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Abstract—In this paper, the problem of minimizing energy
consumption for task computation and transmission in a cellular
network with mobile edge computing (MEC) capabilities is studied.
In the considered network, each user needs to process a computa-
tional task at each time slot. A part of the task can be transmitted
to a base station (BS) that can use its powerful computational
ability to process the tasks offloaded from its users. Since the data
size of each user’s computational task varies over time, the BSs
must dynamically adjust the resource allocation scheme to meet
the users’ needs. This problem is posed as an optimization problem
whose goal is to minimize the energy consumption for task comput-
ing and transmission via adjusting user association scheme as well
as their task and power allocation scheme. To solve this problem,
a support vector machine (SVM)-based federated learning (FL)
is proposed to determine the user association proactively. Given
the user association, the BS can collect the information related to
the computational tasks of its associated users using which, the
transmit power and task allocation of each user will be optimized
and the energy consumption of each user is also minimized. The
proposed SVM-based FL. method enables the BS and users to
cooperatively build a global SVM model that can determine all
users’ association without any transmission of users’ historical
association and computational task offloading. Simulations using
real data on city cellular traffic from the OMNILab at Shanghai
Jiao Tong University show that the proposed algorithm can reduce
the users’ energy consumption by up to 20.1% compared to the
conventional centralized SVM method.

Index Terms—Task computing, user association, support vector
machine based federated learning.

I. INTRODUCTION

Emerging applications such as virtual reality and interactive
online games require large computational capability. Nonethe-
less, mobile devices may not be able to perform these novel
applications due to the limited computational capability [1].
One promising method is to deploy computational resources
at the wireless base stations (BSs) for processing computa-
tional tasks offloaded from mobile devices hence improving
the computational capability of mobile devices [2]. However,
deploying computational resources over cellular networks faces
many challenges such as high computing latency, cooperative
edge computing, and computational resource allocation.

A number of existing works studied important problems
related to task offloading and computational resource opti-
mization such as in [3]-[6]. The authors in [3] developed a
centralized sorting approach to maximize the number of users
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served by a cloud while guaranteeing a target task processing
delay. In [4], the authors developed a task offloading scheme to
minimize the energy consumption. The workers in [5] proposed
a binary computation offloading scheme to maximize the sum
computation rate of all users. In [6], the authors studied a multi-
user task offloading problem. However, the existing works in
[3]-[6] do not consider a scenario in which each user requests
computational tasks that can be of different data size. As the
data size of the requested computational task varies, each BS
must dynamically adjust its user association as well as task
and power allocation to minimize users’ energy consumption.
Moveover, traditional methods such as convex optimization
require, as input, the information related to the data size of
the computational task to optimize the user association as well
as task and power allocation. Since each computational task is
offloaded from a user, the BSs cannot collect the information
related to the computational tasks before the user association
is determined. In consequence, without the information of the
computational task, traditional optimization methods cannot be
used for optimizing the user association as well as task and pow-
er allocation. One promising solution is to use machine learning
algorithms [7] for the predictions of optimal user association.
In particular, machine learning algorithms can train a learning
model to find a relationship between the future optimal user
association and the computational task that each user processes
at current slot. Based on the predicted optimal user association,
the BS can collect the data size of the computational task
requested by its associated users and thus optimizing task and
power allocation for the users.

The main contribution of this paper is a novel framework to
dynamically minimize energy consumption for wireless users
that request computational tasks that can be of different data
size over time. We consider a cellular network with mobile
edge computing (MEC) capabilities, in which the BSs must
determine the optimal user association as well as task and
power allocation so as to provide computational service to users.
This joint user association as well as task and power allocation
problem is formulated as an optimization problem whose goal
is to minimize the energy consumption for task computation
and transmission. To solve this optimization problem, a support
vector machine (SVM)-based federated learning (FL) [8] [9]
is proposed to determine the user association proactively. The
proposed SVM-based FL algorithm allows the BS and users to
cooperatively train a global SVM model that can predict the
optimal user association without any transmission of historical
user association results and the data size of the task requested
by each user at different time slots. Given the predicted user



