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Whitening of odor representations by the wiring
diagram of the olfactory bulb
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Adrian A. Wanner'?3 and Rainer W. Friedrich

Neuronal computations underlying higher brain functions depend on synaptic interactions among specific neurons. A mecha-
nistic understanding of such computations requires wiring diagrams of neuronal networks. In this study, we examined how
the olfactory bulb (OB) performs ‘whitening’, a fundamental computation that decorrelates activity patterns and supports
their classification by memory networks. We measured odor-evoked activity in the OB of a zebrafish larva and subsequently
reconstructed the complete wiring diagram by volumetric electron microscopy. The resulting functional connectome revealed
an over-representation of multisynaptic connectivity motifs that mediate reciprocal inhibition between neurons with similar
tuning. This connectivity suppressed redundant responses and was necessary and sufficient to reproduce whitening in simula-
tions. Whitening of odor representations is therefore mediated by higher-order structure in the wiring diagram that is adapted

to natural input patterns.

formed in the brain to extract relevant information. At early

processing stages, activity patterns often contain correlations
and intensity variations that originate from the statistics of natural
scenes and from the tuning of sensory receptors'. This statistical
structure complicates the classification of sensory inputs because it
does not usually reflect behaviorally relevant stimulus categories’.
For example, visual scenes might be dominated by a large number of
pixels representing sky, while the biologically most important infor-
mation is conveyed by a small subset of pixels representing specific
objects (for example, a hawk or a sparrow). Hence, correlations in
sensory inputs can complicate meaningful pattern classification and
object recognition. This problem can be alleviated by whitening, a
fundamental transformation in signal processing that decorrelates
patterns and normalizes their variance. Whitening is therefore often
used early in a pattern classification process to remove undesired
correlations and to optimize the use of coding space’.

In the visual and auditory systems, whitening of individual
neurons’ responses to natural stimuli supports efficient coding by
redundancy reduction*”. Efficient pattern classification, however,
requires whitening of activity patterns across neuronal populations.
This form of whitening occurs in the OB*'° where axons of olfac-
tory sensory neurons expressing the same odorant receptor con-
verge onto discrete glomeruli. Odors evoke distributed patterns of
input activity across glomeruli that can overlap substantially when
odorants share functional groups'-". The variance (contrast) of
these glomerular activity patterns varies dramatically as a func-
tion of odor concentration. The output of the OB is transmitted
to higher brain areas by mitral cells (MCs), which receive sensory
input from individual glomeruli and interact with other MCs via
multisynaptic interneuron (IN) pathways (Fig. 1a). Unlike glomeru-
lar inputs, activity patterns across MCs become rapidly decorrelated
during the initial phase of an odor response®'**, and their variance
depends only modestly on stimulus intensity'*"”. Neuronal circuits
in the OB therefore decorrelate and normalize population activity
patterns, resulting in a whitening of odor representations. Pattern
decorrelation predicted learning in odor discrimination tasks®',

N euronal activity patterns evoked by natural stimuli are trans-

consistent with the assumption that whitening facilitates pattern
classification. However, it remains unclear how this transformation
is achieved by interactions between neurons in the OB network.

Efficient whitening can be achieved by transformations that are
adapted to the correlation structure of input patterns'. Such adap-
tive whitening requires prior knowledge about inputs and tuning-
dependent connectivity between specific cohorts of neurons. Hence,
whitening of sensory representations is thought to depend on an
evolutionary memory of stimulus space that is contained in the wir-
ing diagram of neuronal circuits. This hypothesis is difficult to test
in the OB because tuning and functional connectivity cannot be
inferred from topographical relationships between neurons'»*-%.
Moreover, because interactions between MCs are multisynaptic via
INs, relevant inhibitory interactions cannot be visualized by trans-
synaptic tracing across one synapse.

