proportional to the statistical dimension have
been obtained in Kernel Ridge Regression [2], it has not obtained in regularized LS
problem yet.

2. Contributions. In this article, we describe a group of random projection
based iterative solvers for large scale regularized LS problems. The proposed M-IHS

variants can be used for any dimension regimes if the statistical dimension of the
problem is sufficiently smaller than both size of the coefficient matrix A. In section 5,
we give the detailed convergence analyses of the proposed techniques. Our guarantees,
presented in Theorem 3.1 and Corollary 3.3, are based on the solution approxima-
tion metric as opposed to the results obtained for cost approximation metric in [1].
In Corollary 3.2, we derived the best lower bounds, in the current literature, on the
sketch size of various randomized distribution for attaining a certain convergence rate
with a constant probability. These guarantees can be easily extended to any other
sketch types by using the Approximate Matrix Multiplication (AMM) property [15].
If tighter bounds are acquired for the AMM property in the future, our bounds can be
automatically improved as well. Although our bounds for the dense sketch matrices
such as Subgaussian or Randomized Orthonormal Systems (ROS) are the same as

2We are going to explore this idea in detail later in the article.
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in [1], we gained slightly better results for the sparse sketch matrices. Additionally,
we provide some empirical bounds for the sketch size and the rate of convergence
in Corollary 3.4 which is very tight as demonstrated through various numerical ex-
periments. Lastly, in Algorithm 6.1, we extend the idea of LSQR into the linear
problems in the form of ATAx = b which we need to solve during the iterations of
all proposed Inexact M-IHS variants and of the Newton Sketch [47]. The advantages
that the proposed sub-solver, referred to as AAb Solver, provides over the symmetric
CG technique are the same as the advantages that are provided by the LSQR over
the CGLS technique [44]. The MATLAB implementations of the proposed solvers
together with the codes that generate the figures in the article can be found in the
following link: https://github.com/ibrahimkurban/M-IHS.

3. The proposed solvers for regularized LS problems. The M-IHS is ob-
tained by combining the IHS technique with the Heavy Ball Acceleration. The IHS
technique iteratively minimizes the quadratic objective in (1.2) by performing the
following updates:

xi+1 = argmin
x∈Rd

∥∥SiA(x− xi)
∥∥2
2
+ λ

∥∥x− xi
∥∥2
2
+ 2〈∇f(xi), x〉,

= xi + (ATST
i SiA+ λId)

−1
(
AT (b −Axi)− λxi

)
.

In all iterations, the same sketch matrix can be used by adding a proper step size and
the convergence can be accelerated by an additional momentum term as:

∆xi = argmin
x∈Rd

‖SAx‖22 + λ ‖x‖22 + 2
〈
∇f(xi), x

〉
,(3.1)

xi+1 = xi + αi∆xi + βi

(
xi − xi−1

)
.

If we restrict our attention to the fixed parameters, the optimal momentum parameters
α and β, that maximize the convergence rate, can be estimated by using random
matrix theory as completely independent of spectral properties of the coefficent matrix
A. Here, the linear system is assumed to be strongly over-determined, i.e., n ≫ d,
but by using the dual problem, the theory can be easily extended to the strongly
under-determined case of d ≫ n as well [10]. A dual of the problem in (1.2) is

(3.2) ν∗ = argmin
ν∈Rn

1

2

∥∥AT ν
∥∥2
2
+

λ

2
‖ν‖22 − 〈b, ν〉

︸ ︷︷ ︸
g(ν)

,

and the relation between the solutions of the primal and dual problem is

(3.3) ν∗ = (b−Ax∗)/λ ⇐⇒ x∗ = AT ν∗.

The dual problem in (3.2) can be minimized by using the same approach as the M-IHS:

∆νi = argmin
ν∈Rn

∥∥SAT ν
∥∥2
2
+ λ ‖ν‖22 + 2

〈
∇g(νi), ν

〉
,(3.4)

νi+1 = νi + α∆νi + β
(
νi − νi−1

)
,

and the solution of the primal problem can be obtained through the relation in (3.3).
We refer to this algorithm as Dual M-IHS. The convergence rates of the M-IHS and
Dual M-IHS solvers together with the necessary condition are stated in the Theo-
rem 3.1 below.

https://github.com/ibrahimkurban/M-IHS
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Theorem 3.1. Let A and b are the given data in (1.1); x∗ ∈ R
d and ν∗ ∈ R

n

are as in (1.2) and (3.2), respectively. Let U1 ∈ R
max(n,d)×min(n,d) consists of the

first n rows of an orthogonal basis for

[
A√
λId

]
if the problem is over-determined, and

consists of the first d rows of an orthogonal basis for

[
AT

√
λIn

]
if the problem is under-

determined. Let the sketching matrix S ∈ R
m×max(n,d) be drawn from a distribution

D such that

(3.5) PS∼D
[∥∥UT

1 STSU1 − UT
1 U1

∥∥
2
≥ ǫ

]
< δ, ǫ ∈ (0, 1).

Then, the M-IHS applied on (1.2) and the Dual M-IHS applied on (3.2) with fixed
momentum parameters

β∗ =

(√
1 + ǫ−

√
1− ǫ√

1 + ǫ+
√
1− ǫ

)2

, α∗ = (1− β∗)
√
1− ǫ2,

converge to the optimal solutions, x∗ and ν∗, respectively, at the following rate3 with
probability at least 1− δ:

∥∥xi+1 − x∗∥∥
D−1

≤ ǫ

1 +
√
1− ǫ2

∥∥xi − x∗∥∥
D−1

,

∥∥νi+1 − ν∗
∥∥
D−1

≤ ǫ

1 +
√
1− ǫ2

∥∥νi − ν∗
∥∥
D−1

,

where D−1 is the diagonal matrix whose diagonal entries are
√
σ2
i + λ and σi is the

i-th singular value of A.

The proof of Theorem 3.1 can be found in subsection 5.1. The Theorem 3.1 is valid
as well for the un-regularized case of λ = 0 as mentioned in subsection 5.3. Some
possibilities for the distributions satisfying the condition in (3.5) of Theorem 3.1 are
given in Corollary 3.2.

Corollary 3.2. The condition in Theorem 3.1 is satisfied if the sketch matrix
S is in one of the following types:

(i) Sparse Subspace Embedding [54] with single nonzero element in each column,
sketch size

m = Ω
(
sdλ(A)

2/(ǫ2δ)
)

and SA is computable in O(nnz(A));
(ii) Sparse Subspace Embedding with α > 2, δ < 1/2, ǫ < 1/2,

s = Ω(logα(sdλ(A)/δ)/ǫ)

non-zero elements in each column [33, 39], size

m = Ω(α · sdλ(A) log(sdλ(A)/δ)/ǫ
2)

and SA is computable in O(s · nnz(A));
(iii) SRHT sketch matrix [15, 46] with size

m = Ω
(
(sdλ(A) + log(1/ǫδ) log(sdλ(A)/δ)) /ǫ

2
)

and SA is computable in O(nd log(m));

3
√

β = ǫ

1+
√

1−ǫ2
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(iv) Sub-Gaussian sketch matrix [45, 15] with size

m = Ω(sdλ(A)/ǫ
2)

and SA is computable in O(ndm).

The proof of Corollary 3.2 can be found in subsection 5.2. For the solution approxi-
mation, we do not need the second condition in Lemma 11 of [1], hence we obtained
slightly better results for the sparse subspace embeddings in item (i) and (ii) of Corol-
lary 3.2. The number of iterations to reach a certain level of accuracy is stated in the
following corollary.

