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Abstract

We present a new accelerated distributed algorithm for the robust solution of convex optimization problems
over networks. We propose a novel distributed restarting mechanism for accelerated optimization dynamics with
individual asynchronous time-varying coefficients. Graph-dependent restarting conditions are derived to establish
suitable stability, convergence, and robustness properties for problems characterized by strongly convex smooth
and non-smooth primal functions. Since the algorithm combines continuous-time dynamics and discrete-time
dynamics, we model the complete system as a hybrid dynamical system. Numerical results illustrate our results.

I. INTRODUCTION

We study the accelerated, efficient and robust solution of accelerated distributed optimization problems over
network systems characterized by connected and undirected graphs G := (V, E), where V = {1, 2, . . . , n} is
the set of nodes, and E ⊂ V × V is the set of edges. We consider the setting where each node i has a local
function fi : Rp :→ R, and the network cooperates to find a common point z∗ ∈ Rp that minimizes a global
function defined as the summation of the local costs. This distributed optimization problem can be written as

min
z1,z2,...,zn∈Rp

n∑
i=1

fi(zi), s.t. zi = zj , ∀ i, j ∈ V , (1)

which is also known in the literature as the consensus-optimization problem [1], and which has been shown to
be relevant for several engineering applications in areas such as power systems, transportation systems, water
distribution systems, and distributed network control, see [2] and references therein.

Discrete-time and continuous-time approaches to solve problem (1) have been extensively studied using
gradient descent and Newton-based dynamics in [3], [4], primal-dual dynamics [5], and projected dynamics [6],
to name just a few. However, a persistent challenge in the solution of problem (1) is to achieve fast rates of
convergence without sacrificing essential robustness properties of the algorithms. As recently shown in [7], [8],
this task is not trivial given that certain classes of accelerated continuous-time algorithms, such as Nesterov’s
ODE [9]–[11], can be destabilized under arbitrarily small disturbances on the states or gradients. Since these
disturbances are unavoidable in practice, there is an urgent need for the development of robust, accelerated and
distributed algorithms for the solution of problem (1).

In the literature of accelerated centralized optimization, one of the approaches that has received significant
attention during the last years is the incorporation of restarting techniques. As a mater of fact, as shown in [9],
[12], [13], [14], and [15], accelerated algorithms with restarting techniques can achieve exponential convergence
rates in strongly convex optimization problems without having perfect knowledge of the condition number of
the cost function. Moreover, restarting can also be used to induce suitable robustness properties in the Nesterov’s
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ODE, provided the combination of the continuous-time dynamics and the discrete-time dynamics is carefully
carried out [7]. While these ideas have been explored and validated in centralized optimization problems, as
mentioned in [16], it remains an open question whether or not similar techniques could be pursued for distributed
optimization problems of the form (1). As we will show in this paper, the answer to this question turns out to
be positive.

The main contribution of this paper is the formulation and analysis of the first robust and distributed
restarting-based accelerated dynamics for the solution of network optimization problems of the form (1). Since
our restarting dynamics combine continuous-time dynamics and discrete-time dynamics, they are modeled as
set-valued hybrid dynamical systems [17], for which stability, convergence, and robustness properties can be
established using Lyapunov functions and the hybrid invariance principle. The construction of this hybrid system
is not trivial due to the distributed nature of the system, which allows for multiple discrete-time updates in
the network happening simultaneously in the standard time domain. In contrast to existing results that use
projections or primal-dual approaches, we follow a complete dual approach that allows us to recast problem
(1) as an unconstrained optimization problem with a suitable Laplacian-dependent structure on the dynamics of
the momentum variables [16]. This reformulation, allows us to establish sufficient graph-dependent restarting
conditions for the solution of the primal problem. To the knowledge of the authors, these are the first restarting
results developed for accelerated distributed optimization algorithms.

The rest of this paper is organized as follows. Section II presents some preliminaries on hybrid dynamical
systems. Section III presents the algorithm and the convergence results followed by Section IV that presents
some numerical examples. Section V presents the analysis, and finally Section VI adds some concluding remarks.

Notation: We define cn ∈ Rn as the vector with all entries equal to c ∈ R, and we use | · | as the Euclidean
norm. We use |x|A := miny∈A |x− y| to denote the distance of a vector x ∈ Rn with respect to a compact set
A. A function φ : Rn → R is radially unbounded if φ(x) → ∞ as |x| → ∞, and it is said to be of class Ck
if its kth derivative is continuous. We use D(x) ∈ Rn×n to denote the diagonal matrix with diagonal given by
the vector x ∈ Rn. We use In ∈ Rn×n to denote the identity matrix, and Sn := S × S × . . .× S to denote the
nth-Cartesian product of the set S.

II. PRELIMINARIES

In this paper, we analyze optimization algorithms modeled as HDS [17], of the form

p ∈ C, ṗ = F (p) (2a)

p ∈ D, p+ ∈ G(p), (2b)

where p ∈ Rn is the state, F : Rn → Rn is called the flow map, and G : Rn ⇒ Rn is called the jump map.
The sets C and D, called the flow set and the jump set, respectively, characterize the points in Rn where
the system can flow or jump via equations (2a) or (2b), respectively. The data of the HDS is defined as the
tuple H := {C,F,D,G}. Solutions to HDS of the form (2) are defined on hybrid time domains, i.e., they are
parameterized by both a continuous-time index t ∈ R≥0, and a discrete-time index j ∈ Z≥0. Consequently, the
notation ṗ in (2a) represents the derivative of p with respect to time t, i.e., dp(t,j)