Adaptive whitening and other memory-based processes are
likely to depend on higher-order features of neuronal connectivity
that cannot be detected by sparse sampling of pairwise connections.
We therefore used a ‘functional connectomics” approach that com-
bines population-wide neuronal activity measurements with dense
reconstructions of wiring diagrams, taking advantage of the small
size of the larval zebrafish brain. We first measured odor responses
of neurons in the OB by multiphoton calcium imaging and subse-
quently reconstructed the synaptic connectivity among all neurons
by serial block-face scanning electron microscopy (SBEM)>-*.
We found that higher-order features of multisynaptic connectivity
specifically suppressed the activity of correlated MC ensembles in
a stimulus-dependent manner, resulting in decorrelation and vari-
ance normalization. The wiring diagram of the OB is therefore
adapted to the correlation structure of its inputs and mediates a
whitening operation on the basis of contrast reduction rather than
contrast enhancement.

Results

Reconstruction of the wiring diagram and mapping of neuronal
activity. We previously reconstructed the skeletons of 1,003
neurons in an SBEM image stack of the OB from a zebrafish larva
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Fig. 1| Neuronal organization and computations in the OB. a, Schematic
illustration of whitening in the OB. Top: correlated input patterns with
different variance. Bottom: decorrelated output patterns with similar
variance. Center: highly simplified illustration of the OB circuit. MCs
receive excitatory input from a single glomerulus and interact via inhibitory
INs. Whitening requires multisynaptic interactions between specific
subsets of MCs that are mediated by INs and defined by the wiring
diagram. Interactions between INs and top-down inputs to the OB are

not shown. b, Example of a reciprocal synapse between an MC and an

IN. €, Reconstructions of an MC (left) and an IN (right). Gray volumes
show glomeruli and dots depict synapses. Colors denote synapse class:
blue, unidirectional nonsensory input; red, unidirectional output; magenta,
reciprocal; green, input from sensory neurons. d, Simplified representation
of the wiring diagram between MCs and INs (binarized connection
strength). Colored matrix elements show MC—IN synapses (blue),
MC<IN synapses (orange) and reciprocal synapses (black).

(4.5 d after fertilization), accounting for 98% of all neurons in the
OB, and classified them as MCs (n=745), INs (n =254) and ‘atypical
projection neurons’ (n=4)*>*. We now annotated the synaptic con-
nections of these neurons to reconstruct the full wiring diagram of
the OB. Human annotators followed each of the reconstructed skel-
etons and manually labeled all input and output synapses (Fig. 1b,c).
Subsequently, synapses of INs were annotated again by different
annotators. Hence, each synapse involved in MC-IN-MC connec-
tivity motifs should have been encountered at least three times. To
obtain a conservative estimate of the wiring diagram with few false
positives, we retained only synapses that were annotated at least
twice by independent annotators.

Each synapse was assigned a unitary weight so that the total con-
nection strength between a pair of neurons equaled the number of
synapses. The resulting wiring diagram contained 19,874 MC—IN
synapses, 17,524 MC<«+IN synapses (Fig. 1d) and 13,610 synapses
between INs. We also observed contact sites between MCs associated
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with the same glomerulus where plasma membranes showed strong
staining, but these sites usually lacked vesicles. Therefore, we did
not consider synaptic connections between MCs. Axons of sensory
neurons frequently made synapses onto MCs, but synapses onto INs
were rare (Extended Data Fig. 1a)*.

On average, connected pairs of MCs and INs made 3.1 MC—IN
synapses and 2.9 MC<«IN synapses per pair, and pairs of connected
INs made 2.6 synapses in each direction. A hallmark of synaptic
connectivity in the adult OB is reciprocal dendrodendritic synaptic
connections between the same MC-IN pair. In the larval OB, 52%
of MC—IN synapses and 51% of MC<«IN synapses were associ-
ated with a synapse of the opposite direction, usually within 2.5 pm,
between the same pair of neurons (Fig. 1b). Hence, reciprocal syn-
aptic connectivity is already prominent at larval stages.

Before preparation of the OB sample for SBEM, we measured
neuronal activity by multiphoton imaging of the calcium indica-
tor GCaMP5, which was expressed under the pan-neuronal elavi3
promoter”. Somata observed in electron microscopy (EM) were
mapped onto the light microscopy data using an iterative landmark-
based affine alignment procedure followed by manual proofread-
ing (Fig. 2a,b and Extended Data Fig. 1b). Somatic calcium signals
evoked by four amino acid odors (10~* M) and four bile acid odors
(107° M) were measured sequentially in six optical planes (Fig. 2a—c
and Extended Data Fig. 2) and temporally deconvolved to estimate
odor-evoked firing rate changes®. The dynamics of neuronal popu-
lation activity were then represented by time series of activity vec-
tors for each odor stimulus (232 MCs and 68 INs).

