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Abstract— We study the uniform asymptotic stability prop-
erties of the heavy-ball optimization dynamics with general
time-varying damping. Unlike existing results in the literature,
which have focused mainly on standard convergence results,
we study a stronger limiting notion called uniform asymptotic
stability, which is instrumental for the design of feedback-
based algorithms. Given that recent results in the literature
have shown that a class of heavy-ball optimization dynamics
with vanishing damping fails to satisfy this limiting notion,
we study sufficient and necessary conditions on the time-
varying coefficients such that uniform asymptotic stability for
the set of minimizers of the cost function is achieved. Our
main results show that such conditions are related to the
notion of persistence of excitation, which is commonly used in
adaptive control and system identification. Moreover, we show
that the persistence of excitation condition is not necessary for a
class of high-resolution accelerated optimization dynamics with
Hessian-driven damping. Our results are established by using
a nested Matrosov theorem that has not been used before in
the analysis of accelerated optimization algorithms.

I. INTRODUCTION
Recent years have seen a renewed interest in the analysis

and design of efficient optimization algorithms using tools
from dynamical systems theory, see for instance [1], [2], [3].
For instance, in [4] the authors linked Nesterov’s optimiza-
tion algorithm [5], given by the time-varying recursion

x+1 = x2 − s∇φ(x2) (1a)

x+2 = x+1 +
j − 1

j + 2

(
x+1 − x1

)
, (1b)

with j ∈ Z≥0, to the second order differential equation
(ODE) given by

z̈ + a(t)ż +∇φ(z) = 0, t ≥ t0. (2)

In particular, when a(t) = 3/t the authors in [4] derived the
time-varying ODE (2) by using the relation t ≈ k

√
s and

taking the limit of the step size s to zero in (1). Moreover, in
this case by suitable choices of energy functions it has been
shown that any trajectory of (2) with ẋ(0) = 0 minimizes a
smooth convex function φ at least at a rate of O(1/t2), see
[4], [6]. General dynamical systems of the form (2) have been
extensively studied in the literature, e.g., [7], [8]. Several re-
sults have provided sufficient conditions on a(·) to guarantee
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that the state z(t) converges to the set of minimizers of φ
as t → ∞. Similarly, unperturbed and perturbed heavy-ball
dynamics with vanishing damping were studied in [9] and
[10] under certain integrable conditions on the perturbation.
Convergence properties for the continuous-time Nesterov’s
ODE and the heavy ball algorithm were also recently studied
in [11]. Algorithms that incorporate continuous-time and
discrete-time dynamics have been presented recently in [12],
[13], [14], [15], [17], and [16].

While most of the results in the literature have focused
on studying the convergence properties of equation (2), few
works have studied its stability and robustness properties.
For instance, it was recently shown in [13] that for a class
of smooth convex cost functions the convergence properties
of system (2) with a(t) = c/t have no margins of robust-
ness against arbitrarily small additive disturbances for any
c > 0, which is problematic in feedback-based algorithms
for real-time optimization, adaptive control, hybrid control,
etc. Motivated by this fundamental limitation, in this paper
we study sufficient and necessary conditions for uniform
global asymptotic stability (UGAS) in a class of time-varying
continuous-time optimization algorithms that cover systems
of the form (2), and which can be written as

ẋ = −
(
A(t) + kB(t, x)

)∂H(x)

∂x
, k ≥ 0 (3)

where the mapping H : Rn → R is a Hamiltonian function,
B : R≥0 × Rn → Rn×n, and A : R≥0 → Rn×n is
a positive semidefinite matrix. For the case when k = 0,
system (3) was called a degenerate gradient flow (DGF) in
[18]. These dynamics model Nesterov’s ODE (2) under a
particular choice of Hamiltonian and matrix A. On the other
hand, when k 6= 0, system (3) can model a class of “high-
resolution” optimization ODEs recently studied in [19], [20].