dt ; and p+ in (2b) represents
the value of p after an instantaneous jump, i.e., p(t, j+ 1). For a precise definition of hybrid time domains and
solutions to HDS of the form (2) we refer the reader to [17, Ch.2]. A HDS H is said to be well-posed if C and
D are closed sets, C ⊂ dom(F ) and D ⊂ dom(G), F is continuous in C, and G is outer-semicontinuous [17,
Def. 5.9] and locally bounded [17, Def. 5.14] relative to D. A compact set A ⊂ Rn is said to be uniformly
globally asymptotically stable (UGAS) for a HDS H if there exists a class KL function [17, Def. 3.38] β
such that every solution of H satisfies |p(t, j)|A ≤ β(|p(0, 0)|A, t + j), for all (t, j) ∈ dom(p). Note that the
UGAS property is stronger than standard convergence notions used in optimization. In particular, UGAS implies
uniform global stability and uniform global attractivity. For compact sets A and well-posed HDS, UGAS can
be used to additionally certify desirable robustness properties.
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Fig. 1: We design an algorithm to solve the consensus-optimization problem from a complete dual perspective,
by constructing dynamics for the dual variable x ∈ Rnp. The proposed accelerated dynamics make use of a
momentum variable y ∈ Rnp, and timers τi for each one of the agents. In order to obtain the value of the primal
variable z we make use of the relation z = arg maxz∈Rnp{〈Lx, z〉 − F (z)}, where L = L ⊗ Ip ∈ Rnp × Rnp
and L is the Laplacian matrix of the communication graph G.

III. ACCELERATED DYNAMICS WITH DISTRIBUTED RESTARTING

To solve problem (1), let z := [z>1 , z
>
2 , . . . , z

>
n ]> be the concatenation of the local decision variables of the

nodes of the network G. Define the global cost function F (z) :=
∑n

i=1 fi(zi), and let L := L⊗Ip ∈ Rnp×Rnp,
where L is the Laplacian matrix of the graph G. We will make the following assumption on Problem (1):

Assumption 3.1

The local cost functions fi are Ck and µi-strongly convex, i.e., there exists µi > 0 such that for any
x, y ∈ Rn, fi(y) ≥ fi(x) + ∇fi(x)>(y − x) + µi

2 |y − x|2. The graph G is undirected, connected, and
time-invariant. �

By Assumption 3.1, the extended Laplacian matrix L satisfies L = L>, ker(L) = span(1np), and ker(L)⊥ ={
y ∈ Rnp : 1>npy = 0

}
. Thus, we can write Problem (1) as

min
z∈Rnp

F (z), s.t. Lz = 0np, (3)

where F is also µ̄-strongly convex with µ̄ := mini∈V µi. When the local gradients ∇fi are also globally Li-
Lipschitz (a condition that we do not necessarily assume), the global gradient ∇F is globally L̄-Lipschitz with
L̄ = maxi∈V Li.
To solve problem (3), we consider its dual problem:

min
x∈Rnp

φ(x), with φ(x) := max
z∈Rnp

{〈Lx, z〉 − F (z)}, (4)
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which, as shown in [16], has zero duality gap under Assumption 3.1. By defining the mapping h : Rnp → Rnp
as h(u) := arg maxz∈Rnp {〈u, z〉 − F (z)}, the gradient of the dual function φ can be computed as follows

∇φ(x) = Lh
(
Lx
)
. (5)

Let L2 := L>L, and denote as λ+
min(L2) the smallest positive eigenvalue of L2, and λmax(L2) as its largest

eigenvalue. The next lemma follows directly from the results in [16].

Lemma 3.1

The function φ is convex. Moreover, if F is µ̄-strongly convex and Ck at the point z := h(Lx), then φ
is also Ck at x, and ∇φ is globally `φ-Lipschitz with `φ = λmax(L2)/µ̄. If, additionally, ∇F is globally
L̄-Lipschitz, then φ is also µφ-strongly convex on ker(L)⊥, with µφ = λ+

min(L2)/L̄. �

Let Aφ ⊂ Rnp be the set of solutions of Problem (4) subject to x ∈ ker(L)⊥. By Lemma 3.1, if ∇F is not
globally Lipschitz, the set Aφ may not necessarily be bounded. Therefore, we will make the following technical
assumption on φ.

Assumption 3.2

The level sets of the dual function φ with domain restricted to ker(L)⊥ are bounded. �

Finally, when ∇F is also globally L̄-Lipschitz, we define the condition numbers of L2, and F , respectively,
as κL2 := λmax(L2)/λ+

min(L2), and κF := L̄/µ̄. These condition numbers will play an important role in the
linear convergence properties of our algorithms.

A. Hybrid Dynamics with Distributed Restarting

We solve Problem (4) by considering a class of algorithms termed Hybrid Accelerated Restarting Distributed
Dynamics (HARDD). Each node i ∈ V is endowed with three local states (xi, yi, τi), where xi, yi ∈ Rp, and τi ∈
R is a local timer. The overall network has states x := [x>1 , x

>
2 , . . . , x

>
n ] ∈ Rnp, y := [y>1 , y

>
2 , . . . , y

>
n ]> ∈ Rnp,

and τ := [τ1, τ2, . . . , τn]> ∈ Rn. Using p := [x>,y>, τ>]>, the continuous-time dynamics of the algorithms
are given by:

ṗ = FA(p) :=

 2D(τ ⊗ 1p)
−1 (y − x)

−2γΨ(τ ,x)
1
21n

 , (6)

where γ ∈ R>0 is a tunable gain, and Ψ : Rn × Rnp → Rnp is a mapping to be defined below. The dynamics
(6) are allowed to evolve in the flow set:

p ∈ CA := Rnp × ker(L)⊥ × [Tr, Tr + ∆T ]n, (7)

where Tr > 0 and ∆T > 0 are tunable parameters. The discrete-time dynamics of the algorithms describe the
restarting mechanism. They are parameterized by a constant q ∈ {0, 1}, a set-valued mapping T : R2np+n ⇒
Rnp+n, and a set Dτ ⊂ Rn. These dynamics are modeled by the following difference inclusion:

p+ ∈ GA(p) : =

 {(1−q)x+qs}
{y}
{g}

, (s,g) ∈ T (p)

 , (8)

which is allowed to evolve in the jump set:

p ∈ DA := Rnp × ker(L)⊥ ×Dτ . (9)
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The constant q characterizes two different restarting algorithms: If ∇F is globally Lipschitz, then q = 1;
otherwise, q = 0. The mapping Ψ : Rn × Rnp → Rnp in (6) is defined as

Ψ(τ ,x) := LD(τ ⊗ 1p)h
(
Lx
)
, (10)

which preserves the sparsity properties of the graph because the computation h(Lx) can be carried out locally
by each node, and the matrix D(τ ) is diagonal. Thus, the complete vector field FA in (6) can be computed in
a distributed way.

