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Abstract. The objective of this paper is to use mathematical modeling and analysis to
develop insights into and policies for making bed allocation decisions in an intensive care
unit (ICU) of a hospital during periods when patient demand is high. We first develop a
stylized mathematical model in which patients’ health conditions change over time
according to a Markov chain. In this model, each patient is in one of two possible health
stages, one representing the critical and the other representing the highly critical health
stage. The ICU has limited bed availability and therefore when a patient arrives and no
beds are available, a decision needs to be made as to whether the patient should be ad-
mitted to the ICU and if so, which patient in the ICU should be transferred to the general
ward. With the objective of minimizing the long-run average mortality rate, we provide
analytical characterizations of the optimal policy under certain conditions. Then, based on
these analytical results, we propose heuristic methods, which can be used under as-
sumptions that are more general than what is assumed for the mathematical model. Fi-
nally, we demonstrate that the proposed heuristic methods work well by a simulation
study, which relaxes some of the restrictive assumptions of the mathematical model by
considering a more complex transition structure for patient health and allowing for pa-
tients to be possibly queued for admission to the ICU and readmitted from the general
ward after they are discharged.
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2019.1876.
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1. Introduction
Efficient management of intensive care unit (ICU)
beds has long been a topic of interest in practice as
well as academia. Simply put, an ICU bed is a very
expensive resource and the number of available ICU
beds frequently falls short of the existing demand in
many hospitals. Therefore, it is important to make the
best use of these beds via intelligent admission and
discharge decisions. There is wide agreement that
during times of high demand, beds should not be
given to patients who have little to benefit from in-
tensive care treatment. However, when it comes to
choosing among patients who can potentially benefit
from such treatment, there do not appear to be easy
answers. Even if one can quantify the ICU benefit at
the individual patient level and there is agreement
on some utilitarian objective such as maximizing the
expected number of survivors, it is not difficult to see
that allocating beds to those with the highest poten-
tial to benefit is not necessarily the right thing to do.
For example, if this potential benefit can only be

realized at the expense of a long length of stay, which
is likely to prevent the use of the bed for treating other
patients, then it is difficult to weigh the benefits against
the costs. In short, making patient admission and dis-
charge decisions for a particular patient, especially
when overall demand is high, is a complex task that
requires careful consideration of not only the health
condition of that particular patient in isolation but a
collective assessment of the health conditions and op-
erational requirements of all the patients in the ICU
as well as the mix of patients the ICU expects to see
in the near future. The objective of this paper is to use
mathematical modeling and analysis to develop in-
sights and policies that can be useful when making
these complex decisions in practice, particularly under
conditions where there is significantly high demand
for limited ICU bed capacity.
The general framework we use to fulfill the objective

we have outlined is as follows. We first develop a
stylized mathematical formulation for the ICU. This
relatively simple formulation (compared with the full
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complexity of the actual problem) allows us to pro-
vide characterizations for the optimal policy under
certain conditions. These characterizations not only
provide overall insights into good ICU admit/discharge
decisions, but also lead to the development of several
heuristic policies that can potentially be used in prac-
tice. Finally, we test the performances of these policies
with a simulation study relaxing some of the restrictive
assumptions of the stylized mathematical formulation
and find that the policies we propose perform quite well
in comparison with some alternative benchmarks.

Our mathematical formulation assumes that each pa-
tient’s health condition changes over time. Specifi-
cally, there are two discrete-time Markov chains with
one representing the evolution of the patients in the
ICU and one representing the evolution of the patients
outside the ICU. Each Markov chain has four states cor-
responding to death, highly critical, critical, and survival,
where death and survival states are absorbing states. Once
patients enter the death state or the survival state, they
leave the system, vacating the bed they had been occu-
pying, and therefore any patient in the system can only be
in one of the two health stages, critical or highly critical. In
each time period, a patient arrives with some probability
and adecision needs to bemade as towhether to admit the
patient and/or discharge any of the highly critical or
critical patients to the general ward early. The objective is
to minimize the long-run average number of deaths.

We start our mathematical analysis by first consid-
ering an extreme setting,where the ICUhas a single bed.
Themain insight that comesout of this analysis is that the
decisionofwhichpatient to admit to the ICUdepends on
how much benefit the patients are expected to get from
ICU treatment andhow long they are expected to stay in
the ICU, and that which one of these two factors is
more dominant depends on the overall level of de-
mand for the ICU.We then consider the general setting,
where the ICU has some arbitrary but finite number of
beds. We formulate the decision problem as a Markov
decision process (MDP) and prove that in general the
optimal policy is state dependent, where the admission/
discharge decisions depend on the mix of patients pres-
ent in the ICU at the time the decisions are made.

Although ourmathematical analysis leads to useful
insights into ICU patient admit/discharge decisions,
it does not directly answer the question of how one
can turn these insights into practical policies and how
such policies would perform under realistic conditions.
To address that, we introduce a simulation model,
which enriches the mathematical model in a number
of directions, making it a more realistic environment
for proposing and testing heuristics. Specifically, for
this simulation model, we assume that patients can
be in one of six health stages and they can transition
from one stage to another according to a transition
probability structure that is more complex than the one

assumed in the mathematical model. Unlike the case in
themathematicalmodel, patientswhohavealreadybeen
discharged to the general ward are also considered for
readmission to the ICU, and patients who are initially
admitted to the general ward can be admitted to the ICU
later.Finally, inaccordancewithour focusonbedallocation
decisions during periods of high demand, the model
considers a 36-week timehorizonwith a 12-weekperiod
in the middle during which the ICU observes higher
than usual demand levels with the arrival rate of pa-
tients first increasing and then decreasing and going
back to regular levels. (The scenario is created based on
the estimates of the U.S. Centers for Disease Control and
Prevention (CDC) for flu seasons.) All of these ad-
ditional features lead to an environment that is signif-
icantly different from the one assumed by our mathe-
matical model. Nevertheless, the relative simplicity of
our structural results make it possible for us to propose
policies that can be used under more general conditions,
such as those assumed by our simulation framework.
Specifically, we propose three heuristic policies

and compare their performances with those of four
benchmarks. The three heuristics are the ratio policy
(RP), the aggregated ratio policy (ARP), and the ag-
gregated optimal policy (AOP). RP prioritizes patients
according to their expected net benefit from the ICU
(increase in survival probability as a result of being
treated in ICU) divided by their expected length of
stay; ARP is a version of RP that assumes four patient
health classes (same as assumed in the mathematical
model); and AOP essentially uses the optimal policy
for the mathematical model by assuming the same clas-
sifications as ARP. Note that RP and ARP are both state-
independent policies whereas AOP is a state-dependent
policy. Our simulation results indicate that even though
all three heuristics perform well compared with the
benchmarks, RP is the best policy overall. The fact that
the best-performing policy is state independent sug-
gests that the optimality of state-dependent policies
established for themathematical modelmay not hold in
general or that it might be difficult to identify good
state-dependent policies. However, it is important to
note that, as we explain in detail in the paper, even
though our simulation study helps us further develop
our intuition into what kind of policies are likely to
performwell, one should refrain from reaching definite
practical conclusions mainly because research on ICU
patients is not at a level where we have a clear un-
derstanding of how one should model the health con-
dition of a patient and its evolution and as a result there
is significant uncertainty as towhat the right simulation
model is. Therefore, one should not ignore the possi-
bility that state-dependent policies might be superior
and future studies should continue to consider them.
In any case, however, the good performance of RP in
our simulation study is promising for the future as it
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suggests that simple policies like RP, which only re-
quires estimates on patients’ survival probability and
expected length of stay, could be good enough and
there may not be a need for more sophisticated
decision-making tools.

2. Literature Review
In the medical literature, there has been a long line of
research on quantifying the benefits of ICU care and
providing empirical and mathematical support for
making more sound ICU admission/discharge de-
cisions. Most of this work has concentrated on pre-
dicting patient mortality in the ICU, estimating the
benefits of ICU care, and more generally developing
patient severity scores. We do not attempt to provide
a thorough review of this literature here, as it is ex-
tensive and is not directly related to this paper, but
only highlight a few papers as examples.

