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The increasing size of datasets with which researchers in a variety of domains are confronted has led to a
range of creative responses, including the deployment of modern machine learning techniques and the advent
of large scale “citizen science projects.” However, the ability of the latter to provide suitably large training
sets for the former is stretched as the size of the problem (and competition for attention amongst projects)
grows. We explore the application of unsupervised learning to leverage structure that exists in an initially
unlabelled dataset. We simulate grouping similar points before presenting those groups to volunteers to label.
Citizen science labelling of grouped data is more efficient, and the gathered labels can be used to improve
efficiency further for labelling future data.

To demonstrate these ideas, we perform experiments using data from the Pan-STARRS Survey for Tran-
sients (PSST) with volunteer labels gathered by the Zooniverse project, Supernova Hunters and a simulated
project using the MNIST handwritten digit dataset. Our results show that, in the best case, we might expect
to reduce the required volunteer effort by 87.0% and 92.8% for the two datasets, respectively. These results
illustrate a symbiotic relationship between machine learning and citizen scientists where each empowers the
other with important implications for the design of citizen science projects in the future.
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1 INTRODUCTION

The rate and volume at which data are collected across many scientific domains is accelerating.
These datasets enable new science; however, our ability to fully extract meaningful information
from these data is challenged. For example, the Large Synoptic Survey Telescope (LSST) project
[15], now under construction, will provide 30 TB of imagery and millions of transient detections
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each night. To learn which alerts are worthy of follow-up resources requires a high-performance
classification pipeline. However, previous classification solutions, in which a small group of experts
manually processed the data they gathered, do not scale. Crowdsourcing projects which engage
large numbers of human annotators is one recent solution that has been increasingly deployed to
close this analysis gap. This is illustrated by the growth in online citizen science projects hosted on
the Zooniverse1 platform, from the initial Galaxy Zoo project [20] in 2007, to ∼50 in January 2016
and over 150 projects today. By crowdsourcing annotations, a dataset can be processed faster than
a research team could alone. However, even the crowd may not always be fast enough. A tension
arises when new data is generated before all current data can be processed. LSST is expected
to produce millions of alerts each night that require processing before the next night’s data is
produced to avoid a backlog. Although machine learning is a faster alternative to citizen science,
it takes a long time for human classifiers (commonly citizen scientists themselves) to label enough
data to adequately train a model [8, 9, 23]. Once trained, these models offer an alternative to citizen
science, but it can take months if not years to gather the training data that made the models
possible.

It is clear that efficiency gains must be made for crowdsourced annotations to remain a viable
component of the research toolkit. In citizen science projects to date, volunteers have typically per-
formed an exhaustive search through the data. Each subject2 for classification is presented one at
a time. To average out individual biases or mistakes, multiple independent volunteer annotations
are gathered per subject. In most cases, a constant number of volunteers are required to anno-
tate each subject and their contributions aggregated. But there is redundancy in this approach. We
might expect that some subjects are easier to classify than others or that some citizen scientists are
more accurate than others. Efficiency gains can thus be made either through optimizing the atten-
tion of high-performing members of the crowd, or through optimizing the way in which data are
presented to the crowd. Work has already been done by several groups on tracking the response
of individual labelers. For example, Simpson et al. [28] and Marshall et al. [22] found they could
reduce the number of volunteer annotations needed to achieve the same performance compared
to the simple aggregation mentioned above. Marshall et al. [22] were able to reduce the number
of annotations to 34% of what they would otherwise have needed. Branson et al. [5] took a sim-
ilar approach for applications on the Amazon Mechanical Turk3 platform, but also incorporated
computer vision achieving a reduction in annotation time by a factor of 4–11 for binary tasks.
These techniques provide one avenue toward more efficient classification of large datasets. How-
ever, in this work, we explore potential gains in efficiency by optimizing how data are presented
to volunteers.

To allow a new citizen science project to become more efficient and adopt machine learning
sooner, we present a method that, through unsupervised learning, reduces volunteer effort to 30%
of what would typically be required to annotate an example dataset. We then show how, by up-
dating the model with supervised learning on an initial set of volunteer provided labels, we can
refine the model to further reduce effort to ∼18% when gathering the next batch of annotations.
This same model can be used as a machine classifier for future data and we find that after one
round of learning from volunteer labels the classifier can perform similarly to a single volunteer
in terms of classification accuracy. The system therefore sets up a symbiotic relationship between
volunteers and the model, whereby the initial model allows volunteers to classify more efficiently.
The labeled data provided by volunteers “teach” the model how to perform better in the future,

1https://www.zooniverse.org/projects.
2Throughout, subject is used to refer to individual examples—usually images—drawn from a dataset.
3https://www.mturk.com/.
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which in turn provides greater efficiency gains for volunteers. The model helps the volunteers to
help the model. While the efficiency gains quoted here are specific to the particular application, in
Appendix A we show that similar improvements can be expected for other datasets.

Our hypothesis is that an increase in efficiency can be gained by grouping subjects together, so
that rather than asking volunteers to classify them one at a time, we could ask for classifications
of the group. Say we choose groups to contain n subjects and our dataset contains c classes. Then
in the worst case, every subject in a group belongs to a different class and requires n − 1 clicks
to individually annotate each subject, since we can infer the class of the remaining unlabelled
subject provided c < n. Under these conditions, the same amount of volunteer effort is required as
the standard approach. On the other hand, if all the subjects in a group belong to the same class,
with a suitable interface an entire group could be classified with a single click. So long as the groups
are purer than the worst case, we will realize an efficiency gain over the standard approach, since
volunteers need only click on members of the minority classes. In addition to c and n, the actual
efficiency gains achieved will also depend on our ability to produce pure groupings. Assuming
that volunteers are able to classify just as accurately in this new interface as with the standard
approach, we can gather data more quickly without compromising quality. We test this hypothesis
with an example citizen science project where c = 2 in experiments below while Appendix A also
demonstrates efficiency gains for a problem where c = 10. In both cases, we will assume n = 25.

