A practical guide on conducting eye
tracking studies in software engineering

Zohreh Sharafi, Bonita Sharif, Yann-
Gaél Guéhéneuc, Andrew Begel, Roman
Bednarik & Martha Crosby

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/510664-020-09829-4

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer
Science+Business Media, LLC, part of
Springer Nature. This e-offprint is for personal
use only and shall not be self-archived in
electronic repositories. If you wish to self-
archive your article, please use the accepted
manuscript version for posting on your own
website. You may further deposit the accepted
manuscript version in any repository,
provided it is only made publicly available 12
months after official publication or later and
provided acknowledgement is given to the
original source of publication and a link is
inserted to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

@ Springer

Empirical Software Engineering
https://doi.org/10.1007/510664-020-09829-4

EXPERIENCE REPORTS

®

A practical guide on conducting eye tracking studies Check for
in software engineering updates

Zohreh Sharafi' - Bonita Sharif? - Yann-Gaél Guéhéneuc® ©© . Andrew Begel® -
Roman Bednarik® - Martha Crosby®

Published online: 12 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

For several years, the software engineering research community used eye trackers to study
program comprehension, bug localization, pair programming, and other software engineer-
ing tasks. Eye trackers provide researchers with insights on software engineers’ cognitive
processes, data that can augment those acquired through other means, such as on-line sur-
veys and questionnaires. While there are many ways to take advantage of eye trackers,
advancing their use requires defining standards for experimental design, execution, and
reporting. We begin by presenting the foundations of eye tracking to provide context and
perspective. Based on previous surveys of eye tracking for programming and software engi-
neering tasks and our collective, extensive experience with eye trackers, we discuss when
and why researchers should use eye trackers as well as how they should use them. We com-
pile a list of typical use cases—real and anticipated—of eye trackers, as well as metrics,
visualizations, and statistical analyses to analyze and report eye-tracking data. We also dis-
cuss the pragmatics of eye tracking studies. Finally, we offer lessons learned about using eye
trackers to study software engineering tasks. This paper is intended to be a one-stop resource
for researchers interested in designing, executing, and reporting eye tracking studies of
software engineering tasks.

Keywords Eye tracking - Practical guide - Empirical software engineering - Program
comprehension

1 Introduction

Eye trackers have evolved from invasive, costly, and difficult-to-use tools (Berg-strom and
Schall 2014) into versatile devices used to study diverse topics, such as driver—vehicle inter-
faces (Grace et al. 1998; Zhang and Zhang 2010), airplane-cockpit usability (Duchowski
2002), human—computer interactions (Strandvall 2009; Poole and Ball 2005), gaming

Communicated by: Denys Poshyvanyk

B4 Yann-Gaél Guéhéneuc
yann-gael.gueheneuc @concordia.ca

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09829-4&domain=pdf
http://orcid.org/0000-0002-4361-2563
mailto: yann-gael.gueheneuc@concordia.ca

Empirical Software Engineering

(Sundstedt 2010; Alkan and Cagiltay 2007), and software development (Sharafi et al.
2015b).

Eye trackers allow researchers to record significant and substantial evidence about par-
ticipants’ ways of interacting with visual information, including reading patterns (Rayner
1998), visual cues during search (Crosby et al. 2002), and interactions and engagement dur-
ing oral conversations (Bednarik et al. 2012). They are also used in software engineering
research to study various tasks, including, but not limited to, source code reading and debug-
ging, comprehension of software artifacts e.g., source code and UML class diagrams, and
software traceability (Sharafi et al. 2015b). A handful of studies combined neuroimaging
and biometric techniques (e.g., EEG, fMRI, and fNIRS) with eye-tracking to measure task
difficulty and cognitive load (Fritz et al. 2014; Peitek et al. 2018a; Fakhoury et al. 2018;
Lee et al. 2018).

Researchers have used a large variety of eye tracking tools, techniques, measures, and
analyses. This variety reduces the chances for successfully comparing and reproducing
others’ research methods, which impedes progress in eye-tracking and software engineer-
ing research and confuses novice researchers (as we have experienced ourselves with our
students and collaborators). Researchers also face methodological, practical, and ethical
challenges when using eye trackers.

Based on our collective, extensive experience in using eye trackers to study soft-
ware engineering tasks for over 10 years, we offer this paper as a one-stop resource
for researchers interested in designing, executing, and reporting eye-tracking studies of
software engineering tasks.

We organize the paper as follows:

— Section 2 provides a brief background on eye-tracking technology, the main theories on
which it is based, and how it should be used to collect reliable eye movement data.

— Section 3 discusses when and why use eye trackers in software engineering research
with examples of prior eye-tracking studies from the literature and summaries of their
research questions and results.

— Section 4 provides exhaustive definitions of the metrics associated with eye-movement
data.

— Section 5 reports examples of typical studies from the literature that used eye trackers
in software engineering.

— Section 6 provides practical advice on designing, setting up, and specifying eye-
tracking tasks, selecting a target population, recruiting participants, analyzing data, and
reporting results. It also describes typical threats to the validity of eye-tracking studies
and ethical considerations.

— Section 7 presents how to analyze eye-tracking data along with set of visualizations and
statistical analyses.

— Section 8 presents conclusions followed by future work.

This work complements our previous systematic literature review (Sharafi et al. 2015b)
and a systematic mapping study by Obaidellah et al. (2018) which cover 63 research papers
using eye tracking in software engineering research. These studies provide an exhaustive
list of experiments and areas that were studied using eye trackers in software engineering.
They also provide detailed information on the programming tasks, materials, metrics, and
participants of previous studies. Obaidellah concluded, however, that there was a lack “of
a methodology in conducting such experiments, which resulted in terminological inconsis-
tency in the names and formulas of metrics used, which needs to be addressed in a future

@ Springer

Empirical Software Engineering

qualitative review.” With this paper in particular, we strive to address this gap and help new-
comers with practical advice on how to design and perform eye-tracking studies in software
engineering. We promote the use of eye trackers in the study of program comprehension and
provide a resource to help researchers use eye trackers in software-engineering research.

2 Foundations of Eye Tracking

Eye tracking involves collecting a participant’s overt visual attention by recording eye gaze
data (Rayner 1978; Duchowski 2007). Visual attention triggers the cognitive processes
required for comprehension and problem solving, while cognitive processes guide visual
attention to specific locations. Therefore, eye tracking is useful to study the participant’s
cognitive processes and effort while performing software engineering tasks (Duchowski
2007).

A visual stimulus is any object, e.g., a piece of source code, that is necessary to perform
a task and whose visual perception by the participant triggers the participant’s cognitive
processes, and ultimately, some actions, e.g., an edit of a statement in a source code file.

Eye gaze data is studied with respect to certain areas of a stimulus called Areas of Interest
(AOIs). An AOI can be relevant to the participant while answering a particular question and
can be irrelevant for another participant and question. For example, in a source code editor,
an irrelevant AOI could be the class comment, while a relevant AOI could be the class name.

According to indicators of ocular behavior, eye gaze data—obtained by processing raw
data recorded by an eye tracker with an event detection algorithm—belongs to the following
categories (Rayner 1978; Duchowski 2007):

— Fixation: a spatially-stable eye-gaze that lasts for 100 to 300ms. During a fixation, the
participant’s visual attention is focused on a specific area of the stimulus and triggers
cognitive processes (Just and Carpenter 1980). Fixation duration changes with task and
participant’s characteristics.

— Saccade: common, continuous, and rapid eye movements, lasting 40-50ms, occurring
between fixations, but providing only limited visual perception.

— Pupil dilation and constriction: the pupil is the aperture through which light enters
the eye, whose dilation is controlled by the iris muscle. A larger pupil may indicate
increased cognitive effort (Poole and Ball 2005).

— Scan path: through saccades, eyes fixate different parts of a stimulus, forming series of
fixations, or visited AOIs, ordered chronologically.

Researchers in psychology report that information acquisition and processing mostly
occurs during fixations. They also report that only a small set of fixations is necessary for a
participant to acquire and process a complex visual stimulus (Privitera and Stark 2000).

The meaning of fixations is context-dependent. A higher fixation rate on a specific AOI
may indicate greater interest in its content, such as when reading some statements in a
source code file. However, a cluster of fixations may also indicate effort/difficulties in
understanding (Poole and Ball 2005).

2.1 Eye Tracker Evolution

Figure 1 shows a brief history of eye tracking. Starting from 1879, Louis Emile Javal stud-
ied text-reading patterns via naked-eye observations. He reported that readers do not skim

@ Springer

Empirical Software Engineering

1879 1898 1901 1937 1948

Louis Javal Edmund Huey Dodge and Cline Buswell Hartridge and
Naked-eye The first The first The first Thompson
Observation eye-tracker photographic Recording of The first
eye-tracker eye-movements head-mounted

eye-tracker

1967 1970s - 1980s 1990 2006
——— - -
Alfred Yarbus Eye-tracking Martha Crosby et al. The growth in
Eye Movements research and The first eye-tracking the use of
& Vision got technology paper in software eye-trackers in
published flourished engineering software
engineering

Fig.1 A brief history of eye tracking

across words in texts smoothly but rather through a set of quick movements—saccades—
and short pauses—fixations.

In 1898, Edmund Huey built the first eye tracker (Huey 1908). This eye tracker was
intrusive and required participants to wear a kind of primitive contact lens with a hole for
the pupil. In 1901, Raymond Dodge and Thomas Sparks Cline used light reflected from
cornea to develop the first non-invasive and precise eye tracker. However, this eye tracker
required the participant’s head to be absolutely still. In 1937, Guy Thomas Buswell per-
formed the first recordings of eye movements on film. He performed a set of experiments
with 200 participants looking at pictures and gathered about 2,000 eye-movement records,
each consisting of a large number of fixations.

In 1948, Hamilton Hartridge and Landsborough C. Thomson proposed the first head-
mounted eye tracker (Hartridge and Thomson 1948), which was subsequently improved
(Shackel 1960; Mackworth and Thomas 1962) to mitigate the constraints on head move-
ments (Jacob and Karn 2003).

In 1965, Yarbus (1967) reported one of the first comprehensive accounts of the use of
eye tracking, in his landmark book, “Eye Movements and Vision”. In this book, trans-
lated in 1967 from Russian to English, Yarbus describes research results showing that eye
movements depend on the tasks at hand, as shown in his famous image reproduced in Fig. 2.

During the 1970s and 1980s, eye-tracking research flourished. Eye trackers became more
accurate and less intrusive. Psychologists formulated different theories to link eye gaze
to cognitive processes (Jacob and Karn 2003), including the influential strong eye-mind
hypothesis by Just and Carpenter (1980). Eye-tracking technology continued to evolve and
its applicability expanded to various business and scientific purposes.

@ Springer

Empirical Software Engineering

©

Fig.2 Set of images from Yarbus with superimposed fixations and links between them. This shows that the
participant’s task changes their eye movements, from Haji-Abolhassani and Clark (2014) and Yarbus (1967)

The emergence of video-based eye trackers in the 1990s drastically improved their access
and use in various research. In 1990, Crosby and Stelovsky (1990) performed the first eye-
tracking study in software engineering. They investigated participants’ reading strategies
and their impact on the comprehension of procedural code.

Between 1990 and 2006 there was little work using eye tracking in software engineering.
We posit this to be the case because (1) Crosby and Stelovsky’s work in 1990 was pio-
neering at the time and others did not consider using eye-tracking in software engineering
research; (2) eye-tracking technology was not convenient until 2000’s for its use in soft-
ware engineering research, instead (3) research efforts were spent on underlying domains
of perception, cognition, and reading.

Since 2006, the use of eye trackers in software engineering has shown modest but
steady growth for the study of various topics, including collaborative interactions, pro-
gram/model comprehension, code review, debugging, maintenance, and traceability (Sharafi
et al. 2015b).

2.2 Eye Tracker Operation

A large variety of eye trackers are available on the market for business and scientific pur-
poses (Sharafi et al. 2015b). These eye trackers vary in their physical forms and the methods
used to track eye gaze (Bojko 2005). An eye tracker usually includes the following hardware
and software components:

— One or more cameras (usually infrared).

— One or more light sources (usually infrared).

— Image-processing software that detects and locates the eyes and the pupils and maps
eye motion and the stimulus.

— Data collection software to collect and store real-time eye gaze data.

— Real-time display showing the location of the eyes’ focus.

Currently available eye trackers mostly use the corneal-reflection/pupil-center method.
An emitter of (typically invisible infrared) light is directed toward the eyes, entering the
pupils. A significant amount of light is reflected back, causing the pupils to light up and

@ Springer

Empirical Software Engineering

appear bright. Another amount of light is reflected by the eyes and appears as glints on their
surface.

Cameras can detect and track these reflections of the light source, along with other
features such as the center of the pupil. Using a pre-established calibration and trigonomet-
ric calculations, and employing a variety of modeling approaches (Hansen and Ji 2009),
the image-processing software identifies the eye gaze (independent of head position and
motion) (Jacob and Karn 2003; Poole and Ball 2005; Duchowski 2007).

2.3 Eye Tracking Assumptions

The relation between eye gaze and cognitive processing is based on two assumptions from
the theory of reading: the immediacy assumption and the eye-mind assumption (Just and
Carpenter 1980). The immediacy assumption proposes that interpretation of the stimuli
begins immediately as a participant sees it, €.g., as soon as a reader reads a word. The eye-
mind assumption states that participants fixate their attention only on the part of the stimulus
that is being currently processed (Just and Carpenter 1980).

These two assumptions are the foundation of how eye gaze represents the participant’s
cognitive processes. Eye-gaze data indicates both the target of the participant’s attention and
the effort (or lack thereof) and length of time used to understand the stimulus. In addition,
based on physiological studies, psychologists assume that participants do not have con-
scious control over many attributes of their eye gaze, e.g., their pupil size, other than that
for the location of their attention.

2.4 Eye Tracking Limitations

Eye trackers come with intrinsic limitations. We discuss the most important ones that exist
at the time of writing this paper. If past history is to be our guide, we believe that much of
these limitations will lessen or disappear as newer technologies and algorithms are invented
in the years to come.

Accuracy Accuracy (sometimes referred to as offset) is the difference between true and
measured gaze data in degrees of the visual angle (Holmqvist et al. 2012). Current, popular
eye trackers report accuracy values between 0.5 and 1 degree. An accuracy of 1 degree
means that if the distance between the participant and the stimulus is 50 cm, the eye tracker
could locate the eye gaze anywhere within a radius of 0.87 mm ~ 1 cm of the actual, true
position.

Although newer eye trackers have accuracy values below 0.5 degree, manufacturers usu-
ally compute this reported accuracy in an ideal situation, measured either directly after
calibration or with artificial eyes (Sharafi et al. 2015b). They also avoid any obstacles that
can interrupt the normal path of (infrared) light, such as thick eyelashes, hard contact lenses,
or eye glasses.

Precision Precision reports how well an eye tracker can reproduce the same results for two
successive eye gazes at the same location. The precision values of common eye trackers
range from 0.01 degree to 1 degree.

@ Springer

Empirical Software Engineering

Drift Drift is the gradual decrease over time of the accuracy of the eye-tracking data, when
compared to the true locations of the eye gaze. Drift is caused by the deterioration of calibra-
tion over time due to the physiology of the eye, e.g., changes in wetness, and other factors
(Sajaniemi 2004) .

Extrafoveal Vision Extrafoveal vision (i.e., parafoveal and the peripheral vision) makes up
98% of the human visual field and is not captured by eye trackers. Eye trackers only record
foveal fixations, which are fixations corresponding to the central region of sight with the
best visual acuity. Consequently, a lack of fixations on parts of a stimulus does not mean
that participants did not see these parts, only that they chose not to direct their attention on
them.

Although extrafoveal processing plays an important role in comprehension and has been
studied in other fields, it has rarely been studied in software engineering research. Orlov
and Bednarik (2017) performed the first study in software engineering that looked into the
impact of extrafoveal information processing on source-code comprehension. They found
that extrafoveal information was utilized more by expert programmers than novices.

