Can Microtask Programming Work in Industry?

Shinobu Saito
shinobu.saitou.cm@hco.ntt.co.jp
Software Innovation Center, NTT Corporation
Tokyo, Japan

Emad Aghayi
eaghayi@gmu.edu
George Mason University
Fairfax, Virginia, USA

ABSTRACT

A critical issue in software development projects in IT service com-
panies is finding the right people at the right time. By enabling
assignments of tasks to people to be more fluid, the use of crowd-
sourcing approaches within a company offers a potential solution to
this challenge. Inside a company, as multiple system development
projects are ongoing separately, developers with slack time on one
project might use this time to contribute to other projects. In this
paper, we report on a case study of the application of crowdsourcing
within an industrial web application system development project
in a large telecommunications company. Developers worked with
system specifications which were organized into a set of micro-
tasks, offering a set of short and self-contained descriptions. When
crowd workers in other projects had slack time, they fetched and
completed microtasks. Our results offer initial evidence for the po-
tential value of microtask programming in increasing the fluidity
of team assignments within a company. Crowd contributors to the
project were able to onboard and contribute to a new project in less
than 2 hours. After onboarding, the crowd workers were together
able to successfully implement a small program which contained
only a small number of defects. Interview and survey data gathered
from project participants revealed that crowd workers reported
that they perceived onboarding costs to be reduced and did not
experience issues with the reduced face to face communication, but
experienced challenges with motivation.

CCS CONCEPTS

- Software and its engineering — Software development tech-
niques; Software development methods.

KEYWORDS

Crowdsourcing in software engineering, Microtask programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3417046

Yukako limura
yukako.iimura.vr@hco.ntt.co.jp
Software Innovation Center, NTT Corporation
Tokyo, Japan

Thomas D. LaToza
tlatoza@gmu.edu
George Mason University
Fairfax, Virginia, USA

ACM Reference Format:

Shinobu Saito, Yukako limura, Emad Aghayi, and Thomas D. LaToza. 2020.
Can Microtask Programming Work in Industry?. In Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE °20), November 8—13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3368089.3417046

1 INTRODUCTION

A critical issue in software development projects in IT service
companies is finding developers with the right knowledge. For
example, one report suggests there will be a shortage of 430,000
IT specialists in 2025 in Japan [22]. When projects require more
resources than available, it is often challenging to quickly meet
these needs. Recruiting new employees from outside a company
requires a substantial investment of time and cost. Developers might
instead be brought in from other ongoing system development
projects or teams inside the company. However, even for developers
already working within a company, it can require a substantial
investment of time and effort to successfully onboard them onto a
project. For example, developers need to learn project background
knowledge such as the system architecture, project configuration,
and coding conventions. For these reasons, balancing resources
within a company often does not work effectively [3, 4, 8, 9].

One potential solution to these challenges is the use of crowd-
sourcing [2, 18-20]. In crowdsourced software engineering, work
traditionally done inside a company is outsourced to an undefined
crowd in the form of an open call [21]. Successful commercial
platforms for crowdsourcing software engineering work include
TopCoder, AppStori, uTest, and TestFlight. Crowdsourcing offers
companies the potential for fluidity, enabling workers from out-
side to be recruited on demand at the moment in which work
must be completed. One form of crowdsourcing is microtask pro-
gramming, where programming tasks are decomposed into short,
self-contained tasks with a clear objective [20]. By decomposing the
specifications of a system into small, self-contained descriptions,
microtasking aims to further decontextualize work, enabling even
greater fluidity by reducing the needed context to onboard.

While crowdsourcing, by definition, involves recruiting contrib-
utors from outside a company or organization, it might also be
possible to apply crowdsourcing within a company. Rather than
offer work to external developers, developers working on other
projects within a company with available slack time might use this
time to complete microtasks and contribute to another project. For

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Two dedicated contributors Six transient crowd workers

f o Requirement (o) (o)
5 £ engineer <,_|>E a P E
: l / vers:;r;‘gr?]mrol (o) (o)
g a Ol
L o

i Issue Tracking System kH> :
! e al

Software Engineer !

Figure 1: An overview of the project organization. Two ded-
icated full-time engineers assigned to the project managed
and organized the project, and six crowd workers assigned
to other projects within the company contributed in their
slack time.

companies with closed-source code and confidential information
and intellectual property to protect, this model offers many of the
potential crowdsourcing benefits of lower onboarding costs and
greater resource fluidity with fewer of the potential drawbacks.

In this paper, we report on a project at NTT which applied mi-
crotask programming to an industrial web application development
project. Inspired by behavior-driven microtask programming [2], a
workflow was used where crowd workers could make two types of
microtask contributions: 1) implement a micro-specification or 2) re-
view an implemented micro-specification. Crowd workers followed
Test Driven Development (TDD) to implement micro-specifications.
Micro-specifications were defined and collected in a ticket pool,
and developers with slack time on their own project were able to
fetch and complete microtasks. Inspired by the role of the co-pilot
in TopCoder [26] responsible for managing and overseeing devel-
opment work, the work of decomposing and integrating microtasks
was done by two engineers dedicated to the project while six inter-
nal crowd workers completed microtasks (Fig. 1). The dedicated
software engineer served three roles in the project, working as a
software designer to create microtasks, as a developer to implement
several tasks, and as a tester.

Overall, the project achieved its objectives and a web application
for managing finance closing processes was successfully created.
Crowd workers together implemented approximately 2800 LOC. All
were able to initially onboard onto the project in less than 2 hours
and successfully communicated via an issue tracking system (ITS).
Crowd workers reported that they perceived onboarding costs to be
reduced and did not experience issues with the reduced face-to-face
communication, but did experience challenges with motivation.

The remainder of this paper is organized as follows. Section
2 describes related work in crowdsourced software development,
microtask programming, and inner sourcing. Section 3 describes
the microtask programming process and tools adopted in the case
study. Section 4 first presents results on the outcome of the project,
including onboarding activities, and the describes the perceptions of
the project participants about the use of a microtask programming
process inside a company. Section V discusses the implications of
our findings, and Section VI concludes.