To achieve greater efficiency gains, we therefore want to increase the majority class’ dominance
within a grouping. But without knowing the labels for at least a portion of the dataset, we instead
need to rely on some heuristic of similarity between subjects. This is the domain of clustering
algorithms whose central goal is to group subjects into clusters such that those subjects assigned to
a cluster are more similar than subjects assigned to different clusters. To achieve this, all clustering
algorithms rely on some notion of distance within a feature space [13]. Those lying closer to each
other in this space are assumed to be the most similar. For a citizen science project, we could cluster
all unlabelled data before presenting groups from each cluster to citizen scientists for classification,
aiming to leverage any structure in the unlabelled data that could be useful for distinguishing
classes.

In practice, the feature space used to represent subjects to volunteers does not necessarily lend
itself to meaningful clusters. For images, the feature space is defined by pixel values and clus-
tering images from camera trap projects like Snapshot Serengeti4 [29] for example, might group
them based on the camera’s location instead of the species within the image. Since the purpose
of the project is species identification, this is problematic. We could try to mitigate this by hand-
engineering features we believe are important for the classification of these objects and clustering
in this new space. Either way, with no labels to begin with, we will be dependent on volunteer
annotations to quantify the effectiveness of the feature space and we might discover that the fea-
tures we designed need improving. We could try to iteratively refine the features we calculate,
repeating the steps of feature design, clustering, and volunteer annotation. But a better solution
would be to learn the feature representation. Better still, would be to learn the feature represen-
tation and clustering jointly. To this end, we explore an unsupervised method to learn a feature
representation and clustering from unlabelled data and develop a feedback loop that allows us to
incorporate human labels to refine both the feature representation and clustering. Labels provided
by humans improve the cluster purity by helping the network identify salient features leading to
greater efficiency gains in the next round of gathering labels, and the cycle continues. In the ideal
case, the cycle would continue until the Bayes’ error is achieved.

4https://www.zooniverse.org/projects/zooniverse/snapshot-serengeti.
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The rest of this article continues as follows. In Section 2 we describe the network architecture.
Section 3 presents our dataset and the experimental method in the context of citizen science. In
Section 4, we report results and conclude in Section 5.

2 ARCHITECTURE

We desire an algorithm that is able to learn feature representations which suggests the use of
deep learning [10, 24, 35]. Since the feature space is crucial to the success of clustering, it also
seems desirable that during clustering, the network is free to update the feature representations
it learns. There are a number of architectures that offer these properties (see Table 1 of Aljalbout
et al. [1] for examples). We opted to base our approach on Deep Embedded Clustering (DEC) [34]
because it is relatively well established in comparison to others and the network is composed
of a Multi-Layered Perceptron, which makes fewer assumptions about the data than alternative
architectures. We modify the DEC architecture to allow us to feedback volunteer labels to update
the feature representations learned. We achieve this by adding new branches to the network which
are turned off and on to enable switching between unsupervised and supervised learning. This
approach is chosen for simplicity as our focus is on demonstrating the kinds of efficiency gains
that could be achieved with similar approaches.

2.1 Deep Embedded Clustering

DEC learns to map the original representation of the data to a lower dimensional feature space in
which the data are clustered. Training DEC begins with greedy layerwise pretraining of stacked
(denoising) autoencoders (SAE) [30] that learn an initial feature representation for the input data.
The second step involves embedding the data into this new feature space and initializing cluster
centres with k-means [21]. The learned feature representation and cluster centroids are then opti-
mised by minimizing the Kullback-Leibler (KL) divergence between a soft assignment of the data
to cluster centroids and a desired target distribution for unsupervised learning. The soft assign-
ments of individual examples to centroids takes the form of Student’s t-distribution, which acts to
measure the similarity between a data point embedded in the feature space and each cluster cen-
troid. The target distribution is designed to emphasise confidently assigned data points, improve
clustering purity, and mitigate against large clusters dominating the loss function (see Equation 3
of Xie et al. [34]). The target distribution is a function of the soft assignments, which are in turn
dependent on the initial clustering and feature representation learned by the SAE. If the learned
features are not discriminative for the desired classification task, for example, they capture the
general colour of an image rather than the object it contains, then the optimization of DEC will
act to reinforce this. DEC offers no guarantee that the identified clusters will be optimal for the
classification task, as is the case with any unsupervised clustering algorithm.

2.2 Modifications

After pretraining the autoencoders, we modify the DEC model according to Figure 1. The top
branch of the model aims to minimise the reconstruction loss and is composed of the deep au-
toencoder learned during pretraining. The intuition behind including the reconstruction loss is in
preserving any important information learned by the model during the initial unsupervised phase
[1]. The middle branch corresponds to the DEC architecture proposed by Xie et al. [34]. The bottom
branch enables supervised updates to the network and is constructed by adding a clustering layer
on top of the DEC encoder. This clustering layer shares cluster centroids with the middle branch
and ensures that cluster centres learned by either branch are coherent. On top of this clustering
layer, we add a softmax classification layer with one output unit for each class, real or bogus. This
means that supervised updates to the model will also affect the learned cluster centres.