Strand and Flaatten (2008) provide a review of
some of the severity scoring systems that have been
proposed and used over the years. Among these scor-
ing systems are Acute Physiology and Chronic Health
Evaluation (APACHE) I, II, III, and IV (Zimmerman
et al. 2006), SimplifiedAcute Physiology Score (SAPS)
I, II, and III (Moreno et al. 2005), and Sequential Organ-
Failure Assessment (SOFA) (Vincent et al. 1996). One
of the objectives behind the development of these scor-
ing systems is to obtain a tool that can reliably predict
patient mortality, which has been the subject of many
other articles that aimed to improve upon the predic-
tive power of the proposed scoring systems (see, e.g.,
Rocker et al. 2004, Gortzis et al. 2008, and Ghassemi
et al. 2014).

A number of papers study the benefits of ICU care
and the effects of rationing beds in times of limited
availability. Sinuff et al. (2004) review past studies on
bed rationing and find that admission to the ICU is
associated with lower mortality. Shmueli and Sprung
(2005) study the potential survival benefit for pa-
tients of different types and severity (measured by
APACHE II score) and Kim et al. (2014) quantify the
cost of ICU admission denial on a number of patient
outcomes including mortality, readmission rate, and
hospital length of stay using a large data set. Kim et al.
(2014) also carry out a simulation study to test various
patient admission policies and find that a threshold-
type policy that takes into account the patient severity
and ICU occupancy level has the potential to signifi-
cantly improve overall performance.

Studies found that delayed admission to or early
discharge from ICUs, which are both common, affect
patient outcomes. For example, Chalfin et al. (2007)
and Cardoso et al. (2011) study patients immediately
admitted to the ICU and those who had delayed
admissions (i.e., waited longer than six hours for
admission) and conclude that the patients in the latter

group are associated with longer length of stay and
higher ICU and hospital mortality. Wagner et al.
(2013) and Kc and Terwiesch (2012) find patients
are discharged more quickly when ICU occupancy is
high, and such patients are associated with increased
mortality rate and readmission probability.
In addition to Kim et al. (2014), which we have

already mentioned, a number of papers from the
operations literature develop and analyze models
with the goal of generating insights into capacity
related questions for ICUs and step-down units
(SDUs) and how patient admission and discharge
decisions should be made. Modeling the ICU as an
M/M/c/c queue, Shmueli et al. (2003) compare three
patient admission policies and find that restricting
admission to those whose expected benefit is above
a certain threshold (which may or may not depend
on the number of occupied beds in the ICU) brings
sizeable improvements in the expected number of
survivors. Dobson et al. (2010), on the other hand,
develop a model in which patients are bumped out of
(early discharged from) the ICU and show how this
model can be used to predict performance measures
like the probability of being bumped for a randomly
chosen patient. The model assumes that each patient’s
length of stay can be observed upon arrival and when
a patient needs to be bumped because of lack of beds,
the patient with the shortest remaining length of stay
is bumped out of the ICU. Chan et al. (2014) develop
a fluid formulation in which service rate can be in-
creased (which can be seen as patient early discharge)
at the expense of increased probability of readmission.
The authors identify scenarios under which taking
such action is and is not helpful. Armony et al. (2018)
develop a queueing model for an ICU together with
an SDU and using this model provide insights into the
optimal size for the SDU.
To our knowledge, within the operations literature

on ICUs, the paper that is closest to our work is Chan
et al. (2012). The authors consider a discrete-time
MDP in which a decision needs to be made as to
which patient to early discharge (with a cost) every
time a new patient arrives for admission to the ICU.
They show that the greedy policy, which discharges
the class with the smallest discharge cost, is optimal
when patient types can be ordered so that the types
with smaller discharge costs have shorter expected
length of stay and provide bounds on the perfor-
mance of this policy for cases when such ordering is
not possible. Despite some similarities, our formu-
lation and analysis have some important differences.
We assume that patients can be in one of two health
stages, can transition from one stage to the other
during their stay, and eventually either die or survive.
On the other hand, Chan et al. (2012) allow for mul-
tiple types of patients whose health status can also
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change over time, but their model does not permit a
patient to return to a previous state. The main reason
why these differences are important is that the analysis
of the two models leads to two different sets of results
which complement each other. In particular, our for-
mulation allows us to push the analytical results and
optimal policy characterizations further and thereby
provide deeper insights into optimal ICU admission
and discharge decisions. For example, we provide
a characterization of the optimal policy not only
when patients with higher benefits from ICU have
shorter length of stay but alsowhen higher benefits can
only come at the expense of longer length of stay in
the ICU.

Our analysis in this paper can also be seen as a
contribution to the classical queueing control litera-
ture where arriving jobs are admitted or rejected
according to some reward or cost criteria. More spe-
cifically, because jobs in our model do not queue,
it can be seen as a loss system (see, e.g., Örmeci et al.
2001, Örmeci and Burnetas 2005, Ulukus et al. 2011
and references therein). Within this literature, Ulukus
et al. (2011) appears to be the closest to our work. This
paper considers a model in which the decision is not
only whether an arriving job should be admitted but
also whether any of the jobs in service should be
terminated. This termination action can be seen as the
early discharge action in our model. However, de-
spite this similarity, there are some important dif-
ferences in the formulation. Whereas Ulukus et al.
(2011) consider a more general form for the termi-
nation cost andmultiple job classes, they do not allow
the possibility of jobs changing types during service.
There are also important differences in the results.
Just as we do in this paper, Ulukus et al. (2011) also
provide conditions under which one of the two types
should be preferred over the other at all times.
However, our formulation makes it possible for us to
provide optimal policy characterizations at a more
detailed level and mathematically establish some of
the numerical observations made by Ulukus et al.
(2011) regarding the threshold structure of the opti-
mal policy.

3. Model Description
In this section, we describe the stylized mathematical
formulationwe use to generate insights into good bed
allocation decisions and develop practical heuristic
methods. Specifically, in this model, we consider an
ICU with a capacity of b beds, where b is a finite
positive integer. Patients arriving to this system are
assumed to have health conditions that require treat-
ment in an ICU. However, there is also the option of
admitting these patients to what we refer to as the
general ward, where the patient may be provided a
different level of service. It is also possible that a

patient who was previously admitted to the ICU can
be early discharged to the general ward to accom-
modate another patient. Note that we use the general
ward to represent any non-ICU care unit, which in-
cludes actual hospital wards, step-down or transi-
tionary care units, nursing homes, and any other
facility that can accommodate the patients but cannot
provide an ICU-level service to the patients. In our
model, we assume that all these non-ICU beds are iden-
tical and the capacity of the general ward is infinite.
Arriving patients are assumed to be in one of two

health stages, with stage 1 representing a highly
critical condition and stage 2 representing a critical
condition. We consider discrete time periods during
which atmost one patient arrives. Letλi > 0denote the
probability that a stage i patient will arrive in each
period for i � 1, 2; let λ ≡ λ1 + λ2 denote the proba-
bility that there will be a patient arrival; let λ̄ ≡ 1 − λ
denote the probability of no arrival, where we assume
λ< 1. During their stay, in the ICU or in the general
ward, patients’ health conditions change according to
aMarkov chain and they eventually either enter stage
0 or stage 3. Stage 0 corresponds to the death of the
patient whereas stage 3 represents the patient’s sur-
vival. As soon as patients hit either stage 0 or 3, they
leave the system, vacating the bed they had been
occupying. We assume that the system incurs a unit
cost every time a patient leaves in stage 0 whereas
there is no cost or reward associatedwith other stages.
Patients currently in stage i ∈ {1, 2} can enter stage

i + 1 or i − 1 in the next time period with probabilities
that depend on where they are being treated: ICU or
generalward. A stage ipatient in the ICU either jumps
to stage i + 1 with probability pi, jumps to stage i − 1
with probability qi, or stays in stage i with proba-
bility ri � 1 − pi − qi. The respective probabilities for
the general ward are pGi , q