Shinobu Saito, Yukako limura, Emad Aghayi, and Thomas D. LaToza

2 RELATED WORK

A variety of work has explored crowdsourcing approaches for
software development activities such as design [16], implemen-
tation [2, 6, 15, 18], and testing [7]. Companies such as TopCoder,
uTest, and UserTesting.com offer a platform and community for
crowdsourcing software activities to an external crowd. A study
of TopCoder found a number of factors that impact project qual-
ity, including the number of contemporary projects, the length of
documents, and the number of registered developers [26].

When developers join a new project, they may face a num-
ber of onboarding barriers, including installing necessary tools,
identifying and downloading dependencies, and configuring their
build environment, understanding the codebase, and identifying a
task [14, 24, 27]. As a result, successfully onboarding onto a new
project may require weeks of time, creating a substantial barrier to
fluidly assigning developers to match project resource needs.

Crowdsourced programming environments have been designed
to reduce some of these barriers by offering a preconfigured pro-
gramming environment. In Apparition, developers create micro-
tasks for crowd workers to build small user interface elements and
their behaviors, which crowd workers can then complete in a dedi-
cated environment [15]. In CodeOn, developers speak requests for
small contributions which other developers can then supply [6].
In microtask programming, developers complete short microtasks
in a dedicated environment in which they are given a function
or test and are asked to make a small change to it [1, 2, 18]. By
decontextualizing work from the larger project context and offering
a dedicated environment with the necessary background informa-
tion and editors to make the contribution, developers are able to
make contributions in under 5 minutes with only a short onboard-
ing period. Studies of the use of crowdsourcing in industry have
found that companies have relatively low awareness of these new
approaches [23].

A key challenge in crowdsourced software development is in
designing effective coordination mechanisms, which may have a
variety of benefits and drawbacks [10, 11]. One approach is for
coordination between the requirements engineer and crowd work-
ers to occur entirely through the specifications themselves [2]. An
alternative approach is for the requirements engineer or developer
responsible for creating the microtasks to directly coordinate with
each worker [15]. Another key choice is the ways in which crowd
workers themselves may coordinate, such as through instant mes-
saging [2] or through more structured interactions such as around
issues [17]. Crowd workers themselves have expressed a desire for
direct worker-to-worker communication when handoffs or reviews
necessitate interactions between workers [17].

Noting the success of open source approaches, companies have
explored adopting open source software development practices
inside their organizations through a set of practices named inner
sourcing [5]. Developers working using inner sourcing do not be-
long to a single project, and anybody in the organization may
contribute to all projects in it [25]. For companies building closed-
source software with confidential information and intellectual prop-
erty, inner source offers new techniques and models for encourag-
ing internal collaboration by applying open-source best practices
within organizations [12, 13]. Studies examining the impact of inner

Can Microtask Programming Work in Industry?

sourcing found potential benefits such as increased development
efficiency, higher code quality, and quicker development cycles [5].

Our work builds on these existing techniques and studies, fo-
cusing on the potential fluidity offered by adopting microtasked
development in an industrial context.

Frontend Backend
e P — E
N = 0 Lo T o - :
. 0] = [< .
. c o v < ® .
: [} 3 Vo o o = |
' Q. = N C c g '
: IS o = —> O > @ |¥P| @ |
'l o o} P 5 1) > |
| © o P 2 D = |
' —_] >S5 ’5 '
. o] v L o H
5 Stores P E

React / Redux Express.js

Figure 2: The project consisted of a frontend and backend
with 6 major components. In both the frontend and back-
end, components which required more project knowledge
were implemented by the dedicated software engineer (gray
background) while those which required less project knowl-
edge were implemented by the crowd workers (white back-
ground).

3 MICROTASK PROGRAMMING IN A
COMPANY

3.1 Project Overview

In the project, an in-house web application system for managing
information on finance closing processes was built. The existing
system had been used by an organization within NTT, had about
50 users, and had operated for five years. Due to business reasons
including the expiration of a license, it was decided to reimple-
ment the system. In order to more fluidly assign resources to the
project, the project was organized using a crowdsourced software
development approach.

3.2 Organization Structure

All participants in the project were employees of NTT. As shown in
Figure 1, two dedicated engineers were assigned to work full time
on the project, a requirements engineer and a software engineer. In
addition, 6 crowd workers, who were primarily assigned to other
projects inside the company, were asked to make use of their avail-
able slack time to contribute to the project. For example, if they
was not busy at the end of the day or in the morning, they might
use this time to contribute. The dedicated engineers and crowd
workers were located in geographically distributed areas, with the
dedicated engineers located in a single site and the crowd workers
located at a different site.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

3.3 System Architecture

Parts that required more project knowledge were assigned to the
dedicated software engineer, while those which required less were
implemented by the crowd workers (Figure 2). The crowd workers
implemented two parts of the web application (Ul Components and
Functions API), and the dedicated software engineer implemented
three (Controllers, Stores, and Persistence API). Implementing these
three required more knowledge of the data model and its complexi-
ties. The web application was implemented using React and Redux
in the frontend and Express.js and MySQL in the backend.

In the frontend, the dedicated software engineer implemented
the Controllers and Stores, and crowd workers implemented the
UI Components. The Ul Components were first decomposed into
micro-specifications by the dedicated software engineer, and the
crowd workers then implemented them. The micro-specifications
in the frontend did not have mutual dependencies, and there was
not a specific order in which they needed to be completed.

In the backend, the dedicated software engineer implemented
the Persistence AP, and the crowd workers implemented the Func-
tions API. The Persistence and Functions API did not have de-
pendencies. The dedicated software engineer generated several
micro-specifications for the Functions API, which had mutual de-
pendencies. This required managing the order in which they were
implemented.

3.4 Software Development Process

Figure 3 depicts the overall development process used and the
artifacts generated at each step. The development process consisted
of four steps: basic design, detailed design, implementation and
unit testing, and system testing. Basic design was completed by the
requirements engineer in the traditional way. The requirements
engineer created four artifacts: a conceptual data model, use cases,
screen transitions, and a basic UI design.

Next, in the detailed design step, the Functions API and UI com-
ponents specifications were decomposed by the dedicated software
engineer into a set of micro-specifications. For example, in Figure 4,
the Function API specification was decomposed into three micro-
specifications. The dedicated software engineer generated three
types of artifacts: abstract data types, Functions API (backend), and
UI components micro-specifications(frontend).