ACM Transactions on Social Computing, Vol. 2, No. 3, Article 11. Publication date: November 2019.
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Fig. 1. Proposed network architecture with modifications to DEC. The hatched portions show the original

DEC architecture.

The model is trained with back-propagation and the Adam optimiser [17] with a learning rate
of 0.001 and all other parameters left as defaults. We use a weighted combination of the three loss
functions and in Section 3 we will use these weights to break training into separate phases. For
example, setting the weights of the mean squared error and categorical cross entropy losses to zero
is equivalent to training DEC as described in the previous section. Table 1 details how the weights
of each loss function are changed throughout training.

3 EXPERIMENTAL METHOD

Our experiments will compare how labels are gathered from volunteers comparing the standard
interface to a simulation of an interface where groups are labelled. We also compare our proposed
clustering method to k-means to highlight the advantages of joint training. Throughout, we will
hold constant the data, architecture, and training method. The architecture of the DEC encoder is
kept the same as in Xie et al. [34], where the dimensions are 500-500-2,000-10. Our experiments
therefore simulate running multiple citizen science projects that differ in the way they gather
volunteer labels and in how those labels are used to influence the way labels are gathered in the
future.

3.1 Data

Our experiments use 20 × 20 pixel greyscale images extracted from Pan-STARRS1 (Chambers
et al. [7]) difference images (see Section 2.1 of Wright et al. [33] for details). We take 9,219 im-
ages obtained between June 1, 2013 and June 20, 2014. These images contain either examples of
image artefacts or detections of real astrophysical transients, with the goal of distinguishing be-
tween the two. This is the same dataset used to train the Convolutional Neural Network (CNN)
described in Wright [32]. The data are also split along the same partitions as used to develop the
CNN with 75% of the data for training and 25% for testing. In the context of a supernova survey,
where data is constantly being collected every night, the 75% of the data designated for training
will represent data we have in hand when we first launch a citizen science project. This training
partition is further split into three sets: (1) a training set consisting of 3,458 subjects, (2) a devel-
opment set consisting of 1,729 subjects, and (3) a validation set containing 1,729 subjects. We use
volunteer provided labels collected for (1) to train the model, and volunteer labels collected for
(2) to determine stopping criteria during training; this is to replicate as closely as possible the situ-
ation for a real citizen science project. (3) represents unlabelled data we have in hand but have not
gathered volunteer labels for. We use this validation set for monitoring the model’s performance
throughout training, but the model only “sees” the validation set during the unsupervised steps

ACM Transactions on Social Computing, Vol. 2, No. 3, Article 11. Publication date: November 2019.
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Table 1. Data Splits Used for Training, Validation, and Testing During Training Steps

Mean Categorical

Training step Training data Validation data Test data squared error KL divergence cross entropy

Unsupervised training - test 0.0 1.0 0.0

Clustering development - -

validation - -

Multitask training development test 1.0 0.0 1.0

- validation -

Reclustering training validation test 0.0 1.0 0.0

development - -

The last three columns show the weight assigned to each of the loss functions during the different training steps.

(initial unsupervised clustering and reclustering steps described below). The test set represents
data obtained in the future that the trained model will be applied to. The test set is not used for
training at any point and its sole purpose is to estimate the performance we could expect from the
model on future data at different points in the training process. The test set is also used to measure
benchmarks against which our approach is compared. We use expert provided labels for both the
validation and test sets. Table 1 shows whether each data split is used for training, validation, or
testing during each of the training steps. In Wright et al. [33], we demonstrate the utility of the
volunteer labels for the training steps through a quantitative comparison between volunteer vote
fraction labels and expert labels.

3.2 Training Process

3.2.1 Unsupervised Clustering. The first step is to perform an unsupervised clustering using
DEC in order to make an initial attempt at grouping similar images together. To achieve this,
we set the weights for the mean squared error and categorical cross entropy losses to zero and
train the model unsupervised on the training, development, and validation sets. We choose to
use 10 clusters, although volunteers are only asked to label the data as one of two classes (real
or artefact). This represents the case where we may not know ahead of time how many classes
exist in the data and it is best to err on the side of more clusters, leaving open the opportunity
for the discovery of subtypes or new classes. There are several artefact types and the differences
between them can be nuanced; given that artefacts make up the majority of the data, it makes
sense to reduce the problem to a binary classification task for the volunteers rather than have
them agonise over assigning artefacts to specific classes. The top left panel of Figure 2 shows the
unsupervised clustering of the Supernova Hunters training partition.

3.2.2 Gathering Volunteer Feedback Simulation. To assess the quality of the unsupervised clus-
tering and to provide labels to feedback to our model, we gather labels from volunteers. The above
dataset was uploaded to the Supernova Hunters project between May 23, 2018 and May 24, 2018
gathering classifications in the standard way, that is, one subject at a time. During this period, we
received a total of 254,175 individual classifications resulting in an average of 27.6 classifications
per image with each image being classified by at least 10 volunteers.