Based on these observations, the main contributions of
this paper are the following: (a) We show that when k = 0
and t 7→ a(t) satisfies a persistence of excitation condition,
the DGF (3) corresponding to the time-varying heavy-ball
renders UGAS the set of minimizers of any cost function that
is continuously differentiable, radially unbounded, and con-
vex or gradient-dominated; (b) We establish that persistence
of excitation of a(·) is not only a sufficient condition for
UGAS, but also a necessary condition. Given that vanishing
functions such as 1/t or 1/(t + 1) are not persistently
exciting, this result provides an alternative proof of the
fact that Nesterov’s ODE lacks uniform asymptotic stability
properties, an observation made in [13] using Artstein’s idea
of limiting equations [21]; (c) We show that when k 6= 0
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and system (3) models a family of “high-resolution” ODEs
also studied in [19] and [20], persistence of excitation is not
needed in order to render UGAS the set of minimizers of the
cost function; (d) Finally, we link the UGAS properties of
system (2) with well-known robustness results developed in
the control’s literature, e.g., [22]. Our sufficiency results are
established by using a nested Matrosov’s theorem for time-
varying dynamical systems; see [23] and [24] for related
analytical tools. To our knowledge, this is the first paper that
uses Matrosov’s theorem to analyze accelerated optimization
algorithms.

II. PRELIMINARIES

A. Notation

Given a compact set A ⊂ Rn and a vector z ∈ Rn,
we define |z|A := miny∈A |z − y|, and we use | · | to
denote the standard Euclidean norm. We use B to denote
a closed unit ball of appropriate dimension, ρB to denote
a closed ball of radius ρ > 0, and A + ρB to denote the
union of all sets obtained by taking a closed ball of radius
ρ around each point in the set A. Throughout the paper, for
two vectors u, v ∈ Rn, we use 〈u, v〉 := uT v. In addition, for
ease of notation we write (u, v) for (uT , vT )T . A function
φ : Rn → R is said to be: a) Ck if its k-th derivative is
continuous; b) radially unbounded if φ(z) → ∞ whenever
|z| → ∞, c) invex if every critical point is a global minimizer
[25], i.e., {z ∈ Rn : ∇φ(z) = 0} = arg minz∈Rn φ(z). A
function α : R≥0 → R is said to be of class K∞ if it is
zero at zero, continuous, strictly increasing, and unbounded.
A function β : R≥0 × R≥0 → R is said to be of class KL
if it is nondecreasing in its first argument, non-increasing in
its second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,
and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

B. Dynamical Systems: Stability and Robustness

In this paper, we consider dynamical systems of the form

ẋ = f(t, x), t ≥ t0, x0 := x(t0) ∈ Rn, (4)

where f : R≥0 × Rn → Rn is measurable in t and
locally Lipschitz in x. For these systems we are interested
in establishing uniform global asymptotic stability properties,
which are characterized by the following definitions.

Definition 1: A compact set A ⊂ Rn is said to be
uniformly globally stable (UGS) if there exists α ∈ K∞
such that, for each (t0, x0) ∈ R≥0×Rn each solution of (4)
satisfies |x(t)|A ≤ α(|x0|A), for all t ≥ t0. �

Definition 2: A compact set A ⊂ Rn is said to be
uniformly globally attractive (UGA) if for each r, δ > 0
there exists T > 0 such that each solution of (4) satisfies
|x0|A ≤ r =⇒ |x(t)|A ≤ δ, for all t ≥ t0 + T . �

Definition 3: For system (4) a compact set A ⊂ Rn is
said to be uniformly globally asymptotically stable (UGAS)
if it is UGS and UGA. �

The UGAS property can be equivalently characterized
using KL functions: A compact set A is UGAS for system

(4) if there exists a β ∈ KL such that every solution of (4)
satisfies the bound

|x(t)|A ≤ β(|x0|A, t− t0), (5)

for all t ≥ t0. A traditional approach to establish UGAS in
systems of the form (4) is to use suitable Lyapunov functions
[22].