In the implementation and unit testing step, each of the micro-
specifications were then implemented by the crowd workers. Crowd
workers followed Test Driven Development (TDD) to implement
micro-specifications. For example, Figure 5 depicts an example of
a micro-specification being fetched, implemented, and pushed by
one crowd worker and reviewed by a second crowd worker.

In the testing step, the dedicated software engineer created a
test suite. They then tried to build all of the components together.
There were several defects that were found. In some cases, defects
were fixed by the dedicated software engineer, while in others they
were fixed by the crowd workers.

3.5 Workflow and Tools for Crowd Workers

Figure 6 describes microtask workflow used by the transient crowd
workers in contributing to the project. Figure. 5 depicts an exam-
ple of how micro-specifications were fetched, implemented, and

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

One dedicated requirements One dedicated Foud
engineer software engineer F*x

Basic Design (1 week) Detailed Design (1 week)

Steps Actors

il

Data model > Abstract data types

Use cases Micro-specifications o

A

Functions APl and Ul
> Components
specifications

Screen transitions

Artifacts (ASenerated

Persistence API,
Basic Ul design
- specifications

Implementation and Unit Testing (4 weeks)

43 Controllers, and Stores >

Shinobu Saito, Yukako limura, Emad Aghayi, and Thomas D. LaToza

Six transient crowd workers and
one dedicated software engineer

Ty One dedicated
F*,. software engineer

System Testing (1 week)

Functions API

[]
source and test code @
Ul Components N Create and Run
HTML, CSS, JScode @ Test suites
o

Persistence API, Controllers,

Stores ftﬂ
source and test code || #%

Figure 3: Microtask programming was applied using a four step workflow. A requirements engineer first designed a data
model, use cases, and user interface. A dedicated software engineer then created specifications and microtasks. Six transient
crowd workers then completed the microtasks in their available slack time. At the same time, the dedicated software engineer
implemented components that required more project knowledge. Finally, the dedicated engineer created and executed a test
suite. After seven weeks, the project was designed, implemented, and tested.

Function

update self-checksheet
name

Function type |API
ADTName
Description

updateFinChecksheet

Update the checksheet with input data.

1. convert from checksheetData parameters to array of
DBChecksheetUpdatelnfo, call 3rd party API
updateObjectimplementation, and return "0".
- create "DBChecksheetUpdatelnfo" from each

"checksheetData/checksheetltems", and push to array.

- set parameter checksheetData/checksheetld tochecksheetld of
DBChecksheetUpdatelnfo
2. valid parameters as follow, if there is invalid parameter then Set "the
Micro- parameter is invalid"to error message and throw the error.
specifications - parameter checksheetData is null
- parameter checksheetData/checksheetld is null
- paramter checksheetData/checksheetltems is null or empty

- paramter checksheetData/checksheetltems/checksheetltemid is null

- paramter checksheetData/checksheetltems/status is null or not any
of 0", "1, "2,
3. If 1st step result is null, then set error message is "faild update"and
throw Error

Parameters

ADT ChecksheetUpdatelnfo
Rerturn Strin

ADT &

Figure 4: The function updateFinChecksheet API was de-
scribed through three micro-specifications created by the
dedicated software engineer. Each micro-specifications was
then mapped to a microtask. A crowd worker completed
each microtask, and a second crowd worker reviewed the
work.

Issue Tracking System w%'r‘l’(‘;’:‘ 1
2- Implement then push
n 1- Implement Ticket: > .
Implement Micro- " Eetch micro - s —
specification 1 € C N ml_cro A
= specification 1 . <
Implement Micro- V o
specification 2 @
w 2.
. o
____________________________________ S S
3- Generate a review ticket for i)
micro-specification 1 3 S
=3
A e
.4-Review Ticket: _ |>_
pu!l_mlc_ro ew then merge micro-
............................. specification 1

Crowd specification 1

worker 2

Figure 5: An example of work being completed by two crowd
workers within the microtask programming workflow. The
dedicated software engineer first decomposed each specifi-
cation into multiple micro-specifications, creating a ticket
describing each micro-specification to implement. Crowd
worker one may then fetch a ticket from the issue tracking
system (ITS), complete the work, push the source code, and
create a pull request in the version control system. Crowd
worker two may continue the work, fetching the pull re-
quest and reviewing the source code implemented by crowd
worker one. If crowd worker two approves the work, they
may then merge the pull request into the version control
system (VCS).

committed. Two key tools were used: an Issue Tracking System
(ITS) and Version Control System (VCS). Participants used the ITS

Can Microtask Programming Work in Industry?
1. Setup
< Start >-I> environment [T 2 Fetch task
mplementatiol
task?

2 3.1 Review pull
3 request
®
Q
: v
2 > 3.2 Implement Yes @ No
o 6 Y !
3.2 Merge pull 3.2 Reject pull
3.3 Debug request request
—>| 4. Commit <t

V

Figure 6: In the microtask programming workflow, each
crowd worker worked through a series of steps. Workers
first fetched a ticket, which included backend and frontend
tickets as well as review tasks. For implementation tasks,
workers then completed several programming steps before
committing their work and finishing the microtask.

to manage the status of the work and the version control system to
manage changes to code.

In the microtask programming workflow, the software engineer
first decomposed the specifications generated by the requirements
engineer into micro-specifications and issued a ticket for each
micro-specification in the ITS (an example of a micro-specification
is shown in Figure.4). Next, a crowd worker fetched a ticket from
the ITS. Crowd workers selected the work that they chose to do.
They then implemented the micro-specification described in it by
using the template imported from the VCS. After completing the
implementation, the crowd worker then pushed the source code and
created a pull request. A second crowd worker then reviewed the
contribution. After fetching the ticket in the form of a pull request,
the second worker reviewed the source code. If they approved the
work, they then merged the pull request.

Crowd workers also made use of the ITS to communicate project
knowledge. Crowd workers asked the dedicated software engineer
questions about the micro-specifications posted on the ITS. If the
designer found the question to be broadly applicable, they shared
it with all of the crowd workers by posting it to an internal wiki.
When crowd workers began contributing to the project, they were
then asked to first read the internal wiki.