association, the optimization problem of task and transmit pow-
er allocation can be simplified and solved by using a gradient
descent algorithm. Simulations using real data on city cellular
traffic from the OMNILab at Shanghai Jiao Tong University
show that the proposed algorithm can reduce the users’ energy
consumption by up to 20.1% compared to the conventional
centralized SVM method. To the best of our knowledge, this
is the first work that studies the use of support vector machine
(SVM)-based FL to dynamically determine user association so
as to minimize the energy consumption under a delay constraint
for task processing.

The rest of this paper is organized as follows. The system
model and the problem formulation are described in Section II.
Then, Section III discusses the proposed learning framework.
In Section IV, numerical results are presented and discussed.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network that consists of a set A of N BSs
serving a set M of M users over both uplink and downlink. In
this model, the users are associated with the BSs via wireless
cellular links and each BS is equipped with computational
resources to provide communication and computation services
to the users. In the network, the uplink is used to transmit
the computational task that each user offloads to the BS while
the downlink is used to transmit the computing result of the
offloaded task. We assume that the size of the data that user m
needs to process at time slot ¢ is z,, ; and user m can transmit
a fraction of the data to its associated BS for data processing.

A. Transmission Model
Let B be the total bandwidth of BS n, which is assumed to
be equal for all BSs. We assume that each BS will allocate its

bandwidth equally among its associated users. In the downlink,
the rate of data transmission from BS n to user m is given by:
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where u = [uf,,...,u}; ] with up, , = 1 indicating that user
m connects to BS n at time slot ¢, otherwise, we have uﬁ%t =0.
Thus, |uf| is the module of u}', which represents the number
of users that need to transmit data to BS n at time slot t. Py is
the transmit power of each BS n, which is assumed to be equal
for all BSs. h,,, = gmnd;{; is the channel gain between user
m and BS n where g,,, is a Rayleigh fading parameter, d,,,
is the distance between user m and BS n, and § is the path
loss exponent. 0% represents the variance of the additive white
Gaussian noise. For uplink, we assume that all users occupy
the same channel with bandwidth BY. Then, the rate of data
transmission from user m to BS n at time slot ¢ is given by:
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where p,, ; is the transmit power of user m at time slot ¢.
Based on (1) and (2), the downlink and uplink transmission
delay between user m and BS n can be given by:
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where B, t2m,: is the fraction of the data that user m transmits
to BS n for data processing at time slot ¢ with /3, ; being a
variable that determines the size of the data that each user m
needs to transmit to the BS.
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B. Computing Model

Given the data size [, 2m ., the time used by BS n to
process the task offloaded from user m can be given by:

WB B t2m
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where fB is the frequency of the central processing unit (CPU)
clock of each BS n, which is assumed to be equal for all of
the BSs. w® represents the number of CPU cycles required for
computing data (per bit). We also assume that the BSs have
enough computational resources to process the data transmitted
from their associated users. Similarly, the computing time that
user m uses to process the size of data (1 — S, ¢) Zm,¢ locally

will be: U
CcU _ Wy (1 - ﬁm,t) Zm,t
lmn,t (ﬁm,t) - fU )

where fY is the frequency of the CPU clock of user m and wY,
is the number of CPU cycles required for computing the data
(per bit) of user m.

(6)

C. Energy Consumption Model

In our model, the energy consumption of each user consists of
three components: a) Device operation energy consumption, b)
Data transmission energy consumption, and c) Data computing
energy consumption. The energy consumption of user m at time
slot ¢ can be given by [10]:
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where O,, is the energy needed for device operation and ¢ is
the energy consumption coefficient depending on the chip of
. 2 .
user m’s device. In (7), < (f3)" (1 = Bm,t) Zme is the energy
consumption of user m used for computing the size of data
(1 — Bmt) Zme at its own device and p,,lY . , (B )
m,t) Zm,t Pmblmn,t (Pm,t, Pm,t
represents the energy consumption of data transmission from
user m to BS n.

