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Fig. 1. The extended Bloom Taxonomy (left) and a visualization of the Phillips curve (right) [32]. Learning objectives, and visual support for
them, link the two images.
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Abstract—Significant research has provided robust task and evaluation languages for the analysis of exploratory visualizations. Unfortunately,
these taxonomies fail when applied to communicative visualizations. Instead, designers often resort to evaluating communicative visualizations
from the cognitive efficiency perspective: “can the recipient accurately decode my message/insight?” However, designers are unlikely to be
satisfied if the message went ‘in one ear and out the other. The consequence of this inconsistency is that it is difficult to design or select
between competing options in a principled way. The problem we address is the fundamental mismatch between how designers want to
describe their intent, and the language they have. We argue that visualization designers can address this limitation through a learning
lens: that the recipient is a student and the designer a teacher. By using learning objectives, designers can better define, assess, and
compare communicative visualizations. We illustrate how the learning-based approach provides a framework for understanding a wide array
of communicative goals. To understand how the framework can be applied (and its limitations), we surveyed and interviewed members of
the Data Visualization Society using their own visualizations as a probe. Through this study we identified the broad range of objectives in
communicative visualizations and the prevalence of certain objective types.
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Given the prevalence of advice and taxonomies for visualization de-

Communicative visualizations represent the bulk of exposure any in-
dividual has to visualizations. We experience the messages of data
journalists, scientists, instructors, designers, and analysts as charts,
graphs, and in many other forms. In each case, the person creating the
visualization or context (the thing—a paper, article, etc.—in which the
visualization was embedded) has a specific set of intents. The intents
are as unique as the visualizations with which they are associated: A
journalist may seek to explain an insight; a scientist or analyst to convey
evidence or to support a decision; an instructor to teach the relationship
between two interacting chemicals. The main question we tackle here
is: how do we formally describe communicative intent in visualiza-
tions? We propose that using cognitive learning objectives as a frame
will encourage a better way of building communicative visualizations.

With apologies to Bloom [13], learning objectives may help address
our problem because they are, “explicit formulations of the ways in
which [viewers (i.e., students)] are expected to be changed by [com-
municative visualizations (i.e., the educative process)].” In their role
as ‘educational tools’, communicative visualizations must be designed
as “intentional and reasoned act[s]” [9]. Doing so requires a formal
language to allow a designer to explicitly formulate their expectations
and intents.
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signers, it is worth asking why we even need such an ‘intent language?’
Significant literature already exists to ensure that our viewer can read
our encoding of data accurately and effectively—a success, if that was
really the designer’s intent. However, knowing that the visualization
will support finding X, or the encoding will allow the viewer to accu-
rately decode Y, is poor proxy for knowing if the visualization satisfied
our communicative intent. A designer would not, and should not, be
satisfied if the message was, ‘in one ear and out the other.” Knowing
the message was communicated clearly and interpreted accurately may
be necessary, but is not sufficient.

Existing task and evaluation taxonomies are not refined enough to
describe the intent behind a communicative visualization. Take as a
simple example the plot in Figure 2 which we may encounter reading
a technical paper, webpage, or textbook. The plot shows the Sum
of Squares Distances between entities as a function of the number
of clusters. It is used in k-means clustering for the ‘elbow method’
of determining an optimal k [54] (roughly, that one should pick the
number of clusters where there is a ‘kink’ in the plot, e.g., 4 clusters).
The plot in our context is communicative—it was produced by someone
else to tell us, the readers, ‘something’. That ‘something’ reflects the
designer’s many possible intents. This may be to convince us that a
choice of k = 4 was correct; to relay the insight that 4 was significantly
better than k£ = 3 or k = 5; to critique a bad choice of k; to teach us what
the term ‘elbow’ means; to demonstrate how to read or create a plot
suitable for an elbow method analysis; to contrast it to an alternative
(e.g., the silhouette plot, Fig. 2B); or to lead us to create alternatives.

All these are possible—in fact, likely—intents. But how does the
designer know that the visualization is successful? The mechanisms for
evaluating are as varied as the intents: Can the viewer recall which k
was picked? Can they define an elbow point? Can they read a new plot?
Can they produce a similar plot for their own data? Can they critique



Fig. 2. Two visualizations depicting performance for a clustering algorithm
based on the number of clusters (cluster count is a tunable parameter): (A)
the elbow method [54] and (B) silhouette plot [72].

different plots? Offer new ones? Current taxonomies of visualization
are insufficient both to describe and evaluate communicative intent.
While many task/evaluation taxonomies are deeply detailed in regards to
‘analytical’ tasks, they lump together all communicative tasks into one
category. To build and evaluate communicative visualizations requires
a refined and principled language for describing communicative intent.

We argue that a good language for describing intents is the language
of learning objectives. Learning objectives allow an instructor, in this
case, the designer, to explicitly define how they want to impact the
viewer. For example, the designer may say, “After seeing the visualiza-
tion the viewer will be able to define an elbow point” or “the viewer will
be able to categorize different types of students based on performance.”
None of this is to say that the viewer’s needs, goals or high-level tasks
should be ignored. An effective designer will integrate the viewer’s
objectives into the defined learning objectives—making them part of
the intent. The advantage of this formulation is we can describe our
objectives whether or not we know what the viewer wants (or when
the viewers themselves can’t describe their need). More critically, a
specific learning objective is assessable. That is, the designer can craft
specific tests that validate if the visualization leads to viewers achieving
the objective. Designers can compare different visualization choices
using objectives and assessments. The added advantage is that we can
ask if our objectives are achieved not only when the viewer is looking
at the visualization but, more importantly, when it was taken away.
This is different from most evaluative techniques that focus on what
happens when the visualization is in front of the viewer.

We offer a taxonomy to satisfy our goal of modeling designer in-
tents. This emerges from the original learning objectives literature [13]—
progenitor of most modern learning objective languages. The taxonomy
allows a designer to construct statements of the form: The viewer will
[verb] [noun].! This cognitive taxonomy (Figure 3) will provide clas-
sified verbs related to cognitive processes (e.g., recall, explain, critique,
etc.) and nouns related to types of knowledge (e.g., insights, algorithms,
etc.). The formalism and structure of this language will allow us to
create assessments to evaluate visualizations. To validate our taxon-
omy we surveyed (n=29) and interviewed (n=16) visualization design
professionals to identify if, and how, the taxonomy could be used to
specify their design intents. The complete taxonomy and example
visualizations are available at http://visualobjectives.net.