4 RESULTS

In the following section, we first report on the outcome of the
project, describing the activities that occurred and the results of the
project. We then report data on the productivity of crowd workers
within the project. Finally, we examine the project participant’s per-
ceptions of the suitability and effectiveness of applying microtask
programming in a company setting through collected interview
and survey data.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

4.1 Project Activities

Work in the project occurred in five phases over a seven week
period: basic design (one week), detailed design (one week), sprint 1
(three weeks implementation and unit testing, and three-day system
testing), and sprint 2 (one week implementation and unit testing,
and two days system testing). Transient crowd workers contributed
to the project in both sprints. The dedicated software engineer was
the same in the two sprints. In each sprint, crowd workers were
assigned to either frontend or backend work.

To onboard onto the project, crowd workers attended a kickoff
meeting, read content on a dedicated wiki, and set up their com-
puter environment. Before beginning implementation work, all of
the crowd workers attended a 30-minute kickoff meeting in which
the requirements engineer and the dedicated software engineer of-
fered an overview of the microtask programming workflow. Rather
than impart knowledge about the project itself, the briefing focused
exclusively on the use microtask programming. After the kickoff
meeting, when the crowd workers were ready to begin working on
the tasks, they setup their environment. To do so, they read the in-
formation in the wiki which we had prepared beforehand. The wiki
instructed them about how to set up the environment and how to
use it for work. Rather than use a pre-defined environment within
a virtual machine, crowd workers instead set up their own laptop
or desktop computers from scratch. Crowd workers reported that it
took approximately two hours to set up their environment on aver-
age, including reading and understanding the contents of the wiki
and configuring their computer’s environment. The environment
consisted of the Visual Studio IDE, web browser, Git VCS, node.js
and some JavaScript libraries. Crowd workers spent approximately
30 to 60 minutes configuring their computer environment.

After the crowd workers completed their work in the implemen-
tation step in sprints 1 and 2, the dedicated engineer tested the
project. The contributions from each microtask were composed
into an assembled program and tested through a test suite to eval-
uate if the system satisfied its requirements. System testing was
conducted using standard company practices, where test cases were
implemented based on the requirements described in the use case
and screen transition artifacts. Two types of defects were found.
Some defects were related to the micro-specifications created by
the dedicated software engineer. Other defects were related to the
implementation of the micro-specifications by the crowd. The dedi-
cated software engineer fixed all of the defects.

All of the defects uncovered were minor issues. The dedicated
software engineer confirmed that the specifications were com-
pletely implemented. Based on the successful test results, the project
entered the next phase of user acceptance testing.

4.2 Crowd Worker Productivity

Across the two sprints, the crowd workers implemented 9 Functions
API and 5 UI Components through 50 microtasks. The work com-
pleted is listed in Table. 1. In sprint 1, five crowd workers worked
on the backend to develop five functions. On average, each crowd
worker implemented 4 microtasks in the first sprint. Three crowd
workers worked on the frontend to develop three Ul Components
based on seven microtasks created. Two crowd workers worked

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Table 1: The number of components, micro-specifications,
active crowd workers, and dedicated software engineers for
each sprint. Some crowd workers contributed to both the
backend and frontend.

#micro- #Crowd #Dedicated
specification Workers SE
Sprint 1 Backend 5 Functions API 20 5 1
Frontend 3 UI Components 7 3
Sprint 2 Backend 4 Functions API 18 3 1
Frontend 2 UI Components 5 2
Total of both sprints 9 Functions API, 5 Ul Components 50 6 1

Table 2: The lines of code written by the crowd workers and
the dedicated software engineer by sprint.

#LOC by #LOC by #Total
Crowd Workers Dedicated SE of LOC
Backend
- acken) 905 245 1150
z Implementation and Testing
2 Frontend
& 1569 22
@ Implementation and Testing 686 56 55
System Testing - 468 468
Total 1591 2282 3873
Backend
« acken , 800 245 1045
Z Implementation and Testing
8
2 Frontend 500 1859 2359
@ Implementation and Testing
System Testing - 671 671
Total 1300 2775 4075
Total of both sprints 2891 5057 7948

on both the frontend and backend. In sprint 2, three crowd work-
ers worked on the backend to develop four functions. Each crowd
worker implemented an average of 6 microtasks. Two crowd work-
ers worked on the frontend to develop two UI Components based on
five microtasks. In contrast to sprint 1, each crowd worker worked
exclusively on either the frontend or the backend. While seven
crowd workers were initially invited, one crowd worker was not
able to contribute to the project as they did not have any slack time.

To assess the output of the crowd and dedicated software engi-
neer, we measured the lines of code (LOC) produced in each sprint.
Table 2 summarizes the results. In sprint 1, the crowd workers and
the dedicated software engineer developed 1,591 LOC and 2,282
LOC, respectively. In sprint 2, the crowd workers developed 1,300
LOC and the dedicated software engineer developed 2,775 LOC.
The dedicated software engineer implemented more LOC in this
sprint as they implemented templates and packages in the frontend.
The final project consisted of approximately 8,000 LOC, of which
about 2,900 LOC (36%) were implemented by the crowd workers.
The average implementation microtask involved 58 lines of code .

We also used the timestamp data recorded in the tickets of the
issue tracking system to examine the productivity of the crowd
workers. Table. 3 lists the average working time and the number
of fetched tickets, and micro-specification for each crowd worker.
Frontend tasks took more time than backend tasks. In total, 50 mi-
crotasks were generated and 66 were submitted by crowd workers.
Microtasks may be submitted more than once when a pull request

Shinobu Saito, Yukako limura, Emad Aghayi, and Thomas D. LaToza

Table 3: The number and average completion time of micro-
tasks by each crowd worker (CW)

Implementation Microtasks Review Microtasks

Average Time Average Time

#Implemented #Accepted ‘ #Reviewed

Worker

(hh:mm) (hh:mm)

cw1 00:45 11 8 00:13 3

T Cw2 11:35 12 11 00:43 7
% cw3 00:36 2 2 00:06 8
2 cwa 00:18 8 6 00:08 13
CcwWs 03:23 7 4 - -
CWe 02:17 7 7 00:21 13

5 w1 01:46 6 2 00:13 1
5§ cwe 05:29 6 4 00:46 3
E cws 00:38 2 2 00:08 7
® Tows 08:52 2 2 00:06 1
CWe 09:03 3 2 00:48 7
Total - - 66 50 - 63

was rejected. In total, 50 microtasks were generated, and crowd
workers submitted 66 microtasks. On average, 75% of implementa-
tion microtasks were accepted.