We aggregate the individual classifications into a single label using vote fractions [31]. Vote
fractions are calculated by taking the fraction of volunteers who classified each subject as real.
This is then converted to a “hard” label by setting a threshold at 0.5, meaning if more than 50% of
volunteers classified a subject as real, then it is labelled real, otherwise the subject is labelled as an

ACM Transactions on Social Computing, Vol. 2, No. 3, Article 11. Publication date: November 2019.
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Fig. 2. (Top left) 2-D PCA projection of the initial embedding learned by DEC for the Supernova Hunters

unlabelled dataset. The initial unlabelled training set is shown in grey with cluster centres in green. Each

cluster is assigned a letter to identify it. (Top right) The same as before but with vote fraction labels derived

from volunteer classifications overlaid for the training and development sets. (Bottom left) The embedded

space after the multitask step. This space does not lend itself to clustering analysis. (Bottom right) The final

reclustered embedding. This space provides good classification results and also offers the most efficiency

gains when gathering volunteer labels. Highlighted are three outliers which turn out to be examples of

low signal-to-noise detections of transients which are rare in the training data since they are close to the

detection limit of the survey, providing one example of the type of analysis this space enables.

artefact. These are the labels we use for the training and development sets described in the previous
section. We emphasize that, as this is a simulation, these labels are gathered in the standard way.
In a “live” project, we would use a different interface, presenting groups of similar images together
in a grid. We discuss such an interface in greater detail in Section 3.3 below.

ACM Transactions on Social Computing, Vol. 2, No. 3, Article 11. Publication date: November 2019.
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3.2.3 Learning from Volunteer Feedback. At this stage, we have gathered volunteer labels for
75% of the data that we have available (consisting of the training and development sets). The next
step is to feed these labels to the network in such a way that we improve the purity of the clusters
and in turn the classification performance of the model. To achieve this, we perturb the embedded
space such that members of each class will lie closer to each other. This implies that the feature
representation learned by the model will have captured aspects of the subjects that are more mean-
ingful for the target task of separating real and bogus detections. The goal of this stage is therefore
to update the embedded space such that it provides a better initialisation for the next step of reclus-
tering. At this point, the weight of the KL divergence loss is set to zero and the weights for the
mean squared error and categorical cross entropy are set to one, allowing the network to perform
supervised learning on the volunteer labels. We found that including the reconstruction loss (mean
squared error) leads to more stable training. We call this phase of training the multitask step as we
are optimising for two loss functions. Using early stopping with a patience of 5 epochs and moni-
toring the loss on the development set, the multitask step ends after 13 epochs with the best model
checkpoint from epoch 8.

3.2.4 Reclustering. The lower left panel of Figure 2 shows the new embedded space we obtain
at the end of the multitask step (Section 3.2.3). This new space is less amenable to clustering anal-
ysis and the aim of this step is therefore to cluster the data again, reapplying DEC by setting the
KL divergence weight to one and the others to zero. We call this the reclustering step. Since the
development set is no longer needed to determine the stopping condition for the multitask step,
we append it to the training set.

3.3 User Interface Simulations

Finally, we run simulations to compare efficiency gains, counting how many clicks it would take
volunteers to classify all the data in the test set, had the labels been gathered through different in-
terfaces. One underlying assumption is that, no matter the interface, volunteers provide consistent
labels and we leave a comparison of how different interfaces affect the quality of labels or changes
in volunteer engagement to future work. We also assume that every click incurs a constant time
cost and that the sum of clicks is a proxy for the actual time required to classify. It is also worth
restating that in the case of Supernova Hunters, classification is a binary task and the analysis will
differ for tasks with more classes.

In general, Zooniverse projects set a retirement limit that defines the number of volunteers who
must classify each subject before it is considered “fully” classified and retired from the project.
For example, Supernova Hunters operates with a retirement limit of 10. As this is a constant, we
ignore it in our simulations.

Simulations of the standard interface are trivial and we will discuss them further in Section 4.2
where we also discuss the addition of other clicks required by the different interfaces, such as those
needed to submit a final classification, which differ depending on the interface. The remainder of
this section describes how we simulate the number of clicks that would be required to label the test
set had the volunteers been classifying through an interface with groups of images. For example,
a group might consist of 25 subjects drawn at random without replacement from the same cluster
presented in a 5 × 5 grid. Volunteers would be directed to determine the minority class of those
presented and to select all subjects belonging to that class by clicking on them. These are the clicks
we count in the simulation.

The simulations run by randomly sampling from the embedded space at each stage and counting
the number of subjects that belong to the minority class interpreting this count as the number of
clicks. We loop through the data until all subjects in the test set have been labelled once. These

ACM Transactions on Social Computing, Vol. 2, No. 3, Article 11. Publication date: November 2019.
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simulations are run at the unsupervised stage and after reclustering. We also simulate efficiency
gains comparing DEC and k-means as the clustering algorithm.

4 RESULTS

4.1 Metrics

For experiments relating to efficiency, simulated click counts (see Section 3.3) are taken as an
estimate of volunteer effort. Relative efficiency gains are compared in terms of the differences
between these simulated counts and are the main objective of our work.

Since efficiency in terms of click counts is difficult to track during training, we monitor two
additional metrics, namely, the F1-score and homogeneity score. The F1-score monitors classifica-
tion accuracy while homogeneity tracks cluster purity. We expect efficiency gains to follow from
improvements in these metrics, since for example, purer clusters imply grids presented to volun-
teers will be purer, which take fewer clicks to classify. To measure the F1-score, we need to convert
the clustering algorithm into a classifier. For this we rely on the volunteer labels which are used
to calculate a cluster-to-label mapping. Each cluster is mapped to the majority label that volun-
teers provided for the random sample of subjects drawn from each cluster. Predictions are made
by predicting the label mapped to a cluster for all subjects assigned to that cluster. We track both
metrics as the F1-score is dependent on the cluster-to-label mapping, while the homogeneity is
independent of the mapping.

The advantage of the F1-score rather than classification accuracy is that an increase in the mea-
sured F1-score corresponds to a meaningful improvement in classification. For example, simply
classifying all targets as real (i.e., the “all ones” benchmark) decreases the precision, which in turn
decreases the F1-score.