D. Problem Formulation

Having defined the system model, next, we formulate an
optimization problem whose goal is to minimize the energy
consumption of each user while satisfying the task processing
delay requirement. Since the BSs can have continuous power
supply, we do not consider the energy consumption of the BSs
in our optimization problem. The minimization problem of the
energy consumption for all users involves determining the BS
that each user associates with, the size of the data that must be
transmitted to the BS, and the uplink transmit power of each
user for data transmission, which is given by:

M
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5.t.0< B <1, VYVmeM, (8a)

0 < pm,t < Pma)u Vm S Ma (Sb)

max {15, +15, +IE, 159} <7, VmeM, neN,
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where v is the delay requirement of user m, which is as-

sumed to be equal for all users. B, = [B14,---,0Mm.1)
U

— Tl N _ D
Ut = [ut7"'7ut }, and Pt = [p17t7"'7pM,t]‘ lmn,t7 lmn,t’
ISB ., and (SY, , are simplified notations for 12 , (B¢, ul),

l%n,t (Bm,ts Pmt) lCmBn,t (Bm,t), and lg’gz,t (Bm.¢)- (8a) indi-
cates that the data requested by each user can be cooperatively
processed by both BSs and users. (8b) is a constraint on the
maximum transmit power of each user m. (8c) is the delay
requirement of user m. As the data size of the requested
computational task varies, the BSs must dynamically adjust
each user’s association as well as task and power allocation
to minimize each user’s energy consumption. The problem
in (8) is challenging to solve by conventional optimization
algorithms since they require the information related to the
users’ computational task requests, which cannot be obtained
before the user association is determined. Hence, we need a
machine learning approach that can predict the user association.
Based on the predicted optimal user association, the BS can
collect the data size of the computational task requested by its
associated users and hence, optimize task and power allocation
for the users. User association can be considered as a binary
classification problem and SVM methods are good at solving
such problems, and, hence, we propose an SVM-based machine
learning approach for predicting user association. However,
centralized SVM methods require each user to transmit its
historical user association and computational task requests to
a central controller for training, which results in unnecessary
network traffic and high energy consumption. Thus, we propose
an SVM-based FL algorithm to determine the user association
proactively so as to minimize the energy consumption. The
proposed algorithm enables each user to use its local dataset
to collaboratively train a global SVM model that can determine
user association for all users while keeping the training data
locally. Based on the proactive user association, the optimization
problem in (8) can be simplified and solved by a gradient
descent algorithm.

III. MACHINE LEARNING FOR MINIMIZING THE ENERGY
CONSUMPTION

In this section, an SVM-based FL algorithm is proposed for
proactively determining the user association. Then, given the
user association, we introduce a gradient descent algorithm to
optimize task allocation and transmit power of each user so as
to solve problem (8).

A. SVM-based FL for User Association

We propose an SVM-based FL algorithm for determining
users’ future association as shown in Fig. 1. In the proposed
algorithm, the local SVM model trained at each user is used to
build a relationship between each user’s association and the data
size of the task that the user must process at current time slot.
Then, the BS generates a covariance matrix that can measure
the difference among the local SVM models hence improving
the local SVM model of each user. After that, each user
obtains a global SVM model that can predict the optimal user

BS n generates a covariance
matrix Qn randomly and transmits
it to the users.

User m updates the local SVM model
(m,n based on its collected data Xm
and the covariance matrix Qn.

v

BSn
transmits
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covariance
matrix Qn
to the
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BS 7 collects the local SVM model

@m,n and updates the covariance
matrix Qn.
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User m determines the its
association with BS # based on the

global SVM model @m,n.

Fig. 1. The learning procedure of the SVM-based FL algorithm.

association. In this section, we first introduce the components of
the SVM-based FL. Then, the training method of SVM-based
FL algorithm is presented.