There are two reasons why average times were in some cases
more than one hour. First, some tasks were too big or too complex
to do in an hour. The second is that crowd workers sometimes
fetched a ticket and switched to another task. Ticket timestamps
sometimes indicated that the crowd worker fetched tasks in the
evening and did not start working on it until the following day.
On several occasions, one crowd worker fetched a task and only
began it later. As a result, Crowd Worker Two in the backend had
an average work time of 11hr, 35 min. While workers had the ability
to pause the time in the ITS, some forgot to do so.

Figure 7 depicts the work done by each crowd worker, from the
time they fetched a microtask until they submitted it. For example,
on Backend artifact 3, Crowd Worker 6 first completed a Review
microtask in about one hour, Crowd Worker 2 completed an imple-
mentation microtask in about one hour, Crowd Worker six then
completed Review and Implementation microtasks in succession,
and finally Crowd Worker 2 completed a a Review microtask.

Crowd workers were prohibited from fetching multiple micro-
task at the same time, although they sometimes forgot to close the
ticket and started a new task. Work on an individual artifact often
switched between different crowd workers. Work often clustered
around points of time with more intense activity. Most crowd work-
ers contributed during the daytime or working for 2 or 3 hours in
the evening.

We did not precisely record the hours worked on the project by
the dedicated requirements engineer and software engineer (Fig. 3).
However, we were able to estimate the time. On average, the ded-
icated engineers worked for 8 hours per day. The requirements
engineer spent one week on the project (40 hours). The software
engineer spent 40 hours in the detailed design phase. In those 40
hours, the software engineer exclusively worked on converting
basic design diagrams to function specifications and preparing mi-
crotasks. In the last phase, the software engineer spent an additional
40 hours conducting system testing.

Can Microtask Programming Work in Industry?

Crowd Worker2 ~ Crowd Worker6 Crowd Worker3 Crowd Worker] Crowd Worker§

07/29 12:00 07/29 15:00 07/29 18:00 07/29 21:00 07/30 00:00
L L L L L

V7777

Implementation Review

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

07/30 03:00 07/30 06:00 07/30 09:00 07/30 12:00 07/30 15:00 07/30 18:00 07/30 21:00
L L | | L 1 |

o

Backend artifact3 -{

N

Backend artifactd.

Frontend artifact] -

Frontend artifact2 -

Frontend artifact3 -

\

Frontend artifact4 -

Frontend artifact5 -

Figure 7: A visualization of crowd workers’ switching between artifacts during the project. The vertical axis is the artifact
workers were contributing to and the horizontal axis time. Each bar in the plot corresponds to a single microtask (either
implementation or review microtask). Crowd workers are indicated through colors. The bars’ pattern indicates the task type,
with striped bars indicating implementation tasks and filled bars indicating review tasks.

4.3 Perceptions of Use by Crowd Workers

To understand the perceptions of the crowd workers about the suit-
ability and value of microtask programming in a company setting,
we gathered data through two methods. One week after the com-
pletion of the project, we asked the 6 crowd workers to complete
a short questionnaire about their experiences with microtask pro-
gramming inside a company. The questions focused on onboarding
challenges, the granularity of microtasks, the freedom to choose
a task, the motivation of working in the microtask programming
approach, and communication among workers. We then later con-
ducted 15-30 minute semi-structured interviews with each of the six
crowd workers. The open-ended questions focused on onboarding
challenges, the granularity of microtasks, the freedom to choose
a task, the motivation of working in the microtask programming
approach, and communication among workers.

4.3.1 Questionnaire Results. The results from the questionnaire are
listed in Figure 8. The crowd workers mostly agreed that microtask
programming reduced the time required to onboard onto a project.
Each crowd worker took on average only 150 minutes (30 minutes
for the kickoff meeting and 120 configuring the environment) to join
the project. As much of this time was dedicated to understanding
the microtask workflow and configuring the related tools, this time

would likely be less were crowd workers to participate in another
microtask programming project.

Workers reported varied opinions on working with microtasks.
Most agreed with ability to select or skip each microtask. However,
crowd workers reported that staying motivated was often hard.
Crowd workers did not find the lack of face to face communication
to be challenging.

4.3.2 Interview Results. Most of the crowd workers felt that micro-
task programming decreased onboarding costs. One reported that
the wiki which had been prepared beforehand effectively reduced
the onboarding cost by including detailed information on how to
set up the environments and how to use it for work. Other workers
reported difficulties onboarding. One reported that it takes time
to learn rules and appropriate methods of work. Another worker
reported that a pre-defined environment such as a virtual machine
would have considerably reduced onboarding costs.

Most workers had neutral opinions about the clarity of the mi-
crotasks. For three workers, some micro-specifications were not
clear. For example, one reported that: "Text-based specification is
hard to understand. If the specification had included figures and/or
models, it would have been better" Workers reported following two
approaches for resolving unclear micro-specifications. The first one
was skipping the ticket in the ITS and beginning work on another

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Response
M Strongly disagree [Disagree | Neither agree nor disagree [Agree [l Strongly agree

Question 1

r T T r T T T T T ; T T ; T —T—— T 1
0 70 60 50 40 30 -20 -0 0 10 20 3 40 50 6 70 80 90 100
percentage_start, percentage_end

Question

Figure 8: Perceptions of microtask programming by crowd
worKkers.

Question 1: I think the microtask programming style reduces my
onboarding cost in comparison to the generic model (e.g., agile
model).

Question 2: I think that completing a single task on an individual
small artifact is easily performed.

Question 3: I find that it is comfortable to select (or skip) my task
by myself.

Question 4: I think that it is easy for me to stay motivated in the
microtask programming style.

Question 5: I think it is inconvenient not to have face to face com-
munication with the software designers.

Question 6: I think it is inconvenient not to have face to face com-
munication with other crowd workers.

ticket. The second approach was to create a ticket in the ITS to ask
the dedicated software engineer a question.