G
i and rGi . We assume that

pi, qi, pGi , q
G
i are all strictly positive whereas ri and rGi

are nonnegative. The transition diagram of patient
evolution is shown in Figure 1.
In some respects, assuming that sick patients can

only be in one of two health stages can be seen as a
significant simplification of reality. Although it is true
that it is difficult to capture the full spectrum of pa-
tient diversity with a two-stage model, the assump-
tion helps us capture the reality that patients’ health
conditions change over time at least in some stylized
way without rendering the analysis impossibly dif-
ficult. More importantly, the assumption can in fact
be justified in some contexts because even in prac-
tice such simplifications are made to bring highly
complex decision problems to manageable levels.
When managing patient demand under highly
resource-restrictive environments, particularly in case
of epidemics and mass-casualty events, practitioners
typically choose to employ prioritization policies that
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keep the number of triage classes at minimum in an
effort to make the policies simpler and easier to im-
plement. For example, the ICU triage protocol de-
veloped by Christian et al. (2006) places patients in
need of ICU treatment into one of two priority classes
based on the patients’ SOFA scores. The proposed pro-
tocol also calls for patient reassessments recognizing
the possibility that there could be changes in the pa-
tients’ health conditions. Nevertheless, in Section 6,
we consider a more detailed and arguably more re-
alistic evolution model for patients’ health condition
and demonstrate how our analysis based on this rather
simplified structure would be useful.

At each time period, the decision maker needs to
make the following decisions: (i) if there is an arrival,
whether the patient should be admitted to the ICU or
the general ward, and (ii) which patients in the ICU (if
any) should be early discharged to the general ward
regardless of whether there is a new arrival or not.
Note that if all b beds are occupied at the time a stage i
patient arrives, admitting the patient will mean early
discharging at least one stage 3 − i patient to the
general ward. To keep the presentation simple, we
will call both the decision of discharging an existing
patient from the ICU to the general ward and ad-
mitting a new arrival to the general ward “discharge”
even though the latter action does not in fact correspond
to a discharge but direct admission to the general ward.

We formulate this problem as an MDP. We denote
the system state by x � (x1, x2), where xi represents the
number of stage i patients. Note that any new arrival
is included either in x1 or x2 since there is no need to
distinguish between new and existing patients. Since
the ICU has a capacity of b and at most one patient
arrives in each time period, the state space is

6 � {(x1, x2) : x1, x2 ≥ 0 and x1 + x2 ≤ b + 1}.
The decision at each epoch can be described by ac-
tion a � (a1, a2), where ai is the number of stage i pa-
tients to be discharged. The action space is defined as

! � {(a1, a2) : a1, a2 ≥ 0, and a1 + a2 ≤ b + 1}. Then in
any state (x1, x2) ∈ 6, the feasible action set is

!(x1, x2) � {(a1, a2) : 0 ≤ ai ≤ xi, for i � 1, 2,
and x1 + x2 − a1 − a2 ≤ b}.

Let φG
i denote the probability that a patient who is

discharged to the general ward in stage i will end up
in stage 0 for i � 1, 2. Then, φG

i can be computed by
solving the following equations:

φG
1 � qG1 + rG1 φ

G
1 + pG1 φ

G
2 , φG

2 � qG2 φ
G
1 + rG2 φ

G
2 .

Letting βGi � qGi /p
G
i for i � 1, 2, we can show that

φG
1 � βG1 + βG1 β

G
2

1 + βG1 + βG1 β
G
2
, φG

2 � βG1 β
G
2

1 + βG1 + βG1 β
G
2
. (1)

Similarly, for i � 1, 2, let φi denote the probability that
a patient who is admitted to the ICU in stage i will
end up in stage 0 under the condition that the patient
will never be early discharged to the general ward.
Then, φi can similarly be computed as

φ1 �
β1 + β1β2

1 + β1 + β1β2
, φ2 �

β1β2
1 + β1 + β1β2

, (2)

where βi � qi/pi for i � 1, 2.
Let c(x1, x2, a1, a2) denote the immediate expected

cost of taking action (a1, a2) in state (x1, x2). The ex-
pected cost for the patients who will occupy the ICU
during the next period is equal to the expected
number of ICU patients who will transition to state 0
in the next time period; that is, (x1 − a1)q1. The ex-
pected cost for the discharged stage i patients is aiφG

i
since each discharged patient will end up in stage 0
with probability φG

i . Note that this second portion of
the cost is the expected lump-sum cost of discharging
stage i patients, the expected cost that will eventually
incur, not the immediate cost. However, for our
analysis, we can equivalently assume that this cost
will incur immediately since we know that if the
patient enters state 0 eventually, this will happen

Figure 1. Transition Diagram of Patient Evolution in the ICU and General Ward
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within some finite time period with probability 1. The
total immediate expected cost then can be written as

c(x1, x2, a1, a2) � a1φG
1 + a2φG

2 + q1(x1 − a1).
Note that although a hospital could possibly also
have financial considerations when making patient
admit/discharge decisions, particularly under non-
emergency conditions, in this paper, in parallel with
our focus on periods during which there is excessively
high demand, we restrict our focus to policies that
aim to minimize the number of deaths.

Let P(a1,a2)(x1, x2, y1, y2) denote the probability that
the system will transition to state (y1, y2) from state
(x1, x2) when action (a1, a2) is chosen. Then, we have
P(a1,a2)(x1,x2,y1,y2) � P(y1,y2|x1− a1,x2− a2), where P(y1,
y2|x1,x2) denotes the probability that given that there
are x1 stage 1 patients and x2 stage 2 patients at a
decision epoch after that epoch’s action is taken, there
will be y1 stage 1 patients and y2 stage 2 patients at the
beginning of the next decision epoch. Specifically,

P(y1, y2|x1, x2)
� λ̄

∑x1
u�0

∑x1−u
d�0

P̄1{x1,u, d}P̄2{x2, x1 + x2

− d − y1 − y2, y1 − (x1 − u − d)}
+ λ1

∑x1
u�0

∑x1−u
d�0

P̄1{x1,u, d}P̄2{x2, x1 + x2

− d − (y1 − 1) − y2, (y1 − 1) − (x1 − u − d)}
+ λ2

∑x1
u�0

∑x1−u
d�0

P̄1{x1,u, d}P̄2{x2, x1 + x2

− d − y1 − (y2 − 1), y1 − (x1 − u − d)},
where P̄i{xi,u, d} is the probability that of the xi stage
i patients, u of them will transition to stage i + 1 and d
of them will transition to stage i − 1; that is,

P̄i{xi,u, d} �
xi
u

( ) xi−u
d

( )
pui q

d
i r

xi−u−d
i , for u, d ≥ 0

and u+d≤xi
0, otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Apolicyπmaps the state space6 to the action space!.
We use Π to denote the set of feasible stationary
discharge policies. Let Nπ(t) and NG

π (t), respectively,
denote the number of patients who enter stage 0 by
time t in the ICU and in the general ward. Then Jπ(x),
the expected long-run average cost under policy π
given the initial state x, can be expressed as

Jπ(x) � lim
t→∞

1
t
E Nπ(t) +NG

π (t)|x
[ ]

.

Our objective is to obtain an optimal policy π∗ such
that Jπ

∗ (x) ≤ Jπ(x) for any π ∈ Π and x ∈ 6. Note that
this MDP is a unichain with finite state and action

spaces, hence the above limit exists and is indepen-
dent of the initial state x (see, e.g., theorem 8.4.5 of
Puterman 2005). We also know that there exists a
bounded function h(x1, x2) for (x1, x2) ∈ 6 and a con-
stant g satisfying the optimality equation

h(x1, x2) + g � min
(a1,a2)∈!(x1,x2)

c(x1, x2, a1, a2)
{

+ ∑
y1,y2( )∈6

P(a1,a2) x1, x2, y1, y2
( )

h y1, y2
( )⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

(3)

and there exists an optimal stationary policy π∗ such
that g � Jπ

∗ (x) and π∗ chooses an action that maxi-
mizes the right-hand side of (3) for each (x1, x2) ∈ 6.