1) Components of the SVM-based FL: An SVM-based FL
algorithm consists of five components: a) agents, b) user input,
c) user output, d) BS input, and e) BS output, which are defined
as follows:

o Agents: The agents in our system are the users and the
BSs. An SVM-based FL algorithm is used to determine
its optimal association with one of the BSs. For example,
SVM algorithm n is used to determine the user association
with BS n. However, it cannot be used to determine
user association with other BSs. To determine the user
association with N BSs individually, each user needs to
perform N SVM-based FL algorithms. Due to the same
components of each SVM-based algorithm, we only intro-
duce the components of one SVM-based FL algorithm.

e User Input: The user input of the SVM-based FL algo-
rithm is a matrix £2,, and local data samples X,, where
02, € RMM received from BS n is used to capture the
relationships among the users’ local SVM models and X,
includes historical user association as well as the data
size of the task requested by each user at different time
slots. Here, X, = {(@m,1,U,1)s- - (T, K, Uny, 1, )}
with K,, being the number of the data samples of user
m and for each data sample (wm,km ,u%km), Tk, =
[x%km,x%km,zm’km,y]T with m%km and x%ykm being
the location of user m at current time slot.

o User Output: The output of training local SVM model is
a vector wy, , that represents the parameters related to
the local SVM model and determines user m’s association
with BS n.

e BS Input: The SVM-based FL algorithm for BS n takes a
matrix W,, = [w1,n,..., W] as input, where w,, ,, is
received from user m.

e BS Output: The output of the proposed algorithm for BS
n is a structure matrix §2,, that is used to measure the



difference among the local SVM models of the users so
as to generate the global SVM model hence enabling each
user to accurately determine its association with BS n.

2) Training of SVM-based FL: The aim of training the SVM-
based FL algorithm is to construct a global SVM model that can
accurately determine all users’ association with BS n, which is
done in a way to solve [11]:

M K,
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where L o (Win,n ) @1 b, Uy, k) = (U e, = (Wi, ) T e, )?
is the loss functions that measures a squared error between
the predict user ass0c1at10n and the optimal user association.
R(W,,82,) =X\ ||VVn||F + Aotr(W,(£2,) "1 (W,,)T) with
)\1,/\2 > 0 is used to build a global SVM model where
[|W,, || 7 penalizes the complexity of W, to simplify the trained
local SVM models and tr(W,(£2,)"1(W,)T captures the
relationships among local SVM models. In (9a), £2,, = 0 implies
that matrix §2,, is positive semidefinite.

To solve the optimization problem in (9), we observe the
following: a) Given {2,,, updating W,, depends on the data pair
(@K Upy, 1., ) Which is recorded by the distributed users and
b) Given W,,, optimizing £2,, only depends on W,, and neither
on data &y, j,, DO Uy, .

Based on these observatlons, it is natural to divide the training
process of the proposed algorithm into two stages: a) A local
SVM model training stage in which each user updates W, using
its local collected data and b) A global SVM model training
stage in which BS n updates £2,, using its received local SVM
models W,,. Next, we introduce the two stages of the training
process.

e Local SVM Model Training Stage (at users): For the local
SVM model training stage, users update W,, cooperatively
based on the local dataset X,,, and §2,, that is received
from BS n. Given §2,,, the optimization problem in (9)
can be rewritten as:

H‘/‘lfin Z {Zm,n((wm,n)Txm,kmyu:Lmkm) +R(Wn|nn) }7

" k=1
(10)

We calculate the gradients of (10) with respect to W, and
obtain [12]'

W E Lm km m
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where I,,, € RM*M jg an identity matrix and e,, is col-
umn m of I,,. Here, column m of W, is the output of
the local SVM model of user m. Thus, for each user m,
the update process of vector w,, , is given by:

K,
Wy n= § Tm,k,,

km=1

o Global SVM model training stage (at a BS): For global
SVM model training stage, BS n first collects wy,
from each user m, and, hence, BS n will have W,, =