Decorrelation and contrast normalization of activity patterns
across MCs were characterized previously in the OB of adult zebraf-
ish®'** and mice'*'"® where >90% of neurons are GABAergic INs.
In the larval OB, in contrast, INs account for only 25% of all neu-
rons®. Most of these INs are likely to be periglomerular and short
axon cells, because INs with the typical morphology of granule cells
appear only later in development. We therefore asked whether the
core circuitry present in the larval OB already performs computa-
tions related to whitening.

Correlations between activity patterns evoked by different bile
acids were high after stimulus onset and decreased during the sub-
sequent few hundred milliseconds (Fig. 2d,e). Patterns evoked by
amino acids, in contrast, were less correlated throughout the odor
response, which was expected because most amino acids have dis-
similar side chains. Further analyses of pattern decorrelation there-
fore focused on activity patterns evoked by the four bile acids,
whereas other analyses included all eight odors. To quantify pat-
tern decorrelation, we computed the mean difference in pairwise
Pearson correlations between a time window shortly after response
onset (¢,) and a later time window (t,) that was chosen so that the
mean population activity across MCs was not significantly different
from that at ¢, (Fig. 2d; P=0.57, Wilcoxon rank-sum test). Pattern
correlations across MCs, however, were significantly lower at ¢, than
at t; (P=0.03, Wilcoxon rank-sum test), demonstrating that MC
activity patterns were reorganized and decorrelated. Activity across
INs followed the mean MC activity with a small delay and did not
exhibit an obvious decorrelation during the early phase of the odor
response (Fig. 2d). These findings are consistent with observations
in the adult OB¥. The natural time course of olfactory input to the
OB of zebrafish larvae is likely to be slow because these animals live
in slow waters close to the substratum® and because the temporal
resolution of their olfactory sensory neurons is low’'. We therefore
assume that the dynamics of odor-evoked population activity in the
OB are fast compared to the kinetics of natural sensory inputs.

The contrast of MC activity patterns, as measured by the vari-
ance of activity across the population, increased shortly after
stimulus onset and peaked slightly later than pattern correla-
tion. Subsequently, variance decreased and became more uniform
across odors, as reflected by a significant decrease in the s.d. of the
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Fig. 2 | Odor-evoked population activity in the OB. a, Mapping of the six optical image planes selected for calcium imaging onto the EM-based

reconstructions of neurons. Thickness of planes shows range of drift between trials. b, One optical image plane showing raw GCaMP5 fluorescence (left)
and the corresponding oblique slice through the EM image stack (right). The dashed line outlines the ipsilateral brain hemisphere; continuous white
outlines show glomerular neuropil. Tel, telencephalon; OB, olfactory bulb. The region outlined by the red square is enlarged; white dots depict somata
in corresponding locations. Bottom left: fluorescence change evoked by an odor stimulus in the same field of view. Arrowheads depict locations of two
responsive somata in different images. The alignment of EM images with optical images was repeated in all n=6 image planes with similar results.

¢, Activity (deconvolved calcium signals) of MCs (n=232) and INs (n=68) in response to four bile acids (BAs) and four amino acids (AAs) during
two time windows, t; and t.. d, Left: time courses of odor-evoked activity (n=28 odors), pattern correlation (Pearson; n=6 bile acid pairs) and pattern
variance (n=38 odors). Activity was determined by low-pass filtering and deconvolution of somatic calcium signals. The horizontal bar indicates time
of odor stimulation. Black, mean measures across MCs; gray, individual odors (variance) or odor pairs (correlation). Light blue, mean measures across
INs. Correlation was measured only between activity patterns evoked by bile acids, because patterns evoked by amino acids were already dissimilar
at response onset. Right: mean measures for MCs during t, and t, (activity, correlation and mean variance: two-sided Wilcoxon rank-sum test; s.d. of
variance: F-test with dfl=df2 =7 degrees of freedom; F = 14.0). Black markers and error bars show mean +s.d.; gray lines show individual datapoints.

