
Notary: A Device for Secure Transaction Approval
Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich

MIT CSAIL

Abstract
Notary is a new hardware and software architecture for
running isolated approval agents in the form factor of a USB
stick with a small display and buttons. Approval agents al-
low factoring out critical security decisions, such as getting
the user’s approval to sign a Bitcoin transaction or to delete
a backup, to a secure environment. The key challenge ad-
dressed by Notary is to securely switch between agents on
the same device. Prior systems either avoid the problem by
building single-function devices like a USB U2F key, or they
provide weak isolation that is susceptible to kernel bugs,
side channels, or Rowhammer-like attacks. Notary achieves
strong isolation using reset-based switching, along with the
use of physically separate systems-on-a-chip for agent code
and for the kernel, and a machine-checked proof of both
the hardware’s register-transfer-level design and software,
showing that reset-based switching leaks no state. Notary
also provides a trustworthy I/O path between the agent code
and the user, which prevents an adversary from tampering
with the user’s screen or buttons.

We built a hardware/software prototype of Notary, using
a combination of ARM and RISC-V processors. The prototype
demonstrates that it is feasible to verify Notary’s reset-based
switching, and that Notary can support diverse agents, in-
cluding cryptocurrencies and a transaction approval agent
for traditional client-server applications such as websites.
Measurements of reset-based switching show that it is fast
enough for interactive use. We analyze security bugs in exist-
ing cryptocurrency hardware wallets, which aim to provide
a similar form factor and feature set as Notary, and show
that Notary’s design avoids many bugs that affect them.

CCS Concepts • Security and privacy → Systems secu-
rity; Software and application security; Security in hardware;
Logic and verification.

Keywords Security, Verification, Cryptocurrency hardware
wallet

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6873-5/19/10.
https://doi.org/10.1145/3341301.3359661

1 Introduction
Users routinely rely on computers such as workstations, lap-
tops, and smartphones to approve security-critical operations.
These include financial operations, such as bank transactions
and cryptocurrency transfers, and system-administration
operations, such as deleting backups, changing user permis-
sions, and modifying DNS records. Today’s systems do not
provide strong guarantees of security for such operations.
For instance, cryptocurrency theft is a major problem: it is
estimated that cybercriminals stole nearly $1B in cryptocur-
rency in 2018 [19], a significant fraction of which was a result
of private keys being stolen from individuals’ computers.

This paper contributes Notary, a new design that provides
trustworthy user approval of security-sensitive operations.
Notary is a physical device that executes a subset of an
application that is responsible for obtaining user approval.
We use the word agent to refer to this critical component
of a logical application that has been factored out, as in
ssh-agent. The Notary device has a display and buttons to
provide agent code with a trustworthy user I/O path, which
ensures that an adversary cannot provide fake output to the
display or fake the user’s input. Notary supports multiple
agents, but provides strong isolation between them by using
a new technique called reset-based switching, which avoids
confidential data leakage even across microarchitectural side
channels [38, 40]. Notary also provides strong isolation be-
tween agent code and the trusted kernel by running them on
physically separate systems-on-a-chip (SoCs), which avoids
attacks like Rowhammer [59].
Notary’s design is influenced by a number of prior sys-

tems that also factored out important operations for security,
as discussed in more detail in §2. The key research contribu-
tion of Notary is providing secure task switching between
different agents running on the device. Prior work either
avoids the problem altogether with a fixed-function device
like RSA SecurID, iPhone secure enclave, or a USB U2F key,
or it provides weak isolation between agents, which allows
confidential data to leak from one agent to another. For ex-
ample, smartphones run multiple apps, but their kernel is
complex, and they have had bugs that can give the adversary
root access. Cryptocurrency hardware wallets like the Led-
ger wallet inherit the kernel-based isolation design and have
similar bugs that compromise isolation between different
agents (§2.1). Finally, verified operating systems can ensure
correct behavior with respect to a specification, but current
systems do not reason about microarchitectural side channels
or Rowhammer-like attacks that can violate isolation.

https://doi.org/10.1145/3341301.3359661

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

Communication
SoC

Agent
SoC

Kernel
SoC

Communication domain Agent domain Kernel domain

Buons Display
Reset
buon

User/sys
indicator

Flash

uart

rst

uart

rst

uart

usb

Figure 1. Notary’s design physically separates trust domains with an SoC per domain and a simple interconnect between
trust domains (reset wire and UART). Notary employs two such separations, the first between the kernel and the agent
UI/signing code, and the second between the agent UI/signing code and the agent communication code.

Figure 1 shows Notary’s overall architecture. Notary
achieves strong isolation using its separation architecture,
which implements privilege separation using separate do-
mains. Each domain runs on its own system-on-a-chip, which
contains its own CPU, ROM, RAM, and peripherals. The do-
mains are connected by a limited interface (a serial UART
link). Notary applies this separation twice. The first sep-
aration provides strong isolation between agents and the
kernel: the kernel runs on its own dedicated domain, sepa-
rate from third-party agent code. This protects the kernel
from buggy or malicious agents, enabling the multi-agent
support of the wallet. The second separation provides iso-
lation within a single agent, between the sensitive UI and
signing component of an agent and the complex and bug-
prone communication code such as the USB driver, which
is placed in its own domain. Physical separation eliminates
the need to rely on complicated hardware protection mech-
anisms such as user/kernel mode and memory protection
units, and it ensures that Notary’s isolation cannot be sub-
verted by Rowhammer-like attacks.

To avoid having one domain (i.e., dedicated SoC) per agent,
Notary runs only one agent at a time and implements agent
switching via a new technique we call reset-based switching,
which uses a formally verified deterministic start primitive
to fully reset a domain’s SoC, encompassing its CPU, RAM,
and peripherals, to clear all internal state before starting
to execute new agent code. Just resetting or power-cycling
the SoC is insufficient: for example, reset is not guaranteed
to clear the CPU’s architectural state such as registers [70]
or microarchitectural state, and power-cycling leaves state
in SRAM for minutes [51]. Notary’s formal verification en-
compasses the register-transfer-level (RTL) description of
the SoC’s internals as well as the initialization code in boot
ROM that assists in clearing state after reset. Reset-based
switching eliminates by design many classes of bugs that
affect traditional user/kernel co-resident designs, because no

state is leaked by the hardware between executing one agent
and another.
To demonstrate that Notary can support diverse agents,

we developed two examples: a Bitcoin wallet and a general-
purpose approval manager (§8). The contributions of this
paper are:
• The reset-based switching technique for securely multi-
plexing agents on the same hardware while avoiding un-
intended side channels or leakage.

• The specification of deterministic start, the implementa-
tion strategy using software-assisted reset, and the formal
verification of deterministic start for a RISC-V SoC.

• The separation architecture for supporting multiple agents
with strong isolation and a secure user I/O path.

• A physical prototype of the Notary design.
• An implementation of two Notary agents.
• An evaluation of Notary’s security and usability.
Notary’s prototype has several limitations. The prototype

uses development boards instead of a custom board that
fits into a USB stick, and it doesn’t provide resistance to
physical attacks. We believe that Notary could be made in
a production form factor similar to existing cryptocurrency
hardware wallets and use tamper-proof hardware at a similar
price as today’s wallets. Like current hardware wallets, the
prototype uses an LCD display to communicate with the
user; an implementation with a refreshable braille display
could support vision-impaired users. The prototype uses an
open-source RISC-V processor which is not yet commercially
available in silicon, so it uses a soft core instantiated on an
FPGA.

2 Background and related work
Notary adoptsmany security ideas of previous systems. This
section relates Notary’s design to existing security devices
as well as to research on supporting strong isolation.

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

2.1 Hardware wallets
Hardware wallets are designed to protect a user’s private key
for a cryptocurrency. Transactions proceed as follows: the
user sets up a transaction on their computer, sends it to the
device, reviews the transaction on the device’s display, and
presses a button to confirm. If confirmed, the device signs
the transaction and sends it to the computer for broadcast.

Among other devices such as Trezor [4] and KeepKey [2],
the Ledger [3] family of hardware wallets is one of the most
secure. The Ledger Nano S is the only current device that
makes use of a secure element with a custom OS, and it is
the only certified hardware wallet on the market [6].
The Ledger supports many cryptocurrencies. It runs one

agent for each cryptocurrency, which can sign transactions
and store the private key using tamper-proof hardware. Agents
share a screen for displaying transactions and an input de-
vice for approving the displayed transactions. The Ledger
has 84 approved applications in its app store, 79 of which
are wallets and 5 of which are other security-oriented agents
such as FIDO U2F and OpenPGP. Third-party developers
have published 55 of the apps.
The Ledger hardware has two SoCs: a secure element

(ST31) that runs a custom closed-source OS kernel and mul-
tiplexes between agents in user/kernel co-resident style, and
a fixed-function microcontroller (STM32) that acts as an in-
put/output proxy for the secure element because of pin limi-
tations [7].
Ledger’s secure element is resistant to physical attacks,

and it provides a hardware root of trust to ensure the device
is running authentic firmware. Additionally, it can prove to
the user’s computer that it is genuine hardware, a measure
to protect against malicious counterfeit wallets [7].
In the Ledger wallet, as well as other current hardware

wallets, the user I/O path is handled by the same processor
that runs the complex USB driver. Thus, a bug in the driver
could compromise the I/O channel by allowing an adversary
to forge button presses to authorize malicious transactions.
Notary inherits the form factor and many design ideas

from existing hardware wallets. Most hardware wallets do
not run third-party code, but Ledger supportsmultiple agents,
with many written by third parties. Ledger’s approach of
using a standard user/kernel boundary to isolate agents from
one another has led to vulnerabilities in the past (see below).
In contrast, Notary leverages its separation architecture and
reset-based agent switching to improve isolation between
agents. Notary also places USB and user I/O on separate
SoCs, so that the agent code has a trustworthy user I/O path.
The architecture of hardware wallets like the Ledger has

a number of shortcomings that are illustrated by the range
of vulnerabilities that have been discovered, which motivate
Notary’s design:

System call vulnerabilities. The Ledger kernel had a num-
ber of system calls that incorrectly validated pointer argu-
ments, potentially allowing agents to read data belonging
to the kernel or other agents [33, 52]. The system calls per-
formed hardware-accelerated cryptographic operations; the
kernel was involved in order to mediate access to the hard-
ware. More broadly, Ledger must provide many system calls
(and thus has a large attack surface) because the kernel has
to mediate access to many hardware resources.