The homogeneity score tracks cluster purity while not requiring that all members of a class are
assigned to a single cluster. The homogeneity score is maximised when each cluster only contains
members of a single class [26]. Given a set of classes C and clusters K , the homogeneity score is
calculated as

h = 1 − H (C | K )

H (C )
. (1)

Here H (C | K ) is the conditional entropy of the classes given the cluster assignments and H (C )
is the entropy of the classes. H (C | K ) is defined as

H (C | K ) = −
|C |∑
c=1

|K |∑
k=1

nc,k

n
· loд
(nc,k

nk

)
, (2)

and H (C ) is given by

H (C ) = −
|C |∑
c=1

nc

n
· loд
(nc

n

)
, (3)

where c and k index classes and clusters, respectively, n is the total number of subjects, nc is the
number of subjects belonging to each class c and similarly nk denotes the number of subjects
assigned to cluster k , and finally, nc,k is the number of subjects assigned to cluster k from class c .

4.2 Labelling Efficiency

Here we present the results of the simulations described in Section 3.3 (User interface Experiment).
First we consider the standard Zooniverse classification interface, where subjects are presented one
at a time. In this case, volunteers make a single click to select which class they think the presented
subject belongs to, plus an additional click to submit the final classification. The total number of
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Table 2. User Interface Simulation Results Over Five Trials

Method Classification clicks Interface clicks Total clicks Efficiency gain

Standard 2,303 2,303 4,606 -

Worst case clustering 1,153 186 1,339 70.9%

Unsupervised pretraining + k-means 657 186 843 81.7%

DEC 671 186 857 81.4%

Reclustering step (k-means) 649 186 835 81.9%

Reclustering step (DEC) 412 186 598 87.0%

clicks to classify the Supernova Hunters test set can therefore be simply simulated as twice the
total number of subjects in the set, that is, 4,606.

We test a number of approaches to grouping the images and presenting them in grids to volun-
teers. It is worth noting that in the worst case, every grid we present would have an equal number
of real and bogus subjects and volunteers must then click on exactly half the subjects. Volun-
teers must also click to select the minority class plus an additional click to indicate when they
are finished classifying, that is, two clicks for every grid in addition to the clicks associated with
classification. The total of these additional clicks is two times the number of grids in the dataset.
Throughout we will use 5 × 5 grids for our simulations; given the small image sizes (20 × 20 pix-
els), we expect that the individual images should appear large enough on a computer monitor for
volunteers to be able to assess. The number of grids is given by the total number of subjects divided
by the number of subjects in each grid and is therefore 2, 303/25 or 93 for a 5 × 5 grid. We add a
constant of 186 clicks to the results of the click simulation described in Section 3.3. In this case,
the upper bound on the number of clicks through an interface such as this would therefore be half
the total number of subjects; 1, 153 plus the constant 186 clicks needed to drive the interface, or
1,339 clicks in total.

Next, we take the autoencoder trained as in the initialisation of DEC and run k-means on the
encoded training set. We report the results of this simulation as “unsupervised pretraining + k-
means” in Table 4. The feature space is then updated following the same protocol as the multitask
step described above. We then cluster in this newly learned embedded space with k-means. The
difference between this and the DEC approach is that the embedded space used to initialise the
multitask step has not been updated by the unsupervised DEC clustering and the multitask step
is instead applied directly to the embedded space learned by the autoencoder and recorded as
“reclustering step (k-means)” in Table 4. We repeat this process but with DEC. In contrast to k-
means, we observe a significant improvement in expected efficiency gains after updating the model
with volunteer labels. We repeat each simulation for five trials and report the mean in Table 2
rounded to the nearest integer. These simulations show that our proposed approach (“reclustering
step (DEC)”) achieves an efficiency gain of ∼28% over using DEC or k-means alone, and an 87%
gain over the standard classification interface.

4.3 Training Process

In this section, we track the F1-score and homogeneity score defined in Section 4.1 throughout the
training process. We also calculate benchmarks to help set our method in the context of alterna-
tives, such as clustering with k-means instead of DEC, or relying solely on experts for labels.

4.3.1 Benchmarks. Since we adopt the F1-score we calculate the all ones benchmark, that is, the
F1-score that would be measured by predicting all subjects as real detections. Any classifier ought
to at least outperform this metric and the actual benchmark depends on how skewed the data is. We
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Fig. 3. Learning curves during the multitask and reclustering steps. The right panel shows F1-score during

the multitask step on the training and validation steps. Using early stopping, the best performing model

checkpoint on the development set is epoch 8. At this point, the model has likely over fit the training data

outperforming the theoretical Bayes’ error. We then continue to train the model with another unsupervised

clustering step. The purpose of this step is to transform the feature space at the end of the multitask step

(see bottom left panel of Figure 2) into a space that is more suited for drawing the next round of subjects for

volunteers to label and for clustering analysis. For this step, we combine the training and development to

increase the number of training examples. This accounts for the discontinuity in the blue line; the validation

set (orange line) is held constant between both steps. The reclustering step converges after 13 epochs and

we find that performance is at least as good as if a single volunteer was to label each image in the validation

set.

also calculate several human-level performance benchmarks. First is the human expert benchmark
which is estimated as an F1-score of 0.996 based on previous analysis from Wright [32]. This is a
rough estimate and likely to be an upper bound on the actual value. But it is helpful for framing
our other results since we do not expect humans to perform any better. In addition, we calculate
volunteer performance benchmarks. The vote fraction benchmark is the performance we get by
aggregating the classifications from a crowd of volunteers (see Section 3.2.2), while the single
volunteer benchmark is the performance we measure by taking the label submitted by the first
volunteer to classify each image. This is similar to the classification performance we could expect
from the simulations we performed in Section 3.3 since those simulations assumed a retirement
limit of 1. Finally, we include a supervised learning benchmark based on the CNN we mentioned in
Section 3.1 which was designed specifically for this task and trained on labels provided by experts.
These benchmarks are shown as the top four rows in Table 4 and as horizontal black dashed lines
in Figure 3.