The construction of the mapping FA in (6) is motivated in part by Nesterov’s ODE studied in [9] and
[18] for the solution of centralized optimization problems, where Ψ is usually taken as the gradient of the
cost function. Previous applications of these dynamics to distributed optimization problems (with no restarting)
relied on assuming a centralized scalar timer τ that grows unbounded and coordinates the overall system, see
[18]. However, in general, these types of dynamics may not guarantee UGAS of the set Aφ due to their use
of vanishing damping terms [7, Ex. 1]. Moreover, when each agent has its own timer τi, and Ψ is taken as the
gradient of the cost function, the dynamics (6) do not necessarily render forward invariant the set ker(L)⊥ for
the states x or y. This issue prevents the direct application of typical restarting mechanisms that persistently
reset to zero the momentum state [7], [12], [14]. Furthermore, in multi-agent systems (MAS) the restarting
mechanism must be implemented in a distributed but coordinated way, since otherwise instability may emerge,
see Figure 3. Also, note that Ψ, defined in (10), is different from ∇φ because in general the product LD(τ )
does not commute.

Next, we describe how to construct the mapping T and the set Dτ that characterize the restarting rule in
(8)-(9).

B. Distributed and Coordinated Restarting Rule

For each node j ∈ V we define a set-valued mapping Rj : R ⇒ R that is non-empty on [Tr, Tr + ∆T ],
given by

Rj(τj) :=


{Tr+∆T} if τj ∈ (rj , Tr+∆T ]
{Tr, Tr+∆T} if τj=rj
{Tr} if τj ∈ [Tr, rj)

, (11)

where rj ∈ (Tr, Tr + ∆T ) is a tunable parameter of each node. The restarting mechanism works as follows:
Whenever a timer τi of some node i ∈ V satisfies τi = Tr + ∆T , the timer τi is reset back to Tr, and the
state xi is instantaneously reset as x+

i = (1 − q)xi + qyi. Simultaneously, neighbors of agent i update their
timers following the rule τ+

j ∈ Rj(τj). This distributed reset rule can generate different sequences of updates
whenever more than one timer satisfies the jump condition τi = Tr + ∆T . To capture every possible sequence
of such resets, let g := [g1, g2, . . . , gn]> ∈ Rn and s := [s1, s2, . . . , sn]> ∈ Rn, and consider the set-valued
mapping

G0(p) :=
{

(s>,g>)> : si = yi, sj = xj ∀ j 6= i, gi = Tr,

gj ∈ Rj(τj) if j ∈ Ni, gj = τj if j /∈ Ni
}
,

which is defined to be non-empty only when τi = Tr + ∆T and τj ∈ [Tr, Tr + ∆T ) for all j 6= i. The jump
rule T in (8) is then defined as the outer-semi-continuous (osc) hull [19, pp.155] of G0, i.e., T (p) := G0(p).
This construction preserves the sparsity properties of the graph G. Finally, we define the set Dτ that triggers
the resets as follows:

Dτ : =

{
τ ∈ [Tr, Tr+∆T ]n : max

i∈V
τi=Tr+∆T

}
. (12)
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Note that the structures of T and Dτ imply that whenever two or more timers reach the value Tr + ∆T , their
resets will occur sequentially rather than in parallel. This behavior is induced on purpose by using the osc
hull of G0 to generate T . As explained in [20], this construction guarantees well-posedness of multi-agent
coordinated HDS.

C. Main Result

We are now ready to present the main result of this paper, which establishes tuning guidelines for the HDS
HA = {CA, FA, DA, GA}, expressed in terms of the parameters of the primal Problem (1). In particular, we
consider the following conditions on the tunable parameters (γ, ri, Tr,∆T ):

(C.1) 0 < Tr <
1

2q

√
µ̄

γλmax(L2)
,

(C.2) ∆T >
(

(2κFκL2)
q

2 − 1
)
Tr,

(C.3) Tr < ri < Tr +
∆T

n
.

The stability properties of the HARDD dynamics will be stated with respect to the compact set A := Ax,y×Aτ ,
where the sets Ax,y and Aτ are defined as follows:

Ax,y : = {x,y ∈ Rnp : y = x, x ∈ Aφ} ,
Aτ : = [Tr, Tr + ∆T ] · 1n ∪ {Tr, Tr + ∆T}n.

Note that the set Aτ describes a “synchronization” condition. We will also use F ∗ := F (z∗) to denote the
optimal value of Problem (3), where z∗ := 1n ⊗ z∗ ∈ Rnp, and z∗ ∈ Rp is the unique solution of the primal
Problem (1).

Theorem 3.2

Suppose that Assumptions 3.1 and 3.2 hold, and let the parameters (γ, ri, Tr,∆T ) satisfy (C.1)-(C.3) for
all i ∈ V . Then, the following properties hold:

(P.1) Every solution p of HA has an unbounded time domain and it is uniformly non-Zeno, i.e., there
exists at most n jumps in any time interval of length 2∆T .

(P.2) Every solution p of HA satisfiies |τ (t, j)|Aτ = 0 for all (t, j) ∈ dom(p) such that t+ j ≥ n+ 2∆T .
(P.3) The compact set A is UGAS.
Moreover, for each compact set of initial conditions K0 ⊂ CA ∪DA the following acceleration properties
hold with respect to the primal variable z = h(Lx):

(P4) If q = 1, there exists c0, λ0 > 0 such that F (z(t, j))− F ∗ ≤ c0e
−λ0(t+j), for all (t, j) ∈ dom(p).

(P5) If q = 0, τ (0, 0) ∈ Aτ , and x(0, 0) ∈ ker(L)⊥, then F (z(t, j))− F ∗ ≤ cj
τi(t,j)

, for all i ∈ V , and all
(t, j) ∈ dom(p), where {cj}∞j=0 is a monotonically decreasing sequence of positive numbers.