Lemma 1: Let V : R≥0 ×Rn → R be a C1 function that
satisfies the following conditions:

α1(|x|A) ≤ V (t, x) ≤ α2(|x|A), (6a)

V̇ (t, x) :=
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α3(|x|A), (6b)

for all t ≥ t0 ≥ 0 and for all x ∈ Rn, where α1, α2 ∈ K∞,
and α3 : R≥0 → R≥0 is continuous and positive definite.
Then, system (4) renders the set A UGAS. �

An appealing property of smooth dynamical systems that
satisfy a bound of the form (5) is that, even if a Lyapunov
function satisfying (6) is not readily available, desirable ro-
bustness properties can still be directly obtained via converse
Lyapunov theorems. The following lemma is a consequence
of [22, Thm. 4.16] and calculations like in the proof of [22,
Lemma 9.3].

Lemma 2: Consider system (4) with f being C2, and
∂f/∂x bounded on compact sets, uniformly in t. Suppose
that (4) renders a nonempty compact set A ⊂ Rn UGAS.
Then, for each pair ∆ > ν > 0 there exists ε∗ > 0 such
that for all measurable functions e : R≥0 → Rn satisfying
|e(t)| ≤ ε∗, all solutions with x0 ∈ A+∆B of the perturbed
system

ẋ = f(t, x+ e) + e,

satisfy the bound |x(t)|A ≤ β(|x0|A, t − t0) + ν, for all
t ≥ t0. �

Lemma 2 establishes a structural robustness property with
respect to sufficiently small bounded additive perturbations
of arbitrary frequency, such as noisy measurements, unmod-
eled dynamics, etc. This property is relevant for applications
where feedback-based algorithms are needed.

In many cases, the main difficulty in establishing UGAS
via Lyapunov functions is to find a suitable function α3(·),
independent of t, that satisfies condition (6b). It is well
known that for time-invariant dynamical systems the con-
dition V̇ (x) ≤ 0 for all x ∈ Rn, together with knowing
that no solution x with an unbounded time domain keeps
t 7→ V (x(t)) equal to a nonzero constant, can be used
to establish UGAS via the Krasovskii-LaSalle’s invariance
principle. However, for time-varying systems the application
of the invariance principle is in general more difficult.
However, in this case, Matrosov’s theorem can be used to
asses the stability properties of system (4).

C. Nested Matrosov Theorem and Persistence of Excitation

The key idea behind Matrosov’s theorem (see [23], [24])
is to combine a Lyapunov function that establishes uniform
global stability, with auxiliary functions that can be used to
established uniform global attractivity.
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Lemma 3 (Matrosov Theorem): Let A ⊂ Rn be a com-
pact set, and consider the time-varying system (4). Then,
under the following assumptions the set A is UGAS:

1) The set A is uniformly globally stable.
2) There exists integers j, m > 0, and for each ∆ > 0

there exist a number r > 0 and:
• Locally Lipschitz continuous functions Vi : R≥0×

Rn → R, i ∈ {1, 2, . . . , j}.
• A continuous function ξ : R≥0 × Rn → Rm.
• Continuous functions Yi : Rn × Rm → R, i ∈
{1, 2, . . . , j}.

such that, for almost all (t, x) ∈ R≥0 × (A+ ∆B),

max{|Vi(t, x)|, |ξ(t, x)|} ≤ ρ,
V̇i(t, x) ≤ Yi(x, ξ(t, x)).

3) For each integer k ∈ {1, 2, . . . , j} we have that{
(z, ψ) ∈ (A+ ∆B)×∆B, Yi(z, ψ) = 0,

∀ i ∈ {1, 2, . . . , k − 1}
}

=⇒ Yk(z, ψ) ≤ 0.