4.3.2 Unsupervised Clustering. After greedy-layerwise pretraining of the stacked autoencoders,
one could apply the DEC clustering step (as we propose) or use a more traditional clustering.
In the latter case, the unlabelled training data would be encoded and then used as the feature
representation for clustering. We compare both these approaches and find that clustering with
k-means gives a slightly higher homogeneity than DEC. This is manifested in the differences in
efficiency of the two methods reported in Section 4.2 and “unsupervised pretraining + k-means”
and “DEC” in Table 2.

To measure the F1-score the cluster-to-label mapping (Section 4.1) needs to be calculated. This
could either be done with gold standard data, where we have high confidence in the correctness
of the labels, for example from experts or simulations (if available), or we could wait to gather
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Table 3. Comparison of Clusters at Various Stages in the Supernova Hunters Analysis

Initial - gold mapping Initial - volunteer mapping Multitask step Reclustering step

Cluster Assigned Label Purity Assigned Label Purity Assigned Label Purity Assigned Label Purity

a 74 0 1.000 105 0 1.000 0 - - 0 - -

b 214 1 0.514 362 0 0.541 995 1 0.839 1,191 1 0.870

c 312 0 0.715 475 0 0.802 21 0 0.810 189 0 0.894

d 266 1 0.556 364 0 0.560 0 - - 8 1 0.750

e 166 0 0.958 217 0 0.986 18 1 0.667 303 1 0.620

f 74 0 0.986 151 0 0.974 0 - - 0 - -

g 318 0 0.506 418 0→1 0.531 24 1 1.00 114 1 0.895

h 385 0 0.600 500 0 0.630 0 - - 14 0 0.500

i 419 0 0.766 655 0 0.827 2,353 0 0.989 2,961 0 0.917

j 75 0 0.973 211 0 0.990 47 0 0.553 407 0 0.649

In the case where no cluster was assigned to one of the classes, the → symbol signifies when a cluster was chosen to
represent the missing class with the label on the left changing to the label on the right. This cluster is chosen as it contains
the most subjects belonging to the missing class.

Table 4. Supernova Hunters Results Showing the Test Set Performance

on Our Proposed Approach, Along with Comparisons with Alternative

Methods and Various Benchmarks (See Text for Details)

Method F1-score Homogeneity

All ones 0.499 -
Single volunteer 0.722 -
Volunteer vote fractions 0.813 -
Human expert 0.996 -
Unsupervised pretraining + K-means 0.614 0.193
DEC (initial - gold mapping) 0.414 0.134
DEC (initial - volunteer mapping) 0.290 0.134
Multitask step 0.702 0.319
Reclustering step (k-means) 0.441 0.194
Reclustering step (DEC) 0.713 0.347
Supervised (PSST CNN) 0.925 -

labels from volunteers. Using gold standard data allows us to immediately measure the F1-score
without the need to wait for labels to be gathered, but the performance measure will be biased as
the cluster-to-label mapping would be determined from the gold standard labels themselves. To
illustrate this point, we use the test set to assign the cluster to label mapping as if it were a gold
standard dataset, and measure an F1-score of 0.414. We show an analysis of the mapping calculated
with the test set as the initial - gold mapping column in Table 3. In comparison, using volunteer
labels produces the mapping shown as initial - volunteer mapping in Table 3, which produces an
F1-score of 0.290 on the test set (shown as the initial - volunteer mapping in Table 4). The large
measured performance difference between the two is due to the fact that in both cases the clusters
assigned a label of 1 (meaning real) have a low purity and the cluster label (determined from
the majority class) is therefore susceptible to small changes in the proportion of real and bogus
detections assigned to those clusters. A change in the label assigned to a cluster results in the labels
of all subjects belonging to that cluster having their predicted labels flipped; this in turn leads to
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large fluctuations in the F1-score. For the remainder of our analysis, we use the mapping derived
from volunteer labels.

4.3.3 Multitask Step. We show the learning curve for the first eight epochs of the multitask
learning step in the left panel of Figure 3 where the model is trained on the volunteer labels.

The fact that the training set performance is higher than the vote fraction benchmark indicates
that the model has overfit the training data as it is unlikely our model, trained on volunteers la-
bels, will outperform the volunteers themselves. A second observation is that the performance
on the validation data is about equal to the single volunteer benchmark. At the end of the multi-
task learning step, the test set performance is 0.702; this is an estimate of the classification perfor-
mance we expect on future data and a 0.412 improvement on the initial unsupervised classification
performance.

4.3.4 Reclustering. The right panel of Figure 3 shows the learning curves for the training and
validation sets during the reclustering step. The discontinuity in the blue line (training + develop-
ment) is due to the addition of the development set to the training set and the F1-score is therefore
not directly related between the two steps. The validation set, on the other hand, is the same across
both panels. We see that during the reclustering step the F1-score changes very little, and we mea-
sure a small improvement over the performance achieved in the multitask step on the validation
set. This also holds true for the held out test set, which improves to 0.713. After this first round of
gathering volunteer labels, we have trained a classifier that we expect to perform almost as well
as a single volunteer on future data.