4. Single-Bed ICU
In this section, we consider the case where b � 1, that
is, there is a single ICU bed. The objective of this
analysis is to generate insights into situations where
ICU capacity is severely limited. It will also provide
support for one of the heuristic policies we propose
in Section 6.
When b � 1, at any decision epoch there are at most

two patients under consideration, the patient who is
currently occupying the bed (if there is one) and the
patient who has just arrived for possible admission (if
there is an arrival). Restricting ourselves to nonidling
policies, (i.e., the bed is never left empty when there is
demand), we investigate the question of which of the
two patients to admit to the ICU. (An implicit as-
sumption here is that the ICU is the preferred envi-
ronment for the patients. This is a reasonable as-
sumption to make, but nevertheless in the next
section, we identify conditions under which this is
true in our mathematical formulation.) Specifically,
there are two stationary policies to compare, π̄1,
the policy that discharges the stage 1 patient, and π̄2,
the policy that discharges the stage 2 patient when the
choice is between a stage 1 and a stage 2 patient.
Under any of the two policies, when there are two
patients in the same stage, the choice between the two
is arbitrary. Let Jπ̄k for k ∈ {1, 2} denote the long-run
average cost under policy π̄k.
The following proposition provides a comparison

of the performances of the two policies, which ac-
counts for both the incremental survival benefit and
the required ICU length of stay when making pri-
oritization decisions. (The proof for the proposition
as well as the proofs of all the other analytical re-
sults in the paper are provided in the online ap-
pendix.) We first let Li denote the expected ICU
length of stay for a patient admitted to the ICU
in stage i and is never early discharged in either
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stage 1 or 2. Then, Li can be obtained by solving the
equations L1 � 1 + r1L1 + p1L2 and L2 � 1 + q2L1 + r2L2,
which gives us

L1 � p1 + p2 + q2
p1p2 + q1p2 + q1q2

,L2 � p1 + q1 + q2
p1p2 + q1p2 + q1q2

. (4)

Proposition 1. Suppose that b � 1, that is, there is a single
ICU bed, and the ICU admission decision is between a stage 1
and stage 2 patient. Also assume without loss of generality
that φG

i − φi ≥ φG
3−i − φ3−i for some fixed i ∈ {1, 2}. Then,

we have
( a) if φG

i −φi
Li

≥ φG
3−i−φ3−i
L3−i , then it is optimal to admit the

patient in stage i, that is, Jπ̄i ≥ Jπ̄3−i ;

(b) if φG
i −φi
Li

<
φG
3−i−φ3−i
L3−i , then it is optimal to admit the

patient in stage i, that is, Jπ̄i ≥ Jπ̄3−i , if and only if

λ ≤ φG
i − φi

( ) − φG
3−i − φ3−i

( )
φG
i − φi

( ) − φG
3−i − φ3−i

( )
+ Li φG

3−i − φ3−i
( ) − L3−i φG

i − φi

( )[ ] . (5)

The difference φG
i − φi can be seen as the benefit of

staying in the ICU instead of the general ward for a
stage i patient. From a system optimization point of
view, we can call the patients with larger φG

i − φi high-
value patients. On the other hand, the ratio (φG

i − φi)/Li
can roughly be seen as the per unit time benefit of
keeping a patient who arrives in stage i in the ICU at
all times and thus we can call the patients with larger
(φG

i − φi)/Li high-value-rate patients. Then, according
to Proposition 1(a), if stage i patients are both high-
value and high-value-rate patients, they should be
preferred over stage 3 − ipatients. As Proposition 1(b)
implies, for stage i patients to be preferable, it is not
sufficient for them to be high value. If they are high
value but not high value rate, then they are preferable
only if the arrival rate is sufficiently small. This is
because when the arrival rate is small, having a
limited bed capacity is less of a concern and thus in
that case the value is the dominating factor. However,
when the arrival rate is large, the lengths of stay are
important as they would be a key factor in the
availability of the ICU beds for new patients. As a
result, the rate with which the value is generated
becomes the dominant factor.

These results point to the importance of taking into
account the ICU loadwhenmaking patient admission/
early discharge decisions and prioritizing one patient
over the other. In short, what may be the right thing to
do for one ICU may not be right for another. For ICUs
with relatively ample capacity, it might be best to focus
on identifying patients who will benefit most from ICU
care and admit them without being overly concerned
about how long they will stay. However, for highly
loaded ICUs, the decision is more complicated and

the anticipated length of stay should be part of the
decision. In the following section, we investigate this
question further by analyzing dynamic decisions in a
model where the number of beds in the ICU can take
any finite value.

5. Analysis of the Multibed ICU Model
In this section, we consider the long-run average-cost
optimization problem with optimality equations
given in Equation (3). An optimal action in any
particular state is the one that achieves the minimum
in the optimality equation. We denote the set of op-
timal actions in state (x1, x2) by !∗(x1, x2):
!∗(x1, x2) � (ā1, ā2) ∈ !(x1, x2) : c(x1, x2, ā1, ā2)

{
+ ∑

y1,y2( )∈6
P(ā1,ā2) x1, x2, y1, y2

( )
h y1, y2
( )

� min
(a1,a2)∈!(x1,x2)

c(x1, x2, a1, a2)
{

+ ∑
y1,y2( )∈6

P(a1,a2) x1, x2, y1, y2
( )

h y1, y2
( )⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.
Since the state space and action space are finite and
costs are bounded,!∗ is nonempty. In general, the set
A∗(x1, x2) can have more than one element. However,
for convenience, we adopt the following conven-
tion for picking one action from the set and refer to
it as the optimal action for state (x1, x2). Specifically,
we define the optimal action a∗(x1,x2) � (a∗1(x1,x2),a∗2(x1,x2)), where

a∗1(x1, x2) � min{ā1 : (ā1, ā2)∈A∗(x1, x2)}, and
a∗2(x1, x2) � min{ā2 : (a∗1(x1, x2), ā2) ∈ A∗(x1, x2)}.

Thus, if there are multiple actions for any given state,
we choose the one that discharges as few stage 1
patients as possible; if there are multiple such actions,
then among those we choose the one that discharges
as few stage 2 patients as possible.
Theorems 1, 2, and 3 presented in this section

characterize the structure of the optimal policy. The
proofs of these theorems are provided in the online
appendix, where we first analyze the system with the
objective of minimizing expected total discounted
cost and establish some analytical properties, which
serve as a stepping stone to our main results for the
long-run average case.

5.1. Optimality of Nonidling ICU Beds
The nonidling policies are defined as the policies that
will always allocate an ICU bed to a new arriving
patient and never discharge an ICU patient to the
general ward when there are ICU beds available.
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We first identify conditions under which there exists an
optimal policy, which is nonidling.

Theorem 1. Suppose that βi < βGi for i � 1, 2. Then, there
exists a stationary average-cost optimal policy, which is
nonidling, that is, a policy under which it is never optimal to
leave an ICU bed empty whenever there is a patient in need
of treatment.

Comparing βi with βGi can be seen as one way of
assessing the potential benefit of ICU over the general
ward for stage i patients. The condition βi < βGi for
i � 1, 2 essentially means that the ratio of the proba-
bility of a patient getting worse to the probability of a
patient getting better over the next time step is smaller in
the ICU for all the patients. Theorem 1 states that this
condition is sufficient to ensure the existence of an
optimal policy that admits patients of either stage to the
ICU as long as there is an available bed. We found
numerical examples that show that when this condition
does not hold, the optimal policy is not necessarily
nonidling, meaning that the ICU would only accept
patients from a particular stage and keep some of the
ICU beds empty even when there is demand from
patients of the other stage.