Corollary 3.3. For some ǫ ∈ (1, 1/2) and arbitrary η, if the sketch size meets
the condition of the corresponding distribution in Corollary 3.2 and the fixed momen-
tum parameters are chosen as in Theorem 3.1, then the M-IHS and the Dual M-IHS

obtain an η-optimal solution approximation in ℓ2-norm with total of

N =

⌈
log(η) log(C)

log(ǫ)− log(1 +
√
1− ǫ2)

⌉

iterations, where the constant C, that is defined as C =
√
κ(ATA+ λId) for the M-IHS

and C = κ(A)
√
κ(AAT + λIn) for the Dual M-IHS, can be removed if the semi-norm

in Theorem 3.1 is used as the solution approximation metric instead of ℓ2 norm.

Corollary 3.3 is an immediate result of Theorem 3.1 combined with Corollary 3.2.
Choosing a sketch size m and an error constant ǫ, that satisfy the statistical bounds
in both Theorem 3.1 and Corollary 3.2, might be challenging for researches who are
not specialists in the field. So in Corollary 3.4, we obtained substantially simplified
empirical versions of these bounds by using the MP Law [19] and by approximating
the Tikhonov regularization filtering coefficients with the binary coefficients.

Corollary 3.4. Let the entries of the sketch matrix be independent, zero mean,
unit variance and that have bounded higher order moments. If the Truncated SVD
regularization with truncation parameter ⌈sdλ(A)⌉ is used, then the M-IHS and the
Dual M-IHS with the following momentum parameters

β =
sdλ(A)

m
, α = (1 − β)2

will converge to the optimal solutions x∗ and ν∗, respectively, with a convergence rate
of

√
β as m → ∞ while min(n, d)/m remains constant. Any sketch size m > sdλ(A)

can be chosen to obtain an η-optimal solution approximation at most log(η)
log(sdλ(A)/m)

iterations.

Remark 3.5. Although the MP law provides bounds for the singular values of the
sketch matrix S in asymptotic regime, i.e., as m → ∞; the bounds become very good
estimators of the actual bounds when m takes finite values. As shown in Figure 1,
the rate of

√
β creates a remarkable fit for the numerical convergence rate of the

M-IHS variants when the momentum parameters given in Corollary 3.4 are used for
the Tikhonov regularization. This is because the sigmoid-like filtering coefficients in
the Tikhonov regularization can be thought of as the smoothed version of the binary
coefficients in the TSVD solution and therefore the binary coefficients constitute a
good approximation for the filtering coefficients of the Tikhonov regularization as
noted in subsection 5.4.
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In practice, the M-IHS and Dual M-IHS eliminate all the quadratic terms in the
complexity expression by approximately solving the low dimensional linear systems
in (3.1) and (3.4) instead of computing a matrix decomposition or an inversion. This
inexact sub-solver approach constitutes a trade-off between the computational com-
plexity and the accuracy, that is highly desirable in very large dimensional problems
where solutions with relatively lower accuracy are acceptable. Unfortunately, forming
this trade-off is not possible for the Blendenpik and the LSRN techniques. Inexact
sub-solvers have been known to be a good heuristic way to create this trade-off and
they are widely used in the algorithms that are based on the Newton Method to solve
the large scale normal equations [41]. In these inexact (or truncated) Newton Meth-
ods, inner iterations are terminated at the moment that the relative residual error is
below some iteration dependent threshold, named as the forcing terms [21]. In the
literature, there are various techniques to choose these forcing terms that guarantee
global convergence, but the number of iterations suggested by these techniques are
far above the total number of iterations used in practice. We refer interested reader
to [37] and we go forward with the heuristic constant threshold, ǫsub, that checks the
relative residual error of the linear system [7].

Any Krylov subspace techniques can be used to solve the sub-problems in (3.1)
and (3.4), but LSQR-like solvers that are adapted for the normal equations would
require computations of 4 matrix-vector multiplications per iteration. On the other
hand, due to the explicit calculation of (SA)T (SA)z, the symmetric CG, that would
require only 2 matrix-vector multiplications, might be unstable in the ill-conditioned
problems [44]. Therefore, in section 6, we propose a stable sub-solver which is partic-
ularly designed for the problems in the form of ATAx = b. The proposed sub-solver,
referred to as AAb Solver, is based on the Golub Kahan Bidiagonalization and it
uses a similar approach that the LSQR uses on the LS problem. In addition to the
stability advantage over symmetric CG technique, AAb Solver produces a bidiagonal
representation of sketched matrix as a byproduct of the iterations. This bidiagonal
form can be used in, for example, Generalized Cross Validation [24, 34] to estimate the
problem related parameters including the regularization parameter and the statistical
dimension. The inexact versions of the M-IHS and Dual M-IHS that use AAb Solver

are given in Algorithm 3.1 and Algorithm 3.2 where RP fun represents the function
that generates the desired sketched matrix such that E

[
STS

]
= Im whose imple-

mentation details can be found in the relevant references in Corollary 3.2.Setting the

Algorithm 3.1 M-IHS (for n ≥ d)

1: Input : A, b, m, λ, x1, sdλ(A), ǫsub

2: SA = RP fun(A,m)

3: β = sdλ(A)/m

4: α = (1− β)2

5: while until stopping criteria do

6: gi = AT (b−Axi)− λxi

7: ∆xi = AAb Solver(SA, gi, λ, ǫsub)

8: xi+1 = xi + α∆xi + β(xi − xi−1)

9: end while

forcing term ǫsub, for instance, to 0.1 for all iterations is enough for the inexact M-IHS

variants to converge at the same rate
√
β as the exact versions as demonstrated in
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Algorithm 3.2 Dual M-IHS (for n ≤ d)

1: Input : A, b, m, λ, sdλ(A), ǫsub

2: SAT = RP fun(AT ,m)

3: β = sdλ(A)/m

4: α = (1− β)2

5: ν0 = 0

6: while until stopping criteria do

7: gi = b−AAT νi − λνi

8: ∆νi = AAb Solver(SAT , gi, λ, ǫsub)

9: νi+1 = νi + α∆νi + β(νi − νi−1)

10: end while

11: xN+1 = AT νN+1

Figure 1.
Corollary 3.2 suggests that if the statistical dimension is several times smaller

than the dimensions of A, then it is possible to choose a substantially smaller sketch
size than the min(n, d). If this is the case, then the quadratic objective functions in
(3.1) and (3.4) become strongly under-determined problems, which makes it possible
to approximate the Hessian of the objective functions one more time by taking their
convex dual as it has been done in the Dual M-IHS. This approach is similar to
approximately solving the problems in (3.1) and (3.4) by using the AAb Solver, but
this time we are going to apply a second dimension reduction. At the end of two
Hessian sketching, the linear sub-problem whose dimensions are reduced from both
sides can be efficiently solved by the AAb Solver for a pre-determined tolerance as
before. Consider the following dual of the sub-problem in (3.1)

(3.6) z∗ = argmin
z∈Rm

1

2

∥∥ATST z +∇f(xi)
∥∥2
2
+

λ

2
‖z‖22

︸ ︷︷ ︸
h(xi,z)

,

which is a strongly over-determined problem if m ≪ min(n, d). Hence, it can be
approximately solved by the M-IHS updates:

∆zj = argmin
z∈Rm

∥∥WATST z
∥∥2
2
+ λ ‖z‖22 + 2

〈
∇zh(x

i, zj), z
〉
,(3.7)

zj+1 = zj + α2∆zj + β2

(
zj − zj−1

)
.

After M iterations, the solution of (3.1) can be recovered by using the relation in
(3.3) as ∆xi = (∇f(xi) − ATST zM )/λ. The same strategy can be applied on the
sub-problem in (3.4) by replacing SA with SAT and ∇f(xi) with ∇g(νi). The result-
ing algorithms, referred to as Primal Dual M-IHS, are given in Algorithm 3.3 and
Algorithm 3.4, respectively.