4) We have that{
(z, ψ) ∈ (A+ ∆B)×∆B, Yi(z, ψ) = 0,

∀ i ∈ {1, 2, . . . , j}
}

=⇒ z ∈ A. �

Matrosov’s theorem is sometimes used in combination
with a class of persistence of excitation conditions that
are used in system identification and adaptive control. We
formalize this idea with the following definition:

Definition 4: A function λ : R≥0 → R is said to be
persistently exciting (PE) if ∃ T, µ > 0 such that∫ t+T

t

λ(τ)dτ ≥ µ, (7)

for all t ≥ 0. �
The following Lemma will be instrumental for our results.
Lemma 4: Let λ : R≥0 → R≥0 be a bounded and globally

Lipschitz function. If λ is PE, then the function t 7→ λ(t)p

is also PE for each p > 0. �

III. MAIN RESULTS

Let φ : Rn → R be a C1 function satisfying φ∗ :=
minz∈Rn φ(z) > −∞, and consider system (3) with state
x = (x1, x2), and Hamiltonian function

H(x) = φ(x1)− φ∗ + 0.5|x2|2. (8)

When the matrices A(t) and B(t, x) are selected as

A(t) =

[
0 −I
I a(t)I

]
, B(t, x) =

[
0 0

b(t)I ∇2φ(x1)

]
,

(9)

system (3) reduces to

ẋ1 =
∂H(x)

∂x2
, ẋ2 = −u1(t, x)

∂H(x)

∂x2
− u2(t)

∂H(x)

∂x1
,

(10)

where u1(t, x) := a(t)I+k∇2φ(x1) and u2(t) := 1+kb(t).
By using x1 = z and x2 = ż, system (10) corresponds to
the second order “high-resolution” ODE [19], [20]:

z̈ + a(t)ż +∇φ(z) = −k
(
∇2φ(z)ż + b(t)∇φ(z)

)
,

which was recently studied in [19], [20]. For the particular
case when k = 0, the dynamics (10) further reduce to the
heavy-ball dynamics with time-varying damping (2).

In this paper we are interested in finding conditions on
the time-varying functions a(·) and b(·), as well as the cost
function φ(·), such that the set

A := Aφ × {0}, where Aφ := arg min
x1∈Rn

φ(x1), (11)

is UGAS for system (3). We start by characterizing a class
of sufficient conditions on the signal t 7→ a(t) that achieves
this goal for the case when k = 0.

Theorem 1: Consider the gradient flow (3) with Hamilto-
nian given by (8), and matrix A given by (9). Let k = 0 and
suppose that the following assumptions hold:

1) The function a(·) is globally Lipschitz, and there exists
γ1 > 0 such that a(t) ∈ [0, γ1] for all t ≥ 0.

2) The function a(·) is persistently exciting.
3) The cost function φ(·) is radially unbounded, C2, and

satisfies at least one of the following conditions:
a) φ(·) is convex.
b) φ(·) is gradient-dominated, i.e., ∃ d > 0 such that

it satisfies the Polyak-Lojasiewicz (PL) inequal-
ity: φ(x1)−φ∗ ≤ 1

2d |∇φ(x1)|2, for all x1 ∈ Rn.

Then, the set A is UGAS. �

The PL inequality implies that φ is an invex function
[25]. However, in general, the PL inequality does not imply
convexity. For instance, the function φ(x1) = x21+3 sin2(x1)
is invex but not convex, and it satisfies the PL inequality with
d = 1/32; see [26, pp. 4].

Remark 1: Any positive constant or continuous periodic
function a : R≥0 → R≥0 that is not identically zero satisfies
the PE condition (7). However, condition (7) can also be
satisfied by functions with arbitrarily large null sets, such as
a(t) = max

{
0, t

1+t sin3
(
t
r

)}
, which can have arbitrarily

large null sets by taking r arbitrarily large [27, Ch. 6.3]. �

The assumptions of Theorem 1 are satisfied by a variety
of time-varying functions. However, condition (7) rules out
any time-varying function t 7→ a(t) that converges to 0 as
t → ∞, including the function a(t) = c

t , for t ≥ t0 > 0,
with c > 0, used in Nesterov’s ODE [4].

The following theorem, which corresponds to the second
main result of this paper, establishes that PE of t 7→ a(t) is
indeed a necessary condition in order to obtain UGAS of A.