AU, arbitrary units. e, Matrices showing Pearson correlations between activity patterns across MCs (left; n=232) and INs (right; n=68) at t, and
t,. Odors: TCA, taurocholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; TDCA, taurodeoxycholic acid; Trp, tryptophan;

Phe, phenylalanine; Val, valine; Lys, lysine.

variance across odors between t, and ¢, (Fig. 2d; P=0.003, F-test;
t, was slightly shifted relative to the time window for correlation
analysis to cover the peak of the variance). Hence, MC activity
patterns in the larval OB became decorrelated and normalized for
contrast, consistent with the whitening of odor representations in
the adult OB.

Whitening can facilitate pattern classification but might also
introduce noise. We therefore quantified the reliability of odor
classification using a template-matching procedure based on sin-
gle-trial responses and found that classification success, as well as
the separation of correct and incorrect classifications, was slightly
higher at ¢, than at t, (Extended Data Fig. 3). Hence, pattern decor-
relation did not compromise the reliability of odor identification by
a simple classifier but facilitated pattern separation.
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Computational consequences of connectivity. Although contrast
normalization can be achieved by global scaling operations such
as divisive normalization”, pattern decorrelation requires inter-
actions between distinct subsets of neurons’. In theory, pattern
decorrelation could be achieved by large networks with sparse and
random connectivity”, but this architecture is inconsistent with the
low number of INs in the larval OB. Smaller networks can decor-
relate specific input patterns when their connectivity is adapted to
the covariance structure of these inputs, suggesting that decorrela-
tion in the OB is an input-specific transformation of odor repre-
sentations that is encoded in the wiring diagram. To explore this
hypothesis, we first asked whether whitening can be reproduced
by implementing the wiring diagram in a network of minimally
complex single-neuron models (Fig. 3a).
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Fig. 3 | Whitening depends on connectivity. a, Architecture of the simulated network. Sensory input was targeted to MCs but not to INs. b, Time courses
of simulated odor-evoked activity, pattern correlation (Pearson) and s.d. of pattern variance obtained with different IN-IN connection strengths (100%,
20% and 0%). 100% corresponds to the same strength as MC«IN connections. Measures were calculated across all =208 MCs. ¢, Simulated network
without IN-IN connections. d, Time courses of simulated activity, pattern correlation (Pearson) and s.d. of pattern variance obtained with different wiring
diagrams (no IN-IN connections). Measures were calculated across all n=208 MCs. Blue, original wiring diagram obtained by circuit reconstruction;

dark red, fully randomized connectivity; light red, co-permutation of feedforward (MC—IN) and feedback (MC«IN) connectivity. Shaded areas show s.d.
across permutations. e, Pattern correlation and s.d. of pattern variance at t,. Horizontal black lines show mean experimental values at t;; s.d. of pattern
variance is normalized to the experimental value at t,. Statistical comparisons of correlation and s.d. of variance were performed using a two-tailed t-test
and an F-test, respectively. Dots show means, error bars show s.d., filled bars show difference to corresponding values at t; and box plots show the median,
25th percentile and 75th percentile. For experimental results and simulations using the reconstructed wiring diagram, variability was measured across
odor pairs (correlation; bile acids only; n=6) or individual odors (s.d. of variance; n=8). Significance tests compare values at t, to experimental values at t,
(correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with df1=df2 =7 degrees of freedom). For other simulation results, variability was
measured across n=50 different network simulations (repetitions). Significance tests compare repetitions to the mean value observed experimentally at t,
(two-tailed t-test with 49 degrees of freedom). *P < 0.05, **P < 0.07; NS, not significant. P values, from left to right: correlation: 0.03, 0.04, 0.81 (t=0.23),
0.51(t=0.66), 0.42 (t=0.81); s.d. of variance: 0.003 (F =14.0), 0.04 (F=5.2), 0.01 (t=2.56), 0.03 (t=2.19), 0.03 (t=2.18). Norm., normalized. f, Top:
disynaptic connectivity matrix between all MCs included in activity measurements and simulations (Wjc_y X Wyc_n; Methods). Grayscale represents
the number of disynaptic MC-IN-MC connections (normalized). Bottom: example of a disynaptic connectivity matrix with the same order of MCs after
co-permuting Wyc_n and Wycoi.