The primal dual idea presented here is first suggested by Zhang et al. in [53].
They used the A-IHS technique to solve the sub-problems that arise during the it-
erations of the Accelerated Iterative Dual Random Projection (A-IDRP) which is a
dual version of the A-IHS. However, since both of the A-IHS and the A-IDRP are
based on the CG technique, the convergence rate of the proposed A-IHS, A-IDRP
and the primal dual algorithm called as Accelerated Primal Dual Sketch (A-IPDS)
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Fig. 1: Convergence rate of the proposed solvers: The coefficient matrix, A ∈
R

32768×1000 with κ(A) = 108, of the left plot is generated by using philips singu-
lar value profile of RegTool [27]. The details of data generation can be found in
section 4. SRHT sketches with Discrete Cosine Transform is used. For the right plot,
the coefficient matrix, A ∈ R

24336×1296 is generated by using sprand command of
MATLAB. We first create a sparse matrix with size Ã ∈ R

20×6 and sparsity 15%,
then the final form is obtain by taking A = Ã⊗4 and deleting the all zero rows.
The final form, A, has sparsity ratio 0.1% and condition number κ(A) = 107. The
CountSketch matrix with single nonzero element in each column is used for the right
plot. The noise level ‖w‖2 / ‖Ax0‖2 = 1% is used for both problems and the resulting
statistical dimensions are 119 and 410, respectively. The lines with different markers
show theoretical convergence rate when the corresponding sketch size is used. Both
exact and inexact (seen on Algorithm 3.1) versions of M-IHS are run 32 times and
the result of each run is plotted as a separate thin line. The empirical momentum
parameters given in Corollary 3.4 are used for both schemes. The rate of

√
β provides

a remarkable fit to the numerical convergence rate of the exact scheme (thin blue
lines), and except for a small degradation in the SRHT case, setting forcing term to
a small constant such as ǫsub = 0.1 is sufficient for the inexact scheme to achieve the
same rate as the exact version in these experiments. Both figures suggest that the
empirical momentum parameters obtained through the TSVD approximation and the
MP law provided in subsection 5.4 successfully models the convergence behaviour of
the M-IHS variants.

are all degraded in the LS problems with high condition numbers due to the instability
issue of the symmetric CG technique [44]. Even if the regularization is used, still the
performance of the solvers proposed in [53] are considerably deteriorated compared
to the other randomized preconditioning techniques as shown in section 4. Further,
applying the preconditioning idea of IHS to the stable techniques such as the LSQR
that are adapted for the LS problem is not so efficient as the M-IHS variants, because
two preconditioning systems are needed to be solved per iteration for such techniques.

The computational saving when we apply a second dimension reduction as in the
Primal Dual M-IHS may not be significant due to the second gradient computations
in Line 10 and 9 of the given algorithms, but the lower dimensional sub-problems that
we obtain at the end of the second sketching can be used to estimate several parame-
ters including the regularization parameter itself. Indeed, we are currently working on
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Algorithm 3.3 Primal Dual M-IHS (for n ≤ d)

1: Input : A, b, m1, m2, λ, sdλ(A), ǫsub

2: SAT = RP fun(AT ,m1)

3: WAST = RP fun(SAT ,m2)

4: βℓ = sdλ(A)/mℓ, ℓ = 1, 2

5: αℓ = (1− βℓ)
2, ℓ = 1, 2

6: ν1,0 = 0, z1,0 = 0

7: for i=1:N do

8: bi = b−AAT νi − λνi

9: for j=1:M do

10: gi,j = SAT (bi −AST zj)− λzj

11: ∆zj = AAb Solver(WAST , gi,j , λ, ǫsub)

12: zj+1 = zj + α2∆zj + β2(z
j − zj−1)

13: end for

14: ∆νi = (bi −AST zM+1)/λ, z1,0 = zM+1,M

15: νi+1 = νi + α1∆νi + β1(ν
i − νi−1)

16: end for

17: xN+1 = AT νN+1

such an algorithm to estimate the regularization parameter of the large scale problems
along with the iterations of the M-IHS variants without requiring additional accesses
to coefficient matrix A.

The Primal Dual M-IHS techniques are extension of the inexact schemes. There-
fore, their convergence rates depend on their forcing terms that are used to stop the
inner iterations [37]. In [53], an upper bound for the error of the primal dual updates
is proposed. However as it is detailed in section 8, there are several inaccuracies in
the development of the bound. Therefore, finding a provably valid lower bound on
the number of inner loop iterations, that guarantee a certain rate of convergence at
the main loop, is still an open question for the primal dual algorithms.

The statistical dimension in Algorithm 3.1, 3.2, 3.3 and 3.4 can be estimated by
using a Hutchinson-like randomized trace estimator. We refer interested reader to [4]
for a detailed comparison of Hutchinson-like estimators. Alternatively, an algorithm
is proposed in [1] to estimate sdλ(A) within a constant factor in nnz(A) time with a
constant probability, if sdλ(A) ≤ M where:

M = min{n, d, ⌊(n+ d)1/3/poly(log(n+ d))⌋}.

However, due to the third order root and the division by at least a sixth order polyno-
mial, we can only have such small statistical dimension value when the singular values
of A decay severely/exponentially and the signal-to-noise ratio is very low. Therefore,
we preferred to use the heuristic trace estimator in Algorithm 3.5. The input matrix
SA can be replaced with SAT or even with WATST and WAST according to the al-
gorithm used. Any estimator in [4] can be substituted for the Hutchinson Estimator
and the number of samples, N , can be chosen accordingly. In the experiments that
we made with various singular value profiles, small samples sizes such as 2 or 3 and
ǫtr = 0.01 is sufficient to obtain satisfactory results. Noting that the momentum pa-
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Algorithm 3.4 Primal Dual M-IHS (for n ≥ d)

1: Input: A, b, m1, m2, λ, x1, sdλ(A), ǫsub

2: SA = RP fun(A,m1)

3: WATST = RP fun(SA,m2)

4: βℓ = sdλ(A)/mℓ, ℓ = 1, 2

5: αℓ = (1 − βℓ)
2, ℓ = 1, 2

6: x0 = 0, z1,0 = 0

7: for i=1:N do

8: bi = AT (b−Axi)− λxi

9: for j=1:M do

10: gi,j = SA(bi −ATST zj)− λzj

11: ∆zj = AAb Solver(WATST , gi,j, λ, ǫsub)

12: zj+1 = zj + α2∆zj + β2(z
j − zj−1)

13: end for

14: ∆xi = (bi −ATST zM+1)/λ, z1,0 = zM+1,M

15: xi+1 = xi + α1∆xi + β1(x
i − xi−1)

16: end for

Algorithm 3.5 Inexact Hutchinson Trace Estimator

1: Input: SA ∈ R
m×d, λ, N, ǫtr

2: vℓ = {−1,+1}d, ℓ = 1, . . . , N
3: τ = 0
4: for i = 1:N do
5: x = SAvi

6: zi = AAb Solver(SA, x, λ, ǫtr)
7: τ = τ + xT zi

8: end for
9: Output: τ = τ/N

rameters suggested in Corollary 3.4 are not sensitive to small errors in sdλ(A), since
β = sdλ(A)/m. When the sketch size m exceeds thousands, for example, an error
made at the first digit of the statistical dimension estimation, distorts the momentum
parameter only at the third decimal.