In the interest of practicing what we preach, we offer our contribu-
tions in the form of learning objectives. Upon reading this article, the
reader will be able to . ..

e ...identify how communicative visualization is like a
teacher/student relationship.

'We regard the form viewer will recall ... and will be able to recall ...
and will learn to recall ... as equivalent. However, we prefer the first for
conciseness and to avoid nominalization.

...describe the limitations of existing task taxonomies for com-
municative visualizations.

...apply the objectives framework to describe communicative
visualization intents.

...identify how designers map the objectives taxonomy to intents
with real examples.

... apply the framework to their own visualizations.

2 ReLatep Work

A motivation for creating a new taxonomy is the limitation in existing
forms for communicative intent. Ideally, our alternative should: (1)
map to the language a designer might use, (2) cover the breadth and
depth of communicative intent, (3) work at appropriate granularity, and
(4) lead to appropriate and convincing assessments of the visualization.

Before describing related work, we offer one point on notation. A
key feature of most existing taxonomies is their focus on the single
‘agent’ at work. This is because most exploratory visualization systems
have one agent to consider: the ‘analyst.” Analysts take raw data,
and driven by some motivating questions, will use the visualization
to find an answer (pattern-finding) or identify structures in the data
(pattern-making). In contrast, with communicative visualizations, we
have at least two agents: the sender and the recipient. In a formal
learning environment, the sender might be a teacher and the recipient,
the student. A visual journalist may send a message to the reader. The
scientist may send the message to their peers.

Unlike the singular analyst, the senders and recipients may have dif-
ferent reasons for using the visualization as a communicative medium.
The sender designs the context for transmission (e.g., an article, a web
page, a scientific paper, or an argument) that contained the visualiza-
tion. This may or may not include designing the visualization itself (i.e.,
the sender may not be the creator). In each case—teacher, journalist,
scientist—the sender may not be the author of the visualization but an
intermediary. To convey this range, we adopt designer and viewer.

A distinguishing feature of this model is that the viewer’s access
to the information is mediated by the designer’s choices. Whatever
evidence the designer provided or however they distilled the data will
impact what the viewer can do. This observation is a critical feature of
communicative visualizations: a human agent has acted in shaping the
message, and in doing so, the designer can shape the viewer.

A user-centered approach to visualization design (i.e., viewer-
centered) can not account for situations in which the viewer’s needs
are different from the designer’s. In such cases, the designer’s intents
take precedence over the viewer’s. A benefit of the learning objectives
framework is that it accounts for this potential power differential.

2.1 Task Taxonomies

Taxonomies of visualization tasks often put communication as a broad
category. In some cases, communicative visualizations are placed in
the context of analytic tasks such as “learning about data” [34] or “do-
main” [6, 18]. Often communication is embedded in a workflow an
analyst would use: first I find the insight and then I present it. This
focus is most apparent in the context of collaborative information visual-
ization where the analyze/communicate cycle is constant [46,68,96,97].
Consequently, many taxonomies do not distinguish between different
communicative goals. They relegate communicative visualization into
a single, simple abstract box. But this box is complex—it must reflect
the intent of the designer, the goals and needs of the recipient, the
communication context, and the interaction between all these factors.
Unpacking this box can enable better design and evaluation strategies.

The other areas of research and practice that have much to say about
communicative visualization are those applying the lens of cognitive
efficiency—mechanisms to ensure that the viewer can accurately decode
the message. There is no shortage of advice to designers, and many case
studies and research results from psychology and cognitive sciences
have been distilled into numerous books (e.g., [22,33,35,59,92,102]).
All of this is useful if the designer needs to know what type of chart best
supports reading a correlation statistic but offers less when it comes
to other cognitive tasks and evaluation. Generalized systems such as
APT, Tableau, and Grammar of Graphics based tools [56, 65, 82,101]
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leveraged this research to recommend the best visualization given the
‘data of interest’ or broad analytical targets. However, while guidelines
lead to better visualizations, they do not allow the end-user (in our case,
designer) to explicitly specify their objectives or insights—broadly, their
communicative intent. The consequence is that the guidelines and tools
can’t help to assess the produced images. By incorporating the learning
objectives frame, such tools could be enhanced for communicative
visualization tasks.

2.2 Evaluation Taxonomies

In addition to fask taxonomies we can consider the many evaluation tax-
onomies and specific techniques for different contribution types [61,81].
These techniques range in focus from perception [105], to usability [87],
and to the discovery process [7]. Given the focus on visual analyt-
ics tools, evaluation research often focuses on sense-making and in-
sight [77], with a particular challenge in demonstrating ecological
validity [25, 69,79, 104]. Believable studies are often longitudinal [88]
or use high-cost observation approaches [51]. Unfortunately, these
techniques are not well suited for evaluating communicative visual-
izations, which are unique and numerous. Visual analytics processes
are ‘pull’ driven where the user introduces many of the constraints and
demands. With communicative visualization the idea of the user is
vaguer: is it the creator? The viewer? Both? and if so, how do we
model their ‘needs?’ Additionally, good evaluations are expensive to
implement and execute. While some communicative visualizations
warrant this level of evaluation, many do not. We prefer a low-cost
method to assess whether we are successful. Thus, the evaluation of
communicative visualizations is uncommon. In a metastudy of 800
papers, those in the category of “evaluating Communication through Vi-
sualization (CTV)” were rarely found—four times in one study [61]-and
none in another [52]!

While we don’t find many examples of actual evaluation, we do see
advice on what form this evaluation might take. Questions and metrics
include, “(1) Do people learn better and/or faster using the visualization
tool? (2) Is the tool helpful in explaining and communicating concepts
to third parties? (3) How do people interact with visualizations installed
in public areas? Are they used and/or useful? (4) Can useful informa-
tion be extracted from a casual information visualization?”” [61] At this
level of abstraction, learning is operationalized using distant metrics
like ‘time-on-site’ or ‘engagement’ (e.g., clicks). The result is a big gap
between concept and metric. With a more concrete language—and learn-
ing objectives in particular—we can have tighter integration between
goals and assessments.