Qn()\lnn+)\21m)_le7r1,~ (12)

[W1m, ..., W] Based on W, BS n calculates a struc-
ture matrix §2,, to measure the difference of the local SVM
models among users to build a global SVM model that can
analyze the relationship between user association and the
data size of the task that each user needs to process so
as to determine user association. Given W,,, (9) can be
rewritten as:

r%intr(Wn(Qn)fl(Wn)T)v (13)
st 2,50, (13a)
r(62,) = 1 (13b)

From (13), we can see that compared to the standard FL
algorithms [13] that directly average the learning param-
eters W, the proposed FL algorithm uses a matrix 2,
to find the relationship among all users’ association and,
hence, improving the FL prediction performance. Given
(13) and (13b), we have:

(W (2,) (W) D) =t (Wi (2,) 7 (W) ) tr(£2,)
>(6r( 82, (W) W) 2 (42,) % f
—(tr (W) " W) 32,
(14)
where the inequality holds because of the Cauchy-Schwarz
inequality for the Frobenius norm. Given (14), we have:
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At each learning step, user m will update its local SVM
model based on X,,, and BS n will update £2,, based on
W,. As the proposed algorithm converges, we can find
the optimal W, and £2,, to solve problem (9). The entire
process of training the proposed SVM-based FL algorithm
is shown in Algorithm 1. Note that, in our model, the
energy consumption for training the SVM-based FL model
is negligible [14]. This is because the proposed learning
model can be used to predict the optimal user association
in a sustainable period once the machine learning model
completes the training process.

B. Optimization of Task Allocation and Power

Based on the FL model, each user will determine its user
association, and hence, U; can be determined. Given Uy, the
optimization problem in (9) can be simplified as:

m, m,tl»s m 16
értl};z::e + (Bt Pimt) (16)
5.t.0< B <1, VmeM, (16a)

0 < Pm,t < Pmax, VYm € M7 (l6b)

max {15, ;+15, IS8, 150} <7, VmeM,neN.

' (16¢)

To solve the optimization problem in (16), we first capture
the relationship between (3, + and p,, ; to simplify the problem
in (16). Then we solve (16) using a gradient descent algorithm.
The delay requirement of user m in (16c) can be rewritten

as:
mnt(ﬁm t)‘f'lmnt(ﬁm t) Pm, t)+lmnt(6m 1) <7v, (A7)
mnt(ﬁm t) X (18)

Note that the energy consumptlon for data transmission,
Pl ¢ (Bm.t:Pm.¢) in (7) is a monotonically increasing func-
tion of p,,:. Hence, to minimize the energy consumption for



Algorithm 1 Support Vector Machine-Based Federated Learn-
ing Framework

1: Input: Data X,, from m = 1,--- | M users, stored on one of M users.

2: Initialize: £2,, is initially generated randomly via a uniform distribution.

3: for iterations ¢ = 0,1,--- do

4. form € {1,2,---, M} in parallel over M users do

5: For each user, calculating and returning wy,,» based on local dataset
and £2,, in (12).

6 Send updates wy,,» to BS n.

7 end for

8: BS n collects W, from M users.

9

0

1

Update £2,, centrally based on W), in (15).
: end for

: Output: Wy, := [W1,n, Wa,n, -, WaL,n]-

data transmission, user m must minimize the transmit power
Dm,t» Which leads to a decrease in the transmission rate and
an increase in the transmission delay l}ﬂmyt (Bm.t pm,7t). Hence,
(18) holds the equality as e, ; (pm,¢) is minimized. (18) can be
rewritten as:

ﬂm,tzm,t Bm,tzm,t wBﬁm,tzm,t_
D U B =7 (19)
cmn,t Cmn,t (p’rmt) -f

Substituting (3), (4), and (5) into (19), the relationship
between f3,, + and p, ; is given by:
’Y/Zm,t
Bm,t (pm,t) = 1 B *

ot e ime) B

mn,t

(20)