3 Usage

Some software engineering tasks are better suited to the use of eye trackers than others.
Before researchers design empirical studies, they should first answer the question, “Are eye
trackers necessary and/or useful for this study?” This section presents various reasons when
and why to use an eye tracker in software engineering research.

3.1 When?

Researchers can use eye trackers when they want to understand the impact of some visual
stimuli on their participants’ thought processes, e.g., comprehension, collaboration, emo-
tion, etc. Eye trackers can complement and enhance data collected using automated tools,
e.g., Mylyn (Murphy et al. 2006), semi-objective collection methods, e.g., screen and audio
recordings, and subjective collection methods, e.g., surveys and questionnaires.

Any eye-tracking study will suffer from all common perceived limitations of human
studies reported by software engineering researchers (Buse et al. 2011). It will also incur
some extra research overhead. In the following, we discuss the actual costs of carrying out
eye-tracking study.

Recruiting Eye tracking constrains remote participation, such as via Amazon’s Mechanical
Turk crowdsourcing. There are webcam-based eye trackers available on the market but they
may have low accuracy and precision.

Time and Cost Experiment time and cost are significant concerns for eye tracking studies.
The total cost include (1) infrastructure, hardware, and software purchase and maintenance,
(2) training staff to manage and perform eye-tracking experiments, (3) time and effort to
conduct the eye tracking experiments and (4) to analyze the resulting eye tracking data.

A typical eye tracking experiment lasts between 15 minutes to one hour and at least one
experimenter must supervise the process. It usually involves one eye tracker and a PC with
two screens (in a dual-screen configuration). One screen is used to present visual stimuli
to the participants and is installed in front of the participants. The other screen, installed

@ Springer

Empirical Software Engineering

away from the participants’ field of view, is used by the experimenter to perform calibration,
control stimuli presentation, and monitor eye-tracking quality during the study. This dual-
screen setup allows the experimenter to detect any issues with the equipment during the
experiment, without interfering with the participants. Because the goal is to gather the data
when the participant is engaged with the task, experiments must be performed in a quiet,
dedicated room to avoid distractions and other confounding factors.

3.2 Why?

Eye tracking is recommended when researchers wish to understand their participants’ cog-
nitive processes as well as the intentions that motivate their actions. Researchers could use
think-aloud protocols, interviews, questionnaires, or surveys to understand these processes
and intentions, however, these methods depend on the participants’ memory and com-
munication skills, and—or subjective judgment to provide insight into their processes and
intentions. Moreover, studies in cognitive science showed that the participants’ perception
of their own behavior does not always agree with their underlying processes and intentions
(Berg-strom and Schall 2014).

Eye trackers provide an objective, real-time, quantitative measure of eye gaze, without
conscious filtering. They help researchers to study processes and intentions that partici-
pants cannot articulate (Ross 2009). An eye tracker provides additional insights into what
participants were doing and why based on where they focused their attention during a task.

Eye trackers help researchers determine (1) why participants have problems finishing
a task, (2) where participants expect to find certain elements, (3) whether elements are
distracting, (4) how efficiently a design, layout or artifact guides participants through a task,
(5) whether there are differences in the participants’ efficiency, based on their demographics
or expertise, and (6) whether participants focus on details or briefly scanned the stimuli
(Obaidellah et al. 2018; Sharafi et al. 2015b). All of this is done objectively while the task
is being executed.

However, using eye trackers correctly is vital. Conducting an eye tracking study requires
dedication to fine details to make sure the data is collected correctly and accurately. The
collected data must be analyzed carefully to relate participants’ fixations with their cognitive
processes and intentions (Jacob and Karn 2003; Karn et al. 1999). In particular, currently,
there is no absolute way of knowing whether participants indeed understood parts of the
stimuli on which they fixated.

4 Metrics

Analysis of eye-tracking data is challenging (Jacob and Karn 2003) and the same applies
in software engineering eye-tracking research, such as program comprehension (Bednarik
2007). We now present definitions and metrics that can help analysing this data.

Karn et al. (1999) and Jacob and Karn (2003) classified eye tracking metrics as follows:

First Order Data They are raw data, i.e., unfiltered eye tracking outputs:

— X,Y position: the spatial coordinates of each gaze point, mapped to a location on the
stimulus. These coordinates indicate the participants’ focus of attention but not their
understanding of the stimulus.

@ Springer

Empirical Software Engineering

— Pupil diameter: the physical size of the pupil, usually its diameter in millimeters.
Pupil size variations are more important than actual sizes because they vary across
participants. Variations in pupil size, however, depend on cognitive workload and task
difficulty, i.e., increased effort and heavier cognitive workloads are related to larger
pupil sizes (Beatty 1982).

— Eye blinks: the number of blinks per unit of time, e.g., per minute. These are associated
by psychologists with cognitive workload. Lower blink rates indicate more attention
(Poole and Ball 2005; Beatty 1982). Blink rates are not a common eye-tracking output,
however. Blinks require vision algorithms to calculate them, and only certain trackers,
such as the Smart Eye trackers, provide blinks as part of their output. Additional meth-
ods are necessary to accurately detect blinks in realtime, e.g., using a video-based eye
tracker (Divjak and Bischof 2008).

X,Y positions, pupil diameters, and eye blinks, like other biometric data, are inherently
noisy and contain outliers and invalid data. Therefore, this data must be cleaned before
analysis (Soh et al. 2018). Researchers can clean this data visually, e.g., by replaying the
fixations and saccades and removing those obviously off, or statistically, e.g., by removing
outliers long fixations.

Several factors, including ambient light levels, participants’ emotional and cognitive
states, distance to the eye-tracker, and image quality of the camera impact this data.
For example, blink rates increase with stress and anxiety but decrease with intense
concentration.

Second Order Data they include fixations and saccades, derived from the first order data
using physiological thresholds. Eye trackers implement event detection algorithms to dis-
tinguish fixations from saccades using spatial and temporal criteria. These algorithms may
impact the results of the analyses of the data (Salvucci and Goldberg 2000).

Fixations can be voluntary or involuntary. Involuntary fixations stem from reflexes, e.g.,
the optokinetic reflex that leads the eyes (and therefore, attention) to focus on moving
objects. Eye tracking researchers are mostly concerned with voluntary fixations, although
involuntary fixations may happen in software engineering tasks, too, e.g., when a window
pops up to alert the participant to an event.

Third Order Data They are obtained by eye tracking software through analyses of fixations
and saccades:

— Fixation count: the number of fixations in an area of interest (AOI) or the whole
stimulus.

— Fixation duration or fixation time: duration of all the fixations on an AOI or the
stimulus.

— Percentage of fixations or fixation rate: ratio of the total number of fixations on one
AOI or stimulus to another.

— Time to the first fixation in an AOI: time from the beginning of an experiment until
the participant fixates on a given AOL

— All fixations within a selected time: the number of fixations on an AOI or the stimulus
in a given period of time.

Previous eye tracking studies used fixation count, fixation duration, and fixation rate to
find the AOIs that attract more attention (Crosby and Stelovsky 1990; Crosby et al. 2002;

@ Springer

Empirical Software Engineering

Uwano et al. 2006) and to measure the efficiency of participants’ task-solving strategies
(Soh et al. 2013).

A smaller fixation rate indicates a lower efficiency in search tasks: participants spend
more effort to find relevant areas (Poole and Ball 2005). Higher rates indicate that more
effort is required to complete tasks, i.e., find defects (Bednarik 2012; Sharif et al. 2012) or
fix bugs (Sharif et al. 2013), understand source-code statements (Binkley et al. 2013), recall
the names of identifiers (Sharif and Maletic 2010a), or explore different stimulus layouts
(Guéhéneuc 2006a; Yusuf et al. 2007).

When using these metrics to compare two AOIs or stimuli, the values must be adjusted
by the sizes of the AOIs/stimuli to perform fair comparisons. For example, when working
with text, the fixation count must be divided by the number of words in each AOI to compare
two AOISs that do not contain the same numbers of words.

Fixation counts and durations are not correlated with one another (Sharafi et al.
2015a). Previous studies used both fixation counts and durations together to characterize
participants’ efforts:

— Average Fixation Duration (AFD) is also referred to as Mean Fixation Duration
(MFD) is an average of fixation duration over all the fixations in an AOI, with respect
to the fixations counts in all the AOISs or stimulus.

— Ratio of On-target to All-target Fixations (ROAF): the sum of the fixation durations
of all the fixations in an AOI divided by the fixation counts in all the AOIs or stimulus.

AFD has been proposed and used for relevant and non-relevant AOIs separately: Average
Duration of Relevant Fixations (ADRF) and Average Duration of Non-Relevant Fixations
(ADNRF) (Jeanmart et al. 2009; De Smet et al. 2014; Soh et al. 2012). Higher ROAF values
indicate higher efficiency associated with lower effort. They also indicate the importance of
an AOI relative to other AOIs or the stimulus.

To compare fairly two stimuli with each other, the size of each stimulus must be taken
into account. Jeanmart et al. (2009) proposed the Normalized Rate of Relevant Fixations
(NRREF) to compare two (or more) stimulus with each other. Higher values of NRRF indicate
increased effort to understand the corresponding stimulus.

AFD, ROAF, and related metrics were used to measure and compare the amount of visual
effort (or difficulty) to perform a task (Crosby and Stelovsky 1990; Bednarik and Tuki-
ainen 2005, 2006; Jeanmart et al. 2009; Cepeda and Gueheneuc 2010; Busjahn et al. 2011;
Bednarik 2012; Soh et al. 2012; Sharafi et al. 2012, 2013; Petrusel and Mendling 2012;
Binkley et al. 2013; Cagiltay et al. 2013; De Smet et al. 2014) and to find the AOISs that are
most important for the participants to perform their tasks (Bednarik and Tukiainen 2006;
Jeanmart et al. 2009; Cepeda and Guéhéneuc 2010; De Smet et al. 2014).

Similarly to fixations, several third order metrics exist based on saccades:

— Saccade count: the total number of saccades in an AOI or the stimulus.

— Saccade duration or saccade time: the duration of all the saccades in an AOI or the
stimulus.

— Regression rate: the percentage of backward or regressive saccades, e.g., leftward in
left-to-right source-code reading, over the total number of saccades (Poole and Ball
2005; Busjahn et al. 2011).

Higher regression rates indicate increased difficulty in performing and completing a
task (Goldberg and Kotval 1999; Poole and Ball 2005). (Busjahn et al. 2011) reported
higher regression rates for source-code reading compared to natural-language text reading.

@ Springer

Empirical Software Engineering

Fritz et al. (2014) used saccades to study the impact of the difficulty of some stimuli on
participants.

Fourth Order Data Sequences of fixations or AOIs are called scan paths. Scan paths
describe the durations and lengths of eye gazes. They are indicators of search efficiency.
Longer and longer-lasting scan paths indicate that the participants took more time or effort
to explore a stimulus to find relevant AOIs, which in turn indicate less efficient scanning
and searching.

Scan paths naturally become longer as participants spend time in an experiment, which
make them difficult to analyze and compare. They must be studied by taking into account
the numbers and locations of fixations as well as their temporal order and duration.

Scan paths can be studied using the following algorithmic tools:

— Transition matrix: a tabular representation of transition frequencies between AOIs.
The matrix density can be computed as the number of nonzero cells divided by the total
number of cells to compare two transition matrices with each other. Figure 3 shows an
example of a scan path on a visual grid and its transition matrix with a spatial density
of 12% (10 cells out of 81 are filled). Increased spatial density indicates more extensive
search with inefficient scanning (Sharafi et al. 2015a).

— Scan path recall, precision, F-measure: measures of the relations between AOIs and
scan paths. Scan path recall is the number of fixated, relevant AOIs divided by the
number of all relevant AOIs. Scan path precision is the number of fixated, relevant AOIs
divided by the number of all AOIs. Scan path F-measure is a weighted average of scan
path precision and recall (Petrusel and Mendling 2012).

— Edit distance: uses the Levenshtein algorithm to compute the minimum editing cost of
transforming one scan path to another with basic operations, such as insertion, deletion,
and substitution (Levenshtein 1966).

— Sequential PAttern Mining (SPAM): a depth-first algorithm that can be used to
compare scan paths based on the fixation locations and durations (Ayres et al. 2002).

— ScanMatch: based on the Needleman-Wunsch algorithm used in bioinformatics to
compare sequences of DNA (Cristino et al. 2010). It uses temporal binning to adjust the

a b c d e f g h i

a

b
a b c &

d
d ej f e
—— f
g h.\‘. i E
o—eo— i

Fig. 3 Example of scan path and corresponding transition matrix, from De Smet et al. (2014). A 1 in each
matrix cell indicates a directed edge in the scan path between the points labeled by the row and column

@ Springer

Empirical Software Engineering

length of two (or more) scan paths based on fixation durations. It outputs a similarity
value of the two scan paths.

Studies compared scan paths to identify and analyze participants’ viewing strategies to
explore stimuli and solve tasks (De Smet et al. 2014; Sharafi et al. 2013; Hejmady and
Narayanan 2012; Busjahn et al. 2015). Lower edit-distance and SPAM values indicate sim-
ilarity among participants and show that they used similar reading strategies (De Smet et al.
2014; Sharafi et al. 2013; Hejmady and Narayanan 2012).

Other fourth order data include:

— Attention switching: the total number of switches between a list of AOIs per unit time,
e.g., one minute.

— Fixation Spatial Density (SD): represents the stimulus coverage, the dispersion of the
participants’ fixations (Goldberg and Kotval 1999). If a stimulus is divided into equal
cells to form a grid, then SD is the number of visited cells, i.e., a cell that received at
least one fixation. Smaller spatial density values indicate less coverage.

— A convex-hull area: the smallest convex set of fixations that contains all of partici-
pants’ fixations (Goldberg and Kotval 1999). A smaller value indicates that the fixations
are close together and that the participants spent less effort to find relevant areas in a
stimulus.

— Linearity: associated with participants’ search strategies (Poole and Ball 2005). It is
defined using eye gaze linearity, e.g., left-to-right and top-to bottom for readers of
Latin-based natural languages.

Studies have used SD and convex-hull area to study the coverage of fixations (Sharafi
et al. 2012; Soh et al. 2012; Sharafi et al. 2013), which relates to the efficiency of the search
strategies used by participants. It also indicates the preferred parts of visual stimuli.

In source code, “linearity represents how closely readers follow a text’s natural reading
order” (Busjahn et al. 2011).

Metrics based on the spatial distributions of fixations are sensitive to invalid data. For
the convex-hull area, just one fixation deviating from its actual location can change the
shape and the area of the convex hull significantly. Thus, noise removal and data cleaning
is necessary to use fourth order data.

5 Typical Eye-tracking Studies in Software Engineering

Based on the current literature and state-of-the art, we now describe examples of studies that
used eye trackers for software engineering tasks. These examples cover the main usages of
eye trackers in software engineering research and some representative studies in terms of
objectives, designs, metrics, etc.

5.1 Program Comprehension

Turner et al. (2014a) studied the effects of programming languages on developers’ perfor-
mance in a number of programming tasks. One of their research questions asked if there
was a significant difference in visual effort in overview and bug localization tasks between
C++ and Python programs. They recruited 38 undergraduate and graduate students, some
with C++ and some with Python experience to explain what C++ and Python code samples
did (overview) and to look for and explain any error they could find in the programs (bug

@ Springer

Empirical Software Engineering

localization). To measure visual effort, the authors recorded four metrics: (1) fixation count
and (2) duration for the entire program and (3) fixation count and (4) duration on the buggy
lines of the programs. Each of these metrics should increase with the participants’ visual
effort. The authors compared the metrics recorded for the median of each group who stud-
ied C++ and Python programs using the non-parametric Mann-Whitney test. They found no
significant differences between any of the metrics but more fixations on the buggy lines of
the Python programs than on the C++ programs.

Binkley et al. (2013) conducted two eye-tracking studies on the impact of identifier styles
on program comprehension. They asked 169 students to recall English words and com-
prehend C++ source code. They analyzed fixation rate, average fixation duration, ratio of
on-target to all-target fixations (ROAF) with a set of statistical methods, including linear
mixed-effects regression, Generalized Linear Mixed Models, and logistic regressions. They
concluded that experts are less affected by the identifier styles than novices. They also con-
cluded that source-code reading and comprehension are different from that of natural text
because the effects of style on quality assessment and thinking time varied between natural
text and source code.