2.3 Visualization as Teaching

Those who produce visualizations often recognize that they have a mis-
sion to ‘educate’ their viewers/readers. In a recent blog post, Jonathan
Schwabish writes, “...we all need to find ways to help our readers know
what’s important and what we want them to learn” (emphasis ours) [83].
We believe that many in the communicative visualization community
have been circling around the idea that communicative visualizations
and learning are connected.? Without explicitly defining what it is
that we want to teach, we have begun crafting strategies for better
teaching! Techniques such as personalization [1], explorable explana-
tions [95], storytelling and narrative [29, 85], active discussions around
visualizations [50], visual difficulties [48], rhetorical strategies [49],
gamification [31], and draw-your-own [4,57] style interaction are all
ways of improving learning and all are evident in the traditional learn-
ing sciences community. Being specific in how we define objectives
would allow us to find the best strategy for any problem [8] and to
better evaluate new approaches.

2.4 Visualization Design Education

Visualization instructors may recognize the generic student design spec-
ification: “I want the user to understand insights in the data” or worse,
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2 An example quote: “...we aim to build some analysis into most of our
graphics, arming readers with tools to understand why races were won and lost
and offering context.” [39]

“I want the user to explore the data.” Work in visualization pedagogy
has produced rubrics and techniques for evaluating student visualization
work, but this often follows conventional lines: does the visualization
express a set of facts and can it be effectively read [37,44,53]. Neither
students nor teachers have a clear way of articulating a design goal. In-
structors will resort to heuristic evaluation techniques which emphasize
generic guidelines focusing on cognitive efficiency. Expert review [91]
is another option, but is likely too expensive for general use. Even
expert critique would benefit from a formal specification of a designer’s
intent. More critically, assessing if a student has learned to design
visualizations may be a poor proxy for assessing if the student has
learned to design given intent. A clear objective language can greatly
benefit the pedagogical practice (in fact, we use it in our classes).

In the context of visual analytics (both education and practice), there
is an identified need for end-to-end evaluation [66]. Given particular
risks in design choices (e.g., wrong encoding technique for data or miss-
ing interaction mechanisms), different ‘upstream’ and ‘downstream’
evaluations may mitigate those risks (e.g., interviews, lab experiments,
etc.). Results from these evaluations are constantly fed back to the
designer to improve the design [84]. Within the learning sciences, we
see a similar feedback loop. Because the experience of the student may
be far removed from what the teacher intended [47, 64], assessment
helps close the loop [73]. While many visualization systems papers
focus on specific end-users (e.g., the biologists who might use the gene
sequence visualization), recent work has shown that broader, crowd-
based evaluations can be applied [45]. With clear learning objectives
and associated assessments, one could similarly test communicative
visualizations in a crowd setting.

2.5 Learning Sciences

One area that has influenced our thinking is the education literature on
the use of graphics as part of learning [28]. This line of work evaluated
graphics (photographs, visualizations, maps, diagrams, etc.) in the
context of a curriculum (e.g., [27]) and demonstrated ways in which
graphics can both enhance and detract from learning [28].

From the assessment literature we draw on the idea that our primary
goal for assessment is ‘programmatic.” We want to know that we
designed our visualization (i.e., ‘the educational program’) well across
all readers, and not that any specific reader achieved our objective.

2.6 Visual Literacy

Visual literacy represents another bridge between communicative vi-
sualization and learning. Recent efforts in understanding, measuring,
and improving visual literacy [5, 16, 17,63] build on significant work
from psychology (e.g., ‘graph sense’ [38]). It is undeniable that visual
literacy will be a mediator (among many others) in the effectiveness of a
communicative visualization given a learning objective. In some cases,
the designer may also have a metacognitive objective on improving
improving visual literacy. We mean this in both the broad sense (learn
how to read a bar chart) and in the specific (learn how to read my novel
encoding that I want to use again next week). Our framing supports
such objectives.

2.7 Communication Theories

Communication theories can be broadly split into process-focused and
meaning-focused [36]. The former derives from Shannon and Weaver.
The model centers on the mechanism by which a message is encoded
by a sender and transmitted to a receiver [86]. Shannon and Weaver
describe three levels of problems: How accurately can we transmit the
message (level A)? How precisely does the transmission convey the
meaning (level B)? How effectively does the received meaning affect
conduct in the desired way (level C)? Level C is most related to our
goals as it would, in theory, allow us to describe the deviation of what
the sender wanted to affect (physically or cognitively) and what actually
happened. Unfortunately, the classic process models focus on the lower
level problems of accurate encoding in the presence of noisy channels.
Nonetheless, the process model has impacted computer science broadly,
and visualization specifically [26].
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Fig. 3. Cognitive Taxonomy, adapted from [9]. Learning objectives are constructed by selecting a row and column to identify the verb and noun for the
objective: The viewer will [verb] [noun]. While verbs (cognitive constructs on the y—axis) can be used directly, the nouns (knowledge dimension on the x-)

are category types that are replaced with specifics.

The second theoretical line, the meaning-focused, is most com-
monly recognized as semiology or semiotics. The roles of different
agents, signs, codes, signifiers, referents, etc. help model “meaning
making” [24]. Bertin’s Semiology is the clearest connection between
this school and information visualization [11, 58, 65]. Though he does
not make explicit reference to any specific approach (i.e., Peirciean
or Saussarian), Bertin offers a communication model focused on how
meaning is formed through monosemic images. However, commu-
nicative visualizations (in contrast to archival or analytical) are not
analyzed significantly. Bertin briefly offers that communicative visu-
alizations should, “create a memorizable image which inscribes THE
OVERALL INFORMATION within the field of assimilated knowl-
edge” (note, memorizable not memorable). He expands: “School maps,
blackboard sketches, and all representations of a pedagogic nature to
inscribe information in the viewer’s memory, to make it become assim-
ilated knowledge, capable of being recalled at the time of an exam, a
conversation, a research project, or a decision.” While this teases at
the relation of the designer to an instructor, Bertin largely stops there.
Thus the underlying theory does not offer us a way to comprehensively
model a designer’s intent or evaluate the design’s success.

3 THe CoeNimive Domain

To leverage existing learning objective taxonomies we considered a
number of existing schemas including: Structure of Observed Learning
Outcomes (SOLO) [12], Understanding by Design (UbD) [100], Data—
Information—-Knowledge—Wisdom (DIKW) [76], and the ‘Revised’
Bloom [9]. Ultimately, we opted for the Revised Bloom as it was best
developed and could clearly separate the idea that there were things
people should be able to do (‘verbs’) as distinct from those things they
should learn (‘nouns’).