5.2. General Structure of the Optimal Policy
Since we restrict ourselves to the set of nonidling
policies, which we know contains an optimal policy
under the assumption that βi < βGi for i � 1, 2, we only
need to investigate the optimal actions for states
(x1, x2) such that x1 + x2 � b + 1 and x1, x2 > 0, that is,
when all ICU beds are currently occupied, a patient
has just arrived, and there are patients from both
stages (including the patient who has just arrived).
As we describe in the following theorem, it turns out
that the optimal decision has a threshold structure.

Theorem 2. Suppose that βi < βGi for i � 1, 2. Then, there
exists a threshold x∗ ∈ [1, b + 1] such that for any state
(x1, x2) with x1, x2 > 0 and x1 + x2 � b + 1, we have

a∗(x1, x2) �
(1, 0) if x1 ≥ x∗

(0, 1) if x1 < x∗.

{

According to Theorem 2, when the nonidling con-
dition holds and when the system conditions are so
that one of the patients has to be admitted to the
general ward because of a fully occupied ICU,
whether that patient should be a stage 1 or stage 2
patient depends on the health conditions of all the
patients in the ICU. Specifically, if the number of stage 1
(stage 2) patients in the ICU is above a particular
threshold value, which depends on all the model
parameter values and thus survival probabilities as
well as lengths of stay, then one of the stage 1 (stage 2)
patients should be admitted to the general ward.

In other words, if there are sufficiently many stage 1
patients, the preference should be for a stage 2 patient;
otherwise the preference should be for a stage 1 patient.
It is important to note that although x∗ can take one of

the boundary values of 1 or b + 1 (both of which would
imply that the policy is in fact not dependent on the
composition of the patients), there are examples that
show that it can also take values in between. This
means that there are indeed certain settings in which
the optimal policy is state dependent. (We should note,
however, that it is not clear whether the potential
benefits of using such a state-dependent policy can be
realized in practice. We investigate and discuss this
issue in detail in Section 6.1.)
The fact that in general the optimal policy can be

state dependent might seem somewhat surprising at
first because the implication is that if there are two
specific patients, A and B, one of them being in stage 1
the other in stage 2, and only one of them can be ad-
mitted to the ICU, then whether we choose A or B
depends on the health stages of all the patients in the
ICU, not just A and B. Given that this decision will not
impact other patients’ survival chances and the survival
chances of patients A and B do not depend on the other
patients in the ICU, it is unclear why the choice be-
tween A and B depends on the other patients. To clarify
this, in light of our analysis of the single-bed case,
consider the two important factors that go into the
decision of which patient to admit: expected net ICU
benefit, which we would like to be as high as possible,
and expected length of stay, which we would like to be
as small as possible. The expected length of stay is im-
portant because it directly affects the bed availability
for future patients. In particular, it affects the prob-
ability that a bed will be available the next time there
is a patient seeking admission to the ICU. However,
whether a bed will be available for the next patient
(and patients thereafter) depends on the length of stay
for not just patient A and patient B, but for all the
patients in the ICU.
Now, consider two extreme cases, one in which

patients other than A and B all have very short ex-
pected lengths of stay and one in which they all have
long expected lengths of stay. In the former case, there
is a good chance for a bed to be available soon even if
we ignore A and B, and this, when choosing between
A and B, will make the expected lengths of stay for
A and B far less important compared with the latter
case. Thus, in the former case, whoever has the larger
expected benefit, will be (most likely) admitted to the
ICU. In the latter case, however, the decision is more
complicated and to make a bed available for the next
patient with a higher probability, it might actually be
preferable to admit the patient with the smaller ex-
pected net benefit if that patient’s expected length of
stay is shorter. In general, one can then see that, as the
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composition of the patients in the ICU changes, future
bed availability probability changes and this in turn
results in shifting preferences for the patient to be ad-
mitted. More specifically, as Theorem 2 implies, there
is an ideal mix of patients (a certain number of stage 1
patients and a certain number of stage 2 patients), which
hits the right balance between the expected benefit
and the future bed availability, and the optimal policy
continuously strives to push the system to that level
by employing a threshold-type policy.

Given this explanation, it would be reasonable to
expect that patient A should always be preferred over
patient B regardless of the patient composition in the
ICU if the expected benefit for patient A is larger than
that of patient B and the expected length of stay for
patient A is smaller than that of patient B. We can
indeed prove that is the case as we formally state in the
following theorem.

Theorem 3. Suppose that βi < βGi for i � 1, 2, and for some
fixed k ∈ {1, 2},

φG
k − φk <φG

3−k − φ3−k and Lk ≥ L3−k. (6)

Then, for any state (x1, x2) such that x1 + x2 � b + 1, we
have a∗(x1, x2) � (a∗1, a∗2) with a∗k � 1 and a∗3−k � 0.

Theorem 3 states that if a particular health stage is
associated with a lower expected ICU benefit and
longer expected length of ICU stay, then a patient from
that health stage should be admitted to the general
ward when the demand for the ICU exceeds the ICU
bed capacity. In this case, the optimal policy is simple
since one of the two stages can be designated as the
higher priority stage regardless of the system state. The
result makes sense intuitively. If patient A will benefit
more from the ICU bed than patient B and patient
A will also vacate the bed more quickly for the use of
the future patients, there is no reason why the bed
should be given to patient B.

6. Simulation Study
In Sections 4 and 5, we analyzed relatively simple
formulations with the objective of generating insights
and coming up with heuristic methods, which are
flexible enough to be used under more general and
realistic conditions. In this section, we have two main
goals. First, to demonstrate how one can construct
heuristic policies based on our analysis assuming that
we know how the health status of patients evolve in
the ICU and in the general ward, and propose specific
policies for the assumed evolution model. Second, to
report the findings of our simulation study where we
investigated how the policies we generated perform.
Our simulation model relaxes some of the restric-
tive assumptions of the mathematical model of Sec-
tion 3. In particular, we consider a more detailed and

realistic health evolution model, a nonstationary pa-
tient arrival process, the possibility of patients to
wait for admission to the ICU, and possible read-
mission of patients who have already been dis-
charged from the ICU. We start with describing
the health evolution model used in our simula-
tion model.

6.1. Simulation Model
Givenwhat is known in themedical literature, it is not
possible to construct a detailed, realistic model for
describing how each patient’s health status evolves
in and outside the ICU. This obviously poses a sig-
nificant challenge in reaching the two goals outlined
previously. Although our mathematical model, which
assumes two health stages and possible transitions be-
tween the two, broadly captures what happens in
practice and is in fact in line with the only proposed
classification protocol developed (see Christian et al.
2006), it is also very likely that the model, with its
mathematically convenient construction like having
Markovian transition probabilities, fails to capture
some of the features that one might see in reality. For
example, two patients might be in the same health
stage with respect to some objective criterion (one can
think of a classification based on the SOFA score as
used by Christian et al. 2006), but assuming they
would have the same stochastic evolution in the fu-
ture could be an oversimplification if, for instance,
one of the patients has just arrived and the other
patient has been in the ICU for hours, or one of the
patients’ health status has been gradually improving
suggesting a positive trend whereas the other’s health
has been declining. Thus, there are a number of ways
our mathematical model can be generalized to make
it more realistic.
The health evolution model we used in our simu-

lation study, which is depicted in Figure 2, helped us
capture some of the features we described. The model
assumes four levels of criticality, but also takes into
account the direction of the last transition for the
intermediate two criticality levels. Explicit consid-
eration of the last transition makes it possible to at
least partially capture the effect of trend in the evo-
lution of patients’ health status. More specifically, we
assume that at any point in time patients in the ICU
or the general ward belong to one of the six stages
{1, 2H, 2L, 3H, 3L, 4}, where stages 1 and 4 denote the
most critical and the least critical levels, stages 2H
and 3H denote the intermediate criticality levels for
patients whose health condition has been declining
(i.e., the last transitionwas from a healthier stage) and
stages 2L and 3L denote the intermediate criticality
levels for patients whose health condition has been im-
proving (i.e., the last transition was from a less healthy
stage). Within one time period, which is assumed to be
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one hour (and thus one day consists of 24 time periods),
the health condition of patients in stage i ∈ {1, 2H, 2L,
3H, 3L, 4} can improve with probability pi, decline with
probability qi, or stay the same with probabilities ri �
1 − pi − qi. Stages 0 and 5 are two absorbing stages
where 0 corresponds to death and 5 corresponds to
survival. (See Figure 2 to see the probabilities corre-
sponding to each transition.)