5.2 Diagram Comprehension

Guéhéneuc (2006a) and Yusuf et al. (2007) independently investigated the impact of layout,
color, and stereotypes of UML diagrams on comprehension. The later asked 12 students and
faculty members to work on three UML class diagrams with different layouts (orthogonal,
three-cluster, and multi-cluster layouts). After calculating fixation count, first fixation time,
and comparing the distribution of fixations via heat maps and gaze plots, they concluded
that experts use extra information, e.g., color, layout, and stereotypes, more efficiently
than novices to browse UML diagrams. They also showed that the layouts with additional,
design, semantic information are more effective.

5.3 Code Review

Uwano et al. (2006) investigated the impact of scan time on source code review, i.e., reading
the entire code before investigating the review. After recording the eye movements of 5
students debugging C code, they computed the fixation count. They used an algorithm to
generate a set of graphs depicting the time sequence of focused code lines. They used these
graphs to compare the participants’ viewing strategies and fixation counts to compare the
scan times. Results showed that a longer scan time leads to faster bug finding. They showed
the tendency of novices to go back and forth between code and graphical representations.

Begel and Vrzakova (2018) studied participants’ source-code scanning behaviour during
code review to identify how suspicious patterns of code are recognized. They studied of 35
developers performing 40 code reviews. By playing back the eye gazes, they observed that
code review was mainly a code-scanning task in which the majority of the code is skimmed
rapidly.

5.4 Traceability
Ali et al. (2015) performed an eye-tracking study to understand how participants verify
requirement traceability links and identify the most used source code entities (SCEs). They

asked 26 undergraduate and graduate students to read a set of Java code snippets and
answer one comprehension question about each. They used the total fixation duration to

@ Springer

Empirical Software Engineering

calculate the time spent on each SCE, including class, method, variable names, and com-
ments, and ranked the developers’ preferred SCE. Then, they used the ranked SCEs to
propose two new weighting schemes to recover RT links with an IR technique. One is
called SE/IDF (source code entity/inverse document frequency) and the other is DOI/IDF
(domain or implementation/inverse document frequency). They reported that participants
have distinct preferences for different SCEs, method names and comments over others, and
that the proposed weighting schemes statistically improve the accuracy of their IR-based
techniques.

5.5 Education

Busjahn et al. (2014) performed a case study to evaluate the feasibility of the use of eye
trackers in computing education and teaching. They recruited two developers to read Java
code and answer a comprehension question while recording their eye movements. Then,
they provided the participants with two videos showing the Java code overlaid with their eye
movements and asked them to encode them according to a multi-tier coding scheme, e.g.,
blocks vs. lines. They presented the lessons and challenges learned from the data analysis
and their participants’ comprehension of the encoded scan paths.

5.6 Eye tracking and Other Psycho-physiological Measures

Fritz et al. (2014) performed an eye tracking study while gathering other psycho-
physiological measures using electroencephalography (EEG), electrodermal activity
(EDA), and NASA TLX scores, to evaluate task difficulty. While previous studies focused
on post hoc data analysis, they proposed a new approach to detect when developers experi-
ence difficulty while working with source code. They recruited 15 professionals to work on
ten short tasks. They trained a Naive Bayes classifier using a combination of these measures
to predict whether a participant would feel a task was difficult. Their classifier achieved
over 70% precision and over 62% recall. They confirmed that the duration of saccades is
related to the participants’ cognitive effort.

5.7 Source Code Summarization

Rodeghero et al. (2014) developed a code summarization tool based on eye movements
of ten developers, asked to read Java code and wrote English summaries of Java meth-
ods in the snippets. They extracted common keywords from the code based on the amount
of fixation time spent by participants on these keywords. They then used Vector Space
Model Summarization (Haiduc et al. 2010) (VSM TF/IDF) to extract keywords and com-
pare the results with the keywords obtained by their proposed method and those from the
developers. They showed that developers focused more on the keywords that they found
relevant and also used these keywords to write their summaries. Developers spent a dif-
ferent amount of visual attention on different keywords. Method signatures attracted more
attention than method invocations, which in turn attracted more attention than control
flows.

Abid et al. (2019b) recruited 18 developers to work on 63 methods from five different
systems. In contrast with previous studies that used short methods in isolation, they asked
developers to work in Eclipse, using scrolling in files and switching between files. They
collected eye-gaze data, written summaries, and the time spent by the participants to com-
plete each summary. They showed that keywords in the control flows of the methods were

@ Springer

Empirical Software Engineering

revisited frequently rather than read for a long period of time. They also compared experts
and novices and found that the sizes of the methods mattered: as their sizes increased,
experts revisited the method bodies more frequently than their signatures. They also com-
pared mental cognition models (i.e., bottom—up or top—down) during code summarization
(Abid et al. 2019a) and reported that both experts and novices using the bottom—up mental
model: they read methods closely rather than browsing methods. However, novices needed
more gaze time then experts to apply the bottom—up strategy.

6 Pragmatics of a Typical Eye Tracking Study

This section presents a practical approach to eye-tracking experimental design and setup.
We direct the reader to general guides on controlled experiments (Ko et al. 2015), which
we extend to include other important setup and pragmatic issues that arise when using an
eye tracker as part of data collection. Some of these issues were reported in previous works
while others were identified through our own experiences while yet others could pertain to
any empirical studies. Whenever possible, we provide references to the works, if any, that
reported the issues first.

6.1 Experimental Setup

We now discuss setting up experiments with eye-trackers, from their purchase to the
recording of their data.

6.1.1 Eye Tracking Device

Eye trackers have improved greatly since their beginning, and are now both accurate and
readily available. There are differences between affordable eye trackers and high-end eye
trackers on the market. Sampling rate, accuracy, and freedom of movement are key factors
that determine the quality and, ultimately, the price of an eye tracker.

Webcam-based eye trackers provide a practical, low-cost, or even free solution (by get-
ting eye-tracking data from a “normal” camera, already installed in almost all laptops). The
main advantage of these eye trackers is to collect gaze data on any population quickly,
just like sending out a typical online survey. However, researchers do not use these devices
often because they are inaccurate when compared to infrared eye trackers!. The environ-
ment is also not as controlled (with regards to the noise level and lightning and ambiance,
cf. Section 6.1.2) as appropriate for precise study. If the goal of the study is to find out
whether a specific part of the screen has been looked at by participants, a webcam-based
eye tracker suffices. However, if precise temporal or spatial resolutions are required (e.g., a
line by line or word by word comparison of the source code or text), then an infrared eye
tracker is needed.

There is a large range of prices for the various models of video-based remote eye track-
ers. Low-end eye-trackers cost from $100 to $2,000 and are not generally used for advanced
research, especially if the researchers are interested in spatio-temporal resolution for sac-
cade detection. Mid-end eye trackers cost from $2,000 to $10,000, while high-end ones can
cost over $10,000.

Thttps://imotions.com/blog/webcam-eye-tracking-vs-an-eye-tracker/

@ Springer

https://imotions.com/blog/webcam-eye-tracking-vs-an-eye-tracker/

Empirical Software Engineering

To decide which eye tracker to purchase, we recommend checking the two following
resources: (1) (Obaidellah et al. 2018) list a variety of manufacturers and eye trackers for
software engineering research and (2) (Farnsworth 2019a) presents an overview of the price
points for various eye trackers. Some eye trackers are more extensible, creating a 3D model
of the world around them, whereas others do not allow this setup. Researchers must choose
the right eye tracking device for their study.

6.1.2 Eye Tracking Environment

The environment in which an eye tracking study is performed is important. Researchers
should conduct their studies in quiet, windowless rooms with good lighting. The room
should be calm and with a stable lighting that does not produce glare on the screens or inter-
fere with the infrared light of the eye tracker. Environmental changes (e.g., light conditions
and humidity) may result in drift and inaccurate data (Pernice and Nielsen 2009; Sajaniemi
2004).

To avoid inaccurate data due to participants’ head and body movements, researchers
should place participants in a stationary seat with a headrest but without wheels or
leaning capability. Slight head movements are acceptable and participants should sit
with a normal posture in front of the eye-tracking screen. A chair and desk with ver-
tical adjustment capability are useful to accommodate different participants’ heights.
Some eye tracking software tools provide indication of the optimal distance and head
placement.

Most studies use only a small number of participants as shown in previous works, e.g.,
Sharafi et al. (2015b), and only one participant can use an eye tracker at a time. There-
fore, the room and eye tracker should be straightforward and simple in accommodating one
participant at a time.

6.1.3 Overview and Calibration

At the start of a study, researchers must provide participants with relevant information
including:

1. The procedure and policy for the data analysis, storing, and discarding, in particular
whether the data is anonymous or not.

2. The number of tasks that must be completed, including the number of questions for
each task, and an estimation of the task duration.

3. The procedure for a participant to inform researchers when a task is completed or when
a task is abandoned.

4. The means by which a participant can relax and work as if they are alone. Participants
should not explain what they are doing (i.e., no think-aloud as the cognition required
alters low-level eye movements).

Then, researchers must calibrate the eye tracker to participant’s eyes:

1. Researchers must inform the participants at all times about their actions, e.g., when
adjusting the participant’s chair or the screen.

2. Researchers must ensure that the participant’s head appears in the middle of the screen
and at a distance of about 50-60 cm, which may vary with the specifications of the eye
tracker and the participant’s height.

@ Springer

Empirical Software Engineering

6.1.4 Pilot Study

We recommend to conduct a pilot study with at least one participant to identify any potential
problem in the experimental design/setup:

1. Check that the eye tracker and room are set up correctly.

2. Check that recording properly acquires and saves data to disk.

3. Check the quality of recorded data to make sure that the light conditions are appropriate
to capture eye movements.

4. Observe how the participant reacts to the research questions, setup, stimuli, and tasks.

5. Record the time taken by the participant to complete the study.

6. Analyze the data to evaluate the results and avoid any data loss.

6.1.5 Recording

Researchers must check participants at all time to ensure the quality of the data, including
avoiding:

— Holding any material in between the eye tracker and the participant’s face, e.g., an
answer sheet or the participants’ hands.

— Leaning back, forward, or sideways in a manner that makes the eyes move out of the
tracked zone.

— Squinting or closing eyes at length and—or repeatedly.

If such events happen, the researchers must record the time of the event (timestamp)
to analyze later whether the data (or part thereof) can still be used or should be discarded
entirely. If the researcher notices that the participant is moving too much, they should
consider re-running the eye tracking calibration procedure after each task.

6.2 Stimuli and Tasks

Stimuli In most previous eye tracking studies, participants worked with a set of static stim-
uli. A static stimulus is an image shown on a screen and on which participants have no
control. The majority of previous studies used small source-code snippets that fit on one
screen with appropriate font size and type for reading. We provide guidelines for designing
a static stimulus:

— Ask only one question per stimulus. A static stimulus limits the number of elements
that can be displayed. We recommend presenting one question per image to conserve
display space and simplify data analysis. If several questions are necessary, then the
stimulus can be repeated.

— Show the question on the top-left corner of the stimulus to avoid that elements placed
there receive undue attention: previous work showed participants’ tendency to look to
the top-left corner (Goldberg et al. 2002).

— Avoid over-crowding the stimulus. Eye trackers have a specific resolution below which
it is not possible to distinguish whether attention was focused on one element or another
of the stimuli.

— Use fixed-width fonts (mono-spaced and mono-type), e.g., Courier, for the stimulus.
These fonts provide the same horizontal space for all characters and, thus, better control
over the visual stimuli.

@ Springer

Empirical Software Engineering

— Use appropriate font size: smaller fonts have the advantage of allowing more text on
the screen, but hinder capturing fixations of participants natural, smooth reading. The
font size needs to be big enough to support mapping of gaze to words. A trial/test needs
to be done prior to conducting the study to determine what size works best.

Font types and sizes can make fixation positions less accurate, data noisier, and data
analysis more difficult. Choosing a proper font type and size is particularly important if
word-level analysis must be done (e.g., source code and identifiers understanding).

The participants’ viewing distance from the screen, the eye-tracker accuracy, and eco-
logically valid study design are all critical factors in choosing a font size (Godfroid 2019).
Results in vision research reported a range of 4pt to 40pt for eye-tracking studies (Godfroid
2019). We recommend choosing a size closer to the middle of this range. If a fixed-width
font is used and participants sit at approximately 50 cm from the screen, then a 16 to 18
point font is a good choice.

In some previous eye tracking studies, participants worked with dynamic stimuli, i.e.,
stimuli with which they could interact. In particular, Clark and Sharif (2017) developed
iTrace and iTraceVis, which provide an automatic mapping of eye-gaze data on source-code
elements displayed in an IDE, such as Eclipse or Visual Studio, even with scrolling in and
switching between files. Thus, researchers can study participants’ complex interactions with
IDEs and the elements displayed in these IDEs.

Tasks The tasks should be engaging and easy to understand. Appropriate tasks must trig-
ger the participants’ cognitive processes when performing their tasks. There is currently no
absolute way of telling whether participants understood the elements on which they fix-
ated. Therefore, studies must include comprehension questions/measures to asses whether
participants understood the elements presented by the stimuli.

To avoid fatigue, it is important to strike a balance when preparing the stimuli between
completeness and duration and to avoid long sessions. An eye-tracking session should not
last longer than 90 minutes. Changes in the physiology of the eye over time, e.g., dry-
ness caused by fatigue, may result in measurement errors. As a general rule, if a session is
longer than 30 minutes, then participants should be given time to relax their eyes between
successive stimuli, for example, by working on questions printed on paper.

6.3 Recruiting Participants

Researchers must define the population from which they will select the participants. The
ideal target population may be that of all software engineers who perform development
and—-or maintenance activities. However, around 77% of previous eye tracking studies
used populations of students and—or faculty members (Sharafi et al. 2015b). Indeed, they
argued that students are akin to junior software engineers, while faculty members may have
considerable development/maintenance experience.

Researchers should consider the following benefits when selecting participants from a
population of students:

— Students come to the school regularly and they are more accessible (schedules, will-
ingness) to academic researchers than professionals who work in industry. Researchers
already in industry will find that their software development colleagues may be easier
to recruit.

@ Springer

Empirical Software Engineering

— Students in the same year often have comparable experience and expertise, potentially
increasing the homogeneity of the population and comparability of the data collected
from different participants.

Researchers should recruit professionals if their research questions pertain to the impact
of expertise and experience (Kitchenham et al. 2002). One way to increase the number of
participants is to run the study for a long time. Another possibility is to bring eye trackers
to conference venues with many professional developer attendees. A third possibility is to
visit and recruit participants from the local area beyond the researchers’ organizations.

Researchers must strive to recruit enough participants to obtain statistically significant
results. There is no unique sample size for eye-tracking studies because the size depends
on many factors, including the research questions and the experimental design (e.g., within
subjects vs. between subjects) (Bojko 2005). Previous eye tracking studies had from 5 to
169 participants, with a mean value of 56.9 and median value of 18. 56% of these studies
had fewer than 20 participants.

Researchers must define exclusion criteria to reject participants who cannot partici-
pate in an eye-tracking experiment. These criteria mostly pertain to the use of visual aids.
While modern eye trackers can collect eye gaze data even if participants wear eyeglasses,
some cautions (Pernice and Nielsen 2009) should be taken with other visual aids/vision
impairments, in particular:

— Bifocal or progressive glasses.

— Dirty or damaged glasses.

— Dyslexia and other such disorder.

— Thick rimmed glasses.

— Droopy eye and/or lazy eyelids.

— Heavy eyelashes or mascara.

— Fringes covering eyes, hats, or other artifacts.
— Eye problems such as uncorrected astigmatism.
— Photosensitive epilepsy.

McChesney and Bond (2019), for example, compared 28 developers, with and without
dyslexia, performing program comprehension tasks. They reported that dyslexic developers
had a different gaze behaviour than non-dyslexic developers and that their gaze behaviour
was also different from what was expected from the literature on dyslexia and natural text.