Figure 3 illustrates the two dimensional model (cognitive processes X
knowledge). The way to form a learning objective statement is to select
a verb from the rows and a noun from the columns to fill in a sentence of
the form: “the viewer will [verb] [noun].” Any particular visualization
can have multiple objectives associated with it. For example, Figure 1
shows how we build three different objectives for a visualization from
the Economist [32]. Note that while the verbs are generic, the nouns
are replaced with specifics. Here, the visualization is communicating
a change in the Phillips curve (inflation and unemployment have a
stable and inverse relationship) over three time periods. The designer
has a particular insight (the weakening correlation) that they would
like the viewer to remember. The simplest objective, “the viewer will
recognize the weakening correlation,” reflects a simple intent related

to this insight. The slightly more complex objective, “The viewer will
classify different temporal regimes for the Phillips curve,’ reflects a
more complex insight, one with conceptual structure, that requires a
higher level understanding. The appeal of this approach, is that we are
often able to hold one facet (the noun or verb) constant while adjusting
the other. For example, we can ‘upgrade’ our verb to indicate that “the
viewer will be able to generate hypotheses on why we have different
temporal regimes.”

To provide examples below, we have used the narrative visualizations
collected by Segel and Heer [85] and Hullman and Diakopoulos [49].
For each, we have ‘reverse engineered’ plausible objectives from the
text. This allows us to provide examples and also validate that the
taxonomy covers the likely intents. We use both larger visual products
(i.e., an entire narrative Web page or application with many visualiza-
tions and views) as well as individual visualizations. Where necessary,
we collected additional examples. The taxnonomy and examples are
available on our supplemental website.

3.1 Cognitive Processes

Within the Revised Bloom there are six main cognitive process cate-
gories with additional sub-categories (Figure 3 and Table 1 illustrate
both categories and specific verb instances). The processes were origi-
nally intended to be hierarchical, with more complex or difficult pro-
cesses (e.g., create) encapsulating easier ones (e.g., recall).*

The base level of the taxonomy is remember (with sub-types recog-
nize and recall). This should be most familiar to visualization practi-
tioners. It corresponds to the few studies of memory that do exist in the
communicative visualization literature [10, 14,15,48,55,78] as well as
Bertin’s model of a memorizable image.

In some ways, this dimension is also the easiest to design for. If
the designer wants a viewer to remember that ‘low unemployment
was associated with high inflation’ (as they do in Figure 1), they can
employ many visual tricks to call their attention to this point (annotation,
different colors, etc.). This is not to say that simple insights are the only
thing that is worth recalling. The designer may also want to ensure that
critical definitions (e.g., the definition of ‘elbow point’ as in Figure 2A)
are learned. For example, the silhouette plot in Figure 2B actually
came from a page describing the algorithm for using the plot [72]. The

3Whether the visualization actually supports this objective is another matter—
but one that can be assessed.

“Whether this is a true hierarchy is the subject of much debate [43] but is a
debate we ignore for now.



Category Verbs

A. Remember
B. Understand

(a) recognize, identify; (b) recall, retrieve

(a) interpret, clarify, paraphrase, represent, trans-
late; (b) exemplify, illustrate, instantiate; (c)
classify, categorize, subsume; (d) summarize,
abstract, generalize; (e) infer, conclude, extrapo-
late, interpolate, predict; (f) compare, contrast,
map, match; (g) explain, model

C. Apply (a) execute, carry out; (b) implement, use

D. Analyze (a) differentiate, discriminate, distinguish, focus,
select; (b) organize, find,integrate, outline, parse,
construct; (c) attribute, deconstruct

E. Evaluate (a) check, coordinate, detect, monitor, test; (b)
critique, judge

F. Create (a) generate, hypothesize; (b) plan, design; (c)

produce, construct

Table 1. Cognitive Dimension Verbs

designer’s objective may be for “the viewer to recall the procedure for
using a silhouette plot.”’

More broad than recall is understand—a term not so helpful on its
own but one that encapsulates a number of useful verbs. Achieving
learning of this type requires being able to summarize or explain cer-
tain phenomena or insights. An example would be a visualization of
features of the Iran nuclear program [41] with an associated objective
of, “summarizing the key components of the program.” With a net-
work diagram of the lifecycle of the Babesia parasite [98] an objective
maybe be to: “paraphrase the key stages of the parasite’s development”
(Figure 4(1)).

Many explorable explanations [95] often fall into the apply category.
Distill’s t-SNE tutorial, for example, offers to teach, “how to use t-SNE
effectively” with a series of interactive visualizations [99] (Figure 4(6)).
Here, the designer may intend the viewer, “use the appropriate t-SNE
settings for a given distribution” or “implement the t-SNE algorithm.’

Analysis requires the integration of different pieces into a whole.
This may mean contrasting smaller insights as with the different indica-
tors on a thematic map tracking crime (population, socio-economics
statistics, prisoner migration, etc.) [21] (Figure 4(2)). The designer may
want the viewer to, “contrast the indicators to identify disproportionate
impact.” Fulfilling the objective requires the viewer pull specific data
insights, understand their relation, and integrate them.

The evaluate dimension is one that demands an ability to critique. In
many cases, visualizations are built to support an argument. An analyst
who had a hypothesis, and validated it, may summarize their result in a
communicative visualization. The communicative form not only shows
the insight but often provides evidence for it. John Snow’s famous
Ghost Map [89] is a prime example where the goal was for the viewer
to, “critique the hypothesis that cholera was airborne” and “judge as
accurate the model of cholera as waterborne.”

The final category, create focuses on advanced cognitive processes
such as being able to generate new theories. This objective puts the
viewer in the role of a (passive) analyst. For example, the New York
Times’ visualized soccer team connections, showing the viewer interest-
ing insights and encouraging them to generate their own hypotheses [3]
(Figure 4(3)). This example also illustrates the interplay of narrative
and learning objectives. The visualization follows a martini glass struc-
ture [85], first conveying key insights to recall (the stem), and then
encouraging a generative process (the glass).