To the knowledge of the authors, Theorem 3.2 provides the first network-dependent restarting conditions in
the literature of accelerated distributed optimization over networks. Conditions (C.1)-(C.3) show the dependence
of the restarting value Tr and the restarting frequency ∆T on the condition numbers of the primal global cost
function and the graph G, as well as the gain γ and the number of agents n. Note that these conditions can
always be satisfied by taking ∆T sufficiently large, and Tr sufficiently small. However, as stated in property
(P.2), the larger ∆T is selected, the longer it will take the network to synchronize the timers. Property (P.5)
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recovers the result of [18] established with a centralized timer, and Property (P.4) establishes linear convergence
when the gradient of the primal function is globally Lipschitz. Note that when q = 0, conditions (C.1) and
(C.2) reduce to 0 < Tr <∞ and ∆T > 0.

Since the HARDD algorithms are modeled by a well-posed HDS HA, property (P.3) will be preserved,
in a semi-global practical way, under arbitrarily small (possibly time-varying) perturbations on the states and
dynamics of the algorithm. This property, which follows by [17, Lem. 7.20], is fundamental for feedback control
applications where measurement disturbances are unavoidable.

Corollary 3.3

Let e : R≥0 → R2np+n be a measurable function satisfying supt≥0 |e(t)| ≤ ē, with ē > 0. Then, under
conditions (C.1), (C.2) and (C.3), the dynamics

p + e ∈ CA, ṗ ∈ FA(p + e) + e, (13a)

p + e ∈ DA, p+ ∈ GA(p + e) + e, (13b)

render the set A semi-globally practically asymptotically stable as ē→ 0+.

Remark 3.1

Consider the jump map

p+ ∈ GA(p) : =

 {x}{s}
{g}

, (s,g) ∈ T̃ (p)

 , (14)

where T̃ (p) := G1(p) and

G1(p) :=
{

(s>,g>)> : si = xi, sj = yj ∀ j 6= i, gi = Tr,

gj ∈ Rj(τj) if j ∈ Ni, gj = τj if j /∈ Ni
}
,

which is inspired by the jump rule used in [7] for the centralized optimization of strongly convex functions.
Additionally, let τ(0, 0) ∈ Aτ , x(0, 0) = 0, γ = µ

Lµφ
, Tr ≈ 0 and ∆T = e

√
L
µ . Then, by using the

jump map (14) instead of (8) in the HARDD algorithm, the convergence in time of the sub-optimality

measure F (z) − F (z∗) is of order O
(√

L
µ log

(√
L
µ

1
ε

))
for any precision ε > 0. This is the optimal

linear convergence rate of the Nesterov algorithm, withc which we recover the result of [12] for the classic
discrete-time Nesterov dynamics.

IV. DISCRETIZATION AND NUMERICAL EXAMPLES

In this section, we apply the HARDD algorithm with q = 1 to solve a distributed linear regression problem
over a network. The nodes aim to solve the optimization problem: minz∈Rnp

1
2nl

∑n
i=1 ‖Hizi − bi‖, s.t. Lz =

0np, where Hi ∈ Rl×p and bi ∈ Rl contain the data, l is the number of data points available per node and p
is the dimension of such data points. We implement the HARDD algorithm by discretizing the flows using a
Runge-Kutta method of 4-th order (RK4) with step-size dt = 1× 10−3.

As shown in [21], this discretization method preserves the main convergence properties of well-posed hybrid
dynamics, provided the step size is sufficiently small. Indeed, as shown in [18], RK4 can also preserve
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Fig. 2: (Left) Evolution in time of the sub-optimality measure, and (Right) evolution in time of the consensus
distance for different algorithms and/or initializations.

acceleration. Figure 2 presents the numerical results with γ = 1/4, ∆T = 35, n = 5, p = 8, and l = 10 on a
ring graph. The data is generated by sampling from a normal distribution with mean 1.5 and standard deviation
31. In the figure, the blue trajectory corresponds to the HARDD dynamics with synchronous initialization, i.e.,
τi = Tr = 0.1 for all i ∈ V . As expected, this initialization exhibits the best behavior. On the other hand,
the green line indicates the behavior of the HARDD dynamics with asynchronous initialization of the timers.
As shown in the plots, after the synchronization event |τ |Aτ = 0 occurs, the sub-optimality measure decreases
rapidly. For the sake of comparison, we also show the solutions obtained without restarting mechanism (purple
line), with individual restarting and no coordination between nodes (red line), and using the standard synchronous
distributed gradient descent [3]. Figure 3 illustrates the importance of coordination in the restarting mechanism;
in this case without coordination the dual variables do not converge. The purple trajectory (no restarting) is
slow compared to the green trajectory, and arbitrarily small disturbances can destabilize this algorithm, as will
be explored in Section IV-A. Finally, as shown in Figure 2, the red trajectories (restarting with no coordination)
exhibit the worst behavior.

A. Robustness

In this section we compare the HARDD algorithm with and without restarting in order to stress the importance
that this mechanism has in the robustness properties of the algorithm.

To do so, we first note that for the dynamics with no restarting there are no convergence guarantees. However,
even if these dynamics do converge, they will suffer from the same limitation of Nesterov’s ODE due to the
unbounded growth of the timers τi, i.e., they will have zero margins of robustness with respect to arbitrarily
small perturbations.
In order to explicitly show this behavior, we consider the consensus optimization problem with cost function

F (z) =

2∑
i=1

fi(zi) =
1

2
z>z, z ∈ R2×2,

1The code used to generate the figures in this section can be found in https://github.com/deot95/HARDD

https://github.com/deot95/HARDD
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Fig. 3: Evolution in time of the dual-variables for the HARDD algorithm with and without coordination.