Theorem 2: Consider the gradient flow (3) with Hamilto-
nian (8) and matrix A given by (9). Let k = 0 and suppose
that the following holds:

1) The function a : R≥0 → R≥0 is measurable.
2) The function φ is C1 and radially unbounded.
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Then, if the set A× {0} is UGAS, the function t 7→ a(t) is
persistently exciting. �

While Theorems 1 and 2 assume radial unboundedness of
φ, it is possible to relax this assumption if one is interested in
establishing only local uniform asymptotic stability results.

Remark 2: The necessity result established in Theorem 2
implies that UGAS of A cannot be achieved by Nesterov’s
ODE with a(t) = c/t, for any c > 0, thus providing an
alternative and more general proof to the observation made
in [13, Prop. 1]. �

Our last result pertains to the UGAS properties of system
(3) for the case when k > 0. The following theorem is the
third main result of this paper.

Theorem 3: Consider the gradient flow (3) with Hamilto-
nian given by (8), and matrices A and B given by (9). Let
k > 0 and suppose that the following assumptions hold:

1) The function φ(·) is C2, radially unbounded, and
convex.

2) The function b : R≥0 → R≥0 is absolutely continuous,
and there exists γ2, γ3, γ4 > 0 such that
• a(t) ∈ [0, γ2] and b(t) ∈ [0, γ3] for all t ≥ 0.
• ḃ(t) ∈ [−γ4, 0] for almost all t ≥ 0.

Then, the set A is UGAS. �

An interesting conclusion of Theorem 3 is that whenever
the term B in system (3) is “activated”, the PE condition on
a(·) is not needed any more in order to establish UGAS of
A. For example, when ∇φ(·) is L-globally Lipschitz, and
one selects k = 1/

√
L, b(t) = 1/t, and a(t) = 3b(t), the

gradient flow (3) describes the dynamics

z̈ +
3

t
ż +∇φ(z) = − 1√

L

(
∇2φ(z)ż +

1

t
∇φ(z)

)
, (12)

which has been studied in [19], [20] as a better continuous-
time approximation of Nesterov’s algorithm (1). In this case,
since ḃ = − 1

t2 < 0, by fixing t0 > 0, all our assumptions
hold for t ≥ t0. If, for example, φ ∈ C3, by Lemma 2 the
dynamics (12) are structurally robust.

IV. PROOFS

In this section, we present all the main proofs of the paper.

A. Proof of Lemma 4

For p ∈ (0, 1), we note that λp(t) ≥ λ(t)/M1−p where
|λ(t)| ≤ M for all t ≥ 0. Thus, it is immediate that λp is
PE for p ∈ (0, 1).

Now consider p > 1. Suppose the PE condition holds for
λ with T > 0 and µ > 0. Then, for each t ≥ 0, there
exists s ∈ [t, t + T ] such that λ(s) ≥ µ/T . Let L denote
the Lipschitz constant of λ and define m := µ/(2LT ). It
follows that λ(r) ≥ µ

2T , for all r ∈ [s−m, s+m]∩ [t, t+T ]
and thus

λp(r) ≥
( µ

2T

)p
, ∀ r ∈ [s−m, s+m] ∩ [t, t+ T ]. (13)

In turn, since s ∈ [t, t+ T ], it follows that∫ t+T

t

λp(τ)dτ ≥ m
( µ

2T

)p
=
( µ

2T

)p+1 1

L
. (14)

Thus, λp is PE. �

B. Proof of Theorem 1

The proof is based on Matrosov’s theorem. We divide
the proof in three steps. In each step, we find an auxiliary
function Vi in order to obtain the bounds of Lemma 3.
Step 1: Consider the Lyapunov function candidate

V1(x) =
|x2|2

2
+ φ(x1)− φ∗, (15)

which is positive definite with respect to A and radially
unbounded. Define ξ1(t, x2) :=

√
a(t)|x2|, and note that

if a(·) is uniformly bounded, then so it is
√
a(·). Therefore,

on the compact set A + ∆B ⊂ R2n we know there exists
r1 > 0 such that for all t ≥ 0 and all x ∈ A+ ∆B we have:

max {V1(x), ξ1(x2, t)} ≤ r1.