When choosing the values for transition probabil-
ities, rather than setting them completely randomly,
we set them in away that the system at least conforms
to what we know from the medical literature. Several
articles in the literature provide estimates on ICU
length of stay and survival probabilities. However, in
line with our focus on situations where the ICU ex-
periences an extremely high demand over a long
period of time, we chose to use the estimates that are
provided by Kumar et al. (2009), which are based on
data obtained in Canada during the 2009 H1N1 in-
fluenza outbreak. Kumar et al. (2009) found that the
average mortality rate in the ICU was approximately
17% and the average length of stay in the ICU was
12 days. Therefore, we randomly generated scenarios
so that the expected ICU death probability over all
the scenarios is approximately 0.17 and the expected
length of stay (with no early discharge) for the same
is approximately 24 × 12 � 288 hours. In addition, we
ensured that the generated scenarios satisfied the con-
dition that patients who were previously in healthier
stages are more likely to get better.

When generating the random scenarios, we first
identified a baseline setting that conforms to the de-
scription given and then made random choices around
this baseline. More specifically, we set p1 � 0.016,
p2L � 0.032U2L, p2H � 0.032U2H , p3L � 0.016U3L, p3H �
0.016U3H, p4 � 0.012, and q1 � 0.0072, q2L � 0.01V2L,
q2H �0.01V2H,q3L�0.012V3L, q3H �0.012V3H, q4�0.016,
where U2L, U3L,V2H,V3H are independent random
variables each uniformly distributed over (0.5,1), and

V2L,V3L,U2H , U3H are independent random variables
each uniformly distributed over (1,1.5). (Note that the
baseline level corresponds to the case where each
random variable is set to 1.)
Kumar et al. (2009) do not provide any estimates on

what the survival probabilities for the ICU patients
would be if they were treated outside the ICU. In the
absence of such estimates, recognizing that the con-
dition of patients treated in non-ICU wards would be
more likely to becomeworse and less likely to become
better, for each i ∈ {1, 2H, 2L, 3H, 3L, 4}, we obtained qGi
by multiplying qi by a random coefficient uniformly
distributed over (1, 2), and pGi by multiplying pi by a
random coefficient uniformly distributed over (0.5, 1).
In the simulation study, we focused on a time pe-

riod during which the hospital experiences the flu
season. To model patient arrivals realistically, we
used CDC flu season reports as well as FluSurge 2.0,
the influenza patient demand prediction tool de-
veloped by CDC. As one can observe from Figure A2
in the online appendix, the flu season typically starts
with a period where the arrival rate is mostly sta-
tionary, which is followed by an outbreak period,
and ends with another stationary period. We con-
sidered a 36-week time period where during the first
12 weeks and the last 12 weeks patient demand is
stationary (with an arrival probability of λst in each
time period), and the outbreak and the nonstation-
ary demand period is observed during the middle
12 weeks. According to the default scenario assumed
by FluSurge 2.0, in this middle 12-week period, the
daily percentage change in demand (DPCD) (i.e.,
percentage change in the expected number of new
patient arrivals) is 3% during the first six weeks and
−3% during the next six weeks. In our study, we con-
sidered two settings, one with DPCD value of 3%, and
the other with 5% (six weeks of increase followed by
six weeks of decrease with the same absolute value
for the rate). For the baseline stationary arrival rate,

Figure 2. (Color online) Transition Diagram for Patient Evolution in the ICU

Note. Patients in the general ward follow the same transition model with corresponding transition probabilities indicated by the superscript G.
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which the ICU observes during the first 12weeks and
the last 12 weeks, we considered three different levels.
Specifically, we let the ICU load ρΔ

st � λstE[L]/b (where
b is the number of ICU beds) to be either 0.5, 0.8, or 1.
The choice of baseline load on the ICUalso determines
the overall demand level during the outbreak period
since the arrival rates of patients will increase starting
from these baseline levels. As for the health stages for
the new patients, rather than assuming that they all
come in a given state, we assumed that there is patient
heterogeneity. Specifically, letting θi denote the prob-
ability that the initial health stage for an incoming
random patient is i, when generating scenarios, we
letθi � (UA

i + 1)/∑j∈{1,2L,2H,3L,3H,4}(UA
j + 1), whereUA

i ∼
U(0, 1) for each stage i.

We assumed that the ICU has 20 beds for our
simulation study. (Note that the choice of a 20-bed
ICU together with the three load levels we consider in
our study are consistent with the range of possible
demand predictions of FluSurge 2.0 and a typical
population/ICU bed ratio in the United States.) We
also assumed that, as in the mathematical model,
there is no limit on the number of patients who can
be accommodated in the general ward. (Note that
whereas general ward beds are also limited in num-
bers in reality, they are more widely available than
ICU beds and the key issue typically is the effective
management of ICU beds.) However, in the simula-
tion model, in accordance with commonly observed
practice, we assumed that when a bed becomes avail-
able in the ICU and there are patients in the general
ward, one of those patients is admitted to the newly
vacated bed. With this feature, the simulation model
allows the possibility of readmitting patients who were
previouslydischarged from the ICU to the generalward
back to the ICU and having patients who find the ICU
full to queue up in the general ward for possible ad-
mission later on.

6.2. Proposed Policies and Benchmarks
In this section, we propose policies that are based on
ourmathematical analysis but are meant to be used in
the more general construction assumed in the simu-
lation model. By doing that, we will also be illus-
trating more generally in what way our mathematical
results and insights can be used to develop heuristics
that can be used under any future patient health
evolution model that is supported by medical re-
search and data. It is important to note that the pol-
icies we propose assume that patient demand is so high
that ICU admits and discharges are done throughout
the day as needed unlike some of the common practices
in place under regular operating conditions, which re-
strict such decisions to be made and actions to be taken
only during certain times of the day.

The first two policies described next are included
mainly because they can serve as benchmark policies
and do not necessarily represent policies that are used
in practice.

First-Come-First-Served (FCFS). Patients are admit-
ted to the ICU beds in the order they arrive. None
of the patients are discharged early to the general
ward when a new patient finds the ICU full. In such a
case, the patient is admitted to the general ward and
waits for an opening in the ICU.When a patient in the
ICU leaves (as a result of death or survival), among
the patients who are still in the general ward, the one
who was first admitted to the general ward is ad-
mitted to the newly vacated bed in the ICU. This
policy would clearly capture the policy of not being
proactive about making the best possible use of the
ICU and opting for a policy, which could largely be
considered as fair rather than aiming to maximize
the greatest good for the greatest number.

Random Discharge Policy (RDP). Under this policy, if
the ICU is fully occupied when a patient arrives, one
of the patients among the patients already in the
ICU and the patient who has just arrived is ran-
domly chosen and transferred to the general ward.
When a patient in the ICU leaves (as a result of
death or survival), one of the patients in the general
ward is randomly chosen for admission to the newly
vacated bed.

Greedy Policy (GP). This is an index policy, which
gives priority according to the order determined by
the differences φG

i − φi, where φi and φG
i denote the

probability of death in the ICU and the general
ward, respectively, for a patient in health stage i.
Whenever an arriving patient finds the ICU full,
the policy discharges the patient whose survival
probability will have the smallest drop as a result of
being treated in the general ward as opposed to the
ICU. Similarly, when a patient leaves the ICU (as a
result of death or survival), among the patients in the
general ward, the patient with the most to benefit is
chosen. Note that based on ourmathematical analysis
of the single-bed scenario, specifically Proposition 1,
it might be reasonable to expect that GP would per-
form well when the patient demand is relatively low
but when demand is high, as we assume in our
simulation study, because the policy ignores the ex-
pected lengths of stay, wewould not expect the policy
to perform well.