Fig. 4: (Blue) Instability of the optimization dynamics under disturbance ε(t) when no restarting is implemented,
i.e., ∆T =∞. As observed, the trajectories of the system diverge. (Orange) Robust asymptotic stability under
the same disturbance ε(t) with the HARDD algorithm and ∆T = 35.

and n = 2, p = 2. For this case, the associated dual optimization problem is given by φ(x) = 1
2x
>L2x, where

L ∈ R4×4 is the communication matrix of the 2-agent system. With this in mind, we simulate the HARDD
algorithm with ε-perturbed measurements of the state, i.e.,

Ψ(τ, x) = LD(τ ⊗ 1p)h
(

L
(
x+ ε(t)

))
, (15)

where supt≥0 |ε(t)| = 0.001 and ε(t) ∈ ker(L)⊥ for all t ≥ 0. In particular, we consider the following
disturbance:

ε(t) = 0.001η(t)[1, 1,−1,−1]>, (16)

where η : R≥0 → R is a square periodic signal with unitary amplitude and period equal to 1×104. For the case
when ∆T = ∞ (the same setup that generates the purple line in Figure 2) this arbitrarily small disturbance
induces the instability shown below in Figure 4-(a). On the other hand, when the restarting is activated, we
obtain the robust stable behavior shown in Figure 4-(b). In the next section, we present the analysis of the
hybrid algorithm.
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V. ANALYSIS

The convergence and stability analysis of the HDS HA starts with the following lemma. The proof is almost
identical to the proofs of [20, Prop. 1] and [22, Thm. 1], and it is presented here only for the sake of completness.

Lemma 5.1

Consider the hybrid dynamical system

τ ∈ [Tr, Tr + ∆T ]n , τ̇ =
1

2
1n (17a)

τ ∈ Dτ , τ+ ∈ T (τ ), (17b)

where T is the osc hull of the set-valued mapping

G0(τ ) := {g : gi = Tr, gj ∈ Rj(τj) if j ∈ Ni, gj = τj if j /∈ Ni} .
If ri satisfies (C3), then every solution is complete and uniformly non-Zeno, the set Aτ is UGAS, and
every solution satisfies |τ (t, j)|Aτ = 0, for all (t, j) ∈ dom(τ ) such that t+ j ≥ n+ 2∆T . �

Proof: Absence of finite escape times follows by compactness of the flow set and jump set. Being uniformly
non-Zeno follows by the fact that after n jumps the system is necessarily synchronized and the timers satisfy
τ ∈ [Tr, Tr+∆T ]n\Dτ , which implies that the system has to flow. Since the intervals of flow have a maximum
duration of ∆T , it follows that there can be at most n consecutive jumps in any interval of length 2∆T . This also
implies completness of solutions. To show UGAS of Aτ we define a Lyapunov function V : [Tr, Tr + ∆T ]n →
R≥0 to be the the infimum of the lengths of all arcs that touch all timers (see Figure 5 for an illustration),
where the points Tr and Tr + ∆T in the interval [Tr, Tr + ∆T ] are identified to be the same to form a circle.
Since all the timers have the same frequency, during the flows the Lyapunov function does not change, i.e.,
V̇ (τ ) = 0. Moreover, during jumps the Lyapunov function cannot increase its value since jumps only happen
whenever one or more timers satisfy the condition τi = Tr + ∆T , which either leaves the timers in the same
position of the circle, or forces some of the timers to go to Tr+∆T . In both cases, V (τ+) does not increase. To
show that V converges to zero in a fixed-time, we note that for any initial condition τ(0, 0) ∈ [Tr, Tr + ∆T ]n

the Lyapunov function V always satisfies V (τ) ≤ ∆T
(
1− 1

n

)
. Since all timers have the same frequency,

and since τi ∈ (Tr, Tr + ∆T
n ) for all i, there will exist a time 0 ≤ t < 2∆T and some j ∈ {0, 1, . . . , n}

such that τi(t, j) > ri for all i ∈ V . From this point, since the graph is connected and undirected, any jump
induced by an agent j satisfying τj = Tr + ∆T will be followed by at most n− 1 jumps after which all timers
will be synchronized at the position τi = Tr, which implies V (τ ) = 0. From this point, the system remains
synchronized. Since no complete solution keeps V equal to a non-zero constant, UGAS of the set Aτ follows
now directly by the Hybrid Invariance Principle [17, Thm. 8.8]. �

A. Proof of Theorem 3.2

We divide the proof in seven main steps. Refer to Figure 6 for an overview and visualization of the main
aspects of the proof.

Step 1: Absence of Finite Escape Times
First, note that the function FA is continuous in CA. Also, by item (b) in Lemma 3.1, the gradient ∇φ is
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Fig. 5: Representation of the Lyapunov function used in proof of Lemma 5.1

globally Lipschitz. It then follows that since Tr ≤ τi ≤ Tr + ∆T for all i, we have:

|ẏ| ≤ 2γ(Tr + ∆T )|Lz∗(Lx)| ≤ 2γ(Tr + ∆T )`φ|x− s∗|,

|ẋ| ≤ 2|D(τ ⊗ 1p)
−1(y − x)| ≤ 2

Tr
|y − x|,

for any s∗ ∈ Aφ. Combining these inequalities, and the Comparison Lemma [23] we obtain that the flows (6)
always generate bounded signals (x,y), which rules out finite escape times.

Step 2: Completeness of Solutions
We show that solutions cannot stop due to flows or jumps leaving CA ∪DA. By Lemma 5.1, the dynamics of
the timers always generate complete solutions. On the other hand, by the properties of the Laplacian L, we have
that 1>npẏ = 0. Thus, the state y always remains in ker(L)⊥, which is unbounded. Since the state x evolves in
Rnp, every solution of the HDS is complete and the hybrid time domains of the solutions are generated by the
hybrid time domains of the HDS (17). This establishes properties (P.1) and (P.2).