Prior to the session, the experimenters might include instructions to mitigate some of
the aforementioned barriers, including: wearing minimal or no eye makeup to the session,
bringing or wearing corrective optics, such as single-vision glasses or contact lenses, check-
ing the cleanliness of the eye-glasses, and having headbands/hairpins to put up long hair
and bangs to provide the eye tracker a clear view of the eyes. Some eye trackers also require
a view of the participant’s ears to build the appropriate models necessary for eye detection.
So hair should be moved behind ears before beginning the study.

6.4 Background Questionnaire

It is common to ask participants to fill out a survey regarding their experience or knowledge
of software development and maintenance. The questionnaire should ask for any existence
of eye problems, epilepsy, or reading disorders.

Questionnaires are typically asked before the study begins. However, care should be
taken to avoid the stereotype threat (Spencer et al. 1999; Shapiro and Neuberg 2007).

@ Springer

Empirical Software Engineering

Women and underrepresented minorities are at higher risk of being judged by the negative
stereotype that they have weaker ability (Steele and Aronson 1995; Spencer et al. 1999). To
alleviate this threat, we recommend asking questions that might interfere with the partici-
pants’ performance, such as ones related to expertise and proficiency, at the end of the study.
Moreover, unless it is part of the design, researchers must avoid priming in the questions
with information that may lead to heightening the salience of participants’ personal identity.

6.5 Experimental Design

We now discuss the design of an eye tracking experiment, including defining research
questions and hypotheses, identifying dependent, independent, and mitigating variables and
calibration.

6.5.1 Research Questions

After reviewing previous eye tracking studies in software engineering (Sharafi et al. 2015b),
we classify research questions into the following categories:

— To evaluate the usefulness of some systems, artifacts, or tools when participants perform
a specific task with one of these.

— To evaluate the participants’ effectiveness and efficiency when performing a specific
task while using some systems, artifacts, or tools.

— To find the areas of interest in some stimulus by studying the distribution and the
intensity of participants’ visual attention.

— To detect navigation strategies used by participants by studying their scan paths when
performing software engineering tasks.

Table 1 summarizes the types of research questions asked by researchers and answered
with eye-tracking studies. Tables 2, 3, and 4 provide examples of research questions of eye-
tracking studies in software engineering; most common are questions to evaluate usability,
efficiency, and—or effectiveness.

6.5.2 Variables and Measures

After expressing research questions and hypotheses, researchers must define dependent,
independent, and mitigating variables. In eye-tracking studies, the independent variables are
the elements presented in the stimuli while the dependent variables are mainly the measures
of the participants’ eye-gaze data and how well the participants answered the questions
asked in the study.

The choice of the stimuli and that of the dependent variables depends on the research
questions. Eye-gaze data has been extensively used to measure the visual (cognitive) effort
that is representative of the tasks and stimuli being assessed. Sharafi et al. (2015a) provided
a list of visual effort metrics while discussing how previous studies used and interpreted
them. Table 5 presents an examples of variables used in previous eye-tracking studies.

6.5.3 Calibration between Saccades and Fixations

Researchers study a variety of stimuli and tasks in software engineering, such as diagrams,
requirements documents, and source code. Depending on stimuli and tasks, they must use

@ Springer

Empirical Software Engineering

pringer

N

(X) dse) uo Sunyiom are Ay uoym uraped Aue mooj s1adofarsp oq
((R) Yse1 Sutuioyrad uaym sar3arens Joy) Joedul (7) sonsiaoereyd fenpiapur syuedonred ay) oq
(X)) Ysey wograd Aay) uaym sar3ajens uonediaeu syuedonted oy 1oedwr (X) joejnie jo 2d£) oy seoq
(R) sey Sururograd uaym (X) weysAspoeinie ysnoayy aesiaeu sjuedonred op moH $21391e1S UOTIBSIABN
((X) yse1 Sururogrod uaym mara syuedronred op ‘() 1oejnae Jo sired jeym IO SWOI JeYA 1SQIU] JO SeATy 9y} SuIpury
(X)) Yse) Sururogrod uaym ASUSIOIIJO pUB SSOURATIOAJR J1ay) Joedwir (7Z) sonsueioereyd renpiaipur sjuedronred oy og
((X) s1oejnIe woly jauaq (X) sysel jo sadKy yeypn
L(AR) YSe 10J 9A1I09)J9 Jsowr a1k (X) Jo sadA) yeyp
L(R) Yse1 10J [nJasn (X) ST uonen[eAq SSOUIANRJJH pue ‘Aoudronyy ‘Afiqesn

suonsanb jo sadA[, saL03ae)

syuowrodxe SurIoouISus arem)jos Jurjoen-o4a ur suorsonb yoressar Jo sadKy, | ajqel

Empirical Software Engineering

(8102) ‘T 10 Areunry jJodwnpionng o) paredwios se JySySIHorpny Juisn yse) e 9)o[dwod 0y awr ss9f aye) s1owwerdord puriq oq

(B$107) T 30 JouIng, JUoyIAd "SA ++)) UI 9p0d 90In0s JurzATeue pue SUIPLAI S[TYM 1I0JJ2 [BNSIA UT QIUIJJIP B I} ST

(Q0107) SUS[BIA Pue JLIBYS (AeM Swes dY} U SAJ1A0U pue s)1adxa udisap djoy sinoAe| padA10a131s oq

(£107) T8 1 JUBYS ([00} € LTSS 3} 03 302dSaI y)im SIOTAOU Pue $313dXa UM OUIIFJIP B I3} ST

(2102) T8 12 yo§ ¢uorsuayardurod ureiderp sse[o pue juedronied e jo asnradxa oy) usam)aq uone[ar 3y St JBYA

(2107) T 19 yos ;uorsuayarduiod weielp sse[o Joy pue snjels [euorssojoid s juedronted e usamioq uone[ar ay) st JeYA

(Z102) T8 12 yeIeys (UIpLal 9p0d-301N0S Ul SISIIIUIPI [[8I21 0} AJI[IQE JI3Y) Pue ‘Qwir} pairnbar Jay) “10j39 J1ay) joedur sxopuas syuedionted ay) oq
(e 107) ‘[e 12 JouIny, ;syse) Surpurj-3nq pue MIIAIIAO SUIAJOS JO ADUSIONJO PUB SSIUIAIIDYJ aY) 109)Je oFenTue| Surwweasord seoq

(£102) T8 10 Aopurg ¢ SONIANOR UOISUaYIdW0D [9AS[-10ySTY 109)Je J[A1S IQIFIIUPI SAOP ‘ANIEPLAI UT 9OURIJJIP B Jutunssy

(£107) 'Te 30 Kopjurg ¢ Auqiqepear Joedwr o[A)s 10nUAPI S20(T

(€107) T2 10
JeIeyS /,syse) uorsuayardwod sjuawainbar ur £ovInooe romsue pue ‘own 10jj9 syued
-ronted oy joeduwr (Jenyxa) ‘s [eoryders) suonejudsardar juswarmnbar jo odAy oy seoq

(90T0T) ONSTEIA PUR JIIEYS (SE) 9OUBUUIBT dIBMIJOS B SULIND PAPIaU 11039 [ENSIA) 109JJe WILISLIP SSB[O B JO Jn0Ae[o) s20(]
(90107) NA[BIA Pue JLBYS (SINOAR] WeISeIp sse[d padA10a19)s WOIJ JSOUI J1JaUaq SYSE) UOTSUYIdUIOd a1emMIJOS YOTYA

(90107 BEIN
pue jureys) ¢sonayisee aind uo paseq sinoAe[‘sA synoAe| weiderp sse[d pad£joo1a)s 10§
SYSB) OUBUIJUIBW-IIBMIJOS UTRII3D JO uorsudyardwiod oy ur juswororduwir ue 21oy) S|

(€107 ‘Te 10 Jireys) ¢ syse) Surxyy Snq pue ‘@Injedj mou ‘mararoao Surafos ur juedronred e djoy (¢ 1J99S seoq

SSOUAATIONJJR pue ‘Aouarorgye ‘Aiifiqesn 1oy suonsanb yoreasar jo sojdurexy g ajqeL

pringer

NS

Empirical Software Engineering

(L102) 'T8 10 yureg /saSessou Jo1d pear s1adofaasp og

(S102) T8 1R 1V {Syul] Ajiqeasen Sulkjioa uaym uonuape Aed sjuedronted yorym o3 (SFDS) SANIIUS 9p0-20In0s jueriodwl ay) aIe Jeyp
(0661) AYSAO[aIS pue AQsox)) (wyiLIoS[e ay) JO Seale [EONLID U0 snooy s Juedronied e souanyjur aouanradxe seo

(L007) 'Te 10 Jnsng gisouwr Yy exiy juedronred op sweISerp sse[d ur swa)l yorgm uQ

(L00T) 'Te 10 Jnsng_;swreiSerp sseo ur je jooy Arear syuedronted op jeym

JsaIojur Jo seare Surpury Joj suonsanb yoreasar jo sejdwexy € ajqel

pringer

N

Empirical Software Engineering

(L102)
UOS[9)I] puUB BIeq(¢ SIUaWSAs Je[nJal Suowe papIalp A[[enba siiojje 1oy are ‘renonaed
uf (,opod 1e[n3a1 puayardwod 0) paxnbar are oY) udym ureped Aue morjoj s1odo[eadp oq

(By107) ‘Te 30 IoUIN], {UOYIAJ PUE ++)) U0IMIOQ SIOTAOU-UOU PUE SIOTAOU UIOM)Aq JOTABYDQ 9ZET 949 UI 9OUQIQJJIP B 919y} S|
(0661) AJSAO[AS pue £qSOI1)) (SIITAOU JO 9soy) wol) Jopip sjuedronted paouarradxa jo suroped Suimala ay) o
(0661) AYSAO[aIS pue Aqsox)) ¢swyiLIoS[e se yons 1xa) xa[dwod pue 1x9) o[dwrs Jurpear usamiaq 20UAIJJIP € 1Y) S|

(€102) T2 10
JeIeyS (sysel uorsudyardwos syudwarmnbar Suump (dn-wonoq ‘sa umop-doy) sor3arens

Surajos-ysey oyyroads asn 0) syuedronied pesy suonejussaidar ay) Jo amonns Ayl SO
(90107) NR[EIA PUE JLIBYS (SIOTAOU puE s11adXa Jo JoTAryaq 9ze3 940 9y} J09JJe WeISeIp SSB[O & JO JNOAL]) S20(]

(L00?) ‘T 30 Jnsnx ;sweiderp sse[d ysnoay) esiaeu sjuedronied op moy

so1391e1S UONIESIARU AJJUAPI 0) suonsanb yoreasar jo sojdwexy ¢ ajqel

pringer

NS

Empirical Software Engineering

(ST0T '8 12 11V) [9A9] Apmig
(€107 'Te 312 yereys) Aouaroyyord a8en3ue]
(Z10T ‘Te 30 Jureys) souaradxe pue a3pajmouy s Juedonreq so[qerrep SuneSniA
(€10T 'Te 39 IJeIRYS) 9POD ++)) "SA 9p0d UOYILJ Jo ‘suonrejuasaidar [enyxe) “sa [edrydersd <3-o sod£) Juaropjiq
(€10T 'Te 10 A9Pulg) (9109SIOPUN "SA 9SED [dUIRD) SI[AIS JOIJIUIP]
((900T & 10 ouBM[)) SIO9JOP OU "SA PO Y} UI S309J3p JO 29uasaId ayy “'S-9) anssI Ue J0 JoeJIiIe U ‘[00) B JO 99uasaId oy, so[qerreA juopuadopuy
(€107 'Te 10 1jeIRYS) Juads 110JJ2 [ENSIA JO JUNOWE Y],
(€107 'Te 10 Aopurg) sn[nwms oy} uo juads own Jo Junowe Ay J,

(95107 T 30 TouInT) (AovINode) SIOMSUE 1991109 Jo 93ejuadrad oy 1o ToquunN sa[qerre Juopuado

sa[qereA Sunesniwu pue ‘quopuadapur quapuadap jo sojdwexyq ¢ ajqep

pringer

N

Empirical Software Engineering

appropriate fixation identification algorithms (FIAs). Indeed, a FIA used for natural text
might not work well for source code.

Salvucci and Goldberg (2000) compared FIAs. They categorized algorithms with respect
to their spatial and temporal characteristics. They found that the dispersion-threshold iden-
tification (I-DT) and Hidden Markov Model fixation identification (I-HMM) algorithms are
the FIAs, independent of the domain, e.g., image scanning, driving, etc.

FIAs require researchers to set some parameters. Two main parameters are (1) the num-
ber of raw data samples that should be considered a fixation and (2) the maximum distance
in pixels between a raw data point and the average fixation point to be still considered a
fixation. Most eye trackers and data analysis tools come with default parameters values that
can be changed. Default parameters must be used with caution and we advise running pilot
studies to tune these parameters.

6.6 Definition of the Areas of Interest

While designing an eye-tracking study, researchers must define the Areas of Interest (AOIs)
based on the research questions, hypotheses, and variables. AOIs are used to describe visual
stimuli but there are no standard method for defining AOIs in terms of size and granularity
(Goldberg and Helfman 2010). In the following, based on our collective experience and
guidelines by Goldberg and Helfman (2010), we provide our recommendations:

Sizes and Positions of AOIs Eye tracking accuracy and precision impact the size of AOIs.
To limit the impact of fixation precision and accuracy, researchers must define AOIs large
enough to capture all relevant fixations. They can add extra space, padding, around AOIs to
ensure that all relevant fixations are attributed to the appropriate AOIs.

Although participants fixate on specific elements of stimuli, they may not fully perceive
these elements. A source of noise in eye-gaze data is incidental fixations. On the one hand,
participants can fixate within a 1° visual angle and still encode the information displayed by
the stimuli. On the other hand, participants may perceive information with their peripheral
vision. Consequently, researchers should define AOIs separated by at least 1°. Different
lines of code should be set apart appropriately so AOIs are clearly separated.

Overlapping AOIs Researchers should not define overlapping or nested AOIs because they
complicate data analysis. For example, as illustrated in Fig. 4, three fixations are in both
the red and orange rectangular AOIs and Tobii Studio, a popular experiment analysis tool,
counts the shared fixations twice. In addition, researchers must re-define the concept of
transition between AOIs. An AOI should not encompass the entire stimulus because an AOI
should capture just one area of interest in a stimulus.

Edges of Calibrated Area Usually, the calibration process includes displaying known
points (typically five to nine points) on a screen and mapping their locations with the coordi-
nates of the participants’ fixations on these points. Eye trackers typically perform calibration
based on both eyes and use the average display location to improve accuracy. If AOIs are
located towards the edges of the calibrated area, then error increases because only one eye
is used Goldberg and Helfman (2010). For participants with only one working eye, single
eye calibration is required.

Normalized AOIs When comparing two AOIs, researchers must normalize the measured
value (e.g., fixation duration) based on the sizes of the AOIs to ensure a fair comparison, as

@ Springer

Empirical Software Engineering

‘o <<Implementation>> <<Implementation>>
StandardDrawingView AbstractTool

=3
aﬁwingView q_ - tDvawing\:‘ﬁ\awing # fView : DrawingView

- fEditor : Di S +staie >
+ tool() : Tool - Selection : Veéfb\ + AbstractTool(i
+ activate() : v

+ drawing() : Drawing ><
+ deactivate() : void

+ edition() : DrawingEditor +tool() : Tool
+ drawing() : Drawing
emoussiragged(MouseEysit) VOiq -+ mouseDown(MouseEvent, x : int, y : int) : void
+IiioussRaleasad (Mo vem.) : V‘?'d + mouseDrag(MouseEvent, x : int, y : int) : void

+ edition() : DrawingEditor
+): -+ mouseUp(MouseEvent, x : int, y : int) : void
- SlandardDrawing;ew() : void

+ mousePressed(MouseEven
Fig. 4 The rectangular orange AOI overlaps the rectangular red AOL Try not to do this because it makes
analysis much more confusing

rawingView) :

* void

illustrated by Fig. 5. With graphical stimuli, researchers can divide the measured value by
the area of an AOI. With text stimuli, researchers can use the numbers of words or lines in
each AOI

6.7 Ethics Approval

When performing an experiment involving people, researchers must guarantee and preserve
the participants’ dignity and rights. Universities and—or governments have their own ethical
guidelines and codes of conduct, e.g., a Research Ethics Board (REB) or an Institutional
Review Board (IRB), that govern the recruitment and the studies.