Ratio Policy (RP). This is an index policy, which gives
priority according to the order determined by
(φG

i − φi)/Li, where Li is the expected length of stay for
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patients in health stage i. Whenever an arriving pa-
tient finds the ICU full, the policy discharges one of
the patients with the smallest expected drop in the
survival probability divided by the expected length of
ICU stay. Similarly, when a patient leaves the ICU
(as a result of death or survival), among the patients
in the general ward, the patient with the largest value
of (φG

i − φi)/Li is chosen. Our mathematical analysis
provides strong support for this heuristic, particu-
larlywhen demand is high and thus onewould expect
good performance from this policy in the simulation
study. Specifically, Proposition 1, which assumes the
simplistic single-bed setting, finds that this policy is
optimal when the arrival rate is sufficiently high. For
the multibed scenario, we know from Theorem 2 that
the optimal policy has a threshold structure, which
would still be in line with RP, but we also have ex-
amples that show that RP is not optimal in general and
that the optimal policy is state dependent. Never-
theless, Theorem 3 finds that under a condition for
which RP and GP would be in complete agreement,
RP would be optimal.

An important assumption underlying GP and RP is
that we can observe each patient’s health stage pre-
cisely. Practically, however, this may not be possible.
Patients could still be evolving according to some
more sophisticated transition probability structure
like the one we assumed in the simulation model, but
we might only be able to do some rough classification
and make decisions accordingly without knowing
precisely in which health stage each patient is in. In
fact, this would most likely be the case at least in the
foreseeable future as it is very difficult if not im-
possible to come up with a classification system that
perfectly captures patient evolution at a detailed
level. To get a sense of how the policies we propose
would perform in such a case, we also consider ag-
gregated versions of GP and RP. They are aggregated
in the sense that, as shown in Figure 3, if the patient
is in one of the health stages 1, 2H, or 2L, the decision
maker knows that the patient is in one of these stages
but not the exact health stage. Thus, the decision
maker assumes that the patient is in some aggregated
stageA1. Similarly, if the patient is in one of the health

stages 3H, 3L, or 4, the decision maker, not knowing
the exact health stage of the patient, assumes that the
patient is in the aggregated stage A2. This means that
the decision maker puts patients in only one of two
health stages as in the case of our mathematical for-
mulation. This allows us to consider a setting where
the reality is complicated (as described in the simu-
lation study) but the decision maker follows the
policies suggested by our mathematical analysis.
Note that using the aggregated stages requires
estimation of transition probabilities among the
aggregated stages A1 and A2 as well as the death
and survival stages 0 and 5. We explain how the
decision maker makes this estimation in Online
Appendix A5.3.

Aggregated Greedy Policy (AGP). This policy is the
same as GP except that it is applied over the aggre-
gated classifications. When a patient from a partic-
ular aggregated stage is to be discharged or admit-
ted from the general ward, one of the patients from
that aggregated health stage is chosen randomly.

AggregatedRatio Policy (ARP). This policy is the same
as RP except that the policy is applied over the ag-
gregated classifications. As in the case of AGP,when a
patient from a particular aggregated stage is to be
discharged or admitted from the general ward, one
of the patients from that aggregated health stage is
chosen randomly.

Aggregated Optimal Policy (AOP). When there are
two health stages only and under the additional
assumptions that when there are no patient read-
missions from the general ward and the patient ar-
rival process is stationary, we can determine the
optimal policy by solving the MDP formulation de-
scribed in Section 5. AOP basically uses the actions
this optimal policy suggests (when the arrival rate is
set to the current arrival rate in the simulationmodel).
As in the cases of AGP andARP, AOP randomly picks
among the patients who belong to the same aggre-
gated health stage.

6.3. Results of the Simulation Study
In the simulation study, we considered two DPCD
values (3% and 5%), and three levels for the baseline
ICU load (0.5, 0.8, and 1) as described in Section 6.1.
Thus, in total, we considered six different combina-
tions. The performance measure for each policy π
(described in Section 6.2) was chosen to be the mor-
tality rate, Mπ, which we define to be the percentage
of deaths among the patients who arrived at the ICU
for possible admission during the 36-week period.
We generated 30 transition probability scenarios for
each one of the six DPCD-load pairs as described in

Figure 3. (Color online) Aggregated Two-Stage Transition
Diagram for Patient Evolution in the ICU.
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Section 6.1 and ran 100 replications for each scenario.
In each replication, we randomly determined the ini-
tial state of the system. Specifically, the number of
patients initially in the ICU was set assuming that
the number is uniformly distributed over the integers
from 0 to b and the health stage i of each patient is
determined using the probability distribution {θi, i ∈
{1, 2L, 2H, 3L, 3H, 4}}.

Using simulation results, we made pairwise per-
formance comparisons between RP and every other
policy. Specifically, we calculated the mean value for
Mπ −MRP for every policy π (over the 100 replica-
tions) for each scenario and constructed a 95% con-
fidence interval for the mean difference. In Figures 4,
5, and 6, we provide these confidence intervals along
with the box plots, where we also indicate the first
and third quantiles, the minimum, and the maxi-
mum values.

From the figures, we can observe that RP has a
superior performance overall when compared with
the other policies. The good performance of RP is
evident particularly when the comparison is made
with respect to benchmark policies FCFS, RDP, GP,
and AGP and the load on the ICU is very high. Given
our mathematical analysis, the effect of system load
on the performance of RP is not surprising. As we
discussed earlier, when the system load is high,
policies like GP, which exclusively takes into account
the immediate benefit for the patients while ignoring
system level factors such as the expected length of
stay for the patients, are more likely to perform badly.

If we compare RPwith the aggregated-type policies
ARP and AOP, we observe that, even though these
two policies perform better than the benchmarks,
the performance of RP is again statistically better
with the differences in the performances getting larger
as the load on the system increases. Note that this
comparison is important because as we discussed in
Section 6.2, the model with which we are making
decisions (e.g., our mathematical model) could be
simpler than the reality (e.g., our simulation model as
we assume in this paper). As the decision maker, we
may not even know which specific health stage the
patient is in but could only have some rough idea
about the patient’s health condition. With this com-
parison, we see that there is a benefit to knowing the
health conditions of the patients in more detail, es-
pecially when the system is heavily loaded.

To get a better sense as towhyRPperformswell and
its performance gets better with increased ICU load,
recall Proposition 1 (particularly part (b)), which
provides a necessary and sufficient condition for the
optimality of RP for the special case where there is a
single bed. According to the proposition, RP is opti-
mal if the arrival probability exceeds a particular level,
that is, if the inequality in Equation (5) is violated. This

suggests that in general, RP could be more preferable
when the ICU is highly loaded. In our simulation
study, there are multiple beds, the arrival probability
changes with time, and the inequality is written spe-
cifically for a model that assumes two health stages.
Therefore, condition (5) is not well-defined in the
context of our simulation model. However, one can
still get some general sense for whether the arrival
probability is high enough to favor RP by adjusting
the arrival probability λ by λ/b, using the aggregated
version of the transition probabilities under each
scenario, and then determining the percentage of time
the inequality in Equation (5) is violated. Following
this procedure, we obtained Table EC.1 in Online
Appendix A5.4.
As we can observe from the table, in many of the

scenarios considered in our simulation study, the
fraction of time the adjusted version of condition (5)
is violated is either 1 or close to 1 providing some
explanation as to why RP has such a good perfor-
mance. It is also important to note that as the load on
the system increases, the fractions under each sce-
nario are also nondecreasing, which might explain
why the performance of RP is more dominant when
ICU load is higher.
Going back to Figures 4, 5, and 6, another obser-