Taking the derivative of V1 with respect to time, we obtain:

V̇1(t, x) = −a(t)|x2|2 − x>2 ∇φ(x1) +∇φ(x1)>x2

= −a(t)|x2|2 ≤ 0, (16)

Inequality (16) establishes uniform global stability (UGS) of
the set A.
Step 2: We now consider additional auxiliary differentiable
functions that are bounded and have bounded derivatives on
compact sets. From Matrosov’s theorem, we know that any
terms in the derivative of subsequent auxiliary functions that
vanish with ξ1(x2, t) are not problematic, even if they are
positive. Therefore, we can consider the auxiliary function

V2(t, x) = a(t)
3
2∇φ(x1)>x2,

and we define ξ2(t, x1) := a(t)
3
4 |∇φ(x1)|. Since V2 and ξ2

are continuous functions, and a(t) is nonnegative and upper
bounded, there exists r2 > 0 such that for almost all t ≥ 0
and all x ∈ A + ∆B we have max {|V2(t, x)|, ξ2(x1, t)} ≤
r2. Taking the derivative of V2 along the solutions of the
system, we obtain:

V̇2(t, x) = a(t)
3
2x>2 ∇2φ(x1)x2 − a(t)

5
2∇φ(x1)>x2

− a(t)
3
2 |∇φ(x1)|2 + 1.5a(t)

1
2∇φ(x1)>x2ȧ(t),

≤ −a(t)
3
2 |∇φ(x1)|2 + ρrξ1(x2, t),

where ρr > 0 is a bound that holds on compact sets, and
where we used the boundedness of a(t) and ȧ(t). Thus,
V̇2 can be upper bounded as V̇2(t, x) ≤ −ξ2(x1, t)

2 +
ρrξ1(x2, t). Thus, we know that any terms in the derivative
of subsequent auxiliary functions that vanish with ξ2(x1, t)
are not problematic, even if they are positive.
Step 3: Consider the next auxiliary function

V3(t, x) := −V1(x)

∫ ∞
t

e(t−τ)a(τ)
3
2 dτ,
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which for any T > 0 satisfies V3(t, x) ≤
−e−TV1(x)

∫ t+T
t

a(τ)
3
2 dτ . Since Lemma 4 implies

that t 7→ a(t)
3
2 is PE, condition (7) gives the inequality

−
∫ t+T
t

a(τ)
3
2 dτ ≤ −µ. Thus, the auxiliary function

V3(t, x) satisfies the bound V3(t, x) ≤ −µ exp(−T )V1(x).
Moreover, since a(·) is bounded by γ1, and

∫∞
t
et−τdτ = 1,

we have that V1(x)
∫∞
t
e(t−τ)a(τ)

3
2 dτ ≤ V1(x)γ1.5. Thus,

V3(t, x) ≥ −V1(x)γ1.5. Therefore, there exists r3 > 0
such that for almost all t ≥ 0 and all x ∈ Rn we have
|V3(t, x)| ≤ r3. Taking the derivative of V3 with respect to
x2 and x1 we obtain:

∂V3
∂x2

= −
(∫ ∞

t

e(t−τ)a(τ)
3
2 dτ

)
x2

∂V3
∂x1

= −
(∫ ∞

t

e(t−τ)a(τ)
3
2 dτ

)
∇φ(x1).

Thus,

∂V3

∂x2

>
ẋ2 = −

(∫ ∞
t

e(t−τ)a(τ)
3
2 dτ

)
x>2 ẋ2

≤ a(t)|x2|2ρ+
(∫ ∞

t

e(t−τ)a(τ)
3
2 dτ

)
x>2 ∇φ(x1),

where ρ > 0 is a bound for the integral that holds on compact
sets. We also have:

∂V3
∂x1

>
ẋ1 = −

(∫ ∞
t

e(t−τ)a(τ)
3
2 dτ

)
∇φ(x1)>x2,

and

∂V3

∂t
= V1(x)

[
et−τa(τ)

3
2

∣∣∣
τ=t
−
∫ ∞
t

∂

∂t

[
et−τa(τ)

3
2

]
dτ

]
,

= a(t)
3
2 V1(x) + V3(t, x).