In software engineering, researchers do not study participants themselves but rather want
to understand participants’ uses of some systems, artifacts, or tools when performing some
tasks. Therefore, with some ethics boards, researchers can apply for an umbrella agreement
to perform a set of experiments instead of applying for each study individually.

Researchers must preserve the confidentiality of the participants’ data at all times. They
must assure participants that their information/data is confidential. They must also assure
participants that an eye tracker does not collect any images or videos of the participants.
Therefore, they must explain to participants the functioning and output of the eye tracker
as well as, if appropriate, the analyses that they will perform on the data. The General Data

SelectionTool CreationTool
- “Kigure
. - fPrototype : Figure
+ SelectionTool(Drawing Vi ?
+ mouseDown(MouseE: ~Void — - w -
+ mouseDrag(MouseEv Pint, y : int) : void === ||+ CreationTool(DrawingView, prototype : Figure) :
+ mouseUp(MouseEvent, x : int, y : int) : void + activate() : void o ,
createAreaTracker(DrawingView) : Tool +mouseDown(MossEvent; x.:|Int;y - Ini) - vold
createDragTracker(DrawingView, Figure) : Tool + mouseDrag(MouseEvent, x : int, y : int) : void
+ mouseUp(MouseEvent, x : int, y : int) : void
createFigure() : Figure
Falls sensorsis used in only one task ? [What are the resource(s) thathelpsin
== |having health emergency monitored?

Fig.5 When comparing two AOIs of different sizes, normalization is required

@ Springer

Empirical Software Engineering

Protection Regulations of the European Union (GDPR) is a good source of information
regarding participants’ privacy rights and researchers’ responsibilities.

6.8 Discussion of Threats to Validity
We now discuss threats that may influence the validity of the results of an eye tracking study.

Internal Validity Internal validity relates to the quality of the study. The following biases
may jeopardize the internal validity of an eye tracking study.

— Order effect: in a within-subjects experimental design, in which each participant works
with all conditions, some participant may show better performance in the second task
because they practiced on the first. Participants may also perform worse because they
are tired. Researchers can minimize the order effect by using a factorial design or
randomization using the Latin-square method, with the need for more participants.

— Instrument bias: the eye tracker used in a study may change its measurements in time.
The use of video-based eye trackers reduces instrument bias because participants can
move their heads without decalibration.

— Hawthorne effect: researchers must provide guidance to the participants, calibrate
the eye tracker, and check the recording. The researcher’s presence may bias the data
because participants may feel being watched. Researchers should sit inconspicuously
away from the participants.

— Experimenter bias: researchers may unintentionally influence the participants to
achieve certain outcomes. The experimenter bias can be mitigated either by minimizing
the interaction between researchers and participants or by implementing a double-blind
procedure.

Construct Validity Researchers should not inform the participants about the precise goals
of the study to avoid hypothesis guessing. They should clearly explain to the participants
the process of the study, the number and duration of the sessions, and the type of questions
before running the experiment.

External Validity This validity is related to the generalization of the results from the par-
ticipants to the population as a whole. Researchers must consider individual differences
while selecting and assigning participants. Researchers can assign randomly participants
to different groups or use stratified sampling. Participants drawn from a population of stu-
dents reduce the researchers’ ability to generalize to a wider population, as discussed in
Section 6.3.

Conclusion Validity Conclusion validity is related to incorrect conclusions about rela-
tionships between measures. Researchers analyze the eye-gaze data to find relationships
between dependent and independent variables. Calibrating the eye tracker for each partic-
ipant and using well-documented measures can mitigate this threat. Also, any results must
be discussed and if possible, explained using some theories of cognition from psychology.

6.9 Results Presentation
After analyzing the results, researchers must present their results. We suggest to start by

explaining the definitions of eye tracking and related concepts, i.e., first order data, fix-
ations, saccades, scan paths, AOIs, and stimuli. Apart from these concepts, few other

@ Springer

Empirical Software Engineering

eye-tracking concepts have well accepted names such as the metrics defined in Section 4.
We recommend to avoid excessive eye-tracking jargon, and instead communicate findings
in a way that is comprehensible to those outside of the field.

It is also beneficial to use visual representations, such as heat maps and gaze plots, to
describe the data. They must be accompanied with proper and complete explanations of the
data that they present.

Provide replication packages is crucial to improve external validity (Kitchenham 2004).
We refer the avid reader to these work for an in-depth discussion and guidelines on the
replication of empirical studies in software engineering (Siegmund et al. 2015; Lung et al.
2008; Kitchenham et al. 2002).

No specific standard format exists to provide replication packages for eye-tracking stud-
ies. Previous work uses popular hosting services, such as GitHub?, or team Web sites to
offer replication packages,.> We recommend that replication packages report the following
information to facilitate replications:

— Description of the dataset, including: (1) raw and processed eye-tracking data (gaze,
events, and pupil dilation), (2) demographic data (age, programming experience,
gender, etc.), and (3) responses to the various questionnaires, surveys, and tasks.

— Stimuli, code snippets, and any other artifacts presented before, during, or after the
eye-tracking experiment to participants.

— Setup information, including: (1) screen layout, (2) participants’ viewing distance, (3)
font sizes and font types, and (4) screen size and resolution.

— Data analysis results and scripts, including: (1) eye-tracking metrics used in the study,
2) types and results of the statistical analyses, along with their scripts.

6.10 Combining Eye Tracking with Other Physiological Measures

Over the last 20 years, the software engineering research community has benefited from
the use of eye trackers. However, eye trackers are not without limitations and, unlike neu-
roimaging devices, they do not provide insights into the brain activities, only a proxy to
cognitive processes, through the mind—eye hypothesis. As a result, some researchers use
eye tracking simultaneously with electroencephalography (EEG) (Fritz et al. 2014), fMRI
(Peitek et al. 2018b), and fNIRS (Fakhoury et al. 2018).

From a participant’s perspective, there is almost no extra effort with incorporating eye
tracking into EEG, fMRI, or fNIRS studies. The majority of fMRI devices come with built-
in eye trackers. Also, eye trackers can be installed in front of a monitor while participants
are wearing EEG or fNIRS sensors. Only extra minutes are required to calibrate and validate
the eye tracker at the beginning of such studies. Peitek et al. (2018b) showed that adding
eye tracking to fMRI studies results in more fine-grained fMRI analyses.

However, adding fMRI or fNIRS as an additional modality to eye-tracking experiments
brings many difficulties. fMRI and fNIRS rely on the participants’ hemodynamic response,
which is a metabolic change (e.g., oxygen, glucose) in neuronal blood flow to active brain
regions (Buxton et al. 2004). This response saturates over time, which imposes a stringent
limitation on the amount of time that a stimulus is shown to the participants (commonly 30
seconds). They also require robust mathematical analyses to avoid false discovery. Finally,

2https://github.com/brains-on-code
3http://www.ptidej.net/downloads/replications/

@ Springer

https://github.com/brains-on-code
http://www.ptidej.net/downloads/replications/

Empirical Software Engineering

fMRI and fNIRS are expensive per se and their uses are expensive as well, about $500 to
$600 per hour for a fMRI.

7 Data Analyses and Interpretation of the Results

Eye trackers typically generate a massive amount of data, so it is important to make sure that
the data used for analysis is accurate and reliable. It is our experience that due to the lack
of standardized protocols and tools, most of the advanced analyses must be customized and
implemented on a case by case basis. This lack causes variations in the analytical approaches
and make comparisons across studies difficult.

Most eye tracking software packages do not come with advanced data analysis tools
for software engineering tasks. Therefore, researchers must leverage specialized tools to
obtain insights into the software engineers’ cognitive processes and intentions from their
eye movement data. We strongly recommend that researchers perform a preprocessing step
to assess the quality of the data before visualizing and analyzing statistically the data.

7.1 Data Quality Assessment

Good quality eye gaze data is essential for the validity of the research. Eye gaze data
contains noise and errors. Holmqvist et al. (2012) discussed the magnitude and the impor-
tance of the effect of data quality on eye-tracking study results with examples of accuracy,
precision, and data loss.

Although associations, like COGAIN*, work on standardizing eye-gaze data quality,
there are no guidelines for evaluating the quality of eye-tracking data. In the following, we
provide our recommendations:

— Replay the eye gaze using the analysis tools provided with the eye tracker. The replay
can roughly show when, where, and for how long a participant viewed different parts
of the stimuli. Observing eye gaze behaviors can also reveal parts in which no recorded
data is available to be displayed on the screen, a situation which could potentially make
the dataset sparse.

Some analysis tools offer automatic evaluation of data quality, for example, in the
form of a percentage of the time eyes could be reliably tracked during a trial. In our
studies, we considered only trials with at least 70% trackability. However, trackability
depends on the length of the recordings and other factors so a replay must be performed
to verify where missing data occurred and determine whether the loss could impact the
study at hand.

Several reasons can explain missing data. Participants may have moved and their
eyes/heads went out of the range of the eye tracker, which caused a total data loss.
Extensive head movements also may lead to decalibration, which may result in offsets
or data loss. By replaying the captured eye movements, researchers can visually identify
time frames during which data is missing or offset to exclude these frames or correct
the offsets.

— Look for offsets in the eye gaze data and apply corrections. Offsets happen when a par-
ticipant moved beyond the capability of an eye tracker to follow or when decalibration

“http://www.cogain.org/eye-tracking/

@ Springer

http://www.cogain.org/eye-tracking/

Empirical Software Engineering

occured. Researchers can use offset-correction algorithms provided by some analysis
tools or third-party tools, e.g., Taupe (De Smet et al. 2014), to correct offsets.

7.2 Visualizations

An eye-tracking experiment generates a large amount of data. Visualizations allow
researchers to explore the temporal and spatial characteristics of the eye-tracking data.

Blascheck et al. (2017) presented a taxonomy of existing visualizations. This comprehen-
sive overview classifies visualizations based on the granularity of the data (fixation-based
or AOI-based) and the representation of data (temporal, spatial, or spatio-temporal).

We now discuss visualizations that have been used by the software engineering commu-
nity. In addition to presenting a detailed description of these visualizations, we compare and
discuss various aspects of these techniques.

Gaze Plots Gaze plots provide a static view of the eye-gaze data and show the time
sequence of looking using the locations, orders, and duration of fixations on stimuli. Each
fixation is represented as a circle. Some gaze plots use the same size for all fixation circles.
Others take fixation duration into account, correlating the circle’s radius with the fixation
duration. The longer the fixation, the larger the circle as shown using EyeCode’ in Fig. 6).
As shown in Fig. 7, Sharif and Maletic (2010b) used gaze plots to compare experts and
novices performing design pattern comprehension tasks.

Heat Maps A heat map is a color spectrum that represents the intensity of a measure, for
example, fixations. Heat maps are the most common visualizations in eye tracking studies
(Kitchenham 2004). They show the distribution and focus of visual attention over the stim-
uli. However, in contrast to gaze plots, they do not provide any information about the order
of the fixations.

A heat map is usually superimposed on top of a stimulus to highlight the areas at which
participants looked, as illustrated by Fig. 9. The colors red, orange, green, and blue indicate
the fixation counts or duration from highest to lowest; thus, the longer the observation, the
warmer (redder) the color.

A heat map can be generated based on fixation counts or fixation duration. When using
fixation counts, as illustrated by Fig. 8, it treats all fixation duration equally, even though
fixation duration play an important role in understanding eye tracking data (Henderson
and Pierce 2008). Bojko (2009) presents various types of attention maps while providing
guidelines on the usage of heat maps to avoid common misuses and pitfalls.

Sharif and Maletic (2010b) used heat maps to compare multi-cluster vs. orthogonal lay-
out for design pattern comprehension, as shown in Fig. 8. Busjahn et al. (2011) and Ali
et al. (2015) used heat maps to illustrate areas in the source code that attract more visual
attention, as shown in Fig. 9. Sharafi et al. (2012) used heat maps to compare the different
viewing strategies deployed by a small number of male and female developers while recall-
ing the names of identifiers. Jbara and Feitelson (2017) compared the attention distribution
of average participant for regular code (code with repetitions of the same basic pattern) vs.
irregular one, using heat-maps.

Color Coded Attention Allocation Map A color-coded attention-allocation map is gener-
ated for a textual stimulus based on either the fixation counts or duration. It assigns a color

Shttps://github.com/synesthesiam/eyecode

@ Springer

https://github.com/synesthesiam/eyecode

Empirical Software Engineering

(a) Fixed diameter of the fixation circles (b) Varied diameter of the fixation circles

Fig. 6 Examples of gaze plots plotted with EyeCode. a uses the same size for all fixation circles, b takes
fixation duration into account

to each word separately from a color spectrum between light green (lowest attention level)
to light red (highest attention level) (Busjahn et al. 2011), as illustrated in Fig. 10. Busjahn
et al. (2011) used color-coded attention-allocation maps to identify and study the different
parts of source code that attracts different levels of attention (based on the fixation num-
bers). Ali et al. (2015) used similar maps to identify the parts of texts and source code used
in traceability tasks.

Radial Transition Graph A radial transition graph is a circular heat map (Blascheck et al.
2017). AOIs are shown on a circle in which the size of each circle segment specifies the total
fixation duration within an AOI. The circles are color-coded based on the fixation numbers

| [rcadBlock

Fa - QLibraryPrivate *
i&d_}lo‘d ool

ot MutaObiect
[~QPluginLoader(in parent : QObject* = 0)
+QPluginLoader(in fileName : string, in parent =0)
[rinstance() : QObject *
ich) : OList<QObject*>
+load() : bool
[runload() : bool
+isLoaded() : bool
[fileName() : string
ing() : string
wentity»
\\ QU;n ity "_“ 3 QLibraryPrivate
5
— \\ pil i ﬂx\«cmum
- » whoundary» b
«boundary» majorferNum ! Y

instantl ar QBalloonTip Heosinss |

\
\
Bl +qt_version
7¥_ n Hraylcon : QSystemTraylcon * [R
: T pludMtaic 0 Ftimerld : int pluginState
113 - Toad)
+oad() 1ge() howBall 3
¢ > loadPlugin()
HoadPllgin()) E-hideBalloon()
e unld +unload()
wboundary» +releas wboundary» :::::1)
S TN e by Tobw QSystemTrayleon] [T vapi]

(a) Expert (b) Novice

Fig.7 Gaze plots on portion of a stimulus comparing an expert and novice for Singleton pattern comprehen-
sion task (Sharif and Maletic 2010b)

@ Springer

Empirical Software Engineering

(a) Multi-cluster layout (b) Orthogonal layout

Fig. 8 The heat map of a participant working with a multi-cluster and b orthogonal layouts (Sharif and
Maletic 2010b).

inside the AOIs while arrows indicate the transitions between AOIs. The thickness of the
arrows represents the numbers of transitions between AOIs.

Blascheck and Sharif (2019) used radial transition graphs to compare participants’ view-
ing strategies while reading natural text and source code. Peterson et al. (2019) used radial
transition graphs to compare participants’ line reading behavior between novice and expert
developers. As shown in Fig. 11, a novice developer, P16, goes back and forth between lines

Q4) what i the name of the class? Q4) what is the name of the class?

1) 2D_Frame

2) Painter

My _class
.