4. Numerical Experiments and Comparisons. For a fair comparison, we
have implemented all the proposed algorithms in this manuscript as well as those
that are used for comparisons in MATLAB. All codes can be found in the link4. The
coefficient matrix A ∈ R

n×d is generated for various sizes as follows: we first sample
the entries of A from distribution N (1d,Γ) where Γij = 5 ·0.9|i−j| so that the columns
are highly correlated with each other. Then, by using the SVD, we replace the singular
values with philips profile provided in RegTool. We scale the singular values to set the
condition number κ(A) to 108 and we use the same input signal provided by RegTool
[27]. In this way, we have obtained a challenging setup for any first order iterative

4https://github.com/ibrahimkurban/M-IHS

https://github.com/ibrahimkurban/M-IHS
https://github.com/ibrahimkurban/M-IHS
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solvers to compare their performances. In all experiments, the same setup has been
used unless indicated. We counted the number of operations according to Hunger’s
report [29]. All results have been obtained by averaging over 32 MC simulations.

We compared the proposed algorithms with the state of the art randomized
preconditioning techniques which can reach any level of desired accuracy within a
bounded number of iterations. The compared methods can be briefly described as
follows. The Blendenpik uses the R factor in QR decomposition of the sketched matrix
SA as the preconditioning matrix for the LSQR algorithm just like the method pro-
posed by Rokhlin et al [3, 49] and it uses Randomized Orthonormal System (ROS) to
generate the sketched matrix [45]. The LSRN uses the V factor in the SVD similar to
the Blendenpik. In spite of its high running complexity, the Gaussian sketch matrices
are preferred in the LSRN. In addition to the LSQR, the CS can be used in the LSRN
as the core solver for parallelization purposes without calculating the singular values
explicitly [36]. The IHS uses the sketched Hessian as the preconditioning matrix for
the Gradient Descent. The Accelerated IHS (A-IHS) uses this idea for the CG algo-
rithm in over-determined problems. The dual counter-part of the A-IHS algorithm,
A-IDRP, is shown to be faster than the Dual Random Projection algorithm proposed
in [55], so we did not include the DRP in the simulations. Additionally, we include
a CS variant of the IHS (IHS-CS) to the comparisons. We combined the randomized
preconditioning idea of IHS with the preconditioned CS method [5]. We found the
bounds for the eigenvalues in the same way as the LSRN. We have solved the low
dimensional sub-problems required by all IHS variants by taking the QR decomposi-
tion, but for inexact schemes, we have used the proposed AAb Solver with constant
forcing term ǫsub = 0.1. We did not include inexact versions of the accelerated al-
gorithms proposed in [53], since their exact versions are outperformed by the Exact
M-IHS variants in all settings. Except for the LSRN variants which use Gaussian
sketch matrices, we used Discrete Cosine Transform in the ROS for all techniques.

We compare the operation counts required by the algorithms to obtain a certain
level of accuracy for the solution approximation metric. In the first experiment,
we did not include noise in the linear system to emphasize the convergence rate
that the algorithms can provide in such severely ill posed problems. To make the
problem more challenging, we sampled the input vector, x0, from uniform distribution
Uni(−1, 1) for this experiment only. In such scenarios, convergence rates of Krylov
subspace-based iterative solvers without preconditioning fall its minimum value. The
results are shown in Figure 2. Due to high running time of the Gaussian sketches,
O(mnd), the LSRN variants require more operations (for the size of the problems
considered here approximately 10 times larger) than the others. Due to the lack
of inner product calculations, the M-IHS requires slightly fewer operations than the
Blendenpik, nonetheless it reaches the same accuracy with the LSRN-LSQR. The A-
IHS algorithm has the lowest performance which is expected in the un-regularized
problems, since it is adapted on the CG technique that can be unstable for the un-
regularized LS problems due to the high condition number [44]. The convergence of
the CS-based techniques, both of the IHS and the LSRN variants, are substantially
slower than the M-IHS, which suggests that the M-IHS algorithm can take the CSs
place in those applications where parallel computation is viable. A similar comparison
of the M-IHS with Accelerated Randomized Kaczmarz (ARK) and CGLS without
preconditioning can be seen on Figure 2 of [42].

By using additive i.i.d Gaussian noise at various levels of variance, we tested the
aforementioned algorithms on regularized LS problems. Results for over-determined
and under-determined cases can be seen on Figure 3 and Figure 4, respectively. We
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Fig. 2: LS problem without regularization: The problem size is 216×2000. In order to
compare the convergence rates, all solvers are allowed to do N = 100 iterations with
same sketch size, m = 4000. According to the Corollary 3.4, we expect the M-IHS to

reach an accuracy:
∥∥xN − x0

∥∥
2
≤ κ(A) ‖x0‖2

(
1
/√

2
)N

= 9 · 10−8, which is exactly
the case.

used a sketch size m = min(n, d) to emphasis the promise of the RP techniques
although such sizes are not applicable for the LSRN variants. Even if the sketch size
is increased further, the convergence rates of the LSRN variants were considerably
lower than the others; so we leave out the LSRN variants from the comparison set
in the regularized settings. The A-IHS and A-IDRP methods are slower than the
Blendenpik, IHS-CS and M-IHS variants in the regularized setup as well. Besides, the
inexact schemes proposed for the M-IHS and Dual M-IHS requires significantly less
operations to reach the same level of accuracy as the exact versions. Although the
inexact schemes require approximately 10 times less operations then the exact versions
in these setups; the saving gets larger as the sketch size increases, because while any
full decomposition requires O(mmin(n, d)2) operations, approximately solving the
sub-problem requires only O(mmin(n, d)) operations.

Corollary 3.2 implies eligibility of sketch sizes that are smaller than the rank,
m ≤ min(n, d) which suggest that the RP techniques can be used for all dimension
regimes whether it is strong or not, as long as the statistical dimension of the problem
is small compared to the dimensions of coefficient matrix A. This implication can be
verified in Figure 5 on which we showed the performance of the Primal Dual M-IHS

techniques. As discussed in section 3, the Primal Dual M-IHS techniques seem to
increase the complexity in the contrary of saving, but they obtained lower dimensional
sub-problems than the M-IHS and Dual M-IHS, which suggests that some problem
related parameters can be deduced more cheaply during iterations of the Primal

Dual M-IHS technique. Lastly, the Primal Dual M-IHS variants have a noticeably
higher rate of convergence than the A-IPDS algorithm which is based on the CG
technique.

5. Theoretical analysis of proposed approaches. In this section, we are
going to provide a unified analysis of the regularized LS problems through the proofs
by including many comments and explanations. Throughout the analysis we denote
A = UΣV T as the compact SVD with U ∈ R

n×r, Σ = diag(σ1, . . . , r) ∈ R
r×r and



REGULARIZED MOMENTUM ITERATIVE HESSIAN SKETCH 15

9.8 10 10.2 10.4 10.6 10.8 11 11.2 11.4
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

11.355 11.36 11.365 11.37 11.375 11.38

-8

-7

-6

-5

-4

-3

Fig. 3: Regularized LS problem (n ≫ d): The problem size is 216 × 4000. The noise
level is ‖w‖2

/
‖Ax0‖2 = 1%. For this noise level, the statistical dimension of the

problem is sdλ(A) = 443. The optimal regularization parameter that minimizes the
‖x∗(λ) − x0‖2 is provided to all techniques. All methods are allowed to do N = 20
iterations with the same sketch size of m = 4000. According to the Corollary 3.4,

M-IHS is expected to satisfy:
∥∥xN − x∗∥∥

2
≤ ‖x∗‖2

√
κ(ATA+ λId)

(√
443/4000

)N

=

6 · 10−9 which is almost exactly the case. The Inexact M-IHS requires significantly
fewer operations to reach the same accuracy as others. For example to obtain an
(η = 10−4)-optimal solution approximation, the Inexact M-IHS requires approximately
10 times less operations than any techniques that need factorization of or inversion of
the sketched matrix.

V ∈ R
d×r where r = min(n, d).