We first simulated a network of threshold-linear rate neurons All connections made by neurons of the same type (MC or IN)

with 208 MCs, representing all recorded MCs with input and output
synapses, and 234 INs, representing all connected INs. Connections
between individual neurons were given by the wiring diagram.
Excitatory sensory input into MCs was defined by the odor-evoked
activity pattern at f,. INs received no sensory input because synapses
from sensory neurons onto INs were rare (Extended Data Fig. 1a).
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had the same weight scaling. The time course of stimuli consisted
of a fast initial rise followed by a slow decay”, approximating the
response time course of olfactory sensory neurons in zebrafish®.
Because connectivity was fixed, the final network model had only
6 degrees of freedom (corresponding to the thresholds, synaptic
weight scaling factors and time constants of each neuron type).
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Correlations between simulated population responses to bile
acids increased rapidly and subsequently decreased. Consistent with
experimental observations, the mean correlation decreased signifi-
cantly between two time windows, t, and t,, that were chosen so that
the mean activity was not significantly different (Fig. 3b). The vari-
ance (contrast) of activity patterns and its s.d. across stimuli peaked
slightly later than the correlation and decreased thereafter (Fig. 3b).
Correlations between IN activity patterns remained higher than
correlations between MC activity patterns throughout the odor
response (Extended Data Fig. 4a). Hence, simulation results were in
good agreement with experimental observations.

To examine the contribution of IN-IN connections to the
observed pattern transformations, we modified the strength of
IN-IN synapses from 100% (same strength as MC«IN connec-
tions) to 0% (no IN-IN connections). Reducing IN-IN connection
weights slightly decreased the mean activity, consistent with a dis-
inhibitory effect of IN-IN connections, and slightly decreased pat-
tern variance and its s.d. Pattern decorrelation, however, remained
almost unaffected (Fig. 3b). IN-IN connectivity was therefore omit-
ted in further simulations for simplicity (Fig. 3¢).

To exclude the possibility that pattern decorrelation by simulated
networks reflects a chaotic process, we examined responses to inputs
with biologically realistic amounts of noise (Methods). Although
activity patterns representing different odors became decorrelated,
correlations between noisy representations of the same stimuli
remained high (Extended Data Fig. 4b), demonstrating that pattern
decorrelation did not reflect an amplification of noise.

Randomizing the wiring diagram by independent shufflings
of the feedforward connectivity matrix Wyc_y and the feedback
connectivity matrix Wyc_;y abolished pattern decorrelation and
contrast normalization (Fig. 3d,e). Hence, whitening depended
on the wiring diagram. To corroborate this conclusion, we exam-
ined whether the reorganization of activity patterns underlying
whitening can be predicted from connectivity without an explicit
simulation of network dynamics. Activity patterns at ¢, were mul-
tiplied by the feedforward connectivity Wy_y, normalized, and
thresholded to generate a hypothetical pattern of IN activity. This
activity pattern was then multiplied by the feedback connectiv-
ity Wycoy to predict the pattern of feedback inhibition onto
MCs. The feedback pattern was subtracted from the MC activity
at t, (subtractive inhibition), or the MC activity pattern at ¢, was
divided by the pattern of feedback inhibition neuron by neuron
(divisive inhibition; Extended Data Fig. 5a). This simple algebraic
procedure reproduced both pattern decorrelation and variance
normalization, independently of whether inhibition was subtrac-
tive or divisive (Extended Data Fig. 5b). Whitening was again
abolished when connectivity matrices were randomized. These
results confirm that the wiring diagram contains information
essential for whitening.