3.2 Knowledge dimensions

The currency of most information visualization is insight. While there
are various forms of insight [25], the majority focus has been on insights
derived through visual analysis by an analyst (e.g., [79]). There are
two problems using this model for communicative visualization. First,
we must recall that there are two agents involved in communication—
the designer and viewer. The designer makes the choice of whether
something is an insight, whether it will be an insight to the viewer,

and then decide if, and how, to communicate it in the design. Second,
insights do not neatly capture everything we may want to communicate.
For example, a process or algorithm may be something we would like
to visually communicate. The algorithm may be an insight (i.e., a
particular flow chart might describe it, and the viewer might remember
it). However, if the objective is for the viewer to be able to use the
algorithm, ‘insight” does not sufficiently describe our goal.

Just as ‘recall’ is a good start for our verbs, ‘insight’ is a good layer
on which to build our nouns. In fact, ‘viewer will recall an insight,’
forms the basis of many communicative visualizations we experience.
However, this form does not capture the real range of possibilities. The
Revised Bloom knowledge dimensions provide an alternative starting.
At the first level sits Factual Knowledge, which in many ways represents
an atomic, specific insights. From this, the taxonomy builds upwards
to include other types of knowledge.

At the simplest, Factual Knowledge, includes the simplest facts
and figures but also simple definitions. The insight that the optimum
cluster size is 4 (Figure 2) may fall in this category. However, even this
simple fact can be integrated into a more complex cognitive objective
(e.g., “to recall the number,” “to use the value to predict,” etc.). In the
visualization context it is likely that factual knowledge can be captured
directly in the encoding of the visual mark (e.g., the number of cars
sold in the height of a bar). Very important facts or insights—those
the designer wants the viewer to remember—may be highlighted with
annotations or alternative encodings.

Conceptual knowledge requires the integration of multiple facts. For
example, the Financial Times climate change calculator [20] intends
for the viewer to “analyze the impact of different policy ‘bundles’ on
global temperature” (Figure 4(4)).

Procedural knowledge is most often related to skills or algorithms.
Learning a procedure for visually identifying outliers in a scatter plot
fits here (note, we want the viewer to identify outliers in any scatter
plot, not just in the single example they are given). A visualization
of a deep neural net’s structure in Google’s TensorBoard [42] can
help train a viewer to “create a new workflow applied to their own
data” (Figure 4(5)). Flowcharts used for diagnosis or triage are in this
category (medical, repair, etc.). Medical practitioners, for example,
are taught to make decisions based on patient symptoms and other
situational factors (e.g., [2])—if a patient displays symptom X do Y,
otherwise check for symptom Z, etc. Flowchart style visualizations can
support the learning of these ‘algorithms.’

Finally, metacognitive knowledge relates to a viewer’s knowledge
about learning strategies, cognitive tasks, or self-knowledge. It would
be rare for a single communicative visualization to deliver this kind
of knowledge on its own. However, a diet of visualizations that force
the viewer to draw their own guesses may help the viewer, “identify
preconceptions and strategies to debias their thinking” [57]. Visualiza-
tions that communicate uncertainty [67,90] may intend that the viewer,
“develop better/broader ways of understanding risks or making deci-
sions”. In educational contexts, instructors often employ metacognitive
checklists or other visualizations (e.g., [75]) that enable students to
track their progress over time. These ‘quantified self’ style visualiza-
tions are often generated by the learner themselves. They can not only
track simple metrics like test performance, but more nuanced questions
about the depth of understanding.

Any combination of verbs and nouns are plausible. However, some
combinations may be more rare. For example, we have found far more
recall X factual than create X metacognitive. This was done largely
through our inference of intent. To better determine the true distribution
and assess the usefulness of the learning objectives framework we
describe a survey and interview study of designers.

4 Survey Stupy

While we are able to map many existing visualizations to our taxonomy,
this was done through inference of intent. Ideally, we would like to
understand if actual design intents also fit. To test this, we recruited
professional designers from the Data Visualization Society (DVS) to
participate in a survey and interview study.



Fig. 4. Example of communicative visualizations: (1) The Babesia life cycle in humans [98], (2) Prison expenditures by census block from [21], (3) The final
image from the ‘scrollytelling’ vis: “The Clubs That Connect the World Cup” [3], (4) Interactive climate change calculator [20], (5) Annotated Tensorboard
example [42], and (6) An interactive lesson on “how to use t-SNE effectively” [99].

4.1 Data Collection

We reached out to people in the DVS Slack who posted their own
visualization in either the #share-critique or #share-showcase channels.
The visualizations in these channels were still being designed, or were
recently finished, and the intent would likely be ‘fresh’ in the minds
of the designers. We sent individuals 3-question personalized surveys,
with the option of indicating interest in an interview. Of the 34 people
who received the survey, 29 responded.

For each visualization-participant pair, we created customized learn-
ing objectives for the visualization and integrated these into the survey.
These objectives reflected our best inference on the intents of the de-
signer and utilized both the visualization itself and any information
provided in the Slack post. Participants could also add their own objec-
tives (and 23 added at least one). We provided an initial set of objectives
to both reduce the participation burden and to model how objectives
could be written. While this design allows for rapid data collection
without training, it may create some default bias in responses. However,
from those respondents whom we later interviewed, we do not believe
this to be a concern. Future work may involve a more specific inter-
vention to teach designers how to use the framework. Surveys were
sent to the designer through a private message on Slack. On average,
we created ~4 objective statements (a minimum of 2 and maximum
of 6-132 in total). Figure 6 (left) depicts the distribution of learning
objectives we proposed in the survey.

Participants were asked to select those objectives that reflected their
design intent, and optionally add learning objectives. Participants were
not trained in the language of the taxonomy and could only model
them on our examples. We manually mapped the participant provided
statements to the taxonomy. In most cases the mapping was clear.
When the statement was not a cognitive learning objective we did not
use it for this analysis (15 were removed). Figure 5 is an example
image from one of our participants with their selected objectives.

4.2 Data Analysis

Twenty-six out of 29 survey respondents reported that at least one of our
learning objectives was something that they hoped their audience would

be able to do after viewing their visualization. Figure 6 (right) reflects
the distribution of the cognitive objectives selected or added by the
designers. Participant-provided objectives ranged from other cognitive
learning objectives (“Recall the high variability of [the variable] over
time.” [P3]), to affective goals (“Feel an emotional response to the
issue” [P4]), to other non-learning objectives, such as business goals
(“Return to our website / subscribe to our newsletter” [P17]). The
three respondents that did not choose any cognitive learning objective
mentioned an affective learning objective they were hoping to achieve
(e.g., “Feel an emotional response to the issue” [P4]). Though not the
focus of this work, we consider these other intents in our discussion.