Given the relationship between S, + and p,, +, the optimiza-
tion problem in (16) can be rewritten as follows:

M
min > et (Pm.i)
Pt

(21)
1 m=1 1 B
~ w
L St S Y VmeM, (la)
Cgm,t (pm,t) Zm,t Cgm,t fB
0 < pmt € Prnax, Ym e M, (21b)

max{ID,, ;+ 15 150 1 150,  } <7, VmeM, neN.
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However, it is still difficult to optimize p,,, ; since the problem

in (21) remains non-convex. Therefore, a gradient descent

algorithm is used to obtain a suboptimal solution [15]. The
Lagrange function of problem (21) will be:

M M
L (pm,t) :Zem,t (pm,t)+z Hm (7 *Z%L,t (pm,t)) 5 (22)
m=1 m=1

with p = [p1, ..., uar]. We calculate the suboptimal values of
Dm,+ using the gradient method:

OL(pm.t, tm) Prax

— ) |o
Pm,t

where ¢ |¢ = min{max{e,b},a} and 7 is a dynamically chosen

step-size sequence.

Given py, ¢, the value of p can be determined by the gradient
method. The update procedure is:

M +
HUm = Um + A <Z Pm,t — Pmax) s (24)

m=1

Pmit = (pm,t - T 5 (23)

where [z]* = max{z,0} and A is a dynamically chosen step-
size sequence.

TABLE I
SIMULATION PARAMETERS

Parameter | Value |Parameter| Value
N 3 5 4
M 8 on -95 dBm
BY 3 MHz wY 1500
B 10 MHz Wb 1500
Ps 5W I 0.5 GHz
Prmax I'W £ 100 GHz

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, a circular network area having a radius
r = 500 m is considered with M = 8 uniformly distributed
users and N = 3 uniformly distributed BSs. Without loss
of generality, the channel gain follows a Rayleigh distribu-
tion with unit variance. The values of other parameters are
defined in Table 1. All statistical results are averaged over
5000 independent runs. Real data used to train the proposed
algorithm is obtained from the OMNILab at Shanghai Jiao Tong
University [16]. We consider the data size of cellular traffic in
the dataset as the data size of each user’s computational task.
The optimal user associations used for training the SVM model
to minimize the energy consumption of all users are obtained
by exhaustive search. In simulations, we propose two baseline
algorithms named SVM-based local learning and SVM-based
global learning, respectively. The SVM-based local learning
enables each user to train its local SVM model individually
while the SVM-based global learning requires each user to
transmit its local dataset to the BSs for training purpose.

Fig. 2 shows how the sum energy consumption changes as
the number of users varies. From Fig. 2, we can see that the sum
energy consumption increases as the number of users increases.
This stems from the fact that, as the number of users increases,
the number of tasks that users need to process increases, which
increases the sum energy consumption for data transmission and
local computation. Meanwhile, as the number of users increases,
the uplink interference increases and hence, each user must in-
crease its uplink transmit power to satisfy the delay requirement.
Fig. 2 also shows that the proposed algorithm reduces the sum
energy consumption by up to 35.5% compared to the solution
with random user association, task and power allocation for a
network with 12 users. This is because the proposed algorithm
enables each user to dynamically adjust its association as well as
task and power allocation as the data size of the computational
task changes. Moreover, the proposed algorithm can achieve up
to 20.1% gain in terms of energy consumption compared to the
conventional centralized SVM method. This gain stems from
the fact that the proposed algorithm enables each user to build
the global SVM model cooperatively without transmitting the
local training data samples to the BS hence reducing energy
consumption for local data transmission.