5 SUMMARY AND DISCUSSION

We have presented a system for gathering labels from volunteers in citizen science projects, where
we take advantage of unsupervised clustering to group subjects together in feature space such that
we can expect to more efficiently gather labels from volunteers. We find that by gathering labels for
a small subset of subjects and updating the learned feature space with these labelled examples, we
can improve the clustering such that clusters become purer and we realise greater efficiency gains
when gathering labels for the next subset of data. We performed experiments with data gathered
from a live citizen science project, Supernova Hunters. We described the steps that must be taken
to adapt the DEC model for our approach and found that we could reduce volunteer effort to label
a new dataset to about 18% of the standard approach for gathering labels. In Appendix A, we apply
our method to the MNIST dataset to demonstrate its ability to generalise beyond the Supernova
Hunters data.

5.1 Limitations and Future Directions

There remain open questions with this approach. Our experiments so far have been simulations
performed on data gathered through the standard classification interface, where each subject is
classified individually. In contrast, the grid interface requires that many images be displayed at
once. This implies a reduced window size per image that could result in a more difficult task
for volunteers [14], potentially leading to reduced accuracy or engagement. Gains in efficiency
then, need to be balanced against these other factors. The grid size can be adjusted to account
for tasks that require volunteers to have access to greater image detail; a smaller grid size allows
for larger images. For example, if this were a requirement for Supernova Hunters, in the extreme
case, a grid size of three could still lead to efficiency gains under our analysis. This is of course
assuming that our proxy for volunteer effort holds, namely, the number of clicks required by the
interfaces to classify a dataset. This is a strong assumption in the regime of small grid sizes or
highly confused clusters where the grid interface would demand many clicks which may take
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longer given the increased cognitive load [25]. As the grid size increases and/or the clusters become
purer, the assumption is somewhat weaker and any increase in the time per click required by the
grid interface would likely be compensated for by the significantly fewer clicks required by the
grid interface compared to the standard interface. In practice, the degree to which the time per
click for each interface differs will likely depend on the details of a citizen science project. Our
priority, therefore, is to test an interface that presents groups of images together and validate actual
volunteer efficiency gains in terms of wall clock time and annotation accuracy when compared
with the standard interface. We have taken initial steps in this direction with the Muon Hunter
2.05 citizen science project. Preliminary results suggest that volunteers spend one-tenth of the time
per subject classifying with the grid interface as they do with the standard interface. Determining
how classification accuracy is affected will require further work; however, at first glance it does
not appear to be significantly affected by the grid interface.

Another concern is losing the opportunity for serendipitous discovery, one of the major routes
through which citizen science projects have provided scientific impact in the past decade. Exam-
ples include the discovery of a class of highly star-forming dwarf galaxies [6], an unusual star
whose rapid, irregular dimming might be due to the presence of an unusual dust cloud [3, 4], and
a red gravitational lens found in a project whose training set consisted only of blue examples [11].
But how can we preserve this when humans do not review every subject? The obvious modifica-
tion would be to employ more intelligent subject sampling rather than the random sampling we
have used so far. Subjects are currently sampled without replacement from the entire dataset in-
dependent of the clustering. This has the effect of “targeting” those clusters with the most subjects
assigned to them and the densest regions of the embedded space. But perhaps the model could ben-
efit from more knowledge of cluster outliers, or active learning techniques [27] could help select
subjects with the greatest expected benefit to the model. However, these methods miss the case
where the model assigns an incorrect label with high confidence, so-called unknown unknowns in
the literature [2, 18]. Combining some of these ideas to determine which groups of subjects vol-
unteers should label could not only enable serendipitous discovery but benefit the model, helping
it converge to a better clustering with less labelled data and providing even greater efficiency.

Another avenue for further exploration is different network architectures. Aljalbout et al. [1]
provides a review of many deep clustering architectures that we could explore, and there have
been modifications to the original DEC architecture that might offer improvements for images
[12] or more interpretable [16] results. Currently, the predicted efficiency gains are significant, but
the trained model does not achieve adequate classification performance for deployment by itself.
Although not necessary, it seems preferable that the model we train could eventually be relied
on to perform the task at hand. Considering most Zooniverse projects are image based, perhaps
some of the modifications, especially those employing convolutional layers, could help us achieve
greater classification performance.

APPENDIX

A MNIST EXAMPLE

In this Appendix, our aim is to show that our method can generalise to another dataset. We re-
peat the experiments above using the MNIST dataset [19] as an example. Xie et al. [34] achieved
84% classification accuracy on MNIST. The dataset contains 70,000 28 × 28 pixel greyscale images
of handwritten digits. These images have accurate labels and have been preprocessed to remove
effects like background noise and ensure that digits are centred in the images. We use this highly

5https://www.zooniverse.org/projects/dwright04/muon-hunters-2-dot-0/classify.
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Table 5. MNIST User Interface Simulation Results Over Five Trials

Method classification clicks interface clicks total clicks efficiency gain

Standard 10,000 10,000 20,000 -
Worst case clustering 8,800 4,000 12,800 36.0%
DEC 1,152 767 1,919 90.4%
Reclustering step (DEC) 614 829 1,443 92.8%

Table 6. Comparison of Clusters After Applying DEC (Iinitial) and After

Learning from Volunteer Labels (Updated)

Initial Updated
Cluster Assigned Label Purity Assigned Label Purity

a 1,008 8 0.941 1,028 8 0.921
b 993 0 0.977 1,004 0 0.968
c 1,013 7 0.969 1,014 7 0.969
d 1,059 3 0.924 1,012 3 0.949
e 969 4 0.514 939 4 0.947

f 1,126 1 0.988 1,121 1 0.987
g 1,035 2 0.965 1,020 2 0.974
h 870 5 0.952 898 5 0.947
i 1,002 9 0.506 1,025 9 0.890

j 925 6 0.983 939 6 0.982

“sanitised” dataset to simulate a toy citizen science project. This will demonstrate our method in
the absence of much of the noise inherent in “real-world” data.