Step 3: Fixed-Time Synchronization of Restarting Mechanisms
Let k > 0 and define the compact set K := Aφ + kB. Let us restrict the data of the original HDS H :=
{CA, FA, DA, GA} by intersecting with K the (x,y)-components of the flow set and the jump set. The resulting
HDS has data HK := {CA,K , FA, DA,K , GA}, where

CA,K := K × (ker(L)⊥ ∩K)× [Tr, Tr + ∆T ]n (18a)

DA,K := K × (ker(L)⊥ ∩K)×Dτ (18b)

Since the dynamics of the timers τ are independent of x and y, by the definition of UGAS and by Lemma 5.1
the restricted HDS HK renders UGAS the compact set

AK,s := K × (ker(L)⊥ ∩K)×Aτ . (19)

Step 4: Asymptotic Stability of Feasible Set
Let us now further restrict the flow and the jump sets of the HDS HK with the set AK,s. We denote this new
restricted HDS as HK,s := {CA,K,s, FA, DA,K,s, GA}, where

CA,K,s = K × (ker(L)⊥ ∩K)× ([Tr, Tr + ∆T ]n ∩ Aτ ) ,

DA,K,s = K × (ker(L)⊥ ∩K)× (Dτ ∩ Aτ )

In this HDS, during flows the timers satisfy τ = α1n where α ∈ [Tr, Tr + ∆T ].
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Fig. 6: In order to prove UGAS of the set A: a) First, UGAS of the set AK,s from CA,K ∪DA,K is proven by
the fixed-time synchronization of the timers through the used restarting mechanism.
b) Second, and when ∇F (z) is globally Lipschitz (q = 1), the set ker (L)> is rendered UGAS for x by the
jump map GA(p) in (8). When q = 0, UGAS is achieved through the flow map (6). This fact, in conjunction
with strong forward invariance of ker (L)⊥ and Aτ , for y and τ respectively, render the set A0 UGAS from
AK,s.
c) Third, using Lyapunov analysis with the Lyapunov function in (20) and the formulated HDS with flow and
jump sets (6),(8), UGAS of A from A0 is guaranteed.
Last, by the nested application of the Hybrid Reduction Principle [17, Cor. 7.24] UGAS of A is guaranteed.

Lemma 5.2

For the HDS HK,s the compact set A0 = (ker(L)⊥ ∩ K) × (ker(L)⊥ ∩ K) × Aτ is UGAS. Moreover,
if q = 0, then every complete solution satisfies x(t, j) ∈ ker(L)⊥ for all (t, j) ∈ dom(p) such that
t+ j ≥ 2n+ 4∆T .

Proof: We show that A0 is strongly forward invariant and globally uniformly attractive, which implies UGAS
via [17, Prop. 7.5]. Let p(0, 0) ∈ A0. By Lemma 5.1 the set Aτ is strongly forward invariant under the dynamics
of τ . By Step 2, the set ker(L)⊥ is strongly forward invariant for the state y. Moreover, by definition of the
flow set CA,K,s, during flows τ (t, j) = α1n with α ∈ [Tr, Tr + ∆T ]. Thus, 1>npẋ = 0 which implies that
1>npx(t, 0) = 0 for all (t, 0) ∈ dom(p) since ker (L)⊥. Because x+ = x (q = 0) or x+ = y (q = 1), the state
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x remains in ker(L)⊥ also during jumps. To show that A0 is uniformly attractive it suffices to show that every
complete trajectory of x converges to ker(L)⊥. Let q = 0 and consider the auxiliary variable x̃ = 1>npx, with
dynamics ˙̃x = 21>npD(τ ⊗ 1p)

−1(y − x) = 2
α1
>
np(y − x), where we used again the fact that τ = α1n during

flows. Since 1>npy = 0 always hold, we obtain ˙̃x = −2 1
α x̃, which implies that x̃ converges exponentially fast

to zero, i.e., x(t, j) converges to ker(L)⊥ ∩K exponentially fast during flows. When q = 1, convergence of x
to ker(L)⊥ happens in finite time after the n consecutive jumps induced by the synchronized timers τ , and the
fact that xi = yi after each jump. �

Step 5: Asymptotic Stability of the Optimal Set
Having established UGAS of A0 for the HDS HK,s, we now proceed to further restrict the data of HK,s using
the set A0. In particular, we consider a HDS HK,s,0 := {CA,K,s,0, FA, DA,K,s,0, GA} with flow and jump sets

CA,K,s,0 := (ker(L)⊥ ∩K)× (ker(L)⊥ ∩K)×
(
[Tr, Tr + ∆T ]n ∩ Aτ

)
,

DA,K,s,0 := (ker(L)⊥ ∩K)× (ker(L)⊥ ∩K)×
(
Dτ ∩ Aτ

)
.

For this restricted HDS, the following two lemmas establish UGAS of the set A, and suitable acceleration
properties.

Lemma 5.3

Let q = 0. Then, the HDS HK,s,0 renders UGAS the set A, and the dual function is minimized at a rate
of O(1/τ2) during flows.

Proof: Consider the Lyapunov function

V (p) :=
1

4
|x− y|2 +

1

4
|y|2Aφ + γ

τ>τ

n
(φ(x)− φ∗) (20)

where φ∗ = φ(Aφ). This is a modified version of the “centralized” Lyapunov function considered in [7]. By
construction, this function is positive definite with respect to the compact set A in CA,K,s,0∪DA,K,s,0, and also
radially unbounded due to Assumption 3.2. Since during flows τ (t) = α(t)1n, with α̇(t) = 0.5, the gradient
of V satisfies

∇V =

1
2(x− y) + γ τ>τ

n ∇φ(x)
1
2(y − x) + 1

2(y − y∗)
γ 2τ
n (φ(x)− φ∗)


=

1
2(x− y) + γα2∇φ(x)

y − 1
2(x + y∗)

2γ αn (φ(x)− φ∗)1n

 (21)

where y∗ is the Euclidean projection of y in Aφ. Therefore, the derivative of V along the trajectories of the
system satisfies

V̇ = 〈∇V, FA〉

= −|y − x|2
α

+ 2γα(y − x)>∇φ(x)− 2γαy>∇φ(x)

+ γα(x + y∗)>∇φ(x) + γα(φ(x)− φ∗)

= −|y − x|2
α

− γα
(

(x− y∗)>∇φ(x)− (φ(x)− φ∗)
)
. (22)
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Since, by assumption φ is convex, we have that (x−y∗)>∇φ(x)− (φ(x)−φ∗) ≥ 0. Moreover, due to the fact
that α ∈ [Tr, Tr + ∆T ], and by Assumption 3.2 from (22) we obtain that V̇ < 0 for all p ∈ CA,K,s,0\A. On the
other hand, jumps occur whenever τ1 = τ2 = . . . = τn = Tr + ∆T . This condition will trigger n consecutive
jumps, after which the system will flow again. Thus, we evaluate the Lyapunov function after the n jumps and
obtain:

V (p+n

) =
1

4
|x− y|2 +

1

4
|y|2Aφ + γT 2

r (φ(x)− φ∗).