Crowd workers were comfortable selecting microtasks them-
selves. Two workers reported that micro-specifications had many
details about the logic that were helpful. Two workers reported
that implementation microtasks were a good fit for the backend,
as they were neither too small nor too big. Workers also reported
concerns about implementation microtasks.

One worker reported concern that the sequence of microtasks
was not specified, as how a micro-specification was implemented
might impact the implementation of another micro-specification.
Another worker reported being concerned that a behavior imple-
mented earlier might no longer work correctly after another micro-
specification was implemented. When a crowd worker implemented
a micro-specification and wrote a test for it, they focused only on
the micro-specification they were assigned. When they wrote the
test, it might pass. But it might later fail after another crowd worker
implemented other functionality. For example, Crowd Worker 1
wrote a test for micro-specification A where he invoked a function
with empty parameters. At the time, the test passed. However, ac-
cording to micro-specification B, the function must be invoked with
parameters. When Crowd Worker 2 implemented this behavior, the
test for micro-specification A then failed. In this way, unit tests
helped to facilitate coordination.

Crowd workers had different views about the value of review mi-
crotasks. Most thought review microtasks were easy to understand,
as the scope was narrow. However, when the micro-specification

Shinobu Saito, Yukako limura, Emad Aghayi, and Thomas D. LaToza

was incorrect or unclear, this created challenges. To resolve this,
crowd workers had to write on the ticket to communicate about
the specification. They instead wished to be able to communicate
directly with the dedicated software engineer who had authored
the micro-specification. Moreover, one worker reported that, while
he also does review tasks in regular software development, review
microtasks are different. He reported that: "Usually, the viewpoints
of [the] review are based on syntax such as coding rules, format,
and so on. But in this project, I had to check whether the code meets
behavior; it takes a longer time than usual" Another crowd worker
complained that his work was rejected several times because the
code violated code rules.

All crowd workers reported that understanding a micro-specification

and implementing backend microtasks could be completed in less
than one hour, with a wide range of responses ranging from 20 to
60 minutes. They reported that completing frontend microtasks
might take more than one hour, as the microtasks were larger.

Crowd workers were transient, and they could work on the
project in their slack time. One of the workers reported a preference
to complete multiple microtasks at a time. He told us he prefers to
complete 5 or 6 microtasks in one session for a couple of hours.

Based on the results of the questionnaire, we investigated the
challenges for crowd workers in staying motivated in microtask
programming. Crowd workers reported several reasons. Two re-
ported that they did not feel that they belonged to the project. These
crowd workers reported that if a microtask had been assigned to
them and the microtask had a due date, they would have been more
motivated. Two other workers reported that it was not clear if there
remained incomplete microtasks. If someone had asked them to
complete the incomplete microtasks which, they would have done
that. Another reported that since he thought someone else would
complete microtasks, he did not feel that he should do that.

Crowd workers reported several suggestions for increasing the
project velocity and the motivation of crowd workers. Two work-
ers suggested that instead of arbitrarily choosing microtasks they
should instead be assigned. Workers would then know that they
had a microtask that they must complete before its due date. Three
crowd workers shared that if there was an incentive like a score or
money, they would work harder. Another crowd worker suggested
dedicating a specific day to microtask programming.

The interview results confirm many of the questionnaire results.
Most crowd workers did not have problems with the lack of face-
to-face meetings with crowd workers. Four workers reported that
they only needed communication in the onboarding phase of the
project or their first microtasks. After that, they did not have specific
questions. Thus they felt they did not need any specific tools for
communication. They believed that workflow and tasks were clear
enough. On the other hand, two participants reported it would be
better if all communication were in a shared place like a question
and answer tool. They felt that sharing information might increase
their productivity. One participant reported: "... I prefer chat to
[a] ticket. I feel that it is a good point to record the history of the
actor’s actions using tickets. However, in many scenes, I need quick
answers from software designers. So, the chat is better than a ticket."

Can Microtask Programming Work in Industry?

4.4 Perceptions of Use by Dedicated Software
Engineer

We conducted an interview with the dedicated software engineer to
gather feedback about the challenges he faced when he decomposed
tasks into microtasks and when he assembled the contributions
into a finished application.

Although the software engineer could complete all of the tasks
by himself, the software engineer reported that his time commit-
ment was reduced. While crowd workers were working on the
implementation microtasks, the software engineer used that time
to prepare the integration test and micro-specification for the next
sprint. As he had designed the project, he was able to complete the
tasks in a shorter time than the crowd workers. It is not clear if
someone else had created the tasks and the software engineer was
not involved in the design phase how much it time it would have
taken for the dedicated software engineer to complete all of the
tasks.

Manually decomposing tasks into microtasks was challenging. In
the backend, he tried to decompose a specification of a module into
a set of testable, smallest behaviors. It was challenging to describe
complex behaviors using only text. In the frontend, he tried to
decompose the web pages into a set of components. Each was the
smallest meaningful unit of the UI element. It was challenging to
consider what the minimum information needed to implement a
microtask was. The software engineer struggled to decide the level
of detail necessary for the micro-specifications. It was difficult for
the software engineer to predict how much time the crowd workers
would spend understanding the micro-specifications he wrote. He
also thought that the reason why the tasks took much more time
than he expected was the size of the microtasks. He described
much of the contents in the UI component’s specifications. So these
required much time to implement.

Aggregating microtasks and conducting integration tests was
not straightforward for the software engineer. There were not au-
tomated continuous integration tools, which added much time. He
suggested that the test results might be used to monitor project
progress.

5 LIMITATIONS AND THREATS TO VALIDITY

When we design any case study, care should be taken to mitigate
threats to validity [28].

Construct validity addresses the degree to which a case study
aligns with the theoretical concepts used. To reinforce construct
validity, there are three ways: using multiple sources of reliable
evidence, establishing a chain of evidence, and having key infor-
mants review reports of a draft case study [28]. In this case study,
we used only one source from one web application system develop-
ment project. To establish a chain of evidence, ITS and VCS were
used to maintain a record of all data of the study. Finally, outside
researchers studying crowdsourcing software engineering were
involved in the study and reporting of study results. In this case
study, we make no causal inferences, so internal validity is not a
concern.