We first divide the dataset into training, validation, and test sets. 50,000 images are used as the
training set which, for our purposes, acts as the pool of images we have available and would like
to gather labels for; it is assumed to be initially unlabelled. We divide the remaining 20,000 images
equally among the validation and test sets and the labels for these are assumed to be available.

A.1 Labelling Efficiency

Similarly to Supernova Hunters (Section 3.3), the simulated total number of clicks to classify the
MNIST test set through the standard interface is just twice the number of subjects in the test set,
that is, 10,000. Again, we simulate groupings of 25 subjects. As such, each grouping will require
at most 22 clicks to classify, since in the worst case there would be five classes with two sub-
jects represented and five classes with three. Since we can infer the class of an unlabelled subject
if all subjects belonging to the other c − 1 classes are labelled, rationally we would leave one of
the classes with three subjects unlabelled. The increased number of classes in MNIST (ten) com-
pared to Supernova Hunters (two) adds additional complexity to the calculation of other clicks
required by the interface. In the worst case, nine clicks are required to classify each of the c − 1
classes represented in the grid plus one additional click to signal the grid has been completed. As
with Supernova Hunters, the latter is equal to the total number of grids in the dataset, that is,
10,000/25 = 400, while the former is calculated during simulation as it depends on the number of
classes in the sample drawn for each grid. We report our results in Table 5, finding the worst case
provides a 36% reduction in the effort required by the standard interface. Additionally, we find that
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Fig. 4. (Upper left) 2-D PCA projection of the initial MNIST embedding learned by DEC. The initial unlabelled

training set is shown in grey with cluster centres in green. Each cluster is assigned a letter to identify it in

Table 6. (Upper right) Same as before but coloured points represent simulated volunteer classifications (as

described in Section A.2.1) for 1% of the data (where each colour corresponds to a different class, i.e., a digit

between 0 and 9) overlaid on the remaining unlabelled data. While some clusters appear pure, others are

more confused, such as the two clusters on the right where the black and light-blue classes (digits 9 and 4,

respectively) are poorly separated. (Lower left) The results of updating the learned feature space with the

volunteer classifications. Clusters for digits 9 and 4 are now more clearly distinguished. (Lower right) The

test set projected into the same feature space showing that the clustering generalises well.

DEC alone produces a 92.4% reduction in effort and the overall approach provides a 94.8% decrease
in effort required by the standard approach.

A.2 Training Process

A.2.1 Unsupervised Clustering. The first training step is an unsupervised clustering of the data
using DEC. This is equivalent to the MNIST experiment of Xie et al. [34]. The result of this step
is visualised as the first panel of Figure 4. As in Xie et al. [34], we use the entire MNIST dataset
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Table 7. MNIST Results

Method Accuracy (%) H

DEC 86.6 0.783
Reclustering step (DEC) 95.3 0.874

Test set performance from DEC and after learning from sam-
pled labels.

for this step, mimicking a citizen science project where all the data to be labelled are available
upfront. In a diversion from Xie et al. [34], we only measure performance on the 10,000 images
we assigned to the test set. The test set acts as a fixed dataset not seen by volunteers, on which to
compare performance between the steps we take.

It is worth reiterating at this point that, unless a labelled dataset is available before running the
citizen science project, we could not measure the unsupervised clustering accuracy. Therefore, we
simulate asking volunteers to label a subsample of the clustered data drawn at random from each
cluster. This provides an estimate of the clustering accuracy and purity of each cluster. We sample
1% (500 images) of the training set and, assuming that volunteers would be perfect classifiers, use
the labels provided in the MNIST dataset to represent the labels volunteers would return. The
upper right panel of Figure 4 is similar to the upper left, but with the labelled subsample overlaid.
From the figure, we see that the clusters corresponding to digits 4 and 9 are highly confused in
this 2-D projection of the feature space. The purity of these clusters measured on the test set
are shown as the fourth column in Table 6. Next, we calculate the cluster-to-label mapping as in
Section 4.1 in order to measure classification accuracy. On the test set we achieve an unsupervised
clustering accuracy of 86.6% (see Table 7) on the test set. Given the estimated high purity of many
of the clusters, we might consider using this clustering to classify the remaining unlabelled data
assigned to those clusters.

A.2.2 Multitask Step and Reclustering. Since some clusters appear to confuse classes, we aim to
use the knowledge provided by volunteers to improve the learned feature space such that images
from each class lie in distinct clusters. As with Supernova Hunters, we train the multitask step on
the 500 labelled training images. The lower left panel of Figure 4 visualises the new feature space
learned by training on this labelled data. The lower right panel shows the distribution of the test
dataset images embedded in the same space, demonstrating that the embedded space generalises
well for separating classes. In both panels the clusters for 4 and 9 are now more clearly distin-
guished. We achieve a clustering accuracy of 95.3% (see Table 7) on the test set. The homogeneity
of the subjects assigned to clusters also improves from 0.783 after applying DEC to 0.874 after
learning from volunteer labels.
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