Memory protection errors. The Ledger kernel had a bug
that caused it to misconfigure the memory protection unit
(MPU) bounds, allowing agents to read 16K of memory be-
longing to another agent [33, 52]. Similarly, the Trezor hard-
ware wallet suffered from a bug that erroneously allowed
writes to flash memory [57]. These hardware wallets depend
on correctly configured memory protection hardware be-
cause the kernel and agents share the same CPU and RAM.

USB software bugs. The Trezor wallet suffered from vulner-
abilities in which data packets sent over the USB interface
were able to trigger a buffer overflow [56], and USB leaked
discarded memory [58]. These bugs are particularly threat-
ening because the USB software runs on the same CPU as
the agents and the kernel.

2.2 Security devices
Two-factor authentication devices. Hardware security de-
vices such as RSA SecurID [53], smart cards [10], and U2F
tokens [5, 24, 62] serve as a second factor for authentica-
tion. Such devices can prove physical possession and protect
against phishing attacks. However, because they lack a dis-
play, they are more suitable for authenticating logins than
transactions. These devices do not help if the user’s computer
has been compromised and is running malware. Before the
user logs in, two-factor authentication prevents the malware
from impersonating the user. However, as soon as the user
logs in with their two-factor device, malware can take over
the user’s session and impersonate the user by submitting
requests on the user’s behalf. This is possible because the
two-factor device does not participate in anything after login.

Transaction approval devices. Certain devices support ex-
plicit transaction approval by the user, such as the E.den-
tifier2 [11] or EMV-based card payment systems. However,
these devices implement a single protocol for a single pur-
pose. It would be impractical for the user to carry around
separate physical devices for many agents. Supporting mul-
tiple agents on the same device securely is the key problem
that Notary addresses.

Smartphones. Smartphones have design features that pro-
vide better security than computers running traditional desk-
top operating systems. For example, Apple iOS uses a hard-
ware root of trust to ensure that it boots an unmodified ker-
nel [13]. Furthermore, iOS lets a user launch an application

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

unambiguously, and iOS enforces stronger isolation between
applications than a desktop OS. However, the iOS kernel’s
complexity has made it vulnerable to a long history of jail-
breaks [21, 49], often exploitable by malicious applications;
such exploits would expose an agent’s secrets to the attacker.
Furthermore, the design suffers from hardware side channels
as a result of sharing the CPU and RAM between running
applications.
The secure element found in iPhone and Android smart-

phones is used to maintain cryptographic secrets in isola-
tion from the general-purpose CPU. However, this secure
element does not have a trustworthy output path to the user-
visible display, and it does not allow execution of application-
specific code. This makes it impossible to implement an agent
that, for example, approves and signs Bitcoin transactions,
because the code to sign a Bitcoin transaction could not run
on the secure element, and because a compromised kernel
on the general-purpose CPU could display a different trans-
action from the one that the user is about to sign.

Trusted execution environments. Trusted execution en-
vironments (TEEs) like Intel SGX [22], Komodo [26], and
virtual machines [54] provide stronger isolation between
applications on the same computer. The Trusted Platform
Module (TPM) [66] can also be used to implement TEEs, such
as in the Flicker architecture [45]. TEEs can rely on a ker-
nel or hypervisor to mediate access to shared storage and
user I/O [77, 78], or they can use TPMs to bootstrap a secure
user I/O path, such as in the Cloud Terminal system [43] or
Lockdown [68].

In contrast to Notary, TEEs typically do not provide strong
isolation between protection domains [48], especially against
microarchitectural side-channels or hardware defects like
Rowhammer. Notary uses its separation architecture and
reset-based task switching to defend against these attacks.

2.3 Strong isolation
Verification. Formal verification is a promising approach
to provide strong correctness and isolation guarantees. Re-
searchers have built verified operating systems [31, 32, 35,
36, 47, 60] that provide proofs of varying degrees of isolation,
and some verified operating systems are used in real-world
security-critical applications [37]. The proofs typically rea-
son at the architectural level, on top of a model of the ISA
specification. This does not take into account microarchitec-
tural side channels, which are not captured by the specifica-
tion, or hardware bugs, where the implementation does not
satisfy the specification.

Traditional hardware verification efforts have focused on
the correctness of the CPU implementation with respect to
the ISA specification. This is insufficient to prevent data leaks,
because the specifications are too weak and because they do
not extend to microarchitectural state (see §5.1).

Some work focuses on verifying security properties of
hardware implementations, such as verifying information
flow in an implementation of ARM TrustZone [27]. Hyper-
Flow [28] contributes a RISC-V processor verified to enforce
secure information flow, taking into account timing side-
channels. These systems prove properties at the hardware
description language (HDL) level. Notary’s reset-based task
switching avoids having to prove strong information-flow
properties about hardware and shows that it suffices to prove
a simpler deterministic start property of the hardware and
boot code. Furthermore, Notary’s verified deterministic start
encompasses the entire SoC, including RAM and peripherals,
not just the CPU itself. Finally, Notary’s separation archi-
tecture avoids Rowhammer-like attacks that could otherwise
be used to subvert isolation.
Type-safe languages could be used to harden the imple-

mentation of the Notary TCB (which is implemented in C++
in our prototype). Prior work has shown that both Rust [39]
and Go [23] can help prevent bugs in an OS kernel. Restricted
languages and verification can also be used to ensure that
one application’s code cannot observe confidential state from
another application [29, 42, 74].

CPU state cleansing. Several systems have proposed cleans-
ing CPU state to mitigate side channel attacks. For example,
Düppel periodically flushes portions of L1 caches to reduce
the possibility of cache timing attacks [75]. MRT improves
upon Düppel by executing a carefully crafted sequence of in-
structions to overwrite additional state, including the I-cache,
D-cache, and branch predictor [67]. The MI6 processor in-
troduces a purge instruction that flushes microarchitectural
state [16]. However, ensuring that all CPU state has been
exhaustively cleansed is a formidable task that depends on
complex implementation details of the CPU. To our knowl-
edge, Notary is the first system to employ verification to
prove that the internal (microarchitectural) state of a CPU
can be reset correctly. In CleanOS, sensitive data is managed
at the language runtime level by evicting idle secrets from
RAM, but it does not take into account microarchitectural
state [63].

Partitioninghardware. Another approach to reducing side
channel risks is to segregate shared CPU resources, either by
eliminating sharing entirely or by reserving bandwidth. This
strategy has been employed on various hardware layers, such
as on-chip networks [69, 71], last-level caches [41], and mem-
ory controllers [34]. Previous systems have also relied on
partitioning cores to improve performance [14, 15, 17, 50, 61].
Because we focus on hardware wallet security rather than
general purpose computing, we can use a more aggressive ap-
proach of dividing physical resources into separate domains,
each with a dedicated SoC.

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

3 Threat model and security goal
Notary is designed to defend against an adversary who
wants to approve an operation contrary to the wishes of
the user (e.g., to transfer Bitcoin to the attacker’s address).
Notary’s design assumes a threat model similar to that of
current cryptocurrency hardware wallets:
• The remote attacker has full control over the user’s com-
puter, including the ability to execute code as root. This
includes the ability to tamper with network packets to and
from the user’s computer, manipulate the computer screen,
spoof keyboard and mouse input, corrupt the computer’s
operating system and running processes, and attack the
Notary over USB by sending arbitrary malicious packets.
We believe this assumption is an accurate model of the real
world where the user may have malware running on their
computer, either because the adversary exploited some
vulnerability in the OS or because the adversary tricked
the user into installing the malware.

• The remote attacker can author malicious agents and trick
the user into installing and running them on the Notary.
Malicious agents may run arbitrary code. This includes
trying to exploit bugs in system software, hardware vul-
nerabilities, or microarchitectural side-channels.

• The attacker’s agent code can take advantage of Row-
hammer-like bugs to violate the digital gate abstraction in
the hardware of the agent domain (i.e., cause unintended
bit flips). However, we assume that once the reset line is
asserted, gates in the Notary start behaving according to
the digital abstraction.

• The attacker cannot physically interact with the trusted
user I/O of the Notary. This means either that the attacker
does not have physical control of the Notary, or that the
attacker cannot bypass the access control mechanism on
the Notary (like a fingerprint reader or PIN code, com-
bined with tamper-resistant hardware [7, 13]).

• The user will use the Notary correctly. This means only
approving operations that the user intends to approve,
and launching the correct agent. Similar assumptions have
proven to be a significant problem in past designs (with
issues such as phishing), so the Notary aims to make all
of these interactions explicit and stateless to reduce the
possibility of user confusion about state.
Notary’s threat model is focused on the end user; secu-

rity of server-side components is largely orthogonal (or not
relevant, in the case of serverless systems like Bitcoin). We
expect that servers are architected so that they can securely
check signatures or other messages from agents running on
Notary.
Notary’s threat model is stronger than that of other secu-

rity-related devices such as U2F tokens, which assume that
the user’s computer is trusted for I/O and which focus on
phishing attacks and protecting a user’s key. For example,

U2F tokens typically trust the browser on the user’s computer
to display information about the site they are logging into.