External validity is the ability of a case study’s findings to gen-
eralize to the broader population of interest [28]. A possible threat
to external validity is that we only analyzed one project. Microtask

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

programming is not inherently domain specific and would be rele-
vant for other projects beyond developing web applications. Both
of the key supporting tools (ITS and VCS) in the case study are
widely used in software development projects. This supports the
external validity of our study.

Reliability is the ability to repeat a study and observe similar
results [28]. To reinforce our study’s reliability, we defined and doc-
umented the microtask programming workflow and the approach
for assigning microtasks to crowd workers. By using the same pro-
cess and tools, other researchers or practitioners may replicate the
case study in their own context.

6 DISCUSSION

In this paper, we investigated the potential of applying microtask
programming in a company setting, reporting on a project un-
dertaken at NTT to build a web application through microtask
programming. Japanese IT vendors such as NTT face a serious IT
talent shortage. Microtask programming may help to address this
by increasing the fluidity of developer assignments within large
organizations.

In adopting microtask programming, there were four key ways
in which development work differed from standard practice: (1) a
finer granularity of work, (2) less face to face communication, (3)
associating contributions with artifacts, and (4) enabling develop-
ers primarily assigned to a different project to contribute in their
free time. Contributions were smaller than typical, focusing on
implementing or reviewing the behavior specified in an individual
micro-specification. Rather than participate in the typical daily face
to face or conference meetings to coordinate, crowd workers in-
stead collaborated by reading tickets describing their work. Rather
than work on tickets encompassing an issue spanning multiple
source code artifacts, crowd workers instead worked on an indi-
vidual artifact, reducing necessary project knowledge. And rather
than work exclusively on a dedicated software project, seven crowd
workers made contributions to a second project in their available
free time. These differences led to a different style of work.

There were also differences in the nature of the review tasks.
The focus of code reviews is traditionally on conventions, such as
coding rules and format. In microtask programming, workers were
also responsible to check whether the code satisfied its expected
behavior. As a result, review tasks took longer than usual.

Adapting microtask programming did not require a change to
the project life-cycle . Microtask programming was organized in
the same four key project steps typically used by the organization
(Fig. 3). The key difference was that microtasking added a new level
of detail in the detailed design step, where the specifications were
decomposed into micro-specifications.

The results demonstrate the potential for microtask program-
ming to increase the fluidity of project assignments within an orga-
nization. The project met its objectives and successfully completed
its system testing. Crowd workers assigned to other projects were
able to contribute in their slack time and largely felt that the on-
boarding costs were reduced.

Prior to beginning the project, there were concerns about the
quality of the code and the project’s time to market. It was not clear
how much the output of the crowd could be trusted. The project

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

was built and tested to evaluate if the system satisfied its require-
ments. The system testing revealed only a few defects, which was
considered quite successful. There were also concerns about the
efficiency of microtask programming. It was not clear how much
time would be needed to complete a project through microtask pro-
gramming. However, in less than 2 months, the project completed
9 functions and 5 UI Components. This alleviated concerns that
microtask programming might be excessively slow.

The project also revealed several challenges with applying mi-
crotask programming. The crowd workers reported that they found
staying motivated to be harder. Crowd workers found the style of
work used in microtasking to be unfamiliar and different. Motiva-
tion may also have been reduced because microtask programming
was not typical practice and workers did not feel they needed to
be as productive. Workers did not directly gain anything for their
contributions, further reducing their motivation.

From the viewpoint of project management, it was difficult to
monitor the status of the crowd workers because they were assigned
to other projects. Only when they were not busy in their own project
could they make contributions to the project. This made it hard to
anticipate when and how often they would be able to contribute.
As a result, estimating progress and handling risk in the project
were very difficult.

While project participants perceived onboarding overhead to be
reduced, there was still considerable overhead involved for crowd
workers to get started and begin contributing. At the beginning
of the project, workers were confused about the new concept and
workflow. Workers also did not have their regular face to face meet-
ings. It may be that after workers become more comfortable and
familiar with microtask programming, some of this overhead may
decrease. Moreover, while microtask programming often includes
a pre-configured development environment, workers did not bene-
fit from this in our study. Offering this might reduce onboarding
overhead.

In this project, crowd workers manually selected microtasks from
an issue tracking system. We are planning to develop techniques to
generate these assignments, by considering crowd worker’s main
area of work and expertise and their current daily tasks.

In the project, the dedicated software engineer’s workload in-
creased during the detailed design step in which they created the
micro-specifications. As there was no systematic method available
for completing this work, the dedicated software engineer had to
manually determine how to do this through trial and error, which
increased their workload. This effort might be reduced through
tool support, creating more detailed guidelines, or by adapting the
workflow to find new ways to use the crowd.

Microtasking was only adopted for parts of the project which
required less project knowledge to complete or that were not com-
plex. Tasks that required more knowledge still involved a dedicated
software engineer, as they required a level of knowledge that crowd
workers did not have. This included 1) designing the system archi-
tecture, 2) designing and configuring the database, 3) completing
tasks that involved screen transitions, 4) completing tasks which
required infrastructure knowledge. In addition, the project’s scope
was limited to a development phase, rather than encompassing
other phases such as maintenance. Better understanding how to
employ microtasking in more complex programming tasks, when

Shinobu Saito, Yukako limura, Emad Aghayi, and Thomas D. LaToza

focusing on non-functional or crosscutting considerations such
as performance, and in phases such as maintenance are essential
questions for future work.

7 CONCLUSION

In this paper, we reported an industrial case study of the applica-
tion of microtask programming to a web application development
project. Work to implement a system was decomposed into a set of
micro-specifications, which were then implemented and reviewed
by the crowd. Crowd workers were primarily assigned to other
projects and worked in their free time. A system with approxi-
mately 8,000 LOC in total was built, of which approximately 35%
was implemented and reviewed by six crowd workers. Individual
contributions made by crowd workers were small, averaging about
58 LOC.

The project results suggest the promise of microtask program-
ming for making the assignment of developers to projects more
fluid. Based on the results from this project, high-level management
at NTT has realized the potential benefits. We plan to apply the
approach to not only other development projects but also to sys-
tem operation and maintenance projects. We are also planning to
develop a tool for automating the integration of components imple-
mented by crowd workers. We are considering potential approaches
for managing progress and risk.