We next performed more specific manipulations to explore
how whitening depends on higher-order structure in the wir-
ing diagram. In simulations without IN-IN connections, we first
applied the same shufflings to MC—IN connections (Wyc_ )
and to MC«IN connectivity (Wyc_yy). This co-permutation of
feedforward and feedback connectivity shuffles the off-diagonal
elements in the disynaptic connectivity matrix (lateral inhibition)
but preserves the overall distribution of disynaptic MC—IN—-MC
connection strengths and the on-diagonal elements (self-inhi-
bition; Fig. 3f). Similarly to the independent randomization of
Wiicon and Wy _ny, co-permutation of Wy and Wy, abol-
ished whitening (Fig. 3d,e). Moreover, whitening was abolished
when input channels were permuted to produce novel input pat-
terns with the same statistical properties and correlations (Fig. 3e).
These results show that whitening is mediated by higher-order
features of multisynaptic connectivity that are adapted to patterns
of sensory input.
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Higher-order structure of connectivity. The shortest synaptic path
between two MCs associated with different glomeruli is a disynaptic
interaction via one IN (MC-IN-MC). To identify properties of the
wiring diagram that mediate whitening, we analyzed MC-IN-MC
triplets. There are seven possible triplet configurations that repre-
sent four topological motifs (Fig. 4a). We found that the motif con-
taining no reciprocal connection (motif 1) was under-represented,
whereas the other motifs were over-represented, compared to ran-
domized networks (Fig. 4b). The strongest over-representation
was observed for motif 4, which contained reciprocal connections
between both MCs and the IN. Hence, MC-IN-MC triplets fre-
quently contained reciprocal connections.

To determine whether disynaptic connectivity between MCs
depends on their tuning, we constructed an input tuning curve for
each MC from the responses to the eight odors at t,. We then quan-
tified the Pearson correlation between the input tuning curves of
MC pairs and the number of disynaptic MC-IN-MC connection
paths across all motifs. The mean number of disynaptic connections
increased with the input tuning correlation (Fig. 4c, left). MCs with
similar tuning were more likely to be connected through motifs
with reciprocal connections, particularly motifs 2 and 4 (Fig. 4d
and Extended Data Fig. 6). Consistent with this observation, the
correlation between tuning similarity and disynaptic connectivity of
MC pairs remained strong when only reciprocal connections were
considered (Fig. 4c, right). Hence, triplets mediate interactions pref-
erentially between MCs with similar tuning, and these interactions
frequently contain reciprocal connections.

As for MC-IN-MC connections, motifs with one or two recipro-
cal connections were also over-represented in IN-MC-IN triplets,
but no simple relationship was apparent between input tuning and
disynaptic IN-MC-IN connectivity (Extended Data Fig. 7a—c). In
addition, we found that the tuning of synaptic inputs and outputs
of individual INs was significantly correlated and that large sets
of fully reciprocally connected neurons (‘maximal cliques’) were
strongly over-represented in the wiring diagram (Extended Data
Fig. 7d-g). These observations further demonstrate that the con-
nectivity among OB neurons is not random but is governed, at least
in part, by functional response properties.

Mechanism of whitening. Unidirectional lateral inhibition between
functionally related neurons sharpens tuning curves and enhances
pattern contrast in the retina® and elsewhere (Fig. 5a, left). In ide-
alized networks with reciprocal connectivity, in contrast, inhibi-
tion does not amplify asymmetries in inputs, and self-inhibition
is usually stronger than lateral inhibition (assuming equal synap-
tic strength; Fig. 5a, right). Hence, reciprocal triplet connectivity
should primarily downregulate, rather than sharpen, the activity
of neurons in connected cohorts. As illustrated in Extended Data
Fig. 8, computational effects of contrast enhancement (by uni-
directional connectivity) or suppression of cohorts (by partially
reciprocal connectivity) depend on the properties of input pat-
terns. Contrast enhancement can decorrelate inputs when stimu-
lus-specific information is contained in strong responses, because
strong responses are emphasized whereas weak responses are
suppressed™*'. However, when strong responses are nonspecific,
contrast enhancement fails to decorrelate patterns because it
enhances noninformative responses while suppressing weaker,
potentially informative, responses. Under these conditions, patterns
may be decorrelated by the selective suppression of strongly active
cohorts, which can, in principle, be achieved by cohort-specific
reciprocal inhibition (Extended Data Fig. 8).