4) My_Class.
Q }

(a) Male vs. female participants (b) Attention distribution of various
code areas

Fig. 9 a A heat map of (Left) a female participant and (Right) a male participant in a study asking each
to recall the name of identifiers (Sharafi et al. 2012). b Areas of source code that attract higher interests
(Busjahn et al. 2011)

@ Springer

Empirical Software Engineering

public class D {
public static void main (String [] args) {
System.out.printin (test ("anna")) ;
}
public static boolean test (String s) {
inti=0;
intj =slength ()-1;
while (i<=j){
if (s.charAt (i) != s.charAt (]))
return false
i ++
j ..
}
return true
}
}
0% 0% 100%

Fig. 10 Color-coded attention allocation map based on the number of fixations per word (Busjahn et al. 2011)

1. #include <iostream>
- #include <string>
. using namespace std;

[XIN

line 01 @ line 02 line 03 @ line 04 line 05 @ line 06 @ line 07 4. class SignChecker {
line 08 @M line 09 line 10 @ line 11 line 12 @B line 13 @ line 14 5. private :
line 15 @ line 16 line 17 line 18 @ line 19 @M line 20 @M line 21 6. int number ;
y
8.
9

line 22 @ line 23 G line 24 @D line 25 @ line 26 40 line 27 49 line 28 "~ public:

SignChecker (int);
string check () ;

© incoming ® outgoing

10.%

11. SignChecker::SignChecker (int) { number = 5

12. string SignChecker::check () {

13. string theSign =" ;
14, i (number < 0) {
15. theSign = "negative" ;
16. }else if (number > 0) {
17. theSign = "positive” ;
18. }else {
19. theSign = "null" ;
P05 P16 2
SignCheckerClassMR SignCheckerClassMR 21. return theSign ;
46.8s 37.3s 2.}

23. intmain () {

24. signChecker number1 (10);

25. cout << "Actual: " << number1.check () << "Expected: positive" << endl ;
26. SignChecker number2 (0) ;

27. cout << "Actual: " << number2.check () << "Expected: null" << endl ;

28. return 0 ;

Fig. 11 Left: Radial transition graphs for P05, an expert, and P16, a novice. Right:
SignCheckerClassMR, which returns the sign of the input integer (Peterson et al. 2019)

that are relatively close by. In contrast, an expert developer, P05, transitions between lines
of code that are further away.

@ Springer

Empirical Software Engineering

All these visualizations (and the many others that exist in and are developed by various
research communities) have strengths and weaknesses for eye-tracking data. Various factors
impact the choice of a visualization.

Generally, independent of a particular task, researchers can use visualizations as a start-
ing point for analyzing eye-tracking data and later as illustrations (Pernice and Nielsen
2009). They can help identify patterns, trends, and outliers in eye-tracking data. However,
they must also use statistical analyses to support their conclusions about the participants’
eye gaze data.

Specifically, the task at hand is a key factor to identify which visualizations work best.
Gaze plots are useful for scan paths comparisons to identify and compare some participants’
viewing strategies. Heat maps work best for comparing some participants’ attention distri-
butions and identifying whether the fixated areas either are difficult to process or contain
relevant content.

However, heat maps and gaze plots must be used with care (Holmqvist et al. 2011).
Pernice and Nielsen (2009) showed that different factors, including tasks, motivation, famil-
iarity with the stimuli, affect how heat maps and gaze plots are drawn. Thus, researchers
must consider these mitigating factors when comparing different heat maps and gaze plots
to draw conclusions.

We recommend using a combination of visualizations to analyze the eye-tracking data.
For example, researchers can use heat maps and gaze together to identify participants’ view-
ing trends through the distribution of visual attention along with the visual paths. Then,
further statistical analyses of eye-tracking metrics would support or refute these findings.

Classic attention maps, such as heat map and gaze plot, only take into account the spatial
aspect of the eye gaze data and ignore its temporal distribution. Thus, they have been mainly
used by the research community for static stimuli, e.g., images. However, as eye-tracking
research advances, reseachers proposed new visualizations for dynamic stimuli, e.g., videos,
by adjusting fixation data based on a moving object (Blascheck et al. 2017).

The number of AOI-based visualizations is limited, especially if researchers are inter-
ested in spatio-temporal analyses. Radial transition graphs became popular recently and are
being adopted by the research community. However, they only support small numbers of
AOIs. In general, scalability is the main limitation of AOI-based visualizations and there is
a need for new visualizations to overcome this limitation (Blascheck et al. 2017). Achiev-
ing scalability in eye tracking visualization on large systems is a non-trivial problem which
visualization researchers are working on Blascheck et al. (2017). Various types of filters and
focus plus context approaches are needed.

7.3 Statistical Analyses

This section discusses statistical analyses applicable to eye-tracking data and how to choose
appropriate ones.

The first step in analyzing eye-tracking data is to explore the data and to search for any
relationship between two or more variables. Box plots, histograms, and scatter plots are
statistical graphs that researchers can use to analyze eye-tracking data at first. Although
there were not developed for eye-tracking data, they provide valuable, visual information
about such data.

A box plot shows the distribution of some data using their minimum, first quartile,
median, third quartile, and maximum. It can be used by researchers to identify outliers and

@ Springer

Empirical Software Engineering

compare distributions. Sharafi et al. (2012) provided box plots for three effort metrics: fix-
ation counts, fixation rates, and fixation counts on relevant and irrelevant AOIs to compare
male and female participants.

A scatter plot displays the correlation between two set of data. It also shows a line of
best fit (regression line) highlighting the spread or dispersion of the data (closeness to the
line). Sharafi et al. (2012) used scatter plots to visualize efficiency and accuracy trade offs
between male and female participants.

After qualitatively examining the data using some statistical plots, researchers must per-
form quantitative analyses to confirm their theory and—or to quantify associations between
sets of data. They must consider different factors when choosing statistical tests, including
the type and distribution of the data, the purpose of an experiment, and the experimental
design (Pfleeger 1995). Table 6 presents a set of statistical tests and the factors impacting
their usages, e.g., distribution of the data.

To find a valid statistical test, researchers must consider the normality of the distribution
of the data. Researchers can ascertain the normality of some data using various statistical
tests, including the Shapiro—Wilk test or Pearson’s 2 test. Wohlin et al. (2012) explains in
great detail, in the context of software engineering research, how to study data distributions.
We recommend to adhere to their guidelines. If the data is normally distributed, then para-
metric tests can be used, which are more “powerful” than their non-parametric counterparts.
Non-parametric tests are usually appropriate only with small sample sizes (Kitchenham
et al. 2002), which are common in eye-tracking studies (Sharafi et al. 2015b).

The type of experimental design is also a factor in choosing a valid test. In between-
subjects (or between-groups) study designs, different participants are being exposed to each
levels of some treatments. In within-subjects (or repeated-measures) study designs, the same
participants test all the treatments. For example, Sharif and Maletic (2010b) investigated
the effectiveness of three different UML layout techniques on comprehension in a within-
subjects design in which all participants worked with all three layouts.

Then, researchers must use the tests that help them with their studies: either to confirm a
theory or to quantify an association between two data sets.

To Confirm a Theory The goal of an experiment may be to validate the truth of a theory,
e.g., to investigate the impact of a technique on participants’ effectiveness. It is usually
formally expressed using a set of hypotheses and researchers can use a test to verify their
hypotheses and confirm their theory:

1. The data is normally distributed. If the comparison is between two treatments, the
Student’s t-test is appropriate (Wohlin et al. 2012). For example, Bednarik (2012) com-
pared experts and novices looking for bugs. Their null hypothesis was the lack of
statistically significant difference between novices and experts regarding the number
of bugs found. They used the t-test and concluded that experts found more bugs than
novices.

If there are more than two treatments, then ANalysis Of VAriance (ANOVA) is
appropriate to determine whether the means of three or more groups are different.
ANOVA uses a F-test to assess the equality of means. An F-test returns a F-statistics,
its related degrees of freedom, and its p-value, used to reject the null hypothesis. For
example, Stein and Brennan (2004) divided their participants into two groups, recorded
the eye gaze of those in the first group, and displayed the records to those in the other
group. They analyzed the impact of watching other participants’ eye gazes on the per-
formance of the second group using ANOVA. They concluded that a participant’s eye

@ Springer

Empirical Software Engineering

(A\) [OPOW PIXIW JRAUI[PIZI[RIAUAND) 10 [V (7=<) 1=<
(&) (1gV) 1531 Yuey pausiy (z=<)1=< NN
(M) VAONY 21nseaur-pajeadal [er103oe] (A\) [9pOW paxIw Jeaur| (2=<) 1=<
(9) VAONY [eLI019B] (A\) S[opoW Jeaur| (Z=<) 1=< N uoneroosse jo uonenbyg
189 X @1 NN
JUSIOIJJO0D UONR[ALIOD S UeuLeadS @1 N UOTJRIDOSSE JO AINSBIA! uonerdosse ue Aynuenb of,
(M) 159y ueWIpaLig @)1
(M) YueI-pouSIs UOXOITIAN @1
(&) H strem—eysnoy @1
(g) N Aounypm-uuey @1 NN
(M) VAONY 21nseaw-pajeadar Aem-auQ)1
(M) (VAONV Aem-auQ) sonsneis-4 @)1
(g) 15911 sojdures paired @1
(g) 15911 s uapni§ @1 N K109y ® ULIJUOD O],
1S3, [eansSneIS (19A7) J010B] 81 asoding

(NN) [ewIou-uou 10 (N) [BWIou JY)Id SI BJep Ay}

Jo ("1s1QQ) uonnqINSIp Ay, ‘A[oAnoadsar ‘sudisop s)02[qns-unpim pue -usamiaq I0j aIe (A\) pue (g) "SIsA[eue eep Suryoen-a4a I10J pasn s)sa) [edn)sTels o) Jo Arewruing 9 ajqel

pringer

N

Empirical Software Engineering

gaze provides useful cues to other participants and improves their performance. (Linear
models are increasingly used as a robust alternative to ANOVA.)

2. The data is not normally distributed. If the comparison is between two treatments, the
Mann-Whitney U or Wilcoxon signed-rank tests are appropriate. Sharafi et al. (2012)
compared male and female developers’ accuracy and efficiency in time when per-
forming a program comprehension task. They applied the Wilcoxon test separately on
accuracy and time data and reported that there was no statistically significant difference
between male and female developers.

If there are more than two treatments, then the Kruskal-Wallis test (One-Way
ANOVA) (Wohlin et al. 2012) can tell whether the data originated from a same distri-
bution. For example, Ali et al. (2015) computed the sum of the fixation duration that
participants applied to specific source-code entities (SCEs), e.g., class names. They
used Kruskal-Wallis test to assess whether participants had equal preferences for the
different SCEs.

To Quantify Associations between Two Sets of Data Researchers can use a correlation
analysis to find and quantify the association between two sets of data, for example to ana-
lyze the impact of a factor X on participants’ characteristics Y. A correlation analysis is
obtained either by generating a measure of association or by providing an equation that
describes the association. Linear regression can also be used to understand the type of the
association. Cagiltay et al. (2013) used Pearson correlation coefficients to investigate the
relationship between defect difficulty levels and fixation duration. First, they computed the
defect difficulty levels for all participants based on the time that they took to find the defects
and the order in which they found the defects. Second, they assessed the normality of the
data. Finally, they applied Pearson’s correlation coefficients to identify a significant corre-
lation between the two variables: a longer mean fixation duration is associated with a higher
defect difficulty level.

7.4 Tools

Various tools are available for analysing eye tracking data. Commercial eye trackers suppli-
ers sells, e.g., FaceLAB and Tobii are selling their own data analysis tools. In addition, there
are free-of-charge tools that offer some capabilities required and—or work with a subset of
commercial eye trackers. Farnsworth (2019b) also listed ten eye-tracking software tools,
along with their functions and accessibility. The majority of these tools support testing of
stimuli through non-commercial Webcam-based eye trackers.

Based on our previous experience with commercial, high-precision eye trackers, we fea-
ture a non-exhaustive list of six open-source data analysis tools. These tools work well
with the commercial eye trackers that have been frequently used by software engineer-
ing researchers. Table 7 captures the essentials of the eye-tracking analysis tools discussed
below.

Ogama® is an open-source software, published under GPL license that allows simultane-
ous recording and analyzing eye-gaze and mouse-tracking data. It supports filtering of eye
gaze and mouse data, creating attention maps, defining and modifying AOIs, calculation of
saliency and Levenshtein distance. In addition, the replay of the recording is available while
recording is also possible with various commercial and open-source eye trackers.

6

Shttp://www.ogama.net/

@ Springer

http://www.ogama.net/

Empirical Software Engineering

Taupe’ stands for Thoroughly Analyzing the Understanding of Programs through Eye-
sight. Published under GPL license, It was introduced by Guéhéneuc (2006b) and extended
by De Smet et al. (2014) as an open-source software system designed for analyzing eye-
tracking data. Taupe supports the data coming from various commercial eye trackers,
including FaceLAB and Tobii eye trackers. A set of well-known software engineering prac-
tices, such as design patterns and a plug-in architecture, were used to make Taupe extensible
by developers.

After importing eye-movement data, Taupe can calculate various fixation statistics
including fixation count, fixation count per AOI, fixation duration, normalized fixation
count per AOI, fixation rate, ROAF, and spatial density. Also, Taupe supports calculat-
ing saccade statistics (e.g., Transition Density), convex hull area, scan paths and their
comparisons, accuracy, and duration.

Moreover, Taupe comes with an AOI creation tool allowing users to draw polygons
around a set of fixations superimposed on top of a stimulus. Each AOI has a unique ID used
by Taupe to calculate AOI-based metrics.

iTrace® is an eye-tracking infrastructure designed for experiments on large software arti-
facts, including source code, bug reports, and requirement documents (Guarnera et al. 2018;
Shaffer et al. 2015). Current eye-tracking systems only support static stimuli fixed in place,
while iTrace allows participants to interact with source code and other artifacts naturally,
supporting scrolling in and switching between files. It comes with three plugins to support
Visual Studio, Eclipse, and Google Chrome, which are open source under the GPL license.

Two main components® of iTrace are Gaze2Src and iTraceVis. Gaze2Src processes iTrace
gaze data offline after the recording. This post-processing tool supports three fixation
algorithms, including the basic fixations, based on a method proposed by Olsson (2007),
velocity-based fixations (I-VT), and dispersion-based fixations (I-DT). All these fixation
algorithms can be adjusted based on the tasks and the stimuli. Gaze2Src maps fixations to

http://www.ptidej.net/tools/programcomprehension/
8http://www.i-trace.org/
http://www.i-trace.org/features/

Table 7 A rundown of capabilities of eye tracking analysis tools. @ = Provides capability, © = Partially
provided capability, O = Does not provide capability

Capabilities Tools
Ogama Taupe iTrace EyeCode PandasEye PyGaze

AOI analysis o [J [[O []
Plots [[J [[] O []
Metrics [) [@) (] (@) []
ML analysis O O O O O ([
Realtime recording [) O [@) @) O
Support scrolling @] @] [} O O O
Programming required O O O [([] ®
Ongoing support O [) [[[[]
Hardware compatibility [) © (D) [[[
Multi-input integration [} O O O O ([]
Open source [[) [] [] [] []

@ Springer

http://www.ptidej.net/tools/programcomprehension/
http://www.i-trace.org/
http://www.i-trace.org/features/

Empirical Software Engineering

syntactic tokens of the source code using srcML!?. Currently, Gaze2Src supports programs
written in C, C++, C#, and Java. A submodule of iTrace named iTrace-Toolkit plans to sup-
port high-speed trackers along with support for code editing (which is a non-trivial feature
to add).

iTraceVis (Clark and Sharif 2017) supports the visualization of large-scale eye-tracking
data in the presence of scrolling and switching between files. It currently supports four types
of visualizations: heat maps, gaze skylines, static gaze-maps, and dynamic gaze-maps.

EyeCode'! (Hansen 2014) is a Python library for analyzing and visualizing eye tracking
data. It is built on top of the of the pandas statistical computing library. It contains special-
ized functions for processing eye gaze data, creating AOIs, calculating various fixation and
saccade metrics (including those based on AOIs), and displaying the data and metrics. The
plugin is open source under the GPL license and it is freely available.

PandasEye'? (Vrzakova 2019) is a collection of Python libraries for advanced analysis
of raw eye tracking data for the purpose of machine learning experiments. The tool has
been previously employed for intention detection and multimodal affect recognition, and
includes all primary building blocks of a machine learning pipeline for eye tracking data.

PyGaze'3 (Dalmaijer et al. 2014) is an open source package under the GPL license
for creating eye-tracking experiments in Python syntax. It supports both visual and audi-
tory stimulus presentation. It collects data from various inputs including keyboard, mouse,
joystick, and etc. It works with many commercial eye trackers (EyeLink, SMI, and Tobii
systems).