As expected, most of the suggested and accepted learning objectives
were at the lowest level of learning objectives with the verb “Recall”
and the knowledge descriptor of “Fact.” An example objective from our
survey is: “The viewer will recall that there is no correlation between
production budget and Oscar nominations.” It is possible that because
of our limited perspective on higher level design goals—we could see
very little of the design process in the Slack channel-we focused on
simpler objectives. However, the participants largely confirmed that this
distribution was accurate both in their selections and in the interviews.
Thus we have some confidence that it is possible to infer intents.

While participants did not agree with all our inferences, our inter-
views revealed some nuance to this. In some cases, participant selected
the best reflection of their intent and ignored the other plausible, but
less ideal, choices. In a few cases, our choice may have surprised the
designer. They were things the designer either hadn’t considered or
explicitly did not want the audience to learn. One participant wanted to
accurately communicate that the first category had a much higher value
than the others, but not have the category overwhelm the others. “The
[category] is doing more than all my studying, more than all the others
combined, which is interesting. But I wanted to be able to communicate
that, I didn’t want it just totally overwhelm." [P4] This response may
reflect a need for anti-objectives—an idea we return to later.

5 INTERVIEWS

To expand on the insights gained from the survey, we collected addi-
tional information through interviews.



Fig. 5. An example of a visualization from the DVS Slack Channel. The par-
ticipant selected these cognitive learning objectives as goals: 1) Recall that
all 5 major pageants have black titleholders in 2019. 2) Compare the ratio
of non-black titleholders to black titleholders over the years. Visualization
used with permission from participant, created by Black by the Numbers
(www.blackbythenumbers.com).

5.1 Data Collection

Of the 29 survey respondents, 16 agreed to a 30 minute semi-structured
video interview (a set of our starting questions is provided as supple-
mentary information to this paper). Questions ranged from basic demo-
graphics (e.g. “How long have you been making data visualizations?”),
to more open-ended prompts (e.g. “Can you tell me about your design
process?”). Participants who were interviewed were compensated with
a $15 Amazon gift card. We asked a set of preliminary questions on
the participants’ background and experience with data visualizations.
The interview largely focused on the visualization that participants
had posted to the DVS Slack channel and their design process, design
considerations, and audience. When possible, we broadened the focus
to broader practice. Finally, we asked about their opinions on using
learning objectives for visualizations and whether or not they could be
applied to the participant’s design process.

5.2 Data Analysis

We transcribed our interviews and used open coding from a grounded
theory approach. In the initial pass, transcript segments were coded
based on emerging themes. Codes were expanded over the initial
coding pass. In a second iteration, interviews were re-coded based on
the entire code set (130 unique codes). The most common codes were
consolidated into four broader themes (process, decisions, goals, and
design considerations). Below, we highlight key insights illuminating
how designers conceive of goals, the potential usefulness and usability
of learning objectives, and the relationship to non-cognitive objectives.

5.3 Results

When reflecting on their design process, several participants (6) were
explicit in that goals or take-aways were an important starting point for
them. One participant describes his process as: “I’m always thinking,
‘What do I want to show? And what story lies behind behind the data?’
So that’s my thinking, always the first point of thinking about visualiza-
tion.” [P2] He imagined the goal of his visualization as communication
of a story, which was a common theme among our participants. P1
noted, “You have to start with the premise for which you want someone
to take away from this and then say, ‘How do I depict that to accomplish
that goal?”” Only two participants explicitly indicated that they had,
“never thought about that actually.” [P3]

5.3.1

Of our 16 interview participants, 15 responded that learning objectives
would be helpful or useful. A telling example was one participant who
said, “when I design a chart, I want somebody to look at it and be able
to understand it quickly. 1 think, I don’t remember what the chart says
a few days later.’ [P10] But reflecting on the learning objectives said:

Impact on Design

Suggested LOs Participant Selected LOs

Object Type Object Type
I 2 3 4 I 2 3 4
B 3 2
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E 3 I I I 242 0+l I
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Fig. 6. Distribution of suggested learning objectives sent in the surveys
(left) and participant selected learning objectives from the survey responses
(right). For the right panel we also indicate the number of new objectives
generated by respondents (e.g., +6). Cells are color coded based on the
fraction of objectives in that cell. The relative distributions between our
inference and the participant responses were very similar.

It didn’t really occur to me that, “Oh, I really want this, 1
want people to think about this or I want people to recall
this and apply it to their own lives.” I found that having to
articulate that and think about that, I found that very helpful.
So yeah, learning objective, that’s very useful. I think in my
day to day life we talk a lot about users, and a lot of the
times it’s sort of providing information. But I don’t think
about information that lasts, right? [P10]

The last point validates our view that design often focuses on cog-
nitive efficiency rather than lasting impact. Learning objectives could
potentially help designers think more about their intent for what they
want a viewer to remember, understand, evaluate, or take action on for
such impact.

In the case of this last participant, introducing the idea of learning
objectives appeared to have an immediate effect on design:

... [in] your survey where you were like “what do you want
people to take away from this?” I hadn’t really thought
about it. The other thing I wanted people to take away
was [this insight] so I was like, “okay, I'll make that more
prominent this time around.” [P10]

While this provides some anecdotal evidence that designers can
leverage learning objectives in their process, a more formal evaluation
would be useful. Put another way, the question is: do designers make
different choices when using learning objectives?

5.3.2 Learning to Use Learning Objectives

While the objectives taxonomy provides a formal way of modeling
intent, it is a complex tool to use. In our interviews, we often found it
difficult to ‘teach’ participants deeply about learning objectives. One
participant noted that, “I think it’s a useful way to think about it, but
it’s hard as well.” [P4] This is in line with the education community
that has found that the process of creating learning objectives requires
training [40] and may be difficult even with practice [74]. One limitation
of our study, and the use of learning objectives in general, is that our
participants may need significant training to fully understand learning
objectives and their use.