Therefore, the derivative of V3 satisfies

V̇3(t, x) ≤ V3(t, x) + a(t)
3
2V1(x) + a(t)|x2|2ρ

+

(∫ ∞
t

e(t−τ)a(τ)
3
2 dτ

)
x>2 ∇φ(x1)

−
(∫ ∞

t

e(t−τ)a(τ)
3
2 dτ

)
∇φ(x1)>x2.

Since the last two terms cancel each other, we obtain

V̇3(t, x) = V3(t, x) + a(t)
3
2V1(x) + a(t)|x2|2ρ,

≤ −µe−TV1(x) + V1(x)a(t)
3
2 + a(t)|x2|2ρ. (17)

Using the Polyak-Lojasiewicz inequality to bound the second
term, we obtain:

V̇3(t, x) ≤ −µe−TV1(x) +

(
1

2d
|∇φ(x1)|2 +

|x2|2

2

)
a(t)

3
2

+ a(t)|x2|2ρ,
≤ − µe−TV1(x1) + ξ2(x1, t)ρr + ξ1(x2, t)ρr,

(18)

where ρr > 0 is a bound that holds on compact sets. On
the other hand, if φ is convex but does not satisfy the PL

inequality, we can use convexity to bound V̇3 in (17) as

V̇3(t, x) ≤ −µe−TV1(x) + a(t)|x2|2ρ

+

(
|∇φ(x1)||x1 − x∗|+

|x2|2

2

)
a(t)

3
2 ,

for all x∗ ∈ Aφ. Since Aφ is compact, ∃ ρ̃r > 0 such that

V̇3(t, x) ≤ −µe−TV1(x1) + ξ2(x1, t)ρ̃r + ξ1(x2, t)ρr. (19)

Neglecting ξ1(t, x1) and ξ2(t, x2) in (18) or (19), for almost
all t ≥ 0 and all x ∈ R2n we have V̇3(t, x) ≤ 0, and by
the definition of V1, we have that the right-hand side of (19)
is zero only at A. Therefore, we can now apply Lemma
3 with the functions Vi, for i ∈ {1, 2, 3}, ξ : R≥0 × Rn →
R2, and functions Yi given by, Y1(x, ξ(t, x)) := −ξ1(t, x2)2,
Y2(x, ξ(t, x)) := −ξ2(t, x1)2 +ρrξ1(t, x2), Y3(x, ξ(t, x)) :=
−µe−TV1(x1) + ξ2(t, x1)ρr + ξ1(t, x2)ρr. This establishes
the result. �

C. Proof of Theorem 2

Suppose A×{0} is UGAS. Consider the function V1 de-
fined on (15). This function satisfies V̇1(t, x) = −a(t)|x2|2.
Since V1 is continuous and satisfies V1(x) = 0 for all x ∈ A,
there exists a function α2 ∈ K∞ such that V1(x) ≤ α2(|x|A).
Moreover, by UGAS, there exists a function β ∈ KL such
that |x(t)|A ≤ β(|x0|A, t−t0), for all t ≥ t0 ≥ 0. Therefore,

V1(x(t)) ≤ α2(β(|x(0)|A, t− t0)) := β̃(|x(0)|A, t− t0),

where β̃ ∈ KL. Suppose by contradiction that a(·) is not
PE. Then, for all T, µ > 0 ∃ t∗ > 0 such that∫ t∗+T

t∗
|a(τ)|dτ < µ. (20)

Let x0 /∈ A and consider a solution of (3) starting at (t∗, x0),
denoted by x(t, t∗, x0). Pick T sufficiently large, such that
β̃(|x0|A, T ) ≤ 0.5V1(x0). Such T always exist because
β̃ ∈ KL. Define µ such that µ ≤ − log(0.5)

2 , which satisfies
µ > 0. Using V̇1 and the definition of V1 we get V̇1(t, x) ≥
−a(t)V1(x). Using the Comparison Lemma from t∗ to
t we get V1(x(t, t∗, x0)) ≥ V1(x0) exp

(
−2
∫ t
t∗
a(τ)dτ

)
.