For high-stakes applications like cryptocurrencies, where
an adversary can steal millions of dollars from a single suc-
cessful attack that is untraceable and irreversible, a strong
threat model is appropriate. Past attacks have ranged in so-
phistication, from phishing schemes [64] to cryptocurrency-
stealing malware injected into popular libraries [20].

Central to Notary’s goal is to securelymultiplex agents on
the same device, which requires providing strong isolation
between potentially buggy or malicious agents. Running
agents on Notary should be as secure as using a separate
physical device dedicated to running each agent. Providing
security equivalent to a separate per-agent device is an ideal
goal, because the overall application can get a strong end-to-
end guarantee. For example, consider a Bitcoin wallet agent
in the ideal world with per-agent devices. A transaction can
be signed with the user’s Bitcoin private key only if the
user explicitly approved the transaction. This is because the
signing key is only available on that user’s agent device,
only the agent code executes on that device, and the agent
code only signs a transaction if it displays that transaction
to the user and the user presses a button to approve. The
assumptions in this argument are that (1) the agent code
must be correct, which is outside of the scope of Notary
itself; (2) the adversary must not have physical access to the
user’s devices; and (3) the user must correctly identify which
device they are using, and interact with it properly.
This paper does not focus on physical attacks such as

supply-chain attacks or physical extraction of secrets; ex-
isting solutions such as secure enclaves, hardware root of
trust, and attestation, as deployed in devices such as Ap-
ple iPhones [13] and Ledger wallets [7] provide protection
against such attacks and are compatible with Notary’s de-
sign. Similarly, except for microarchitectural side channels,
Notary’s threat model does not include arbitrary side chan-
nels [76] such as electromagnetic radiation [12], power anal-
ysis [44], and acoustic analysis [30].

4 Overview
Notary consists of three security domains, each with its own
separate SoC (which has a CPU, ROM, RAM, and peripherals
such as UART). One domain runs the kernel and two do-
mains run separate components of an agent, following the
least-privilege design principle [55]. This section provides
an overview of Notary. The next section, §5, describes de-
terministic start, the primitive that provides strong isolation
in Notary. §6 and §7 describe the entire Notary design,
including the hardware and software, in more detail.

Figure 1 illustrates Notary. The design is structured around
physical separation. First, Notary separates the kernel, which
is responsible for switching between agents and managing

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

persistent state. Second, Notary separates agent UI and sign-
ing code from communication code that is exposed to the
outside world (such as the USB subsystem). As a result, the
system is split into the following three trust domains:
The kernel domain protects the user’s master key, stores

agent code and data, protects agents’ persistent data from
each other, and performs agent switching. This is the most
security-critical processor because it has direct access to
all private key material. Notary runs as little code on this
processor as possible, and no third-party code is ever run
here. With this design, Notary minimizes the amount of
code that must be audited for security. We anticipate this
code will be amenable to push-button verification [47, 60]
due to its simplicity.
The agent domain contains code for the currently active

third-party agent and has exclusive access to the display
hardware and buttons. The agent uses the display to indicate
when an action requires user consent. Because the agent’s
code is security critical, it must be isolated from the outside
world.

The communication domain provides this necessary layer
of defense in depth by handling all untrusted I/O; we focus on
USB in our design, but the communication domain could eas-
ily be extended to handle Bluetooth, NFC, etc. We anticipate
an attacker could try to attack Notary over these interfaces
because they are complex and therefore error-prone. How-
ever, because the communication domain cannot access the
user’s private key and must communicate with the agent
domain through a narrow interface, it can be excluded from
the trusted computing base.
Notary supports multiple agents but only runs one at

a time. To switch between agents, the system fully resets
the state of the agent and communication domain hardware
before loading a different agent’s code. The communication
and agent SoCs have no shared memory with one another
or with the kernel domain. This simplifies isolation and de-
terministic start: all code is loaded from the kernel domain
at reset time via UART.

Agents. Each Notary agent consists of two binaries. The
code can be written in any language, as long as it compiles
to native code. The code that runs on the agent domain is
generally responsible for UI and signing operations, while
the code that runs on the communication domain is respon-
sible for USB communication and other functionality that is
outside of the agent’s TCB. Each agent, a bundle of the two
binaries, is installed to the kernel domain’s flash memory,
which is also where the agent’s persistent data is stored.

When launched, an agent’s code and data is loaded onto
the agent and communication SoCs. Agent code does not run
on top of an operating system, but instead has direct access
to raw hardware, with full privileges. The agent domain has
direct access to the display and buttons, which provides the
secure I/O path between the agent and the user. Notary

can expose hardware to agents safely because of its reset-
based switching: raw hardware can be shared without fear
that sensitive data will remain latent in hardware or that
agents will corrupt the hardware, because the hardware is
reset before each agent is launched. To simplify interacting
with raw hardware, agents can optionally statically link with
Notary’s library code, which includes display, GPIO, UART,
and USB drivers. The library is structured similar to existing
microcontroller SDKs’ peripheral drivers.

5 Deterministic start
Notary relies on the ability to reset a domain to start exe-
cuting an agent from a well-known state. We would like to
have a noninterference property for agents 𝐴 and 𝐵 that run
sequentially: informally, the execution of one agent on the
SoC should be unable to influence the execution of the next.
This implies that 𝐴 cannot corrupt the execution of 𝐵, and
𝐵 cannot learn secrets of 𝐴. Notary achieves this property
with a stronger one that implies noninterference. Between
runs of code from agents𝐴 and 𝐵 on the agent and communi-
cation SoCs, Notary fully resets the SoC state, including all
CPU architectural and microarchitectural state, as well as the
RAM and peripherals, to a deterministic value independent
of previous SoC state, i.e., a constant value. We refer to this
notion as deterministic start. If all state in the domain is reset
to a fixed value, then to the agent 𝐵, it is indistinguishable
whether the SoC previously ran agent 𝐴 or a different agent
𝐴′, or even whether an agent had previously run at all, so 𝐵’s
execution must be independent of whatever happened on
the SoC before 𝐵 started running. This fully captures all CPU
architectural and microarchitectural side-channel attacks, as
well as attacks related to leftover state in RAM or peripherals.

5.1 Challenge
By definition, specifications of SoC components like the CPU
describe behavior only at the architectural level, i.e., in terms
of architectural registers and opcodes accessible to software.
To reason about reset at the level of microarchitectural state,
we must analyze a particular SoC implementation (and there-
fore a particular CPU implementation, etc.) at the register-
transfer level. Achieving deterministic start is challenging
for several related reasons.

In existing CPUs, merely asserting the reset line does not
clear all internal state. CPU specifications acknowledge this:
the RISC-V specification says that after reset most architec-
tural CPU state is undefined [70, §3.3]. This means that after
reset, even directly software-visible state could contain data
from the code that was running before reset. This is true even
if the CPU has been formally verified against the ISA spec-
ification, since the ISA does not require state to be cleared.
Similarly, asserting the reset line does not clear RAM, and
peripheral specifications do not provide guarantees about
how asserting the reset line affects internal state.

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Even power-cycling (as opposed to asserting the reset line)
is insufficient, because state stored in SRAM can persist for
minutes without power. For example, Rahmati et al. [51]
showed that bitmap images stored in SRAM can be recov-
ered even after a device has been without power for several
minutes. This means that confidential state from one appli-
cation could still be present in CPU registers, memory, or
peripherals after the SoC has been powered off and then
powered on to run a different application, unless the user
waits for well over 3 minutes [51].

5.2 Software-assisted deterministic start
To overcome the above challenges, this paper introduces the
notion of software-assisted deterministic start: with carefully
crafted initialization code set up to run on the CPU after
reset (e.g., as the first instructions in boot ROM), starting
from any possible SoC state, a reset followed by executing
for some number of cycles 𝑛 causes the CPU to execute the
initialization code, which clears all architectural state (such
as the values in general-purpose registers), microarchitec-
tural state (such as the instruction decoder and ALU state),
RAM state, and peripheral state. For example, asserting the
reset line might set the program counter to point to the start
of the boot ROM, but it could leave the value of r0 as it was
pre-reset; a mov r0, $0 instruction could clear the leftover
value in the register. Similarly, the instruction decoder could
have leftover state after reset, but executing a number of
instructions could clear that internal state. RAM could have
leftover contents after reset, but the initialization code could
loop over the RAM and set it to zero. Peripherals could re-
tain internal state after reset, but initialization code could
ensure it is cleared properly. We use the approach of software
assistance to achieve deterministic start for the entire SoC,
ensuring that no matter the previous state, after 𝑛 cycles of
execution following reset, the SoC completes deterministic
start, so all SoC-internal state is set to a well-known value.
The particular value of 𝑛 is important to know, because only
after 𝑛 cycles is it safe to run another agent on the SoC.

5.3 Formalization
Deterministic start requires reasoning about the implementa-
tion of the SoC at the register-transfer level (RTL). We have
to reason about the behavior of asserting the reset line, as
well as the result of letting the SoC run for a number of
cycles, where its behavior could be affected by the leftover
(potentially malicious) state, over all possible initial states.
Missing a single register in the CPU for a single pre-reset
state invalidates the property of deterministic start, and in
turn, the noninterference property. It may even be the case
that for a particular SoC, no configuration of boot ROM will
achieve the deterministic start property. For example, con-
sider an SoC that has a CPU with a “lifetime cycle counter”
that can be read but not written to, that is preserved even
when the reset line is asserted.

CPU
(PicoRV32)

ROM
(1 KB)

RAM
(128 KB)

UART UART GPIO SPI

clk rst

Figure 2.A schematic of Notary’s agent domain SoC, which
is formally verified to satisfy deterministic start.