8 Conclusions

Eye tracking provides invaluable insights in experimental studies in software engineering by
collecting participants’ eye-gaze data on visual stimuli. They provide insights to researchers
that are not possible to obtain with questionnaires or surveys. However, they are not without
shortcomings and they present practical and ethical difficulties.

Based on our collective experience using eye trackers and a previous, systematic
literature-review of eye-tracking studies (Sharafi et al. 2015b), we presented the history and
technological evolution of eye trackers. We discussed why, when, and how it is appropriate
to use eye trackers in software engineering research. We also provided practical sugges-
tions on conducting eye-tracking studies. With this paper, we help software engineering
researchers plan, design, and conduct experimental studies with eye trackers.

Eye trackers now represent a middle ground for studies on human factors in software
development activities for several reasons. They are a valuable tool that can provide addi-
tional insights into participants’ cognitive processes than surveys or questionnaires can.
They are also cheaper, less invasive, and less complex than fMRI.

First, eye trackers are now inexpensive and convenient to use. Nowadays, webcam-based
eye trackers are a good compromise between price and data quality. Most eye trackers come
with their own analysis tools, which are usually well-supported. Third-party tools are also
available.

10http://www.sreml.org/#home
http://github.com/synesthesiam/eyecode
Zhttp://github.com/hanav/PandasEye
Bhttp://www.pygaze.org/

@ Springer

http://www.srcml.org/#home
http://github.com/synesthesiam/eyecode
http://github.com/hanav/PandasEye
http://www.pygaze.org/

Empirical Software Engineering

Second, all models of eye trackers provide invaluable data to illustrate participants’ cog-
nitive processes, following the mind-eye hypothesis. Such data can not be collected easily
through surveys, or at cheaper cost with fMRI.

Third, eye trackers fit in well to software engineering research because almost all soft-
ware engineering activities, from requirements analysis to performance profiling, make use
of visually-oriented artifacts, e.g., deployment diagrams or debugging tools.

Fourth, eye trackers allow systematic studies of software activities and artifacts while
participants perform representative tasks, albeit in controlled environments. These studies
could improve both the quality of the artifacts and the quality of the developers’ interactions
with these artifacts.

Fifth, however, eye trackers must be carefully used for their data to be correct and rel-
evant. They also provide a wealth of data that must be carefully collected, stored, and
analysed to provide valid conclusions.

Following this paper, we suggest four main directions of future work.

1. More eye-tracking studies should be performed in ecologically valid setups to bring
in-depth understanding of various software maintenance activities and to help make
developers more effective. These studies should be performed in a variety of settings
and with different sets of participants to reduce validity threats.

2. More research on the uses of eye trackers should be performed to improve the tools that
support software developers. In addition to the availability of cheaper and more precise
eye trackers for research, eye trackers could be embedded directly into the software
developers’ workstations to provide timely interventions based on their visual attention.

3. More research should incorporate advances in eye trackers to refine the data collected
by and analyses performed with eye trackers to further understand the participants’
cognitive processes, using metrics, such as pupil dilatation or virtual reality glasses.

4. Suitable tools should be developed to ease the simultaneous recording and analysis of
eye tracking and neuroimaging (i.e., fMRI and fNIRS) data. This simultaneous mea-
surement of software engineering tasks is challenging, but promising (Peitek et al.
2018b). The high cost, restrictive environment, and high rate of data loss due to par-
ticipant motion of fMRI impose limits on the practicality for a broad spectrum of use
cases.

Acknowledgements The authors would like to thank the anonymous reviewers for their insightful com-
ments and suggestions. This work has been partly funded by the US NSF under Grant Numbers CCF
18-55756 and CCF 15-53573, as well as the NSERC Discovery Grant program and the Canada Research
Chair in Software Patterns and Patterns of Software.

References

Abid NJ, Maletic JI, Sharif B (2019a) Using developer eye movements to externalize the mental model used
in code summarization tasks. In: Proceedings of the 11th ACM Symposium on Eye Tracking Research
& Applications, ACM, New York, ETRA *19, pp 13:1-13:9. https://doi.org/10.1145/3314111.3319834

Abid NJ, Sharif B, Dragan N, Alrasheed H, Maletic JI (2019b) Developer reading behavior while summa-
rizing java methods : Size and context matters. In: Proceedings of the 41th International Conference on
Software Engineering, ACM, New York, ICSE 2019, p To Appear

Ali N, Sharafi Z, Guéhéneuc YG, Antoniol G (2015) An empirical study on the importance of source code
entities for requirements traceability. Empir Softw Eng 20(2):442-478

@ Springer

https://doi.org/10.1145/3314111.3319834

Empirical Software Engineering

Alkan S, Cagiltay K (2007) Studying computer game learning experience through eye tracking. Br J Educ
Technol 38(3):538-542

Armaly A, Rodeghero P, Mcmillan C (2018) Audiohighlight: Code skimming for blind programmers,. In:
2018 IEEE International conference on software maintenance and evolution, ICSME, IEEE, pp 206-216

Ayres J, Flannick J, Gehrke J, Yiu T (2002) Sequential pattern mining using a bitmap representation. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM, New York KDD ’02, pp 429—435. https://doi.org/10.1145/775047.775109

Barik T, Smith J, Lubick K, Holmes E, Feng J, Murphy-Hill E, Parnin C (2017) Do developers read compiler
error messages? In: Proceedings of the 39th International Conference on Software Engineering, IEEE
Press, Piscataway, ICSE *17, pp 575-585. https://doi.org/10.1109/ICSE.2017.59

Beatty J (1982) Task-evoked pupillary responses, processing load, and the structure of processing resources.
Psychol Bull 91(2):276

Bednarik R (2007) Methods to analyze visual attention strategies: Applications in the studies of program-
ming. University of Joensuu

Bednarik R (2012) Expertise-dependent visual attention strategies develop over time during debugging
with multiple code representations. International Journal of Human-Computer Studies 70(2):143-155.
https://doi.org/10.1016/j.ijhcs.2011.09.003

Bednarik R, Tukiainen M (2005) Effects of display blurring on the behavior of novices and experts during
program debugging. In: CHI 05 Extended Abstracts on Human Factors in Computing Systems, ACM,
New York, CHI EA °05, pp 1204-1207. https://doi.org/10.1145/1056808.1056877

Bednarik R, Tukiainen M (2006) An eye-tracking methodology for characterizing program comprehension
processes. In: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, ACM,
New York, NY, USA, ETRA 06, pp 125-132

Bednarik R, Eivazi S, Hradis M (2012) Gaze and conversational engagement in multiparty video conversa-
tion: an annotation scheme and classification of high and low levels of engagement. In: Proceedings of
the 4th workshop on eye gaze in intelligent human machine interaction, ACM, p 10

Begel A, Vrzakova H (2018) Eye movements in code review. In: Proceedings of the Work-
shop on Eye Movements in Programming, ACM, New York, EMIP ’18, pp 5:1-5:5.
https://doi.org/10.1145/3216723.3216727

Berg-strom JR, Schall A (2014) Eye tracking in user experience design. Elsevier

Binkley D, Davis M, Lawrie D, Maletic JI, Morrell C, Sharif B (2013) The impact of identifier style on effort
and comprehension. Empir Softw Eng 18(2):219-276. https://doi.org/10.1007/s10664-012-9201-4

Blascheck T, Sharif B (2019) Visually analyzing eye movements on natural language texts and source code
snippets. In: ETRA 2019-ACM Symposium on Eye Tracking Research & Applications

Blascheck T, Kurzhals K, Raschke M, Burch M, Weiskopf D, Ertl T (2017) Visualization of eye tracking
data: a taxonomy and survey. Computer Graphics Forum 36(8):260-284

Bojko A (2005) Eye tracking in user experience testing: How to make the most of it. In: Proceedings of the
UPA 2005 Conference

Bojko AA (2009) Informative or misleading? heatmaps deconstructed. In: Proceedings of the 13th Inter-
national Conference on Human-Computer Interaction. Part I: New Trends, Springer, Berlin, pp 30-39.
https://doi.org/10.1007/978-3-642-02574-7_4

Buse RPL, Sadowski C, Weimer W (2011) Benefits and barriers of user evaluation in software engineering
research, Object-oriented programming, Systems, Languages and Applications, pp 643-656

Busjahn T, Schulte C, Busjahn A (2011) Analysis of code reading to gain more insight in program com-
prehension. In: Proceedings of the 11th Koli Calling International Conference on Computing Education
Research, ACM, New York, Koli Calling "11, pp 1-9. https://doi.org/10.1145/2094131.2094133

Busjahn T, Schulte C, Sharif B, Simon BA, Hansen M, Bednarik R, Orlov P, Thantola P, Shchekotova
G, Antropova M (2014) Eye tracking in computing education. In: Proceedings of the Tenth Annual
Conference on International Computing Education Research, ACM, New York, ICER 14, pp 3-10.
https://doi.org/10.1145/2632320.2632344

Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm S (2015) Eye move-
ments in code reading: Relaxing the linear order. In: Proceedings of 22th International Conference on
Program Comprehension, ICPC 15

Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation.
Neuroimage 23:S220-S233

Cagiltay NE, Tokdemir G, Kilic O, Topalli D (2013) Performing and analyzing non-
formal inspections of entity relationship diagram (erd). J Syst Softw 86(8):2184-2195.
https://doi.org/10.1016/j.js5.2013.03.106

@ Springer

https://doi.org/10.1145/775047.775109
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1016/j.ijhcs.2011.09.003
https://doi.org/10.1145/1056808.1056877
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1007/s10664-012-9201-4
https://doi.org/10.1007/978-3-642-02574-7_4
https://doi.org/10.1145/2094131.2094133
https://doi.org/10.1145/2632320.2632344
https://doi.org/10.1016/j.jss.2013.03.106

Empirical Software Engineering

Cepeda G, Guéhéneuc YG (2010) An empirical study on the efficiency of different
design pattern representations in uml class diagrams. Empir Softw Eng 15(5):493-522.
https://doi.org/10.1007/s10664-009-9125-9

Clark B, Sharif B (2017) itracevis: Visualizing eye movement data within Eclipse. In: Working conference
on software visualization, VISSOFT, IEEE, pp 22-32

Cristino F, Mathot S, Theeuwes J, Gilchrist ID (2010) Scanmatch: a novel method for comparing fixation
sequences. Behaviour Res Meth 42:692-700

Crosby ME, Stelovsky J (1990) How do we read algorithms? a case study. Computer 23(1):24-35

Crosby ME, Scholtz J, Wiedenbeck S (2002) The roles beacons play in comprehension for novice and
expert programmers. In: Proceeding of Programmers, 14th Workshop of the Psychology of Programming
Interest Group, Brunel University, pp 18-21

Dalmaijer ES, Mathot S, Van der Stigchel S (2014) Pygaze: an open-source, cross-platform toolbox for
minimal-effort programming of eyetracking experiments. Behavior Res Meth 46(4):913-921

De Smet B, Lempereur L, Sharafi Z, Guéhéneuc YG, Antoniol G, Habra N (2014)
Taupe: Visualizing and analyzing eye-tracking data. Sci Comput Program 79:260-278.
https://doi.org/10.1016/j.scico.2012.01.004

Divjak M, Bischof H (2008) Real-time video-based eye blink analysis for detection of low blink-rate during
computer use. In: First international workshop on tracking humans for the evaluation of their motion in
image sequences (THEMIS 2008), pp 99-107

Duchowski AT (2002) A breadth-first survey of eye-tracking applications. Behavior Research Methods
Instruments, & Computers 34(4):455-470

Duchowski AT (2007) Eye tracking methodology: Theory and practice. Springer, New York

Fakhoury S, Ma Y, Arnaoudova V, Adesope O (2018) The effect of poor source code lexicon and readability
on developers’ cognitive load. In: Proceedings of the 26th Conference on Program Comprehension,
ACM, New York, ICPC ’18, pp 286-296. https://doi.org/10.1145/3196321.3196347

Farnsworth B (2019a) 10 Free Eye Tracking Software Programs [Pros and Cons]. https://imotions.com/blog/
free-eye-tracking-software/, [Online; accessed 30-December-2019]

Farnsworth B (2019b) 10 Free Eye Tracking Software Programs [Pros and Cons]. https://imotions.com/blog/
free-eye-tracking-software/, [Online; accessed 30-December-2019]

Fritz T, Begel A, Miiller SC, Yigit-Elliott S, Ziiger M (2014) Using psycho-physiological measures to
assess task difficulty in software development. In: Proceedings of the 36th International Conference on
Software Engineering, ACM, New York, ICSE ’14, pp 402-413

Godfroid A (2019) Eye tracking in second language acquisition and bilingualism: A research synthesis and
methodological guide. Routledge

Goldberg JH, Helfman JI (2010) Comparing information graphics: A critical look at eye track-
ing. In: Proceedings of the 3rd BELIV’10 Workshop: BEyond Time and Errors: Novel
evaLuation Methods for Information Visualization, ACM, New York, BELIV 10, pp 71-78.
https://doi.org/10.1145/2110192.2110203

Goldberg JH, Kotval XP (1999) Computer interface evaluation using eye movements: methods and
constructs. Int J Ind Ergon 24(6):631-645

Goldberg JH, Stimson MJ, Lewenstein M, Scott N, Wichansky AM (2002) Eye tracking in web search tasks:
Design implications. In: Proceedings of the 2002 Symposium on Eye Tracking Research & Applications,
ACM, New York, ETRA ’02, pp 51-58. https://doi.org/10.1145/507072.507082

Grace R, Byrne VE, Bierman DM, Legrand JM, Gricourt D, Davis RK, Staszewski JJ, Carnahan B (1998)
A drowsy driver detection system for heavy vehicles. In: Digital avionics systems conference, 1998.
Proceedings., 17th DASC. The AIAA/IEEE/SAE, vol 2. IEEE, pp 136-1

Guarnera DT, Bryant CA, Mishra A, Maletic JI, Sharif B (2018) itrace: eye tracking infrastructure for devel-
opment environments. In: Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications, ACM, p 105

Guéhéneuc YG (2006a) Taupe: Towards understanding program comprehension. In: Proceedings of the
2006 Conference of the Center for Advanced Studies on Collaborative Research, IBM Corp., Riverton,
CASCON °06. https://doi.org/10.1145/1188966.1188968

Guéhéneuc YG (2006b) Taupe: Towards understanding program comprehension. In: Proceedings of the 2006
Conference of the Center for Advanced Studies on Collaborative Research, IBM Corp., Riverton, NJ,
USA, CASCON ’06

Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of automated text summarization techniques for
summarizing source code. In: 2010 17th Working Conference on Reverse Engineering, IEEE, pp 35-44

Haji-Abolhassani A, Clark JJ (2014) An inverse yarbus process: Predicting observers’ task from eye
movement patterns. Vision Res 103:127-142

@ Springer

https://doi.org/10.1007/s10664-009-9125-9
https://doi.org/10.1016/j.scico.2012.01.004
https://doi.org/10.1145/3196321.3196347
https://imotions.com/blog/free-eye-tracking-software/
https://imotions.com/blog/free-eye-tracking-software/
https://imotions.com/blog/free-eye-tracking-software/
https://imotions.com/blog/free-eye-tracking-software/
https://doi.org/10.1145/2110192.2110203
https://doi.org/10.1145/507072.507082
https://doi.org/10.1145/1188966.1188968

Empirical Software Engineering

Hansen DW, Ji Q (2009) In the eye of the beholder: a survey of models for eyes and gaze. IEEE Transactions
on Pattern Analysis and Machine Intelligence 32(3):478-500

Hansen M (2014) eyecode: An eye-tracking experimental framework for program comprehension. PhD
thesis, School of Informatics and Computing, 2719 E. 10th Street Bloomington, IN 47408 USA

Hartridge H, Thomson L (1948) Methods of investigating eye movements. Brit J Ophthalmol 32(9):581