Therefore, the difference ∆(p+n

)V := V (p+n

)− V (p) satisfies

∆V (p+n

) =
1

4
|x− y|2 +

1

4
|y|2Aφ + γT 2

r (φ(x)− φ∗)

− 1

4
|x− y|2 − 1

4
|y|2Aφ − γ(Tr + ∆T )2(φ(x)− φ∗)

= −γ(φ(x)− φ∗)
(
∆T 2 + 2Tr∆T

)
≤ 0,

for all p ∈ DA,K,s,0. Therefore, the Lyapunov function V has strict decrease during flows and does not increase
during jumps. Since at most n jumps can happen between each interval of flow of duration 2∆T , UGAS follows
directly by the invariance principle [17, Thm. 8.8].

To obtain the convergence bound for the dual function, note that V̇ ≤ 0 implies V (p(t, j)) ≤ V (p(s, j)) for
all (t, j), (s, j) ∈ dom(p) with t ≥ s. In turn, this inequality implies that

φ(x)− φ∗ ≤ nV (sj , j)

γτ>τ
=
cj
τ2
i

, (23)

during flows, where sj = inf{t ≥ 0 : (t, j) ∈ dom(p)}, and cj := V (sj , j)/γ. �

Lemma 5.4

Let q = 1. Then, the HDS HK,s,0 renders uniformly globally exponentially stable (UGES) the set A, and
φ is minimized at an exponential rate.

Proof: By Lemma 3.1, the function φ is µφ-strongly convex in ker(L)⊥, and has a globally `φ-Lipschitz
gradient. Thus, Aφ = {x∗}. We consider again the same Lyapunov function V (p), which now satisfies

c|p|2A ≤ V (p) ≤ c|p|2A
with c := 0.25 min{1, 2γTr2µφ} and c := 0.25 max{3, 6γ(Tr + ∆T )2`φ}. Since the continuous-time dynamics
are the same of Lemma 5.3, we still have V̇ ≤ 0. However, using strong convexity we have

(φ(x)− φ∗)− (x− x∗)>∇φ(x) ≤ −µφ
2
|x− x∗|2
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to further obtain

V̇ ≤ −|y − x|2
α

− γµφ
α

2
|x− x∗|2

≤ − |y − x|2
Tr + ∆T

− γµφ
Tr
2
|x− x∗|2

≤ min

{
1

Tr + ∆T
,
γTrµφ

4

}(
−|y − x|2 − |x− x∗|2

)
− γµφ

Tr
4
|x− x∗|

≤ −1

2
min

{
1

Tr + ∆T
,
γTrµφ

4

}(
|y − x∗|2 + |x− x∗|2

)
≤ −ρ

c
V (p)

for all p ∈ CA,K,s,0, where ρ := 0.5 min{ 1
Tr+∆T , 0.25γTrµφ}. On the other hand, after the n consecutive jumps

triggered by the condition τ1 = τ2 = . . . = τn = Tr + ∆T , the change in the Lyapunov function is

∆V (p+n

) =
1

4

∣∣x+n − y+n∣∣2 +
1

4

∣∣y+n − x∗
∣∣2 + γT 2

r

(
φ
(
x+n)− φ∗)

− 1

4
|x− y|2 − 1

4
|y − x∗|2 − γ(Tr + ∆T )2(φ(x)− φ∗)

= γTr
2(φ(y)− φ∗)− 1

4
|x− y|2 − γ(Tr + ∆T )2(φ(x)− φ∗).

Since φ is strongly convex in ker(L)⊥, and ∇φ is globally Lipschitz, we have that

φ(y)− φ∗ ≤ 1

2
`φ|y − x∗|2, ∀ y ∈ ker(L)⊥, (24)

and
φ(x)− φ∗ ≥ 1

2
µφ|x− x∗|2, ∀ x ∈ ker(L)⊥. (25)

Using these two inequalities to further upper bound ∆V (p+n

), we obtain:

∆V (p+n

) ≤ γ`φ
T 2
r

2
|y − x∗|2 − 1

4
|x− y|2 − γµφ

(Tr + ∆T )2

2
|x− x∗|2

≤ −T1|x− y|2 − T2|x− x∗|2

≤ −T (|x− y|2 + |x− x∗|2),

where T1 := 1
4 −γ`φT 2

r , T2 := 1
2γµφ(Tr + ∆T )2−γ`φT 2

r and T = min {T1, T2}. The constants T1 and T2 are
positive provided the following holds: 0 < Tr < 1/(2

√
γ`φ) and (Tr + ∆T )/Tr >

√
2κφ, which are precisely

conditions (C.1) and (C.2).
Finally, since V can be upper bounded as

V (p) ≤ c
(
|x− x∗|2 + |y − x∗|2

)
≤ c

(
|x− x∗|2 + 2|y − x|2 + 2|x− x∗|2

)
≤ 3c

(
|x− x∗|2 + |y − x|2

)
,

we obtain
∆V (p+n

) ≤ −βV (p)

where β := T/3c. These bounds, and the fact that the system is uniformly non-Zeno with n consecutive jumps
followed by a constant interval of flow, establish UGES of A via [24, Thm. 1].
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Step 6: Nested Application of the Reduction Principle
We now repeatedly apply the Hybrid Reduction Principle [17, Cor. 7.24] to establish UGAS for the original
hybrid system HA. First, since the set A is UGAS for the HDS HK,s,0, and the set A0 is UGAS for the HDS
HK,s, by the reduction principle, we obtain that the set A is UGAS for the HDS HK,s. Moreover, since the
compact set AK,s is UGAS for the HDS HK , it follows again by the reduction principle that HK renders
UGAS the set A. Finally, since by Step 1, there are no finite escape times in the original HDS HA, and since
the compact set K was arbitrary, we have that the set A is indeed UGAS for the HDS HA with no restriction.
This establishes the stability result of property (P.3). See Figure 6 for an illustration of the nested application
of the reduction principle to guarantee asympotic stability of the set A.
Step 7: Optimal Bounds for the Primal. Finally, we derive convergence bounds for the primal problem (1) based
on the convergence bounds derived for the dual problem in Steps 1-6.