For this reason, we use formal verification to prove that
a particular SoC with some particular code in boot ROM
satisfies deterministic start, no matter what the (potentially
malicious) starting state. Figure 2 shows the SoC we verify.
The SoC is a stateful digital circuit, a collection of regis-

ters and combinatorial circuits. The SoC has some internal
configuration, and it also has a number of input and out-
put wires. Let 𝑆 be the set of all possible internal SoC states
(registers at the RTL level). Let 𝐼 be the set of all possible in-
puts (with elements assigning values on all input wires, such
as the reset line, GPIO pins, and UART RX wire). Because
the SoC is deterministic at the RTL level, there is a function
step : 𝑆 → 𝐼 → 𝑆 that describes the behavior of the SoC, sim-
ulating it for a single cycle. The step function encapsulates
the behavior of the entire SoC, and so it is dependent on the
gate-level implementation of the CPU, memory controller,
peripherals, and RAM, as well as the implementation and
contents of the ROM.

Let 𝐼 = {rst=0, rst=1}×𝐼 be a decomposition of inputs, sep-
arating the reset wire from other inputs.We define two helper
functions to describe the behavior of the SoC depending on
the state of the reset line. The function reset : 𝑆 → 𝐼 → 𝑆

describes one cycle of execution with input 𝑖 while the reset
line is asserted:

reset(𝑠, 𝑖) = step(𝑠, (rst=1, 𝑖))

In practice, the reset line will end up being held for more
than one cycle, but this is okay: if held for 𝑛 cycles, we can
think of the first 𝑛 − 1 cycles as having some unknown effect
and the last cycle as having the reset effect as given above.
The function run: ∀𝑛, 𝑆 → 𝐼𝑛 → 𝑆 describes 𝑛 cycles of

execution with a sequence of inputs while reset is not held:

run
(︁
𝑠, []

)︁
= 𝑠

run
(︂
𝑠, 𝑖 :: 𝑖⃗

)︂
= run

(︂
step(𝑠, (rst=0, 𝑖)), 𝑖⃗

)︂

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

The deterministic start property of an SoC, that the SoC
will enter a well-known state after 𝑛 cycles of execution
following reset, is formalized as follows:

∀𝑖 ∈ 𝐼 , 𝑖⃗ ∈ 𝐼𝑛 . ∃𝑠𝑓 ∈ 𝑆. ∀𝑠 ∈ 𝑆.

run
(︂
reset(𝑠, 𝑖), 𝑖⃗

)︂
= 𝑠𝑓

That is, for a given sequence of inputs, regardless of SoC
starting state 𝑠 , it much reach the same fixed SoC state 𝑠𝑓
(that is independent of 𝑠) after executing for 𝑛 cycles. The
state 𝑠𝑓 is not necessarily a “all zeros” state, but one where all
state is some constant value. The state equivalence includes
all registers in the SoC at the RTL level.
In practice, it is often the case that the input to the SoC

during deterministic start is a constant 𝑖0 known in advance
(e.g., all GPIO inputs have value 0, and all UART RX lines
have value 1), in which case the deterministic start property
can be simplified to:

∃𝑠𝑓 . ∀𝑠 .
run

(︁
reset (𝑠, 𝑖0) , 𝑖𝑛0

)︁
= 𝑠𝑓

For clarity, we use this simplified form of the deterministic
start property in the rest of this section.

5.4 Verification
To avoid explicitly constructing 𝑠𝑓 , which requires precisely
specifying all internal state of the SoC at the end of determin-
istic start, we can prove the following property that is equiv-
alent to deterministic start as specified above. We consider
that the SoC could be in two possible states, 𝑠 or 𝑠 ′, that could
differ arbitrarily. We show that executing the reset sequence
starting from either state makes them indistinguishable from
each other (converging to the state 𝑠𝑓).

∀𝑠, 𝑠 ′.
run

(︁
reset (𝑠, 𝑖0) , 𝑖𝑛0

)︁
= run

(︁
reset (𝑠 ′, 𝑖0) , 𝑖𝑛0

)︁
We verify the above property with a SMT solver by un-

rolling run, which effectively symbolically simulates the cir-
cuit for 𝑛 cycles, and checking for satisfiability of the nega-
tion of state equivalence (and automatically trying increasing
values of 𝑛). If the SMT solver proves that the negation is
unsatisfiable, then the above property holds, and determinis-
tic start is verified. Otherwise, the SMT solver finds that the
formula is satisfiable1, and it produces a concrete counterex-
ample: two states 𝑠 and 𝑠 ′ that do not converge to the same
CPU state after 𝑛 cycles.

With this formulation, we can adopt a workflow that lets
us interactively construct the initialization code (the contents
of the boot ROM) instruction-by-instruction. We start with
no initialization code, just nops encoded in the boot ROM,
and attempt to run the verifier. If it fails, the SMT solver gives
1Another possibility is that the SMT solver times out, and the result is
inconclusive. We treat this case like the solver has found a counterexample,
and we attempt to determine why the solver timed out.

a concrete counterexample, showing two states that differ
post-reset. From this, we determine one component of state
that was not provably cleared, add initialization code to reset
it (if necessary consulting the implementation of the relevant
SoC component for guidance), and repeat the process.

6 Hardware architecture
Physical privilege separation. Notary supports running
mutually distrustful agents, which requires some form of
privilege separation between the firmware and agent code
(e.g., to multiplex storage). Notary does not attempt to en-
force isolation between code running on the same CPU: it
does not use mechanisms such as hardware page tables or
user/kernel mode. Such hardware mechanisms are compli-
cated, so correctly programming them for privilege separa-
tion is an error-prone process; if the programmer forgets
to set one bit in a crucial register, isolation will be broken.
Even if the mechanism could be programmed correctly, CPUs
have a history of microarchitectural attacks such as Melt-
down [40] and Spectre [38], and systems have been shown
to be susceptible to other types of hardware-based attacks
like Rowhammer [59]. For this reason, Notary physically
separates trust domains onto SoCs with their own separate
CPU, memory, and peripherals.

Narrow interfaces. With code in different trust domains
running on physically separate CPUs, Notary needs some
mechanism for communication between trust domains, anal-
ogous to system calls in a traditional user/kernel co-resident
design. To avoid complex drivers for protocols such as USB or
Ethernet, inter-domain communication occurs using simple
universal asynchronous receiver/transmitter (UART) periph-
erals. For supporting transactional agents, a more complex,
higher-bandwidth interface is unnecessary.

Reset-based agent switching. Notary resets the SoCwhen
switching between agents, in order to implement the deter-
ministic start primitive. This approach ensures that every
agent starts execution with a clean state, limiting the ability
of a buggy or malicious agent to corrupt other agents. The
user can restart the kernel domain by pressing a physical
reset button. The kernel domain in turn resets the other do-
mains by asserting the reset wire. On reset, each domain
boots from a local ROM, which first completes the software-
assisted deterministic start sequence and then executes a
boot loader. The kernel domains loads the kernel from local
flash, while the other domains load data provided over the
UART connection to the kernel domain.

Display. Notary has a display controlled by agent software,
connected only to the agent domain. This display shows de-
scriptions of operations to the user for confirmation. The
display protects against a malicious computer sending cor-
rupt transactions to the device: if the user observes a bad

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

transaction on Notary’s display, the user should press “can-
cel” to reject signing the transaction.

Flash. Flash memory is attached to the kernel domain, stor-
ing the kernel code, the code for each installed agent, and
each agent’s saved state. Because only the kernel domain
can access the flash memory, the kernel can employ wear
leveling and other techniques to prolong the flash’s lifetime.
In contrast, Ledger exposes flash memory directly to agents,
permitting malicious code to cause corruption or physical
damage through repeated writes.

7 Software architecture
Notary splits software across the CPUs, with the goal of
allowing the user to execute a number of mutually distrustful
agent applications in a secure fashion.

Kernel domain. The most privileged domain runs the ker-
nel, which is responsible for launching agents and multiplex-
ing storage. Upon reset, the CPU starts running the kernel,
which resets lower-privilege domains. Like other hardware
wallets, the kernel maintains a master key that is used to
derive per-agent cryptographic keys based on the agent de-
veloper’s public key and the agent name. By deriving agent
keys from a common master key, the kernel simplifies the
backup problem, since it is sufficient to back up the master
key. The kernel also stores agents and their state in flash—
namely, for each agent, the kernel stores the agent code, as
well as mutable data for that agent, and an audit log.

Table 1 lists system calls exported by the kernel to the
agent code running on the agent domain. Unlike a traditional
user/kernel boundary, each system call must be sent to the
kernel domain through the UART connection. Only three
system calls are available to all agents (exit, exit_state, and
log), and these system calls do not return any response to
the agent code. This limits the ability of malicious agents to
learn any information by measuring the execution time of
system calls.
The two most sensitive system calls, launch and install,

are available only if the agent domain is running the built-in
launcher or installer agents, respectively. The kernel tracks
which agent is running at any given time (much like a tradi-
tional OS kernel tracks the current process), and uses that
to determine which syscalls it will allow via the UART. This
limits the risk of malicious or compromised agents taking
advantage of those system calls.
At all times, the kernel indicates (using the user/sys indi-

cator LED) whether the device is running system-supplied
software (the launcher or the agent installer) or third-party
agent software, so that agents can’t spoof system apps.

Agent domain. Themain logic of an agent runs on the agent
domain.When the kernel launches an agent, the kernel resets
the agent domain, which starts executing the boot loader
after the deterministic start sequence. The kernel then sends

Table 1. System calls supported by Notary’s kernel.

Syscall Apps Description

exit any Exit without saving state
exit_state any Exit and save state
log any Append app log entry
launch launcher Start user-selected agent
install installer Install user-selected agent

the agent’s code to the agent domain over the UART link,
together with the cryptographic key and the mutable data
for that agent. The boot loader receives all of this data, places
it into RAM, and executes the agent.