Hejmady P, Narayanan NH (2012) Visual attention patterns during program debugging with an IDE. In: Pro-
ceedings of the 2012 Symposium on Eye Tracking Research & Applications, ACM, New York, ETRA
*12, pp 197-200. https://doi.org/10.1145/2168556.2168592

Henderson JM, Pierce GL (2008) Eye movements during scene viewing: Evidence for mixed control of
fixation durations. Psychonomic Bulletin & Review 15(3):566-573

Holmgqvist K, Nystrom M, Andersson R, Dewhurst R, Jarodzka H, Van de Weijer J (2011) Eye tracking: A
comprehensive guide to methods and measures. OUP Oxford

Holmgqvist K, Nystrom M, Mulvey F (2012) Eye tracker data quality: what it is and how to measure it. In:
Proceedings of the symposium on eye tracking research and applications, ACM, pp 45-52

Huey EB (1908) The psychology and pedagogy of reading. The Macmillan Company

Jacob RJ, Karn KS (2003) Eye tracking in human-computer interaction and usability research: Ready to
deliver the promises. Mind 2(3):4

Jbara A, Feitelson DG (2017) How programmers read regular code: a controlled experiment using eye
tracking. Empir Softw Eng 22(3):1440-1477

Jeanmart S, Guéhéneuc YG, Sahraoui HA, Habra N (2009) Impact of the visitor pattern on program com-
prehension and maintenance. In: Proceedings of 3rd International Symposium on Empirical Software
Engineering and Measurement, pp 69-78

Just MA, Carpenter PA (1980) A theory of reading: from eye fixations to comprehension. Psychol Rev
87(4):329

Karn KS, Ellis S, Juliano C (1999) The hunt for usability: tracking eye movements. In: CHI’99 extended
abstracts on Human factors in computing systems, ACM, pp 173-173

Kitchenham BA (2004) Procedures for undertaking systematic reviews. Tech. rep., Joint Technical Report,
Computer Science Department, Keele University (TR/SE- 0401) and National ICT Australia Ltd

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam KE, Rosenberg J (2002) Prelim-
inary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28(8):721-734.
https://doi.org/10.1109/TSE.2002.1027796

Ko AJ, Latoza TD, Burnett MM (2015) A practical guide to controlled experiments of soft-
ware engineering tools with human participants. Empirical Softw Engg 20(1):110-141.
https://doi.org/10.1007/s10664-013-9279-3

Lee S, Hooshyar D, Ji H, Nam K, Lim H (2018) Mining biometric data to predict programmer expertise and
task difficulty. Clust Comput 21(1):1097-1107

Levenshtein V (1966) Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics
Doklady 10:707

Lung J, Aranda J, Easterbrook SM, Wilson GV (2008) On the difficulty of replicating human subjects studies
in software engineering. In: Proceedings of the 30th international conference on Software engineering,
ACM, pp 191-200

Mackworth NH, Thomas EL (1962) Head-mounted eye-marker camera. JOSA 52(6):713-716

McChesney I, Bond R (2019) Eye tracking analysis of computer program comprehension in programmers
with dyslexia. Empirical Softw Engg 24(3):1109—-1154. https://doi.org/10.1007/s10664-018-9649-y

Murphy GC, Kersten M, Findlater L (2006) How are java software developers using the eclipse ide? IEEE
Softw 23(4):76-83. https://doi.org/10.1109/MS.2006.105

Obaidellah U, Al Haek M, Cheng PCH (2018) A survey on the usage of eye-tracking in computer
programming. ACM Comput Surv 51(1):5:1-5:58. https://doi.org/10.1145/3145904

Olsson P (2007) Real-time and oftline filters for eye tracking

Orlov PA, Bednarik R (2017) The role of extrafoveal vision in source code comprehension. Perception
46(5):541-565

Peitek N, Siegmund J, Apel S, Késtner C, Parnin C, Bethmann A, Leich T, Saake G, Brechmann A (2018a)
A look into programmers’ heads. IEEE Trans Softw Eng, pp 1-1

Peitek N, Siegmund J, Parnin C, Apel S, Hofmeister J, Brechmann A (2018b) Simultaneous Measurement
of Program Comprehension with fMRI and Eye tracking: A Case Study. In: Symposium on Empirical
Software Engineering and Measurement, to appear

Pernice K, Nielsen J (2009) Eyetracking methodology: How to conduct and evaluate usability studies using
eyetracking. Nielsen Norman Group Technical Report

Peterson C, Saddler J, Blascheck T, Sharif B (2019) Visually analyzing students’ gaze on c++ code snippets.
In: EMIP 2019-6th International Workshop on Eye Movements in Programming

@ Springer

https://doi.org/10.1145/2168556.2168592
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-018-9649-y
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1145/3145904

Empirical Software Engineering

Petrusel R, Mendling J (2012) Eye-tracking the factors of process model comprehension tasks. In: Proceed-
ings of the Conference on the Advanced Information Systems Engineering, Springer, CAiSE ’13, pp
224-239

Pfleeger SL (1995) Experimental design and analysis in software engineering, part 5: Analyzing the data.
SIGSOFT Softw Eng Notes 20(5):14—17. https://doi.org/10.1145/217030.217032

Poole A, Ball LJ (2005) Eye tracking in human-computer interaction and usability research: Current status
and future. In: Prospects”, Chapter in C. Ghaoui (Ed.): Encyclopedia of Human-Computer Interaction.
Pennsylvania: Idea Group, Inc

Privitera CM, Stark LW (2000) Algorithms for defining visual regions-of-interest: Comparison with eye
fixations. IEEE Trans Pattern Anal Mach Intell 22:970-982

Rayner K (1978) Eye movements in reading and information processing. Psychol Bull 85(3):618-660

Rayner K (1998) Eye movements in reading and information processing: 20 years of research. Psychol Bull
124(3):372

Rodeghero P, McMillan C, McBurney PW, Bosch N, D’Mello S (2014) Improving automated source
code summarization via an eye-tracking study of programmers. In: Proceedings of the 36th
International Conference on Software Engineering, ACM, New York, ICSE, 2014, pp 390-401.
https://doi.org/10.1145/2568225.2568247

Ross J (2009) Eyetracking: Is It Worth It? http://www.uxmatters.com/mt/archives/2009/10/
eyetracking-is-it-worth-it.php/, [Online; accessed 20-March-2019]

Sajaniemi J (2004) Comparison of three eye tracking devices in psychology of programming research. In:
Proceedings of the 16th Annual Psychology of Programming Interest Group Workshop, PPIG *04, pp
151-158

Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-tracking protocols. In: Proceed-
ings of the 2000 Symposium on Eye Tracking Research & Applications, ACM, New York, ETRA °00,
pp 71-78. https://doi.org/10.1145/355017.355028

Shackel B (1960) Note on mobile eye viewpoint recording. JOSA 50(8):763-768

Shaffer TR, Wise JL, Walters BM, Miiller SC, Falcone M, Sharif B (2015) itrace: Enabling eye tracking on
software artifacts within the ide to support software engineering tasks. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ACM, pp 954-957

Shapiro JR, Neuberg SL (2007) From stereotype threat to stereotype threats: Implications of a multi-threat
framework for causes, moderators, mediators, consequences, and interventions. Personal Soc Psychol
Rev 11(2):107-130

Sharafi Z, Soh Z, Guéhéneuc YG, Antoniol G (2012) Women and men - different but equal: On the impact
of identifier style on source code reading. In: Proceedings of 20th International Conference on Program
Comprehension, ICPC *13, pp 27-36

Sharafi Z, Marchetto A, Susi A, Antoniol G, Guéhéneuc YG (2013) An empirical study on the effi-
ciency of graphical vs.textual representations in requirements comprehension. In: Proceedings of 21st
International Conference on Program Comprehension, ICPC *13, pp 3342

Sharafi Z, Shaffer T, Bonita S, Guéhéneuc YG (2015a) Eye-tracking metrics in software engineering. In:
Proceedings of 22nd Asia-Pacific Software Engineering Conference, IEEE CS Press, APSEC *15

Sharafi Z, Soh Z, Guéhéneuc YG (2015b) A systematic literature review on the usage of eye-tracking in
software engineering. Information and Software Technology (IST)

Sharif B, Maletic JI (2010a) An eye tracking study on camelcase and under_score identifier styles. In: Pro-
ceeding of 18th IEEE International Conference on Program Comprehension, IEEE Computer Society,
ICPC ’10, pp 196-205

Sharif B, Maletic JI (2010b) An eye tracking study on the effects of layout in understanding the role of design
patterns. In: Proceedings of the 26th IEEE International Conference on Software Maintenance, IEEE
Computer Society, pp 1-10

Sharif B, Falcone M, Maletic JI (2012) An eye-tracking study on the role of scan time in finding source code
defects. In: Proceedings of the Symposium on Eye Tracking Research & Applications, ACM, New York,
ETRA’12, pp 381-384

Sharif B, Jetty G, Aponte J, Parra E (2013) An empirical study assessing the effect of seeit 3D on compre-
hension. In: Proceeding of 1st IEEE Working Conference on Software Visualization, IEEE, VISSOFT
13, pp 1-10

Siegmund J, Siegmund N, Apel S (2015) Views on internal and external validity in empirical software engi-
neering. In: Proceedings of the 37th International Conference on Software Engineering-Volume 1, IEEE
Press, pp 9-19

Soh Z, Sharafi Z, den Plas BV, Porras GC, Guéhéneuc YG, Antoniol G (2012) Professional status and exper-
tise for UML class diagram comprehension: An empirical study. In: Proceedings of 20th International
Conference on Program Comprehension, ICPC ’13, pp 163-172

@ Springer

https://doi.org/10.1145/217030.217032
https://doi.org/10.1145/2568225.2568247
http://www.uxmatters.com/mt/archives/2009/10/eyetracking-is-it-worth-it.php/
http://www.uxmatters.com/mt/archives/2009/10/eyetracking-is-it-worth-it.php/
https://doi.org/10.1145/355017.355028

Empirical Software Engineering

Soh Z, Khomh F, Guéhéneuc YG, Antoniol G, Adams B (2013) On the effect of program exploration on
maintenance tasks. In: 2013 20th Working Conference on Reverse Engineering (WCRE), pp 391-400.
https://doi.org/10.1109/WCRE.2013.6671314

Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2018) Noise in mylyn interaction traces and
its impact on developers and recommendation systems. Empir Softw Eng 23(2):645-692.
https://doi.org/10.1007/s10664-017-9529-x

Spencer SJ, Steele CM, Quinn DM (1999) Stereotype threat and women’s math performance. J Exp Soc
Psychol 35(1):4-28

Steele CM, Aronson J (1995) Stereotype threat and the intellectual test performance of african americans. J
Pers Soc Psychol 69(5):797

Stein R, Brennan SE (2004) Another person’s eye gaze as a cue in solving programming problems. In:
Proceedings of the 6th International Conference on Multimodal Interfaces, ACM, New York, ICMI ’04,
pp 9-15 https://doi.org/10.1145/1027933.1027936

Strandvall T (2009) Eye tracking in human-computer interaction and usability research. In: Gross T,
Gulliksen J, Kotzé P, Oestreicher L, Palanque P, Prates RO, Winckler M (eds) Human-Computer
Interaction-INTERACT 2009: 12th IFIP TC 13 International Conference, Uppsala, Sweden, August
24-28, 2009, Proceedings, Part II. Springer, Berlin, pp 936-937

Sundstedt V (2010) Gazing at games: Using eye tracking to control virtual characters. In:
ACM SIGGRAPH 2010 Courses, ACM, New York, SIGGRAPH ’10, pp 5:1-5:160
https://doi.org/10.1145/1837101.1837106

Turner R, Falcone M, Sharif B, Lazar A (2014a) An eye-tracking study assessing the comprehension of C++
and Python source code. In: Proceedings of the Symposium on Eye Tracking Research & Applications,
ACM, New York, ETRA ’14, pp 231-234

Turner R, Falcone M, Sharif B, Lazar A (2014b) An eye-tracking study assessing the comprehension of c++
and python source code. In: Proceedings of the Symposium on Eye Tracking Research and Applications,
ACM, New York, ETRA ’14, pp 231-234. https://doi.org/10.1145/2578153.2578218

Uwano H, Nakamura M, Monden A, Matsumoto K (2006) Analyzing individual performance of source code
review using reviewers’ eye movement. In: Proceedings of the 2006 symposium on Eye tracking research
& applications, ACM, ETRA ’06, pp 133-140

Vrzakova H (2019) Machine learning methods in interaction inference from gaze. In: Dissertations in
Forestry and Natural Sciences, University of Eastern Finland

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Yarbus AL (1967) Eye movements during perception of complex objects. Springer

Yusuf S, Kagdi HH, Maletic JI (2007) Assessing the comprehension of UML class diagrams via eye tracking.
In: Proceeding of 15th IEEE International Conference on Program Comprehension, IEEE Computer
Society, ICPC °07, pp 113-122

Zhang Z, Zhang J (2010) A new real-time eye tracking based on nonlinear unscented kalman filter for
monitoring driver fatigue. Journal of Control Theory and Applications 8(2):181-188

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1109/WCRE.2013.6671314
https://doi.org/10.1007/s10664-017-9529-x
https://doi.org/10.1145/1027933.1027936
https://doi.org/10.1145/1837101.1837106
https://doi.org/10.1145/2578153.2578218

Empirical Software Engineering

Affiliations

Zohreh Sharafi' - Bonita Sharif? - Yann-Gaél Guéhéneuc3
Roman Bednarik® - Martha Crosby®

Zohreh Sharafi
zohrehsh@umich.edu

Bonita Sharif
bsharif @unl.edu

Andrew Begel
andrew.begel @microsoft.com

Roman Bednarik
roman.bednarik @uef.fi

Martha Crosby

crosby @hawaii.edu
1 University of Michigan, Ann Arbor, MI, USA
2 University of Nebraska—Lincoln, Lincoln, NE, USA
Concordia University, Montréal, Québec, Canada
4 Microsoft Research, Redmond, WA, USA
University of Eastern Finland, Joensuu, Finland
6 University of Hawai’i at Manoa, Honolulu, HI, USA

- Andrew Begel* -

@ Springer

http://orcid.org/0000-0002-4361-2563
mailto: zohrehsh@umich.edu
mailto: bsharif@unl.edu
mailto: andrew.begel@microsoft.com
mailto: roman.bednarik@uef.fi
mailto: crosby@hawaii.edu

	A practical guide on conducting eye tracking studies in software engineering
	Abstract
	Introduction
	Foundations of Eye Tracking
	Eye Tracker Evolution
	Eye Tracker Operation
	Eye Tracking Assumptions
	Eye Tracking Limitations
	Accuracy
	Precision
	Drift
	Extrafoveal Vision

	Usage
	When?
	Recruiting
	Time and Cost

	Why?

	Metrics
	First Order Data
	Second Order Data
	Third Order Data
	Fourth Order Data

	Typical Eye-tracking Studies in Software Engineering
	Program Comprehension
	Diagram Comprehension
	Code Review
	Traceability
	Education
	Eye tracking and Other Psycho-physiological Measures
	Source Code Summarization

	Pragmatics of a Typical Eye Tracking Study
	Experimental Setup
	Eye Tracking Device
	Eye Tracking Environment
	Overview and Calibration
	Pilot Study
	Recording

	Stimuli and Tasks
	Stimuli
	Tasks

	Recruiting Participants
	Background Questionnaire
	Experimental Design
	Research Questions
	Variables and Measures
	Calibration between Saccades and Fixations

	Definition of the Areas of Interest
	Sizes and Positions of AOIs
	Overlapping AOIs
	Edges of Calibrated Area
	Normalized AOIs

	Ethics Approval
	Discussion of Threats to Validity
	Internal Validity
	Construct Validity
	External Validity
	Conclusion Validity

	Results Presentation
	Combining Eye Tracking with Other Physiological Measures

	Data Analyses and Interpretation of the Results
	Data Quality Assessment
	Visualizations
	Gaze Plots
	Heat Maps
	Color Coded Attention Allocation Map
	Radial Transition Graph

	Statistical Analyses
	To Confirm a Theory
	To Quantify Associations between Two Sets of Data

	Tools

	Conclusions
	References
	Affiliations