ACKNOWLEDGMENTS

We thank the participants in the study for their participation. We
also are grateful to Motoi Yamane, Masayuki Oda, Keiji Kataoka,
and Motoi Yamane at Piecemeal Technology for their assistance in
the case study. This work was supported in part by the National
Science Foundation under grants CCF-1414197 and CCF-1845508.

REFERENCES
n

Emad Aghayi. 2020. Large-Scale Microtask Programming. In Symposium on

Visual Languages and Human-Centric Computing. 1-2.

[2] Emad Aghayi, Thomas D. LaToza, Paurav Surendra, and Seyedmeysam Abol-
ghasemi. 2021. Crowdsourced Behavior-Driven Development. Journal of Systems
and Software (2021).

[3] Aybiike Aurum, Ross Jeffery, Claes Wohlin, and Meliha Handzic. 2013. Managing
software engineering knowledge. Springer Science & Business Media.

[4] Finn Olav Bjernson and Torgeir Dingsgyr. 2008. Knowledge management in
software engineering: A systematic review of studied concepts, findings and
research methods used. Information and Software Technology 50, 11 (2008), 1055—
1068.

[5] Maximilian Capraro and Dirk Riehle. 2016. Inner source definition, benefits, and
challenges. Computing Surveys 49, 4 (2016), 1-36.

[6] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S Lasecki, and Steve Oney.
2017. Codeon: On-demand software development assistance. In Conference on
Human Factors in Computing Systems. 6220-6231.

[7] Anurag Dwarakanath, Upendra Chintala, NC Shrikanth, Gurdeep Virdi, Alex
Kass, Anitha Chandran, Shubhashis Sengupta, and Sanjoy Paul. 2015. Crowd
build: A methodology for enterprise software development using crowdsourcing.
In International Workshop on Crowd sourcing in Software Engineering. 8-14.

[8] John S Edwards. 2003. Managing software engineers and their knowledge. In
Managing Software Engineering Knowledge. 5-27.

[9] Fabian Fagerholm, Alejandro Sanchez Guinea, Jay Borenstein, and Jirgen Minch.
2014. Onboarding in open source projects. IEEE Software 31, 6 (2014), 54-61.

[10] Max Goldman et al. 2012. Software development with real-time collaborative
editing. Ph.D. Dissertation. Massachusetts Institute of Technology.

[11] Max Goldman, Greg Little, and Robert C Miller. 2011. Real-time collaborative
coding in a web IDE. In Symposium on User Interface Software and Technology.
155-164.

[12] InnerSourceCommons. 2020.

//innersourcecommons.org

InnerSourceCommons. https:

Can Microtask Programming Work in Industry? ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

[13] InnerSourceCommons. 2020. InnerSourceCommons/InnerSourcePatterns. https: 74-80.

//github.com/InnerSourceCommons/InnerSourcePatterns [21] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. 2017. A survey of the use of

[14] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. 2011. The onion patch: crowdsourcing in software engineering. Journal of Systems and Software 126
migration in open source ecosystems. In Symposium European Conference on (2017), 57-84.

Foundations of software Engineering. 70-80. [22] Trade Ministry of Economy and Industry. 2020. 2025 Digital Cliff. https:

[15] Walter S Lasecki, Juho Kim, Nick Rafter, Onkur Sen, Jeffrey P Bigham, and /[www.meti.go.jp/english/press/2018/pdf/0907_004a.pdf
Michael S Bernstein. 2015. Apparition: Crowdsourced user interfaces that come [23] Rafael Prikladnicki, Leticia Machado, Erran Carmel, and Cleidson RB de Souza.
to life as you sketch them. In Conference on Human Factors in Computing Systems. 2014. Brazil software crowdsourcing: a first step in a multi-year study. In Inter-
1925-1934. national Workshop on crowd sourcing in Software Engineering. 1-4.

[16] Thomas D LaToza, Micky Chen, Luxi Jiang, Mengyao Zhao, and André van der [24] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
Hoek. 2015. Borrowing from the crowd: A study of recombination in software David F Redmiles. 2015. A systematic literature review on the barriers faced by
design competitions. In International Conference on Software Engineering. 551— newcomers to open source software projects. Information and Software Technology
562. 59 (2015), 67-85.

[17] Thomas D LaToza, Arturo Di Lecce, Fabio Ricci, W Ben Towne, and André Van [25] Klaas-Jan Stol and Brian Fitzgerald. 2014. Inner source—adopting open source
Der Hoek. 2015. Ask the crowd: Scaffolding coordination and knowledge sharing development practices in organizations: a tutorial. IEEE Software 32, 4 (2014),
in microtask programming. In Symposium on Visual Languages and Human- 60-67.

Centric Computing. 23-27. [26] Klaas-Jan Stol and Brian Fitzgerald. 2014. Two’s company, three’s a crowd: a case

[18] Thomas D LaToza, Arturo Di Lecce, Fabio Ricci, W Ben Towne, and Andre van der study of crowdsourcing software development. In International Conference on
Hoek. 2018. Microtask programming. Transactions on Software Engineering 45, Software Engineering. 187-198.

11 (2018), 1106-1124. [27] Georg Von Krogh, Sebastian Spaeth, and Karim R Lakhani. 2003. Community,

[19] Thomas D LaToza, W Ben Towne, Christian M Adriano, and André van der Hoek. joining, and specialization in open source software innovation: a case study.
2014. Microtask programming: Building software with a crowd. In Symposium Research Policy 32, 7 (2003), 1217-1241.
on User Interface Software and Technology. 43-54. [28] Robert K Yin. 1998. The Abridged Version of Case Study Research- Design and

[20] Thomas D LaToza and Andre van der Hoek. 2015. Crowdsourcing in software Method. Vol. Chapter 8. Sage Publication, Inc.

engineering: Models, motivations, and challenges. IEEE Software 33, 1 (2015),

	Abstract
	1 Introduction
	2 Related Work
	3 Microtask Programming in a Company
	3.1 Project Overview
	3.2 Organization Structure
	3.3 System Architecture
	3.4 Software Development Process
	3.5 Workflow and Tools for Crowd Workers

	4 Results
	4.1 Project Activities
	4.2 Crowd Worker Productivity
	4.3 Perceptions of Use by Crowd Workers
	4.4 Perceptions of Use by Dedicated Software Engineer

	5 Limitations and threats to validity
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