Since the display and input buttons are directly attached to
the agent domain, the agent code has a trusted I/O path to the
user for displaying information and confirming operations.
Notary assumes that the agent’s mutable state is small, so
the entire state is sent over to the agent domain at start time.
If an agent wants to modify its state, it sends the modified
state to the kernel on exit. Additionally, the kernel domain
maintains an append-only log for each agent; an agent can
add an entry to the log by sending a log system call to the
kernel domain at any time.
The agent domain is also used to run the agent launcher

(§7.2). When Notary is powered up (or reset), the kernel
domain uses the same protocol described above to start a
special launcher agent on the agent domain, whose job is to
display the set of installed agents, and to allow the user to
select which agent should execute. The choice is sent back
to the kernel domain, which then resets the agent domain
to execute the chosen agent. If the user wants to switch to a
different agent, they must restart the entire Notary device
to return to the agent launcher. Similarly, the agent domain
is used to run the agent installer (§7.3).

Communication domain. Notary allows the agent devel-
oper to isolate potentially buggy code in the agent to the
communication domain. For example, a developer might
implement a complex USB protocol on this domain, or error-
prone message parsing, so that bugs will be isolated from
the trusted agent code responsible for displaying and signing
transactions. The interaction for starting the necessary code
on the communication domain follows the same protocol as
the one used by the kernel domain to launch the agent code
on the agent domain. Each agent application bundles code
for the agent domain and the communication domain.

7.1 Initialization
On first use (and hard reset), Notary wipes all installed
applications and data and re-initializes the master key using
a hardware random number generator.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

Boot
Launcher Agent N

launch()

Display: "Reset
to continue"

exit()

exit_state()

Installer
install()Reset

Reset

Figure 3. Notary’s reset-based workflow.

7.2 Launching agents
Figure 3 shows the workflow for using Notary. Upon device
boot or reset, the system spawns the launcher application,
which is implemented as a system application that has the
authority to call the launch system call. After launching an
agent (or the installer), the only way to switch agents is to
restart the device.
When an agent is launched, the kernel supplies the code

to run on the agent domain and the communication domain,
and at the same time, injects the application-specific crypto-
graphic key as well as persistent data into the address space
for the application. With this design, agents do not require
system calls that read data: everything is provided at launch.

7.3 Installing new agents
The installer is implemented as an application that has special
privileges to call the install system call. Installing agents
when using a compromised computer is a challenge. The
Notary kernel must obtain executable code from an un-
trusted source, because it comes from the internet and goes
through the computer, and save it as an agent with a given
name. Having the agent have the wrong name would be dan-
gerous, as it would confuse the user and enable phishing
attacks, so we must protect against this. Running malicious
agents on the device is not an issue, however, as long as
the user is not confused into believing one agent is another:
Notary prevents agents from interacting in any way, so a
malicious agent cannot compromise others. Installing agents
is an infrequent process, so there is no requirement for the
installation process to be particularly streamlined. Notary
follows the same approach as existing hardware wallets for
this challenge:

Curation. Notary relies on a curator, similar to Ledger
Manager or Apple’s App Store, where reviewers examine
agents before accepting them to the store. While this doesn’t
prevent malicious agents, the reviewing phase can filter out
deceitfully named agents, preventing phishing attacks. For ex-
ample, reviewers may not accept an agent called “Ethereum”
unless the Ethereum Foundation submitted it. In this ap-
proach, all agents are digitally signed by the curator, with
signatures checked by the kernel prior to installation.

Out-of-band communication. Notary supports reliance
on out-of-band communication. For example, a bank could
provide their public key on a slip of paper, so that when
installing the agent, Notary verifies a signature on the agent
code and displays the public key for the user to confirm.

7.4 Upgrading the Notary kernel
To support upgrades of the kernel, Notary has a boot loader
in ROM that loads kernel code from flashmemory. During the
upgrade process, Notary receives new kernel code from the
computer over USB, checks the version number to prevent
downgrades, and checks a digital signature by the vendor
to confirm authenticity before writing new firmware to the
flash.

7.5 Device loss
Notary follows the same approach as existing hardware
wallets for handling device loss. The user backs up their
master key so it can be restored to a new device. All agents
that use keys derived from the master secret will have the
same key on the new device. Other agent state is backed up
in encrypted form, with a key derived from the master secret,
so it can be restored to a new device.

To prevent an adversary fromusing the lost device, Notary
requires the user to enter a PIN to access any functions, with
retry limits and hard reset after sufficiently many failures.
Standard tamper-resistance techniques ensure that an adver-
sary cannot physically bypass PIN retry limits.

8 Applications and agents
Notary allows us to make applications more secure, where
critical operations can be factored out and described to the
user for approval by an agent running on the Notary. The
agent running on the Notary maintains a private key that
never leaves the device, and it allows the user to attest to
operations through a signature with the private key that is
only performed if the user approves of the operation that is
displayed on the Notary screen.
This section examines two applications and discuss chal-

lenges in modifying the app and implementing the agent.

8.1 Bitcoin
A cryptocurrency is a natural fit for Notary because it al-
ready has a structurewhere critical operationsmust be signed
with a private key: no changes to the application are required.
The workflow for using a Bitcoin agent on Notary involves
creating transactions on the computer, which only has the
public key, and approving them on the device, which has the
private key, and therefore the ability to sign the transaction.
In practice, authenticating receive addresses may be challeng-
ing, requiring out-of-band communication if the computer is
compromised, but verifying transactions and amounts pro-
vides added security even without recipient verification.

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Server
library

Server

Message

Nonce
JS library
(WebUSB)

Browser

USB
stack

Approval
agent

Kernel
Message

Nonce

Log

Notary

Message

Nonce

Display message to user

Figure 4. Approval agent framework: server asks the user to approve an operation by sending a message describing the
operation through the browser to the approval agent on Notary, which displays it to the user. If the user approves, the
approval agent signs the message and logs it. The signed response (not shown) is returned to the server through the same path.

Like all Notary agents, the Bitcoin agent bundles binaries
for running on the agent and communication domains. The
agent domain code receives Bitcoin transactions over UART
from the communication domain, parses and displays them,
and signs the transaction if approved by the user. The commu-
nication domain code implements USB-related functionality
for compatibility with existing desktop wallet software, prox-
ying requests over UART; this code is outside the TCB of the
Bitcoin agent.

8.2 Approval Manager
Web applications can benefit from obtaining strong approval
for sensitive operations from a user’s Notary device. Exam-
ples of sensitive operations are sending money in a banking
system, deleting backups in a storage system, and updating
DNS records in a critical domain. Other operations in these
applications may be less sensitive and could be performed
without explicit approval from the Notary device.

To support this style of application, we developed a generic
Approval Manager for Notary, as shown in Figure 4. The Ap-
proval Manager framework consists of an agent that has a pri-
vate key (derived from the device master key), a JavaScript li-
brary for interacting with the approval agent viaWebUSB [9],
and a server-side library for checking approval messages for
sensitive operations, similar to the transaction authorization
extension of the Web Authentication API [8]. The Approval
Manager agent has code for displaying and signing opera-
tions, which runs on the agent domain, and code that imple-
ments WebUSB-related functionality and proxies requests
over UART, which runs on the communication domain.

When a user attempts to perform a sensitive operation in a
web app, the server sends code to the web browser to request
approval, together with a nonce. This code uses the client-
side JavaScript library to send the request to the approval
agent on the Notary. If the explicit approval flag is set, the
agent displays the ASCII string provided by the server to the
user; if the user approves, the agent signs the ASCII message,
together with the nonce and sends the signature back to the
JavaScript library, which relays it to the server. If the explicit
approval flag is not set, the agent signs the message without
asking the user. The server checks the signature with the
registered public key for the user.

The agent logs every signed message, appending the mes-
sage to the agent’s log stored in the kernel domain’s flash by
calling the log() system call before sending out the signature.
The log provides the rationale for “blindly” signing requests
that do not have the explicit approval flag set, without dis-
playing the request to the user: this increases convenience
for requests of medium importance but still provides a strong
audit log that allows for tracking down the effects of a com-
promise if one is discovered later.
Initial enrollment involves supplying the Approval Man-

ager’s public key to the server so it can be associated with a
user account. This step can either be done at account creation
or later, as is done with U2F enrollment. The computer must
be uncompromised at the time of enrollment.
We discuss two web applications that could benefit from

Notary to obtain strong approval for sensitive user-initiated
operations.

8.2.1 Banking
Many bank websites simply require the user to log in with a
username/password to make a transfer; a phishing site or a
keylogger can compromise the application. Some banks sup-
port 2-factor authentication, but malware on the computer
could still perform transfers after authentication succeeds.
A bank website can use the Approval Manager to im-

prove security by requiring all transactions be signed by
the Notary. If the transaction is for a small amount and
there haven’t been a large number of such small transactions
issued recently, the bank could ask for a non-explicit ap-
proval, which simply logs the approval in the user’s Notary.
For large-value transactions or many small transactions, the
bank can request explicit approval, which requires the user
to physically confirm the transaction on the device. The mes-
sage includes information about the transaction, such as the
recipient’s name and account number, and the amount be-
ing transferred, that the user can interpret on the Notary
screen.

8.2.2 DNS
Domain registrar websites are susceptible to the same kinds
of attacks that affect the bank application. In someways, DNS
is more important to protect with the Approval Manager,
because some DNS operations are difficult to undo, unlike

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

bank transfers. To secure DNS updates, a domain registrar
could require approval for all changes to DNS data. Similar
to the bank, this requires adapting the application to require
signatures on these operations. The message signed by the
approval agent contains a description of the operation, such
as “update the A record for example.com to 1.2.3.4.”

9 Security argument
Notary runs multiple agents on the same physical device,
but its design aims to ensure that for any agent 𝐴, running it
on the Notary should be as secure as running it on a separate
device. The security argument boils down to considering two
cases: when the Notary is running agent 𝐴, and when the
Notary is running other agents.