5.1. Proof of Theorem 3.1. To prove the theorem for the M-IHS and the Dual

M-IHS, we mainly combine the idea of partly exact sketching, that is proposed in [1],
with the Lyapunov analysis, that we use in [42]. In parallel to [1], we define diagonal
matrix D := (Σ2 + λIr)

−1/2 and the partly exact sketching matrix as:

Ŝ =

[
S 0
0 Ir

]
, S ∈ R

m×max(n,d).

The Proof for M-IHS:. Let

Â =

[
UΣD√
λV D

]
=

[
U1

U2

]
, ÂT Â = Id, b̂ =

[
b
0

]
,

so that U1 is the first n rows of an orthogonal basis for

[
A√
λId

]
as required by the

condition in (3.5) of the theorem. We have the following equality

‖Ax− b‖22 + λ ‖x‖22 =
∥∥∥Ây − b̂

∥∥∥
2

2
, for

{
∀x ∈ R

d | y = D−1V Tx
}
,
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Fig. 4: Regularized LS problem (n ≪ d): The problem size is 4000× 216. The noise
level is ‖w‖2

/
‖Ax0‖2 = 1%. For this noise level, the statistical dimension of the

problem is sdλ(A) = 462. The optimal regularization parameter, in the same sense
as Figure 3, is provided to the all techniques. All methods are allowed to do N = 20
iterations with same sketch sizem = 4000. The comments as Figure 3 are valid in here
as well. The Inexact scheme for Dual M-IHS is capable of reducing the complexity in
considerable amounts.

and the sketched matrix

ŜÂ =

[
SUΣD√
λV D

]
=

[
SU1

U2

]
.

Since the following Hessian Sketch (HS) sub-problem

∆yi = argmin
y

∥∥∥ŜÂy
∥∥∥
2

2
− 2〈ÂT (̂b − Âyi), y〉

is equivalent to (3.1), we can examine the following bipartite transformation to find
out the convergence properties of the M-IHS:

[
yi+1 − y∗

yi − y∗

]
=

[
(1 + β)Id − α(ÂT ŜT ŜÂ)−1 −βId

Id 0

]

︸ ︷︷ ︸
T

[
yi − y∗

yi−1 − y∗

]
,

where y∗ = D−1V Tx∗ and ÂT Â = Id. The eigenvalues and therefore the contraction
ratio of the transformation can be found analytically by converting the matrix T into
a block diagonal form through the same similarity transformation given in [42]:

T = P−1 diag(T1, . . . , Td)P, Ti :=

[
1 + β − αλi β

1 0

]
,

P =

[
Ψ 0
0 Ψ

]
Π, Πi,j =

{
1 i is odd j = i,

1 i is even j = r + i,

0 otherwise,



REGULARIZED MOMENTUM ITERATIVE HESSIAN SKETCH 17

10 10.5 11 11.5 12
-10

-8

-6

-4

-2

0

(a) n ≥ d

10 10.5 11 11.5 12
-10

-8

-6

-4

-2

0

(b) n ≤ d

Fig. 5: Regularized LS problem for all dimension regimes: The problem dimen-
sions are set to max(n, d) = 5 · 104 and min(n, d) = 104. The noise level is set
to ‖w‖2

/
‖Ax0‖2 = 10%. All techniques are provided with the optimal regulariza-

tion parameter which is chosen in the same way as Figure 3. The Inexact schemes
of the M-IHS and Dual M-IHS use a sketch size m = 2 · sdλ(A). The primal dual
schemes use m1 = m2 = 2 · sdλ(A) except for the green Primal Dual M-IHS which
uses m1 = m2 = 8 · sdλ(A). The statistical dimension for (a) is sdλ(A) = 690 and for
(b) is sdλ(A) = 825. All methods are allowed to do N = 60 iterations except for that
the Primal Dual M-IHS with larger sketch size is allowed to do only 20 iterations.
At the end of iterations, the Primal Dual M-IHS with larger sketch size reaches the
same accuracy level as the one with smaller sketch size, but it require slightly more
operations, which suggests that complexity cannot be reduced by choosing smaller
sketch sizes below some certain level that depends on the dimensions (n, d, sdλ(A)).
The number of inner iterations are restricted by M = 25 for all primal dual schemes.
Instead of limiting the number of iterations, forcing terms that checks the relative
residual error can also be used for the stopping criterion of the inner loop iterations.
Lastly, fixed forcing term ǫsub = 0.1 is used in the AAb Solver for all inexact schemes.

where ΨΛΨT is the Spectral decomposition of (ÂT ŜT ŜÂ)−1 and λi is the ith eigen-
value. The characteristic polynomials of each block is

u2 − (1 + β − αλi)u + β = 0, ∀i ∈ [r].

If the following condition holds

(5.1) β ≥ (1 −
√
αλi)

2, ∀i ∈ [r],

then both of the roots are imaginary and both have a magnitude
√
β for all λ’s. In this

case, all linear dynamical systems driven by above characteristic polynomial will be in
the under-damped regime and the contraction rate of the transformation T , through
all directions, not just one of them, will be exactly

√
β. If the condition in (5.1) is not

satisfied for a λj with j ∈ [r], then the linear dynamical system corresponding to λj

will be in the over-damped regime and the contraction rate in the direction through
the eigenvector corresponding to this over-damped system will be smaller compared
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to the others. As a result, the overall algorithm will be slowed down substantially
(see [43] for details). If the condition in (3.5) of Theorem 3.1 holds,

∥∥∥ÂT ŜT ŜÂ− Ir

∥∥∥
2
=

∥∥UT
1 STSU1 + UT

2 U2 − Ir
∥∥
2
=

∥∥UT
1 STSU1 − UT

1 U1

∥∥
2
≤ ǫ,

then

sup
‖v‖

2
=1

vT ÂT ŜT ŜÂv ≤ 1 + ǫ and inf
‖v‖

2
=1

vT ÂT ŜT ŜÂv ≥ 1− ǫ,

and

maximize
i∈[r]

λi ≤
1

1− ǫ
and minimize

i∈[r]
λi ≥

1

1 + ǫ
.

Consequently, the condition in (5.1) can be satisfied for all λi’s by the following choice
of β that maximizes the convergence rate over step size α

√
β∗ = minimize

α

(
max

{
1−

√
α√

1 + ǫ
,

√
α√

1− ǫ
− 1

})
=

ǫ

1 +
√
1− ǫ2

,

where the minimum is achieved at α∗ = 4(1−ǫ2)

(
√
1+ǫ+

√
1−ǫ)2

= (1− β∗)
√
1− ǫ2 as claimed.

The Proof for Dual M-IHS:. The proof for the dual counter-part is almost same
as the proof for M-IHS except for the following modifications. Let

ÂT =

[
V ΣD√
λUD

]
=

[
U1

U2

]
, ÂÂT = In and ŜÂT =

[
SVΣD√
λUD

]
=

[
SU1

U2

]
,

so that U1 is the first d rows of an orthogonal basis for

[
AT

√
λIn

]
as required by the

theorem. We have the following equality:

1

2

∥∥AT ν
∥∥2
2
+

1

2
‖ν‖22 − 〈b, ν〉 = 1

2

∥∥∥ÂTw
∥∥∥
2

2
− 〈DUT b, w〉,

for
{
∀ν ∈ R

n | w = D−1UT ν
}
. Thus, following HS sub-problem is equivalent to (3.4)

∆wi+1 = argmin
y

∥∥∥ŜÂTw
∥∥∥
2

2
− 2〈DUT b− ÂÂTwi, w〉.

We can analyze the following bipartite transformation to figure out the convergence
properties of the Dual M-IHS

[
wi+1 − w∗

wi − w∗

]
=

[
(1 + β)In − α(ÂŜT ŜÂT )−1 −βIn

In 0

]

︸ ︷︷ ︸
T

[
wi − w∗

wi−1 − w∗

]
,

where w∗ = D−1UT v∗. The rest of the proof can be completed straightforwardly by
following the same analysis steps as in the proof for the M-IHS case.