We also found that experience with teaching or teachers helped
participants understand the function and usefulness of the objectives.
Five of our participants indicated they had experience teaching or had
someone close to them who is a teacher. All five thought that using
learning objectives could be useful or helpful to them. When asked
about their opinion of using learning objectives for visualizations, one
participant says “I never thought about that actually, but I think it would
work very well, I mean, I'm, for example, sometimes I'm doing lectures
here at University and they’re I think exactly like that.” [P2]



5.3.3 Limits of Cognitive Learning Objectives

While we have focused on cognitive learning objectives, there are other
valid objectives a designer might have. Both our surveys and interviews
emphasize that cognitive learning objectives are not the only goal a
designer might have. For example, many of our participants noted
affective goals, and three participants only had affective goals. These
affective goals all focused on evoking an emotional response from
the audience, such as to perceive “the tragedy” [P13], “appreciate the
diversity” [P15], “feel an emotional response to the issue” [P4], and
“being proud.” [P2]

An open question is the relationship of the taxonomy we have cre-
ated to analytical visualization tasks. Two participants in our study
reflected this concern. “I would look into the [learning objectives]
which I'm answering when I’'m trying to communicate a story out of it.
In that sense, yes. But when I’'m just exploring the data set, I'm not so
sure.” [P5] Similarly, one participant noted that there is an exploratory
phase of looking at the data, where goals may shift. Because of this,
sometimes learning objectives may not be clear to the designer at the
beginning or may change during the design process. “So I would say
learning objectives are good place of course to start, but that definitely
learning objectives change after it’s been built or after you've taken a
closer look at the data.” [P6]

Analytical and communicative visualizations are not necessarily
on a continuum but can work hand-in-hand. Just as we may imple-
ment ‘analyst’ features in a communicative visualization (querying,
insight building, etc.) we may have communicative goals embedded
in exploratory software. Future work may help understand how the
objectives framework can be embedded into the design of visualization
tools for analysts.

6 Discussion, Limitations, ANp Future WoRrk

The use of the learning objectives framework requires a shift in thinking.
We reflect on how learning objectives can be learned, extended, and
used, as well as their limitations.

6.1 Visualization Pedagogy

We have been experimenting with learning objectives in an educational
context. In our graduate classes we have a communicative visualization
project that requires students to articulate both learning objectives
(selecting from our modified cognitive taxonomy) and assessments.
Our belief is that for students, using learning objectives may allow them
to (a) direct design iterations, (b) more formally compare alternatives,
(c) have confidence that their objectives have been met, and (d) reduce
post-hoc rationalization of their design choices.

More research is needed to evaluate this approach. However, we
have anecdotally found that students can better formulate their intents
when guided through creating learning objectives. For example, one
team took on visualizing forest fire data. They began with an under-
specified proposal: “Our objective is to teach viewers some factors of
forest fires.” With feedback, the team was able to break this into more
specific learning objectives including: “Viewers can describe which
kind of tree is more likely to cause a fire,” and, “Viewers should be able
to describe the periodical pattern of forest fire in a year.” This change
was due to acknowledging specific motivating insights: that factors
included seasonality and tree types (some trees, with specific features,
more likely to be involved in fires).

Using the learning objectives framework will likely never make
design more efficient or fast. However, we believe that it will make
communicative visualizations better. With practice, building objectives
and assessments is a process that can be internalized by a designer.
In many cases, the designer may be able to mentally ‘simulate’ the
execution of a full-blown assessment and achieve the same result as
actually running it.

6.2 Affective, Business, and Archival Objectives

As our interviews revealed, not all objectives fit in the cognitive frame-
work. It is worth considering which frameworks may be needed to
supplement this taxonomy.

Affective Objectives—A recent debate over whether visualizations
can or should produce an empathetic response highlight that the
cognitive-boost only formulation is not universally held. Speaking
on empathy, Alberto Cairo stated, “I am just very skeptical to the
idea that data visualization is a medium that can convey (or even care
about conveying) or increase ‘empathy’” [23]. As a response, the artist
Steve Lambert (and others) pointed to the case of the “Gun Deaths”
visualization produced by Periscopic [71]. Among other features, the
visualization animates a tally of ‘stolen years’ due to gun death. “The
tone is solemn,” Lambert writes [62], “[the visualization] has its own
pace, it conveys death, points toward the lost potential, and backs
everything up with facts. It is an unqualified success in getting the
participant’s attention and interest, communicating the issue and data
behind it. It works emotionally, leaving one troubled.” He continues:
“Once one sets a clear objective, to reduce gun deaths in this example,
learning this reality is revealed as just one of the early steps. ...good
data visualization can expose people to the issue, capture their attention
and interest, and even spur them to act for change” (emphasis ours).
The quote illustrates both the clear cognitive objective—insights about
gun deaths—but also an objective centered around a set of values. This
is where the exclusive focus on the cognitive domain fails us. Though
such affective objectives are not the focus of this work, we refer the
interested reader to our supplemental site which offers a modification
of an affective taxonomy [60] as a potential starting point.

A structured formulation of affective objectives allows a designer, if
they so choose, to specify that the viewer should change their belief.
Anti-objectives may be particularly useful in expressing neutrality
through the affective taxonomy (i.e., “viewer will not modify their
opinion”). In this sense, neutrality is a value that can be encoded as a
learning objective. Perhaps more importantly, a principled language
will support principled critique. This may support evaluation of topics
such as deception [70] or ‘black-hat’ visualizations [30].

Business Objectives—One of the ‘goals’ we often see articulated
by content creators is that visualizations should increase engagement. A
reasonable question is how a designer should represent engagement in
the taxonomy framework? We argue that they shouldn’t. One reason to
desire increased engagement is to increase profit 3. This is a perfectly
acceptable business objective but we argue that it is best measured
through more direct means—like time spent on site or conversion rate.
A second reason for increasing engagement is that it represents an
instructional strategy (i.e., more time studying = more learning). If this
is true, we suggest that the designer be direct about the actual objective
(recall, affect change, etc.), rather than proxy measures (time-on-site).

Archival Objectives—The third of Bertin’s purposes for visualiza-
tion, after analysis and communication, is “Recording Information” (or
“Inventory Drawings”). Visualizations that serve this function exclu-
sively are ideally suited for the cognitive efficiency argument. Informa-
tion from these types of plots should be extracted reliably. However,
we argue that visualizations that exclusively have this function are
rare. A paper may display results to allow others to find key data, but
such visualizations often have a communicative intent as well (e.g., to
draw attention to some key points). As with purely cognitive objec-
tives, multiple high level objectives (e.g., business and communicative;
communicative and archival) may require trade-offs. Future work may
identify how to best navigate these.