When the Notary is running agent 𝐴, the agent code was
started correctly (by assumption that the kernel, which sends
the initial agent code and state, is implemented correctly, and
by our verified deterministic start, which ensures the agent
SoC starts from a state that is not influenced by prior agent
executions), no other code is executing on the agent SoC, and
the agent SoC is directly wired to user I/O devices (display
and buttons). Furthermore, because agents are started only
by the launcher after explicit device reset by the user, the
user must have interacted with the launcher to choose agent
𝐴, and thus knows which agent they are interacting with.

When the Notary is running a different agent 𝐵, it has
no access to the secrets of agent 𝐴. In particular, the state
of the agent SoC is independent of any prior executions by
other agents (by deterministic start), and, by the assumption
that the kernel is correct, the kernel will not send the secrets
of agent 𝐴 when launching agent 𝐵. Any state on the com-
munication SoC should not reveal secrets of agent 𝐴, by the
assumption that the agent was implemented correctly and
did not send any secrets over the untrusted communication
link.

10 Implementation
We have built a hardware/software prototype of Notary.
The hardware uses three SoCs, two of which are STM32 mi-
crocontrollers with ARM Cortex-M4 processors (kernel and
communication domains), and one of which is a RISC-V SoC
based on the PicoRV32 CPU [72], instantiated on an FPGA
(agent domain). The SoCs are connected as described in §6.
All CPUs use UART peripherals for communication between
domains. The kernel domain uses persistent flash memory
and GPIO pins to drive the user/sys indicator LED and reset
wires; the agent domain uses an SPI peripheral to drive the
display and GPIO pins for the user input buttons; the commu-
nication domain uses a USB peripheral to communicate with
the host computer. Figure 5 shows pictures of the device.
The agent domain’s RISC-V SoC is formally verified to

satisfy the deterministic start property. For convenience, the
communication domain uses an ARM-based SoC that is not

Figure 5. The launcher (left), showing the currently se-
lected application. The Approval Manager (right), showing a
prompt to confirm a DNS domain deletion.

Table 2. Size of Notary’s system software implementation.

Component LOC

TCB

Kernel 870
Launcher 110
Installer 290
Boot loader 210
Drivers 2630

Total 4110

Untrusted Shared drivers 1310

verified. This does not impact the security of Notary, be-
cause the communication domain is outside the TCB of both
the kernel and agent code.

We implemented the Notary kernel and system software
(launcher and installer) in about 150 lines of ARM assembly,
100 lines of RISC-V assembly, and 5,500 lines of C/C++. Ta-
ble 2 describes the breakdown between different components
of the system and shows which components are inside the
TCB. Although there is a significant amount of driver code
in the TCB, much of it is not exposed to an adversary. The
only device that is directly exposed to potentially adversar-
ial input from third-party code is the UART (which accepts
input from the agent domain). The UART driver is simple: it
uses the simplest mode of operation (polling-based with no
buffers), containing 2 lines of initialization code, 3 lines of
read code, and 3 lines of write code.
Notary aims to provide the security of physically separate

hardware for separate agents with a single physical device.
As a part of this, we ensure that different agents appear as
different USB devices to the host computer. When Notary
switches agents, it briefly disconnects the pull-up resistor
on the D+ line, which appears as a USB disconnect to the
host machine. When the next agent runs, the host computer
re-enumerates the USB device.
There are some differences between the prototype imple-

mentation of Notary and the design of §6. For ease of devel-
opment, the ARM-based SoCs have flash memory rather than
a ROM for the boot loader. To prevent modification of flash
memory in the communication domain, the boot loader uses
a feature of the flash controller that locks up the controller

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

until reset, which prevents modification of flash (resetting
would return control to the trusted boot loader code).

Verifier. We used the SMT backend of the Yosys synthesis
framework [73] to flatten the Verilog RTL of the RISC-V
SoC into a single file with a model of the SoC state and
the step function. We implemented the verification strategy
described in §5 in 250 lines of Racket code on top of the
Rosette solver-aided programming library [65], which uses
the Z3 theorem prover [25]. The Verilog code, as well as
the contents of the boot ROM, are untrusted and verified to
satisfy the deterministic start property. The verification tools,
including the 250 lines of Racket code, as well as Rosette, Z3,
Racket, and Yosys, are part of the TCB.

11 Evaluation
To evaluate Notary, we answer the following questions:
• Does Notary’s design prevent vulnerabilities that have
affected hardware cryptocurrency wallets? (§11.1)

• Is it feasible to verify deterministic start? (§11.2)
• What applications fit the agent model? How easy is writing
agents and integrating Notary into applications? (§11.3)

• Is reset-based agent switching fast enough? (§11.4)
• Is Notary’s hardware cost reasonable? (§11.5)

11.1 Notary’s design prevents vulnerabilities
For the vulnerabilities discussed in §2.1, we analyze the pos-
sibility of similar bugs impacting Notary.

System call vulnerabilities. Existing secure device kernels
have had bugs in system calls that let agents read kernel
memory. Notary avoids the possibility of such problems:
there are only a handful of system calls, and none of them
read data (Table 1). One reason this design is possible is that
agents have direct access to hardware for user I/O, UARTs,
and (if our hardware had it) cryptographic acceleration, so
the kernel does not need to mediate access to these resources.
Another reason is that agents’ persistent state is moved im-
plicitly at launch and exit time, rather than explicitly via read
and write system calls.

Memory protection errors. Existing secure devices have
had bugs that cause memory protection hardware to be mis-
configured, allowing agents to read sensitive data. Notary
avoids the possibility of such bugs by not using memory pro-
tection hardware to isolate agents. Instead, it isolates with a
combination of physically separate domains and reset-based
switching, which is formally verified.

USB software bugs. Existing secure devices have had buffer
overflow bugs in USB interface software. Notary could suffer
from such bugs as well, but blunts their security impact by
placing the USB software in its own physical domain, so that
overflows or code injection cannot easily interact with the
main agent or kernel.

Table 3. Size of agent, desktop, and server software.

Application Component LOC

Bitcoin Agent 300
Desktop software —

Approval

Agent 150
JavaScript library 100
Bank 100
DNS manager 100

11.2 Deterministic start can be verified
To test the feasibility of verifying deterministic start, we
verified the RISC-V SoC of the agent domain (Figure 2). The
SoC’s CPU, the PicoRV32, is comparable to processors used in
existing hardware wallets, such as the Cortex-M0 in Ledger
wallets, which does not have a branch predictor or specu-
lation of any kind. Using our interactive approach, we de-
veloped initialization code that performs full deterministic
start of the processor and rest of the SoC, provably resetting
the CPU, RAM, and peripherals to a well-known state before
launching agents.
We first ran the verifier with no software reset code, re-

lying only on hardware reset: this revealed leftover archi-
tectural state, such as in general-purpose registers, microar-
chitectural state, such as in the instruction decoder, and pe-
ripheral state, such as in GPIO, that was not cleared by the
hardware reset. Next, we added initialization code to clear
general-purpose registers (which also indirectly cleared some
microarchitectural state such as the instruction decoder).
Running the verifier again revealed that the initialization
code successfully cleared architectural state, but there was
still microarchitectural state in the memory write machinery
that was not reset. To rectify this, we added code to issue
a dummy write to ROM. Next, we wrote code to clear pe-
ripheral state: this required a write to the memory-mapped
GPIO peripheral; UART and SPI were cleared by the initial
reset. Finally, we wrote code to clear contents of RAM. With
this final modification, the verifier could prove that our code
correctly implements deterministic start on our RISC-V SoC:
starting from any state, asserting the reset line for a single
cycle and then letting the CPU run for 180342 cycles (3.6 ms)
brings it to a deterministic starting state. Figure 6 shows the
final code for reset.

11.3 Notary agents are easy to develop
Notary is suitable for running agents that run on existing
hardware security devices, such as cryptocurrency wallets,
U2F, and OpenPGP. We implemented two agents for Notary:
a Bitcoin wallet and an Approval Manager. Table 3 shows the
size of components involved, including agents that run on
Notary (not including shared driver code), code that runs
on the untrusted computer, and code that run on the server.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

/* clear r e g i s t e r s and

* some m i c r o a r c h i t e c t u r a l CPU state */

li ra, 0

la sp, _stack_top // 0 x 2 0 0 0 0 8 0 0

li gp, 0

/* ... */

li t6, 0

/* clear state in

* m e m o r y write m a c h i n e r y */

sw zero , 0(zero)

/* clear gpio */

la t0, _gpio // 0 x 4 0 0 0 0 0 0 0

sw zero , 0(t0)

/* clear sram */

la t0, _sram_start // 0 x 2 0 0 0 0 0 0 0

la t1, _sram_end // 0 x 2 0 0 2 0 0 0 0

loop:

sw zero , 0x00(t0)

/* ... */

sw zero , 0x3c(t0)

addi t0, t0, 0x40

bne t0, t1, loop

/* done with d e t e r m i n i s t i c reset ,

* p r o c e e d to load code over UART */

Figure 6. Initialization code for verified software-assisted
deterministic start of the RISC-V SoC. The code contains 58
RISC-V assembly instructions and executes in 180342 cycles
(3.6 ms) on the PicoRV32, resetting all SoC state to a fixed
value starting from any initial state.

Bitcoin wallet. We implemented a Bitcoin hardware wallet
in 300 lines of code, not including the Bitcoin parsing/cryp-
tography library and shared driver code. Our implementation
works with existing desktop wallets like Electrum [1], requir-
ing no new code to be written for the computer.

Approval Manager. We implemented the Approval Man-
ager described in §8.2 in 150 lines of code. Integration into
existing websites required minimal code changes. We wrote
a JavaScript library on top of WebUSB for the Approval Man-
ager in 100 lines of code. Modifying a toy banking application
to require confirmation for transfers required changing less
than 100 lines of code. Modifying a web-based DNS man-
ager [18] required adding 100 lines of code, plus about 25
lines of code per form modified to require approval.