5.2. Analysis of the Condition in Theorem 3.1. Theorem 3.1 is valid if the
sketch matrix S satisfies the following condition:

(5.2)
∥∥UT

1 STSU1 − UT
1 U1

∥∥
2
≤

∥∥UT
1 STSU1 − UT

1 U1

∥∥
F
≤ ǫ,
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where

‖U1‖2F = ‖UΣD‖2F =
∥∥∥Σ(Σ2 + λIr)

−1/2
∥∥∥
2

F
=

r∑

i=1

σ2
i

σ2
i + λ

= sdλ(A),

and ‖U1‖22 =
σ2

1

σ2

1
+λ

≈ 1 for a properly chosen regularization parameter λ. In this

subsection before giving the proof of Corollary 3.2, we summarize some of the current
results and tools from the random matrix theory literature that is used to prove the
condition in (5.2) for different applications such as low rank approximation, matrix
ridge regression, kernel ridge regression, ℓp regression, k-means clustering.

If the sketch matrix S is drawn from a randomized distribution D over matrices
R

m×n, then the condition in (5.2) can be met with a desired level of probability.

Definition 5.1. (JL Lemma [30]) For any integer n > 0, ǫ, δ < 1/2, the distri-
bution D over S ∈ R

m×n is called as (ǫ, δ)−JL distribution if for any x ∈ R
n,

PS∼D [(1− ǫ) ‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ǫ) ‖x‖2] > 1− δ,

holds for m = Θ(ǫ−2 log(1/δ)).

The sketch size given in the definition is optimal [33]. By assuming x is unit norm,
the probability in Definition 5.1 can be bounded by the Markov Inequality [54, 39]:

PS∼D
[∣∣ ‖Sx‖2 − 1

∣∣ > ǫ
]
= PS∼D

[∣∣ ‖Sx‖2 − 1
∣∣ℓ > ǫ

]

≤ ǫ−ℓ · ES∼D
[∣∣ ‖Sx‖2 − 1

∣∣ℓ
]
,

which leads to a fundamental property:

Definition 5.2. (JL-Moment Property Definition 6.1 in [33]) Distribution D
over R

m×n has (ǫ, δ, ℓ)-JL moment property if for all the unit norm vectors x ∈ R
n

ES∼D
[
| ‖Sx‖22 − 1|ℓ

]
≤ ǫℓ · δ.

Having JL-moment property is a stronger condition than being a JL-distribution,
but if a distribution D is a (ǫ, e−Ω(ǫ2m))-JL distribution, then it is called as Strong

JL Distribution [32] and it automatically verifies the (ǫ, e−Ω(ǫ2m),min(ǫ2m, ǫm))-JL
moment property [33]. The JL-moment property is important to reach our goal due
to the following property called the Approximate Matrix Multiplication (AMM):

Theorem 5.3. (AMM Property, Theorem 6.2 in [33]) Given ǫ, δ ∈ (0, 1/2), let D
be any distribution over matrices in R

m×n with the (ǫ, δ, ℓ)-JL moment property for
some ℓ ≥ 2. Then for any A,B ∈ R

n×d real matrices,

PS∼D
[∥∥ATSTSB −ATB

∥∥
F
< 3ǫ ‖A‖F ‖B‖F

]
> 1− δ.

If the sketch matrix satisfies the JL-moment property, setting A = B = U1 in the
AMM property gives the condition in 5.2, but except for the sparse sketch matrices
with single non-zero element in each column, the AMM property that is based on the
JL-Distribution is too restrictive for the other sketch types mentioned in Corollary 3.2
to satisfy the condition. For them, the ℓ2 subspace embeddings, which is introduced
in [50], can be used.
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Definition 5.4. (Oblivious ℓ2 Subspace Embedding (OSE)) If a distribution D
satisfies

PS∼D
[∥∥USTSU − I

∥∥
2
> ǫ

]
< δ,

with U ∈ R
n×k, UTU = Ik, S ∈ R

m×n, then it is called (ǫ, δ, k)-OSE.

The JL-distributions are special case of (ǫ, δ, k)-OSE with k = n. While the JL
distributions projects the whole R

n, the OSE distributions embed only a subspace
span(U) ⊆ R

n. Consequently, the subspace embeddings provide a more general
moment property.

Definition 5.5. (OSE Moment Property [15]) A distribution D over S ∈ R
m×n

has (ǫ, δ, k, ℓ)-OSE Moment Property, if for all matrices U ∈ R
n×k with orthonormal

columns,

ES∼D
[∥∥UTSTSU − Ik

∥∥ℓ
2

]
< ǫ−ℓ · δ.

The JL moment property is the special case of the OSE moment property with k = n
and the relation between them is given in the following lemma.

Lemma 5.6. (Lemma 4 of [15]) If a distribution D satisfies the (ǫ, δ, ℓ)-JL moment
property, then D satisfies the (2ǫ, 9kδ, k, ℓ)-OSE moment property.

By using the OSE Moment property to obtain a generalized AMM property is also
possible:

Theorem 5.7. ((ǫ, δ, k)-AMM Property [15]) If a distribution D over S ∈ R
m×n

has the (ǫ, δ, 2k, ℓ)-OSE moment property for some δ < 1/2 and ℓ ≥ 2, then for any
A,B:

PS∼D


∥∥ATSTSB −ATB

∥∥
2
> ǫ

√√√√
(
‖A‖22 +

‖A‖2F
k

)(
‖B‖22 +

‖B‖2F
k

)
 < δ.

Theorem 5.7 breaks the dependence between the error constant ǫ and the sketch size
m in the AMM property given in Theorem 5.3. By Theorem 5.7, the sketch sizes can
be chosen in accordance with the embedding size k to satisfy the condition in (5.2)
as we will show next.

Proof of Corollary 3.2, Item (i). Count Sketch with a single nonzero element

in each column and size m ≥ 2/(ǫ′2δ) has (ǫ′, δ, 2)-JL moment property [51]. By
Theorem 5.3:

∥∥U1S
TSU1 − UT

1 U1

∥∥
F
< 3ǫ′ ‖U1‖2F = 3ǫ′sdλ(A) ≤ ǫ

for ǫ′ = ǫ/(3sdλ(A)). So, condition in (5.2) holds with probability at least 1 − δ, if
m = O(sdλ(A)

2/(ǫ2δ)).
Proof of Corollary 3.2, Item (ii). Combining Theorem 4.2 of [14] and Remark

2 of [15] implies that any sketch matrix drawn from an OSNAP [39] with the conditions
given in the item (ii) of Corollary 3.2 satisfies the (ǫ′, δ, k, log(k/δ))-OSE moment
property, thus the (ǫ′, δ, k/2)-AMM Property. Setting A = B = U1 and k = sdλ(A)/2
in Theorem 5.7 gives:

∥∥UT
1 STSU1 − UT

1 U1

∥∥
2
≤ ǫ′(‖U1‖22 + 2) ≤ 3ǫ′ ≤ ǫ

with probability at least 1− δ.
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Remark 5.8. Based on the lower bounds established for any OSE in [38], the
Conjecture 14 in [39] states that any OSNAP with m = Ω((k + log(1/δ))/ǫ2) and
s = Ω(log(k/δ)/ǫ) have the (ǫ, δ, k, ℓ)-OSE moment property for ℓ = Θ(log(k/δ)), an
even integer. As a result of the conjecture and Theorem 5.7, the condition in (5.2)
can be satisfied with probability at least 1 − δ by using an OSNAP matrix with size
m = Ω((sdλ(A) + log(1/δ))/ǫ2) and sparsity s = Ω(log(sdλ(A)/δ)/ǫ).