In Fig. 3, we show how the accuracy rate changes as the
number of data samples varies. In this figure, the accuracy rate is
the probability with which the considered algorithms accurately
predict the optimal user association. Clearly, as the number
of data samples increases, the accuracy rate of all algorithms
increases. This is due to the fact that, as the number of data
samples increases, the probability of underfitting decreases and
hence, the accuracy rate of all considered algorithms increases.
Fig. 3 also shows that the proposed algorithm achieves only a
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3% accuracy gap compared to the SVM-based global learning.
However, the SVM-based global learning algorithm requires
each user to transmit all datasets to the BS for training purpose,
which results in high energy consumption for data transmission.

Fig. 4 shows the number of iterations needed till convergence
for all considered algorithms. In this figure, the loss function
is used to measure the difference between the output values
obtained by the trained model and actual values. From this
figure, we can see that, as time elapses, the value of loss function
for the considered algorithms decreases until convergence. Fig.
4 also shows that the proposed algorithm yields up to 72%
gain in terms of the number of iterations needed to converge
compared to SVM-based global learning. This implies that the
proposed algorithm enables each user to train the learning model
simultaneously and to generate the global SVM model, thus
speeding up the convergence.

V. CONCLUSION

In this paper, we have studied the problem of minimizing
energy consumption for task computation and transmission. We
have formulated this problem as an optimization problem that
seeks to minimize the total energy consumption while meeting
the delay requirement of each user. To solve this problem, we
have developed an SVM-based FL algorithm which enables
each user to train the local SVM model using its own data
and generate a global SVM model. The global SVM model can
analyze the relationship between the future user association and
the data size of the task that each user needs to process at current
time slot so as to determine the user association proactively.
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Fig. 4. Value of loss function as the total number of iterations varies.

Given the user association, the optimization problem can be
simplified and solved by a gradient descent algorithm. Sim-
ulation results have shown that the proposed approach yields
significant gains in terms of total energy consumption compared
to conventional approaches.

REFERENCES

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Network, to appear, 2020.

[2] L. Zhang, T. Jiang, and K. Luo, “Dynamic spectrum allocation for the
downlink of OFDMA-based hybrid-access cognitive femtocell networks,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1772-1781,
Mar. 2016.

[3] L. Liu, Q. Fan, and R. Buyya, “A deadline-constrained multi-objective task
scheduling algorithm in mobile cloud environments,” /IEEE Access, vol. 6,
pp. 55982-52996, Sept. 2018.

[4] S. Yu, R. Langar, X. Fu, L.Wang, and Z. Han, “Computation offloading with
data caching enhancement for mobile edge computing,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 11, pp. 11098-11112, Nov. 2018.

[5] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 4177-
4190, Jun. 2018.

[6] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

[7] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural
networks-based machine learning for wireless networks: A tutorial,” IEEE
Communications Surveys and Tutorials, to appear, 2019.

[8] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A
joint learning and communications framework for federated learning over
wireless networks,” arXiv:1909.07972, 2019.

[9] A. Ferdowsi and W. Saad, "Brainstorming generative adversarial networks
(BGANSs): Towards multi-agent generative models with distributed private
datasets", arXiv:2002.00306, 2020.

[10] Y. Pan, C. Pan, Z. Yang, and M. Chen, “Resource allocation for D2D com-
munications underlaying a NOMA-based cellular network,” IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 130-133, Feb. 2018.

[11] Y. Zhang and D. Y. Yeung, “A convex formulation for learning task
relationships in multi-task learning,” in Proc. of the 26th Conference on
Uncertainty in Artificial Intelligence (UAI), Catalina Island, USA. July.
2010.

[12] V. Smith, C. K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Proc. of Neural Information Processing Systems (NIPS),
Long Beach, USA. Dec. 2017.

[13] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time optimization
for federated learning over wireless networks,” arXiv:2001.07845, 2020.

[14] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “En-
ergy efficient federated learning over wireless communication networks,”
arXiv:1911.02417, 2019.

[15] S. Boyd and L. Vandenberghe, “Convex Optimization,” Combrage Univ
Press, 2013.

[16] J. Long, “City Cellular Traffic Map (C2TM),” Available Online:
http://xiaming.me/city-cellular-traffic-map/.