11.4 Reset-based agent switching is fast enough
Notary has a user interface similar to existing wallets, ex-
cept it implements strong isolation between agents with
reset-based agent switching. We measure the speed of reset-
based agent switching to assess the impact on usability of

Table 4. Latency of reset-based task switching.

Step Time (ms)

Reset & boot loader 7.4
Receiving program 127.0

Total 134.4

this “heavy-handed” approach to isolation. We measure, in
aggregate, the time to execute the following launch sequence:

1. Launcher sends selection to kernel
2. Kernel resets agent and communication SoCs
3. Agent and communication SoCs run deterministic start
4. Agent and communication SoCs run the boot loader
5. Kernel sends code to agent and communication SoCs
6. Execution starts on agent and communication SoCs
Table 4 shows the latency for reset-based task switching.

We measure end-to-end latency to be 134 ms in our proto-
type. Two steps consume the majority of this time. The reset
sequence and boot loader (steps 3–4) take 7.4 ms to execute.
Loading a 40KB agent over the relatively slow UART (step 5)
takes 127ms. The end-to-end latency is within the time scale
required to create the illusion of direct manipulation [46], so
switching is fast enough for interactive use.

11.5 Notary is competitive on cost
We estimate that the cost of a production version of Notary
will be comparable to existing hardware wallets, which cur-
rently retail for $50–$150. Notary has essentially the same
hardware, except it requires two extra SoCs that cost about
$4 each, increasing the cost by about $8.

12 Conclusion
Notary is a case study in designing for security. Notary
simplifies software (e.g., using reset-based agent switching)
and wastes resources (e.g., using physical separation) in or-
der to achieve strong isolation and defense in depth. This
separation and reset-based switching eliminates by design
classes of bugs that affect traditional user/kernel co-resident
designs, including OS bugs, microarchitectural side-channels,
and certain hardware bugs. Notary can improve the secu-
rity of applications where the crucial transaction decision
can be succinctly summarized and delegated to a strongly
isolated agent running on Notary. Source code for Notary
is available at https://github.com/anishathalye/notary.

Acknowledgments
Thanks to the anonymous reviewers and our shepherd, Haibo
Chen, for feedback that improved this paper. This research
was supported byNSF awards CNS-1413920 andCNS-1812522.
Anish Athalye is supported by an SOSP 2019 student schol-
arship from the National Science Foundation.

https://github.com/anishathalye/notary

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

References
[1] Electrum Bitcoin wallet. https://electrum.org/.
[2] KeepKey. https://shapeshift.io/keepkey/.
[3] Ledger hardware wallets. https://www.ledger.com/.
[4] Trezor. https://trezor.io/.
[5] Yubico. https://www.yubico.com/.
[6] Rapport de certification ANSSI-CSPN-2019/03. https://www.ssi.gouv.

fr/uploads/2019/02/anssi-cspn-2019_03fr.pdf, Feb. 2019.
[7] Ledger documentation hub. https://buildmedia.readthedocs.org/

media/pdf/ledger/latest/ledger.pdf, Feb. 2019.
[8] Web authentication: An API for accessing public key credentials. https:

//www.w3.org/TR/webauthn/, Mar. 2019.
[9] WebUSB API. https://wicg.github.io/webusb/, Apr. 2019.
[10] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication

and delegation with smart-cards. Science of Computer Programming,
21(2):93–113, 1993.

[11] ABN AMRO. E.dentifier2. https://www.abnamro.nl/en/mobile/images/

Generiek/PDFs/Overig/edentifier2_usermanual_english.pdf.
[12] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-

channel(s). In Proceedings of the 2002 IACR Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Redwood City, CA, Aug.
2002.

[13] Apple, Inc. iOS security. https://www.apple.com/business/site/docs/

iOS_Security_Guide.pdf, Nov. 2018.
[14] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A new
OS architecture for scalable multicore systems. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP), pages
29–44, Big Sky, MT, Oct. 2009.

[15] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), pages
49–65, Broomfield, CO, Oct. 2014.

[16] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas.
MI6: Secure enclaves in a speculative out-of-order processor. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Columbus, OH, Oct. 2019.

[17] E. Bugnion, S. Devine, andM. Rosenblum. DISCO: Running commodity
operating systems on scalable multiprocessors. In Proceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP), pages
143–156, Saint-Malo, France, Oct. 1997.

[18] J. Carr. NamedManager. https://github.com/jethrocarr/

namedmanager.
[19] CipherTrace. Cryptocurrency anti-money laundering report.

https://ciphertrace.com/wp-content/uploads/2018/10/crypto_aml_

report_2018q3.pdf, Oct. 2018.
[20] T. Claburn. Check your repos... crypto-coin-stealing code sneaks

into fairly popular NPM lib (2m downloads per week). https://www.
theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/, Nov. 2018.

[21] CoolStar. Electra. https://coolstar.org/electra/, Dec. 2018.
[22] V. Costan and S. Devadas. Intel SGX explained. Report 2016/086,

Cryptology ePrint Archive, Feb. 2016.
[23] C. Cutler, M. F. Kaashoek, and R. T. Morris. The benefits and costs of

writing a POSIX kernel in a high-level language. In Proceedings of the
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 89–105, Carlsbad, CA, Oct. 2018.

[24] E. Dauterman, H. Corrigan-Gibbs, D. Mazières, D. Boneh, and D. Rizzo.
True2f: Backdoor-resistant authentication tokens. In Proceedings of
the 40th IEEE Symposium on Security and Privacy, pages 743–761, San
Francisco, CA, May 2019.

[25] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings
of the 14th International Conference on Tools and Algorithms for the
Construction andAnalysis of Systems (TACAS), pages 337–340, Budapest,
Hungary, Mar.–Apr. 2008.

[26] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo:
Using verification to disentangle secure-enclave hardware from soft-
ware. In Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP), pages 287–305, Shanghai, China, Oct. 2017.

[27] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh. Verification
of a practical hardware security architecture through static informa-
tion flow analysis. In Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 555–568, Xi’an, China, Apr. 2017.

[28] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh. HyperFlow: A
processor architecture for nonmalleable, timing-safe information flow
security. In Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, Canada, Oct. 2018.

[29] M. Fleming. A thorough introduction to eBPF. https://lwn.net/Articles/
740157/, Dec. 2017.

[30] D. Genkin, A. Shamir, and E. Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Proceedings of the 34th Annual
International Cryptology Conference (CRYPTO), pages 444–461, Santa
Barbara, CA, Aug. 2014.

[31] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng,
H. Zhang, and Y. Guo. Deep specifications and certified abstraction
layers. In Proceedings of the 42nd ACM Symposium on Principles of
Programming Languages (POPL), pages 595–608, Mumbai, India, Jan.
2015.

[32] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent
OS kernels. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 653–669, Savannah,
GA, Nov. 2016.

[33] C. Guillemet. Firmware 1.4: deep dive into three vulnerabilities which
have been fixed. https://www.ledger.com/2018/03/20/firmware-1-4-

deep-dive-security-fixes/, Mar. 2018.
[34] A. Gundu, G. Sreekumar, A. Shafiee, S. H. Pugsley, H. Jain, R. Balasub-

ramonian, and M. Tiwari. Memory bandwidth reservation in the cloud
to avoid information leakage in the memory controller. In Proceedings
of the 3rd Workshop on Hardware and Architectural Support for Security
and Privacy (HASP), pages 11:1–11:5, Minneapolis, MN, June 2014.

[35] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad Apps: End-to-end security via automated full-
system verification. In Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 165–181,
Broomfield, CO, Oct. 2014.

[36] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, M. Norrish, R. Kolanski, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS ker-
nel. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 207–220, Big Sky, MT, Oct. 2009.

[37] G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser.
Formally verified software in the real world. Communications of the
ACM, 61(10):68–77, Oct. 2018.

[38] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre
attacks: Exploiting speculative execution. In Proceedings of the 40th
IEEE Symposium on Security and Privacy, pages 19–37, San Francisco,
CA, May 2019.

[39] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and
P. Levis. Multiprogramming a 64kB computer safely and efficiently. In
Proceedings of the 26th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 234–251, Shanghai, China, Oct. 2017.

https://electrum.org/
https://shapeshift.io/keepkey/
https://www.ledger.com/
https://trezor.io/
https://www.yubico.com/
https://www.ssi.gouv.fr/uploads/2019/02/anssi-cspn-2019_03fr.pdf
https://www.ssi.gouv.fr/uploads/2019/02/anssi-cspn-2019_03fr.pdf
https://buildmedia.readthedocs.org/media/pdf/ledger/latest/ledger.pdf
https://buildmedia.readthedocs.org/media/pdf/ledger/latest/ledger.pdf
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://wicg.github.io/webusb/
https://www.abnamro.nl/en/mobile/images/Generiek/PDFs/Overig/edentifier2_usermanual_english.pdf
https://www.abnamro.nl/en/mobile/images/Generiek/PDFs/Overig/edentifier2_usermanual_english.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://github.com/jethrocarr/namedmanager
https://github.com/jethrocarr/namedmanager
https://ciphertrace.com/wp-content/uploads/2018/10/crypto_aml_report_2018q3.pdf
https://ciphertrace.com/wp-content/uploads/2018/10/crypto_aml_report_2018q3.pdf
https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
https://coolstar.org/electra/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes/
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes/

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, N. Zeldovich

[40] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down: Reading kernel memory from user space. In Proceedings of the
27th USENIX Security Symposium, pages 973–990, Baltimore, MD, Aug.
2018.

[41] F. Liu, Q. Ge, Y. Yarom, F. McKeen, C. V. Rozas, G. Heiser, and R. B.
Lee. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In Proceedings of the 22nd IEEE International Symposium
On High Performance Computer Architecture (HPCA), pages 406–418,
Barcelona, Spain, Mar. 2016.