vation we can make is that among the aggregated-
type policies, ARP and AOP appear to perform better
thanAGP except for the casewhen the load on the ICU
is the smallest. If we compare ARP with AOP, we see
that even though the mean performance of AOP is
better than that of ARP for all ICU load levels, the
differences are not statistically significant. This sug-
gests that even when patients can only be classified at
the aggregate level as described earlier and thus RP
is not an option, using the policy that is optimal (for
our stylized formulation) may not be justified and the
aggregated version of RP might be acceptable.
The observations that RP performs better than AOP

and AOP does not seem to have a statistically strong
advantage over ARP highlight two important ques-
tions that are closely intertwined: In searching for
the discharge/admit policy to use in practice, can
we restrict ourselves to state-independent policies?
Given that the simulation study suggests that the best
policy is state independent, does Theorem 2, which
states that in general the optimal policy is of threshold
type, have any practical value? For several reasons,
it is difficult to provide definite answers to these
questions. First of all, we know that AOP is optimal
for our mathematical model but this obviously does
notmean that it would continue to performwell when
we change the underlying model from one with two
health stages (as in the mathematical model) to one
with six health stages and a more complex transi-
tion structure (as in the simulation model). It is not
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even clear whether AOP is the best among all the
aggregated-type policies one could use for the model
assumed in the simulation study. In short, AOP may
not have performed as well as one would hope, but

this does not rule out the possibility of the existence
of a different state-dependent policy that performs
better. But more importantly, even though our pa-
tient health evolution formulation assumed in the

Figure 4. (Color online) Pairwise Comparisons of the Differences in AverageMortality Rates BetweenOther Policies and Ratio
Policy for Each Scenario with ρst � 0.5

Note. Average is taken over 100 replications.
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simulation study is highly likely to be an improve-
ment over the one we assumed in the mathematical
model, we do not know how well this particular
model captures reality. As we discussed in detail in

Section 6.1, existing research on ICU patients is not at
a level where we have a clear understanding of how
ICU patients can be classified and how their health
conditions evolve inside and outside the ICU. The

Figure 5. (Color online) Pairwise Comparisons of the Differences in AverageMortality Rates BetweenOther Policies and Ratio
Policy for Each Scenario with ρst � 0.8

Note. Average is taken over 100 replications.
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model we used in the simulation study is only one
possibility among the many plausible. Therefore,
even though our simulation study provides some

useful insights and directions for future work, it
would not be reasonable to make immediate gener-
alizations from our observations. With more research

Figure 6. (Color online) Pairwise Comparisons of the Differences in AverageMortality Rates BetweenOther Policies and Ratio
Policy for Each Scenario with ρst � 1

Note. Average is taken over 100 replications.

Ouyang, Argon, and Ziya: Allocation of ICU Beds in Periods of High Demand
606 Operations Research, 2020, vol. 68, no. 2, pp. 591–608, © 2020 INFORMS



in this area, we will have an increasingly better un-
derstanding of ICU patients and be able to develop
models that are increasingly better representations of
reality. It is possible that with changes in the health
evolution model, performances of the policies relative
to each other will also change and it will be prudent
to construct potentially good new state-dependent
policies and investigate their performances. The in-
sights that come out of the optimal policy charac-
terizations given in Theorem 2,whichdescribe how the
composition of the patients in the ICU should influence
admit/discharge decisions, can be helpful in the
construction of such policies.

Even though our simulation study cannot provide a
definite answer to the question of which policy would
work better in practice, the fact that RP had the best
performance is good news. The policy is simple, easily
generalizable, intuitive, and does not need to keep
track of system state information. It is also important
to note that the policy only requires the estimation of
expected net benefits and the expected lengths of stay
for each health stage, not the individual transition
probabilities. This not only makes it much easier to
implement RP in practice, but also means that the
policy is highly robust to transition probability esti-
mates and the assumptions made regarding the un-
derlying patient health and transition formulation.

Finally, in this section, we investigate patients’
lengths of stay in the ICU under each policy. Figures
A2, A3, and A4 given in Online Appendix A5.5
summarize the results of our analysis.We can observe
from the figures that if we leave aside FCFS, there are
no notable differences between the policies with re-
spect to average lengths of ICU stay. Long lengths of
stay under FCFS is not surprising because under that
policy patients leave the ICU onlywhen they are dead
or they reach the survival stage. They are never dis-
charged early to accommodate other patients. Under
any of the other policies, patients can be discharged
from the ICU even though they still need ICU care and
this results in shorter lengths of stay. We can also
observe from the figures that the lengths of stay under
every policy except FCFS decrease as the ICU load
increases. This is because except in the case of FCFS,
the more patients there are in need of ICU, the higher
the chances that anygivenpatient’s ICU stay is cut short,
which ultimately leads to shorter average lengths of stay.

7. Conclusions
Many studies reported that the number of ICU beds in
many parts of the United States and the rest of the
world are in short supply to sufficiently meet the daily
ICU demand. It is frequently the case that a patient
who is in a relatively less critical condition is dis-
charged early to make room for another patient who
is deemed more critical. Although this bed shortage

problem arises even under daily operating condi-
tions, it is natural to expect the problem to get worse
in case of an event like an influenza epidemic, which
causes a significantly increased number of patients
in need of an ICU bed. It is thus highly important to
investigate how ICU capacity can be managed effi-
ciently by allocating the available beds to the patients
in a way that the greatest good is achieved for the
greatest number of the patients. Our goal in this paper
has been to provide insights into and develop policies
for making such allocation decisions.
What mainly sets our analysis apart from prior

work is that in our model we allow the patients to
move from one health stage to another and allocation
decisions are made based on the patients’ updated
health conditions. This formulation captures an im-
portant feature of the actual problem and nicely fits
with the triage protocol proposed by Christian et al.
(2006). Butmore importantly, themodel allowed us to
go deeper and establish properties that appear to be
difficult to identify using formulations considered
in prior work. For example, we were able to provide
analytical results for the case where patients who have
higher expected ICU benefits also have longer ex-
pected length of stay.
Our analysis of the single-bed scenario led to in-

teresting insights into how optimal decisions depend
on the patients’ expected ICU benefit, expected length
of stay, and the patient load on the system. We found
that when patients who are expected to benefit more
from ICU treatment also have longer expected lengths
of stay, those patients should get higher priority only
if the overall patient demand is below a certain level.
This is because when beds are in high demand, prior-
itizing those patients (who are expected to occupy the
beds longer) would require turning too many patients
away from the ICU that it becomes more preferable
to adopt a policy that has quicker bed turnaround times
even though the expected net benefit is smaller for
every admitted patient. More generally, when the ICU
has finitelymany beds, we found that the optimal policy
aims for an ideal mix in the ICU so as to hit the right
balance between the overall expected net ICU benefit
per patient and length of stay. That is, in general, the
optimal policy for prioritizing among patients depends
on the mix of patients in the ICU.
Considering the complexity of the actual decision

problem we are interested in, the mathematical model
we analyze in this paper is stylized and therefore it is
natural to question the generalizability of the main
insights. Indeed, our simulation study, which, unlike
the mathematical model, allows readmissions from the
general ward and considers a more complex patient
health evolution formulation, suggests that there may
not be a justification for searching for a complex policy
that prioritizes based on the patient mix in the ICU.
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On the other hand, the simulation study also shows
that some of the policies that are proposed based on
our mathematical analysis performs well even under
the more general conditions of the simulation model.
The fact is that not enough is known about the ICU
patients for us to be able to construct a very realistic
description of patient evolution. The more complex
model considered in the simulation study is another
simplification at best. Therefore, not only the con-
jectures on the generalizability of the policies should
be taken with a grain of salt, but one should also not
quickly conclude from our simulation study that in
practice there is no need to consider policies that take
patient mix into account. Nevertheless, our results
provide some confidence that despite the complexity
of the decision problem in practice, relatively simple
policies might work well, and the paper provides some
useful guidance for what future research and data
collection efforts should focus on in order to develop
useful patient classification and triage protocols and
ultimately decision support tools that can be imple-
mented in practice.
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