6.3 Multiple Objectives and Anti-Objectives

Designing visualizations, even communicative ones, is a wicked design
problem [19]. Multiple objectives and limited resources (e.g., the space
on the screen or reader attention) means that a single visualization may
not be able to solve all objectives equally, or at all. Crafting objectives
for sophisticated visualizations also requires prioritizing them and using
assessments to determine if those priorities are met. For example, we
may be willing to sacrifice some performance on the recall objective if
the readers perform well in critique.

One benefit of mapping multiple objectives onto the hierarchical

5“Once I heard someone state: The purpose of visualization is funding, not
insight.” [94]



matrix structure (e.g., Figure 1) is that a designer may be able to
identify dependencies in objectives. The hierarchical nature of the
framework allows one to order objectives. High level verbs (e.g.,
evaluate) and knowledge categories (e.g., procedural) either require
expertise or indicate that scaffolding is necessary in the visualization.
When ordered this way, a designer may be able to identify dependencies—
to do Learning Objective 2, my reader will first need to learn to do
Learning Objective 1. Future work may focus on the relationship
of learning objectives to each other as well as the interplay between
objectives and expertise (i.e., a difficult procedural task for a novice
may be a simple recall one for an expert).

Interestingly, the learning objectives framework also allow us to
indicate which things we don’t want. This relates to Mackinlay’s
expressiveness test which emphasized that only those facts that we
want to express were apparent in the visualization (and no others) [65].
We can be explicit about undesirable objectives, or anti-objectives. An
anti-objective takes the form of, “a viewer will not ...” A successful
design ensures that objectives are met and the anti-objectives are not.

6.4 Visualization Contexts

A key observation that emerges from our construction of learning ob-
jectives and from our interviews is that the right level of detail for
objectives requires considering the embedding context of the visu-
alization. Objectives can be defined at many layers: for the single
visualization, for a bundle of text and images, or even for an entire
website.® When we define learning objectives, we can’t ignore the
context in which the visualization is embedded. However, if we wish
to evaluate a communicative visualization in context, it is useful to
define a learning objective that can reasonably be influenced by that
visualization. That is, the viewer should perform better having seen
the visualization than without it. More analysis of varying contexts is a
crucial next step. An area of future work may also be to understand how
the learning objective framework can be integrated directly with tools
built for communicative visualizations (e.g., Tableau Stories, Idyll [29],
and litvis [103]).

6.5 Assessment

The learning objectives framework is attractive, in part, because ob-
jectives are intended to be testable [73, 100]. By applying a formal
language, our objectives are consistent with the ‘SMART’ framework—
Specific, Measurable, Attainable, Realistic, and Time Bound). As-
sessment protocols can readily be used to measure whether a viewer
has achieved our learning objective. We leave the design of specific
assessments to future work. However, we briefly provide a few higher
level observations and some examples.

As a simple example, given the Phillips curve chart (Figure 1), to
assess the objective the viewer will classify different temporal regimes
for the curve we could ask: “In which of the following periods did
correlation vanish between unemployment and inflation (label each
as true-false): (a) 1980-1990? (b) 1991-2000? (c) 2001-2010?” If
the viewer could not answer this question correctly before they saw
the visualization, but could after, we could argue that we achieved the
objective. Higher-level objectives (e.g., critique or explain) might use
more open-ended responses. For example, for the objective the viewer
will be able to explain why the Phillips curve has been flatlining in the
past decade we may need a grade rubric (e.g., full scores for describing
all factors).

The appeal of assessments of this type is that we can more com-
pletely understand whether viewers attain an objective given their initial
state. One could offer a test before the viewer sees the visualization,
one during exposure, and one after we take the visualization away.
Separating the questions this way lets us explicitly determine if the
visualization helped us achieve our intent: of the people who couldn’t
do or didn’t believe something before, how many can/do after?

The goal of assessment is to help the designer understand the impact
of their design. This is distinct from the main goal of traditional assess-

“We’re fans of Tufte’s view that, “Evidence that bears on questions of any
complexity typically involves multiple forms of discourse.” [93]

ment: to gauge the cognitive development of an individual student. We
want to understand the performance of the intervention—the ‘program
effects’ or ‘lesson effectiveness.” That said, we leave open-ended what
‘program’ means. While our goal is to help design single visualizations,
we recognize that the communicative ‘intervention’ can also include the
combination of visualization and text, multiple visualizations, scientific
papers, videos, or even entire websites.

It is also worth acknowledging that while assessments can be imple-
mented (e.g., we can run an experiment on a crowdsourced platform), a
designer may also benefit from merely articulating what the assessment
would look like. We anticipate that building and internally validating
the assessment protocol (in relation to the objectives) would help the
designer. At the very least, the designer can determine if the visual-
ization conveys enough information for the objective to be achievable
(e.g., the viewer won’t be able to tell us about the 1995 Phillips curve
if the data isn’t present).

It is an open research question which assessment format will work
best for communicative visualization learning objectives specifically.
Assessments fall broadly into two categories: constructed response
(CR)-or open-ended style questions; and multiple-choice (MC) formats.
Each format has its own advantages and disadvantages. When both
are suitable, MC forms are attractive as they are familiar, have been
demonstrated to be effective, have been validated [43] and are readily
adaptable to computer-based testing [80]. Even though we may not
yet know how to best assess communicative visualization learning
objectives, the literature provides us with a good starting point.

7 CoNncLUSION

Designers of communicative visualizations almost always focus on
the fidelity of the message. However, the viewer’s ability to correctly
decode the message is at best a poor proxy for measuring if the message
had the intended impact. In this work, we put forward the idea that we
can formally model designer goals in a learning context. By framing
communicative objectives as learning objectives, we allow a designer
to describe their intent (using a variant of the Revised Bloom grid).
Because such well-formed objectives can be readily transformed to
assessments, this approach means that communicative designs can be
better evaluated. By surveying and interviewing design professionals,
we have demonstrated that intents can be mapped to learning objectives
but that not all objective types are equally used in communicative visu-
alization contexts. Our framing lends itself to future work in helping
designers create objectives and transform these to assessment instru-
ments. While existing visualization task and evaluation taxonomies
largely focus on analytical/exploratory tasks, we offer learning objec-
tives as a way of filling the gap for communicative visualizations.
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