Substituting t by t∗ + T :

V1(x(t∗ + T ), t∗, x0) ≥ V1(x0) exp

(
−2

∫ t∗+T

t∗
a(τ)dτ

)
.

Using the bound (20) and the monotonicity of the ex-
ponential function we obtain V1(x(t∗ + T, t∗, x0)) >
V1(x0) exp (−2µ), and by the selection of µ we obtain

V1(x(t∗ + T, t∗, x0)) >
V1(x0)

2
. (21)

On the other hand, by the selection of T , we have that

V1(x(t∗ + T, t∗, x0)) ≤ β̃(|x0|A, T ) ≤ V1(x0)

2
,

which contradicts (21). Thus, t 7→ a(t) must be PE. �
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D. Proof of Theorem 3

Consider the Lyapunov function candidate V1(t, x) :=
|x2|2
2 + (1 + kb(t)) (φ(x1)− φ∗), which satisfies V̇1(t, x) =

−a(t)|x2|2 − kx>2 ∇2φ(x1)x2 + kḃ(t)(φ(x1) − φ∗) ≤ 0.
Therefore, the set A is UGS. Since φ is convex we can
consider the following two possible cases:
(a) Suppose first that there exists ε > 0 such that ∇2φ(x1) ≥
εI , e.g., φ is strongly convex. In this case, we can define
ξ1(t, x2) =

√
a(t)|x2| to bound V̇1 as follows

V̇1(t, x) ≤ −kε|x2|2 − ξ1(t, x2)2 =: Y1(x, ξ(t, x)). (22)

Consider the auxiliary function V2(x) := ∇φ(x1)>x2 +
0.5k|∇φ(x1)|2, which satisfies

V̇2(t, x) ≤ −|∇φ(x1)|2 + γ0.5ρrξ1(t, x2) + ρr|x2|2

=: Y2(x, ξ(t, x)),

where ρr is a bound for the gradient and the Hessian of φ that
holds on compact sets. Since Y1(x, ξ) = 0 and Y2(x, ξ) = 0
imply x ∈ A, we obtain UGAS of A by Lemma 3.
(b) Suppose now that ∇2φ(x1) � 0. Then, V̇1(t, x) ≤
−ξ1(t, x2)2 − kx>2 ∇2φ(x1)x2 =: Y1(x, ξ(t, x)), and

V̇2(t, x) ≤ −|∇φ(x1)|2 + γ0.5ξ1(t, x2) + x>2 ∇2φ(x1)x2

=: Y2(x, ξ(t, x)).

Let ξ2(t, x1) = |∇φ(x1)| and consider the auxiliary function
V3(x) := −x>1 x2, which satisfies

V̇3(t, x) ≤ −|x2|2 + k|x1||∇2φ(x1)x2|+ γ0.5ρrξ1(t, x)

+ (1 + kγ3)ρrξ2(t, x) =: Y3(x, ξ(t, x)),

where ρr is a bound on compact sets for x1. This establishes
that the conditions Y1(x, ξ) = 0, Y2(x, ξ) = 0, Y3(x, ξ) =
0 imply that x ∈ A because x>2 ∇2φ(x1)x2 = 0 implies
∇2φ(x1)x2 = 0. By Lemma 3 the set A is UGAS.

�

V. CONCLUSIONS

This paper studied the UGAS properties of a class of
time-varying gradient flows that have recently emerged in
the literature of accelerated optimization algorithms. When
the gradient flow is degenerate, we established persistence
of excitation conditions that guarantee UGAS of the set of
minimizers for a general class of cost functions. Moreover,
we showed that the persistence of excitation condition is
indeed a necessary condition in order to achieve UGAS of
compact attractors with radially unbounded cost functions.
For the case when the degenerate gradient flow is conditioned
by an additional Hessian-dependent term, persistence of
excitation turns out to be not necessary for UGAS.
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