Proof of Corollary 3.2, Item (iii). By Theorem 9 of [15], SRHT with the
sketch size given in item (iii) has the (ǫ′, δ, 2sdλ(A), log(sdλ(A)/δ))-OSE moment
property and thus by Theorem 5.7, it provides (ǫ′, δ, sdλ(A))-AMM property. Again,
setting A = B = U1 and k = sdλ(A) produces the desired result.

Proof of Corollary 3.2, Item (iv). The Subgaussian matrices having entries
with mean zero and variance 1/m satisfy the Definition 5.1 with optimal sketch
size. Also, they have the (ǫ/2, δ,Θ(log(1/δ)))-JL moment property [32]. Thus by
Lemma 5.6 such matrices have (ǫ, δ, k,Θ(k + log(1/δ)))-OSE moment property for
δ < 9−k, which means m = Ω(k/ǫ2). Again, by setting A = B = U1 and k = sdλ(A)
in Theorem 5.7 gives the desired result.

5.3. Convergence proof without regularization. If the LS problem without
any regularization is tried to be solved, then we need the following inequality to hold:

∥∥UT
1 STSU1 − UT

1 U1

∥∥
2
≤ ǫ

λ→0
======⇒

n≥d

∥∥UTSTSU − Ir
∥∥
2
≤ ǫ,

which can be satisfied with a constant probability, if the sketch matrix is drawn from
a distribution D that has the OSE Moment property defined in Definition 5.5. Then,
the bound for the sketch size can be derived by using the other results presented
above. The details of how to obtain the above inequality can be found in [42].

5.4. Proof of Corollary 3.4. Consider the regularized LS solution with pa-
rameter λ and the Truncated SVD solution with parameter ⌈sdλ(A)⌉:

x∗ =
r∑

i=1

σ2
i

σ2
i + λ

uT
i b

σi
vi and x† =

⌈sdλ(A)⌉∑

i=1

uT
i b

σi
vi

where ui’s and vi’s are columns of U and V matrices in the SVD. The Tikhonov
regularization with the closed form solution is preferred in practise to avoid the high
computational cost of the SVD. The filtering coefficients of the Tikhonov regulariza-

tion,
σ2

i

σ2

i
+λ

, become very close to the binary filtering coefficients of the TSVD, as the

decay rate of the singular values of A increases. In these cases, both the solution x∗

and x† become almost indistinguishable. Thereby, the diagonal matrix, ΣD, which
is used in the proof of Corollary 3.2 can be approximated by the diagonal matrix Π
where

Πii =

{
1 if i ≤ sdλ(A) ≤ r
0 otherwise

,
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which is equivalent to replace the Tikhonov coefficients by the binary TSVD coeffi-
cients. Then, we have

(
ÂT ŜT ŜÂ

)−1

=
(
DΣUTSTSUΣD + λD2

)−1

≈
(
Π(SU)T (SU)Π + Ir −Π

)−1
=

[
STS 0
0 I(r−sdλ(A))

]
,

where S = SUΠ ∈ R
m×sdλ(A) has the same distribution as S, since UΠ is an orthonor-

mal transformation. By the Marchenko Pastur Law, the minimum and the maximum

eigenvalues of this approximation converge to

(
1±

√
sdλ(A)

m

)−2

asm → ∞ and while

sdλ(A)/m remains constant [19, 20]. The rest of the proof follows from the analysis
given in subsection 5.1.

6. The proposed technique to approximately solve the sub-problems.
The linear sub-problems in the form of (ATA+λI)x = b, whose solutions are required
by all four M-IHS variants, can be approximately solved by using the bidiag2 procedure
described in [44]. The bidiag2 procedure produces an upper bidiagonal matrix as
following:

PT
k AVk = Rk =




ρ1 θ2
. . .

. . .

ρk−1 θk
ρk


 ∈ R

k×k,
Pk ∈ R

n×k, Vk ∈ R
d×k

PT
k Pk = V T

k Vk = Ik
.

The upper bidiagonal decomposition Rk is computed by using the Lanczos-like three
term recurrence:

AVk = PkRk

ATPk = VkR
T
k + θk+1v

k+1eTk
=⇒

Av1 = ρ1p
1,

AT pj = ρjv
j + θj+1v

j+1 j ≤ k,

Avj = θjp
j−1 + ρjp

j , j ≤ k,

where θj ’s and ρj ’s are chosen so that ‖vj‖2 = ‖pj‖2 = 1, respectively. Noting that
Pk and Vk are not needed to be orthogonal in AAb Solver, therefore we do not need
any reorthogonalization steps. As different from the LSQR, we choose θ1v

1 = b with
θ1 = ‖b‖2 so that the columns of matrix Vk constitute an orthonormal basis for the
k-th order Krylov Subspace:

span{v1, . . . , vk} = Kk(A
TA, b) = Kk(A

TA+ µId, b), ∀µ ∈ R+.

Regularization does not affect this property since the Krylov Subspace is invariant
under a constant shift. In the k-th iteration of the proposed sub-solver, AAb Solver,
let the solution estimate of the linear system be xk = Vky

k for some vector yk ∈ R
k,

i.e., xk ∈ Kk(A
TA, b), then we have:

(ATA+ λId)Vky
k = b =⇒ Rky

k = R−T
k V T

k b = θ1R
−T
k e1 = fk = [φ1, . . . , φk]

T ,

where Rk is obtained by applying a sequence of Givens rotation on

[
Rk√
λIk

]
in order to

eliminate the sub-diagonal elements coming from the regularization [22]. One instance
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of this procedure is




ρk θk+1

0 ρk+1

0 0

0
√
λ


 →




ρk ckθk+1

0 ρk+1

0 0

0 λk+1


 →




ρk θk+1

0 ρk+1

0 0
0 0




next−−−−−−−→
iteration




ρk+1 θk+2

0 ρk+2

0 0

0
√
λ


 ,

where

ck = ρk/ρk, sk = λk/ρk,

θk+1 = ckθk+1, λk+1
2
= λ+ (skθk+1)

2
,

ρk+1 =

√
ρk+1

2 + λk+1
2
.

Since Rk is an upper bidiagonal matrix, the inverse always exists and φj can be found
analytically as:

φ1 =
θ1
ρ1

and φk = −φk−1
θk
ρk

.

Furthermore, the solution at the k-th iteration, xk = VkR
−1
k fk, can be obtain without

computing any inversions by using the forward substitution. Define Dk = VkR
−1
k :

[Dk−1, dk]

[
Rk−1 ek−1θk
0 ρk

]
= [Vk−1, vk]

Dk−1Rk−1 = Vk−1

θkd
k−1 + ρkd

k = vk





dk = (vk − θkd
k−1)/ρk

xk = xk−1 + φkd
k.

and the relative residual error, to use as stopping criterion, can be found as:

‖ATAxk + λxk − b‖22 = ‖ATAVky
k + λVky

k − b‖22 = ‖ATPkRky
k − b‖22

= ‖
(
VkR

T
k + θk+1v

k+1eTk
)
Rky

k − b‖22
(i)
= ‖RT

kRky
k − V T

k b‖22 + ‖θk+1v
k+1eTkRky

k −
(
I − VkV

T
k

)
b‖22

=
∣∣φkθk+1

∣∣ = |φk+1ρk+1|.

The first norm in (i) is zero since the linear system is always consistent. The second
term in the second norm is also zero, since b ∈ span(Vk) by the initial choice of
θ1v

1 = b. By definition, fk = Rky
k gives the final results. The overall algorithm is

given in Algorithm 6.1. The AAb Solver also is a Krylov Subspace method, therefore,
it finds the solution at most in min(n, d,m) iterations in the exact arithmetic, but far
fewer number of iterations is sufficient for our purpose.