[42] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang,
C. Caşcaval, N. McKeown, and N. Foster. p4v: Practical verification for
programmable data planes. In Proceedings of the 2018 ACM SIGCOMM
Conference, Budapest, Hungary, Aug. 2018.

[43] L. Martignoni, P. Poosankam,M. Zaharia, J. Han, S. McCamant, D. Song,
V. Paxson, A. Perrig, S. Shenker, and I. Stoica. Cloud terminal: Secure
access to sensitive applications from untrusted systems. In Proceedings
of the 2012 USENIX Annual Technical Conference, Boston, MA, June
2012.

[44] R. Mayer-Sommer. Smartly analyzing the simplicity and the power of
simple power analysis on smartcards. In Proceedings of the 2000 IACR
Workshop on Cryptographic Hardware and Embedded Systems (CHES),
pages 78–92, Worcester, MA, Aug. 2000.

[45] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker:
An execution infrastructure for TCB minimization. In Proceedings of
the 3rd ACM EuroSys Conference, pages 315–328, Glasgow, Scotland,
Apr. 2008.

[46] R. B. Miller. Response time in man-computer conversational transac-
tions. In Proceedings of the AFIPS 1968 Fall Joint Computer Conference,
pages 267–277, San Francisco, CA, Dec. 1968.

[47] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Tor-
lak, and X. Wang. Hyperkernel: Push-button verification of an OS
kernel. In Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP), pages 252–269, Shanghai, China, Oct. 2017.

[48] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer. Varys:
Protecting SGX enclaves from practical side-channel attacks. In Pro-
ceedings of the 2018 USENIX Annual Technical Conference, pages 227–
240, Boston, MA, July 2018.

[49] Pangu Team. Pangu jailbreak. http://en.pangu.io/, July 2016.
[50] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The operating system is the con-
trol plane. In Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 1–16, Broomfield,
CO, Oct. 2014.

[51] A. Rahmati, M. Salajegheh, D. E. Holcomb, J. Sorber, W. P. Burleson,
and K. Fu. TARDIS: Time and remanence decay in SRAM to implement
secure protocols on embedded devices without clocks. In Proceedings
of the 21st USENIX Security Symposium, pages 221–236, Bellevue, WA,
Aug. 2012.

[52] Riscure Team. Hacking the ultra-secure hardware cryptowal-
let. https://www.riscure.com/blog/hacking-ultra-secure-hardware-

cryptowallet/, Aug. 2018.
[53] RSA Security. RSA SecurID hardware tokens. https://www.rsa.com/

content/dam/en/data-sheet/rsa-securid-hardware-tokens.pdf, Oct.
2015.

[54] J. Rutkowska and R. Wojtczuk. Qubes OS architecture.
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-

spec-0.3.pdf, Jan. 2010.
[55] J. H. Saltzer and M. D. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278–1308, Sept. 1975.
[56] SatoshiLabs. Details about the security updates in Trezor One firmware

1.6.2. https://blog.trezor.io/details-about-the-security-updates-in-

trezor-one-firmware-1-6-2-a3b25b668e98, June 2018.

[57] SatoshiLabs. Trezor one: Firmware update 1.6.3. https://blog.trezor.io/
trezor-one-firmware-update-1-6-3-73894c0506d, Aug. 2018.

[58] SatoshiLabs. Details about the security updates in Trezor One firmware
1.7.2. https://blog.trezor.io/details-about-the-security-updates-in-

trezor-one-firmware-1-7-2-3c97adbf121e, Dec. 2018.
[59] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to

gain kernel privileges. https://googleprojectzero.blogspot.com/2015/

03/exploiting-dram-rowhammer-bug-to-gain.html, Mar. 2015.
[60] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak,

and X. Wang. Nickel: A framework for design and verification of
information flow control systems. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 287–306, Carlsbad, CA, Oct. 2018.

[61] L. Soares and M. Stumm. FlexSC: Flexible system call scheduling
with exception-less system calls. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

[62] S. Srinivas, D. Balfanz, E. Tiffany, and A. Czeskis. Universal 2nd Fac-
tor (U2F) overview. https://fidoalliance.org/specs/fido-u2f-v1.1-id-

20160915/fido-u2f-overview-v1.1-id-20160915.pdf, Sept. 2016.
[63] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and N. Sarda.

CleanOS: Limiting mobile data exposure with idle eviction. In Proceed-
ings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 77–91, Hollywood, CA, Oct. 2012.

[64] A. Thomas and J. Segura. Electrum Bitcoin wallets under
siege. https://blog.malwarebytes.com/cybercrime/2019/04/electrum-

bitcoin-wallets-under-siege/, Apr. 2019.
[65] E. Torlak and R. Bodik. A lightweight symbolic virtual machine for

solver-aided host languages. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 530–541, Edinburgh, United Kingdom, June 2014.

[66] Trusted Computing Group. Trusted Platform Module. https://www.
trustedcomputinggroup.org/groups/tpm/.

[67] V. Varadarajan, T. Ristenpart, and M. M. Swift. Scheduler-based de-
fenses against cross-VM side-channels. In Proceedings of the 23rd
USENIX Security Symposium, pages 687–702, San Diego, CA, Aug. 2014.

[68] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig. Lockdown:
Towards a safe and practical architecture for security applications on
commodity platforms. In Proceedings of the 5th International Conference
on Trust and Trustworthy Computing (TRUST), pages 34–54, Vienna,
Austria, June 2012.

[69] Y. Wang and G. E. Suh. Efficient timing channel protection for on-chip
networks. In Proceedings of the 6th IEEE/ACM International Symposium
on Networks-on-Chip (NoCS), pages 142–151, Copenhagen, Denmark,
May 2012.

[70] A. Waterman and K. Asanovic. The RISC-V instruction set manual,
volume II: Privileged architecture. https://riscv.org/specifications/

privileged-isa/, June 2019.
[71] D. Wentzlaff, C. J. Jackson, P. Griffin, and A. Agarwal. Configurable

fine-grain protection for multicore processor virtualization. In Pro-
ceedings of the 39th Annual International Symposium on Computer
Architecture (ISCA), pages 464–475, Portland, OR, June 2012.

[72] C. Wolf. PicoRV32 – a size-optimized RISC-V CPU. https://github.com/

cliffordwolf/picorv32, 2019.
[73] C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/,

2019.
[74] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,

N. Narula, and N. Fullagar. Native Client: A sandbox for portable,
untrusted x86 native code. In Proceedings of the 30th IEEE Symposium
on Security and Privacy, Oakland, CA, May 2009.

[75] Y. Zhang and M. K. Reiter. Düppel: retrofitting commodity operating
systems to mitigate cache side channels in the cloud. In Proceedings
of the 20th ACM Conference on Computer and Communications Secu-
rity (CCS), pages 827–838, Berlin, Germany, Nov. 2013.

http://en.pangu.io/
https://www.riscure.com/blog/hacking-ultra-secure-hardware-cryptowallet/
https://www.riscure.com/blog/hacking-ultra-secure-hardware-cryptowallet/
https://www.rsa.com/content/dam/en/data-sheet/rsa-securid-hardware-tokens.pdf
https://www.rsa.com/content/dam/en/data-sheet/rsa-securid-hardware-tokens.pdf
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://blog.trezor.io/details-about-the-security-updates-in-trezor-one-firmware-1-6-2-a3b25b668e98
https://blog.trezor.io/details-about-the-security-updates-in-trezor-one-firmware-1-6-2-a3b25b668e98
https://blog.trezor.io/trezor-one-firmware-update-1-6-3-73894c0506d
https://blog.trezor.io/trezor-one-firmware-update-1-6-3-73894c0506d
https://blog.trezor.io/details-about-the-security-updates-in-trezor-one-firmware-1-7-2-3c97adbf121e
https://blog.trezor.io/details-about-the-security-updates-in-trezor-one-firmware-1-7-2-3c97adbf121e
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://blog.malwarebytes.com/cybercrime/2019/04/electrum-bitcoin-wallets-under-siege/
https://blog.malwarebytes.com/cybercrime/2019/04/electrum-bitcoin-wallets-under-siege/
https://www.trustedcomputinggroup.org/groups/tpm/
https://www.trustedcomputinggroup.org/groups/tpm/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
http://www.clifford.at/yosys/

Notary: A Device for Secure Transaction Approval SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

[76] Y. Zhou and D. Feng. Side-channel attacks: Ten years after its pub-
lication and the impacts on cryptographic module security testing.
Cryptology ePrint Archive, Report 2005/388, Oct. 2005.

[77] Z. Zhou, V. D. Gligor, J. Newsome, and J. M.McCune. Building verifiable
trusted path on commodity x86 computers. In Proceedings of the 23rd
IEEE Symposium on Security and Privacy, pages 616–630, Oakland, CA,
May 2002.

[78] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with giants: Wimpy kernels
for on-demand isolated I/O. In Proceedings of the 25th IEEE Symposium
on Security and Privacy, pages 308–323, Oakland, CA, May 2004.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Hardware wallets
	2.2 Security devices
	2.3 Strong isolation

	3 Threat model and security goal
	4 Overview
	5 Deterministic start
	5.1 Challenge
	5.2 Software-assisted deterministic start
	5.3 Formalization
	5.4 Verification

	6 Hardware architecture
	7 Software architecture
	7.1 Initialization
	7.2 Launching agents
	7.3 Installing new agents
	7.4 Upgrading the Notary kernel
	7.5 Device loss

	8 Applications and agents
	8.1 Bitcoin
	8.2 Approval Manager

	9 Security argument
	10 Implementation
	11 Evaluation
	11.1 Notary's design prevents vulnerabilities
	11.2 Deterministic start can be verified
	11.3 Notary agents are easy to develop
	11.4 Reset-based agent switching is fast enough
	11.5 Notary is competitive on cost

	12 Conclusion
	Acknowledgments
	References