Let q = 1. Since the gradient of φ is globally Lipschitz, we have

|∇φ(x)|2 ≤ λmax(L2)

µ
(φ(x)− φ∗) (26)

Using (5),

|Lz|2 ≤ λmax(L2)

µ
(φ(x)− φ∗) (27)

Let us decompose z = z̄ + z̃, where z̄ ∈ ker(L) and z̃ ∈ ker(L)⊥. We then have

|Lz̃|2 ≤ λmax(L2)

µ
(φ(x)− φ∗) (28)

and since z̃ ∈ ker(L)⊥, which implies that |Lz̃|2 ≥ λ+
min(L2)|z̃|2s, we get

|z̃|2 ≤ λmax(L2)

µλ+
min(L2)

(φ(x)− φ∗). (29)

Using (5) and the definition of z = h(·) in we get:

〈Lx, z〉 − F (z) ≥ 〈Lx, z∗〉 − F (z∗), (30)

where z∗ is the minimizer of the primal problem. Now, using the fact that Lz∗ = 0 we obtain:

F (z) ≤ F (z∗) + 〈Lx, z− z∗〉
= F (z∗) + 〈x, Lz〉
= F (z∗) + 〈x, Lz̃〉
= F (z∗) + 〈Lx, z̃〉
≤ F (z∗) + |〈∇F (z), z̃〉|,

where in the last step we have used that Lx = ∇F (z) by KKT conditions. Moreover, by the Cauchy-Schwartz
inequality we get:

F (z)− F (z∗) ≤ |∇F (z)||z̃|. (31)

Combining (29) and (31), we get

F (z)− F (z∗) ≤ |∇F (z)|
√

λmax(L2)

µλ+
min(L2)

(φ(x)− φ∗). (32)
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By UGAS, for each compact set of initial condition K0 there exists M > 0 such that |∇F (z)| < M . By
exponential stability [24] and property (24) we obtain:

φ(x)− φ∗ ≤ 1

2
`φc

2|x(0, 0)− x∗|2 exp(−2λ(t+ j)), (33)

where c2 := c
c and λ = ρ

c . Combining this with (32) we finally obtain for all initial conditions x(0, 0) ∈ K0

that:

F (z)− F (z∗) ≤ cM
√

λmax(L2)

2µλ+
min(L2)

|x(0, 0)− x∗| exp(−λ(t+ j)). (34)

When q = 0 we can follow exactly the same steps, using the bound (23) instead of using (24). �

B. Proof of Remark 3.1

Suppose that x0 = 0 and that τ0 ∈ Aτ . Then, we have that

z0 = arg max
z

{〈Lx0, z〉 − F (z)}

= arg max
z
{−F (z)}

= arg min
z

F (z)

=⇒ F (0, 0) = min
z
F (z).

Moreover, from the definition of φ, we have that φ(x(0, 0)) = −minz F (z) = −F (z(0, 0)). Similarly, we
obtain that φ∗ = −F (z∗) = −minLz=0 F (z), which implies that

φ(x(0, 0))− φ∗ = F (z∗)− F (z(0, 0)). (35)

Now, using the jump map (14), and following the analysis done in [7] for the centralized optimization case we
can obtain that

φ (x(t, j))− φ∗ ≤ kj1 (φ (x(0, 0))− φ∗) , (36)

where k1 := (γµφ)−1+T 2
r

∆T 2 . Using (32) and (35) in (36), in addition to the fact that the solutions of the HDS
remain bounded so that |F (z)| < M0, with M0 being a constant that depends on initial conditions, we obtain
that

F (z(t, j))− F (z∗) ≤ k
j

2

1 |∇F (z)|
√

λmax(L2)

µλ+
min(L2)

(F (z∗)− F (0, 0))

≤ k
j

2

1 |∇F (z)|
√

L

2µ

λmax(L2)

λ+
min(L2)

|z∗ − z(0, 0)|

≤ k
j

2

1 M0

√
L

2µ

λmax(L2)

λ+
min(L2)

|z∗ − z(0, 0)|

≤ αk
j

2

1 |z∗ − z(0, 0)| (37)

where α := M0

√
L
2µ

λmax(L2)

λ+
min(L2)

, and we have used the fact that F (z∗) − F (z(0, 0)) ≤ L
2 |z∗ − z(0, 0)|2 due to

strong convexity and global Lipschitz continuity of ∇F (z). By the periodicity of the solutions, and letting
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j = t/∆T , we take the derivative of kj1 = k
t

∆T

1 with respect to ∆T and equate to zero to obtain the optimal
restarting rate

∆T = e

√
1

γµφ
+ T 2

r . (38)

By replacing (38) in (37) we obtain that

F (z(t, j))− F (z∗) ≤ e−jα|z∗ − z(0, 0)|. (39)

For an arbitrary precision ε > 0 we thus obtain that F (z(t, j)) − F (z∗) < ε whenever j ≥ log
(
α|z∗−z(0,0)|

ε

)
.

By multiplying both sides by the ∆T of (38), we obtain that the precision is achieved for

t ≥ e
√

1

γµφ
+ T 2

r log

(
α|z∗ − z(0, 0)|

ε

)
. (40)

Hence, letting Tr ≈ 0 and γ = µ

Lµφ
the convergence time (40) reduces to

t ≥ e
√
L

µ
log

(
α|z∗ − z(0, 0)|

ε

)

= e

√
L

µ
log

(
M0

√
L

2µ

λmax(L2)

λ+
min(L2)

|z∗ − z(0, 0)|
ε

)
,

which obtains the result.

VI. CONCLUSIONS

We have presented a novel distributed accelerated optimization algorithm with distributed restarting. Unlike
previous results in the literature, we have considered the case where each node implements its own momentum
and clock to coordinate its own dynamics. To induce suitable robustness properties as well as linear convergence
rates for strongly convex functions, we characterize sufficient restarting conditions based on the condition number
of the Laplacian matrix that characterizes the communication graph, as well as the condition number of the
cost function. The overall system is analyzed as a well-posed hybrid dynamical system, which allows to obtain
suitable robustness properties.
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