7. Conclusions. We studied the M-IHS techniques, a group of solvers for large
scale LS problems, which are obtained by incorporating the Heavy Ball Acceleration
into the iterations of the IHS algorithm. We obtained the optimal fixed momentum
parameters that maximize the convergence rate by the help of the results in ran-
dom matrix theory. We examined the effect of ℓ2 norm regularization on the optimal
momentum parameters. We showed that the M-IHS variants can be used for any di-
mension regimes if the statistical dimension is sufficiently smaller than the dimensions
of the coefficient matrix and we obtained lower bounds on the sketch size for several
randomized distributions in order to get a pre-determined convergence rate with a
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Algorithm 6.1 AAb Solver (for problems in the form of (ATA+ λI)x = b)

1: Input: A, b, λ, ǫ ⊲ choose ρ and θ to make ‖p‖ = ‖v‖ = 1
2: θ1v = b
3: ρp = Av
4:

5: ρ̄ =
√
ρ2 + λ, c = ρ/ρ̄, s =

√
λ/ρ̄, φ = θ1/ρ̄

6: d = v/ρ̄
7: x = φd
8: while t ≥ ǫ do
9: θv := AT p− ρv

10: ρp := Av − θp
11:

12: λ̄2 := λ+ (sθ)2, θ̄ = cθ

13: ρ̄ :=
√
ρ2 + λ̄2, c = ρ/ρ̄, s = λ̄/ρ̄

14:

15: d := (v − θ̄d)/ρ̄
16: φ := −φθ̄/ρ̄
17: x := x+ φd
18: t = |φρ̄|/θ1
19: end while

constant probability. The M-IHS variants outperform the best existing randomized
preconditioning techniques such as the Blendenpik, A-IHS and LSRN in all numerical
experiments. Moreover, the M-IHS variants do not use any inner products during the
iterations and they are shown to be faster than CS-based randomized preconditioning
algorithms, hence M-IHS variants can be substituted for the CS-based techniques in
parallel or distributed architectures. Furthermore, by the proposed Inexact schemes,
the M-IHS variants eliminate all, sketched or not, matrix decompositions and inver-
sions; thus they automatically speed up in the applications with sparse data matrices
or in the applications with linear operators that allow fast matrix-vector multiplica-
tions.
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8. Appendices: Discussion on the Proposed Error Upper Bound for
Iterations of Primal Dual Algorithms in [53]. In this appendix, we provide
details of a critical discussion on the steps of the derivation that leads to an error
upper bound for the iterations of the primal dual algorithms given in [53]. First, we
provide a short list of minor issues that can easily be corrected.

1. During the initialization stage in Line 2 of both Algorithm 4 in page 4097
and Algorithm 5 in page 4098, the residual error vector r(0) must be set to
−λy instead of −y, otherwise iterates of the both of the algorithms diverge
from the optimal solution.

2. During the initialization stage in Line 2 of Algorithm 7 in 4912, the dual

residual error vector r
(0)
Dual must be set to −λy instead of −y and during

the initialization stage of the inner loop iterations in Line 15, the primal

residual error vector r
(0)
P must be set to −RTXT r

(t+1)
D ; otherwise iterates

of the algorithm diverges from the optimal solution. The MATLAB codes
provided in the link includes these corrections.

In addition to the above mentioned minor issues, there are some major issues as well.
Unfortunately, we could not obtain corrective actions on these major issues as we
could have done on the minor issues mentioned above. Therefore, a lower bound on
the number of inner loop iterations, that guarantee a certain rate of convergence at the
main loop, is still an open question for the primal dual algorithms. In the remaining

https://github.com/ibrahimkurban/M-IHS
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of this appendix, we will provide steps of the derivation presented in [53], along with
our critical remarks on their validity.

Consider the following A-IHS updates

ŵt+1 = ŵt + ût.

We are going to use exactly the same notation as [53] except for that HS subscript
for the A-IHS iterates are omitted. In the primal dual algorithms, instead of exact
sequence {ŵt}, a sequence {w̃t} is obtained due to the approximate minimizers that
are used in place of ût. Consequently while the sequence {ŵt} is obtained after t
exact iterations of the A-IHS algorithm, sequence {w̃t} is obtained after t primal
dual iterations in each of which k inner loop updates are used to approximate ût’s.
The details of the inner and outer loops can be found in Algorithm 7 of [53]. The aim
of the Theorem 9 is to establish an upper bound for

∥∥w̃t+1 −w∗∥∥
X

where w∗ is the true minimizer of the primal objective function. The triangle inequal-
ity and the convergence rate of the A-IHS that is established in Theorem 2 of [53] is
used to find an upper bound for this error norm:

∥∥w̃t+1 −w∗∥∥
X

≤
∥∥ŵt+1 −w∗∥∥

X
+
∥∥w̃t+1 − ŵt+1

∥∥
X

(8.1)

≤ αt ‖w‖
X
+
∥∥w̃t+1 − ŵt+1

∥∥
X
,

where α =
C0

√
W2(XRp∩Sn−1) log(1/δ)

1−C0

√
W2(XRp∩Sn−1) log(1/δ)

. At this point a new iterate, wt+1, is introduced,

which is the result of one exact step of the IHS initialized at w̃t. The inner loop
iterations at the t-th outer (main) loop iteration of the primal dual iterations are
expected to converge wt+1. Therefore,

∥∥w̃t+1 − ŵt+1
∥∥
X
≤

∥∥w̃t+1 −wt+1
∥∥
X
+
∥∥wt+1 − ŵt+1

∥∥
X
,

∥∥w̃t+1 −wt+1
∥∥
X
≤ λmax

(
XTX

n

)
βk

∥∥wt+1
∥∥
2

≤ λmax

(
XTX

n

)
βk

(∥∥wt+1 −w∗∥∥
2
+ ‖w∗‖2

)

≤ 2λmax

(
XTX

n

)
βk ‖w∗‖2 ,(8.2)

where β =
C0

√
W2(XTRp∩Sp−1) log(1/δ)

1−C0

√
W2(XRp∩Sp−1) log(1/δ)

. The last inequality is not valid unless

∥∥wt+1 −w∗∥∥
2
≤ ‖w∗‖2 .

However, particularly during the initial phases of the main iterations this condition
can be violated. Therefore, this step of the proof requires a major revision. Assuming
that such revision is possible, up to this point, the following is obtained:

(8.3)
∥∥w̃t+1 −w∗∥∥

X
≤ αt ‖w‖

X
+ 2λmax

(
XTX

n

)
βk ‖w∗‖2 +

∥∥wt+1 − ŵt+1
∥∥
X
.
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To proceed for the final form of the upper bound, the following upper bound on the
last term of (8.3) is given in [53]:

∥∥wt+1 − ŵt+1
∥∥
X
≤

∥∥∥H̃−1
∥∥∥
2

∥∥∥H̃−H
∥∥∥
2

∥∥w̃t − ŵt
∥∥
X

≤
4λmax

(
X

T
X

n

)

λ

∥∥w̃t − ŵt
∥∥
X
,

which is a valid bound. Then in [53] the following upper bound is given without
necessary justification:

∥∥w̃t − ŵt
∥∥
X
≤ 2λmax

(
XTX

n

)
βk ‖w∗‖2 .

to reach the final form of the error upper bound:

∥∥w̃t+1 −w∗∥∥
X

≤ αt ‖w‖
X
+

10λ2
max

(
X

T
X

n

)

λ
βk ‖w∗‖2 .

However, this final form of the upper bound is not supported in detail as part of the
presented proof. Because of the following major issue, we conclude that the proposed
bound remains an unproven conjecture. The bound established for

∥∥w̃t+1 −wt+1
∥∥
X

in (8.2) is used to upper bound ‖w̃t − ŵt‖
X
. This is not justified as part of the proof

in [53].
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