To examine the basis of pattern correlations in the OB, we analyzed
population activity patterns evoked by bile acids at ¢,. For each pair
of patterns, we quantified the contribution r,,, of MC i to the Pearson
correlation r and ranked MCs by their r,,, (see example in Fig. 5b;
rankings differed between odor pairs). Ranked measurements of
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correlation contribution, activity and variance contribution of indi-
vidual MCs were then averaged over odor pairs (Fig. 5¢). For each
odor pair, pattern correlations at f, were dominated by high contri-
butions from a small fraction of MCs that were also strongly active
(Fig. 5c¢, left and middle). Hence, correlated odor representations
overlapped primarily in strongly responsive MCs at ¢,, consistent with
observations in the adult OB’.

We then examined changes in the activity of individual neurons
underlying the decorrelation and contrast normalization between
t, and t,. The activity of MCs with large r,,, values was significantly
lower at t, than at ¢, (Fig. 5b,c). The mean activity of MCs that did not
strongly contribute to the initial correlation, in contrast, remained
similar. As a consequence, the contribution of MCs with large r,,
to the overall correlation decreased, resulting in a decorrelation of
population activity patterns between t, and ¢,. Pattern decorrelation
can therefore be attributed, at least in part, to the selective inhibition
of MC cohorts that dominated the initial pattern correlations. MCs
with high r,,, also made strong contributions to pattern variance at
t, (Fig. 5¢) because their activity was substantially higher than the
population mean. Because the selective inhibition of these cohorts
between ¢, and ¢, changed the activity of these MCs toward the pop-
ulation mean, the inhibition of these MCs also decreased pattern
variance and its s.d. across odors. Pattern decorrelation and contrast
normalization can therefore be attributed to a common mechanism
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that targets inhibition to specific MC cohorts and results in contrast
reduction rather than contrast enhancement.

The selective suppression of activity in cohorts of co-responsive
MCs cannot be achieved by global changes in subtractive or divi-
sive inhibition because inhibition within cohorts needs to be stron-
ger than the mean inhibition across the population in response to
defined sets of odors. To explore how specific wiring generates such
stimulus- and ensemble-specific inhibition, we defined functional
cohorts of MCs for each pair of bile acid stimuli as the ten MCs
with the highest r;,, (Extended Data Fig. 9a). We then determined
the disynaptic MC inputs to these cohorts by retrograde tracing
through the wiring diagram across two synapses. Inputs to MCs
within a cohort were strongly biased toward MCs of the same cohort
(Fig. 5d,e). Consistent with this finding, the density of MC-IN-MC
triplets, particularly motifs 2 and 4, was significantly higher within
cohorts than among randomly chosen MC subsets (Extended Data
Fig. 9b). Hence, cohorts of MCs are not only functional ensembles
defined by similar initial responses but are also anatomical ensem-
bles with a high density of disynaptic MC-IN-MC connections.

The dense disynaptic connectivity implies that MCs in a cohort
will be strongly inhibited when the cohort is activated as a whole.
Indeed, the activity of MCs and the associated presynaptic INs in
a cohort evolved in opposite directions during an odor response
(Extended Data Fig. 9¢c). As a consequence of cohort-specific
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connectivity, inhibition of MCs within a cohort will be stronger
than the mean level of inhibition. The specific suppression of activ-
ity underlying whitening can thus be attributed to dense recipro-
cal connectivity within cohorts that is activated by specific sets of
odors. Cohorts therefore function as ‘feature detectors, where a ‘fea-
ture’ is a molecular stimulus property that efficiently activates many
MCs in the ensemble. When a feature is present, the activity of the
corresponding MC cohort is downregulated by feedback inhibition,
and the representation of the feature in population activity patterns
is suppressed, which reduces correlations between related patterns.
Pattern decorrelation can therefore be explained by a mechanism
that involves ‘feature suppression’ through specific connectivity.
Features may correspond to functional groups that promote high
correlations of afferent activity patterns because they activate over-
lapping sets of odorant receptors. This hypothesis predicts that
MCs within functional cohorts exhibit similar input tuning to
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suppress the representation of such features. Indeed, the mean cor-
relation between tuning curves of MCs at ¢, was significantly higher
within cohorts (r=0.56+0.40; mean+s.d.) than across all MCs
(r=0.01+0.38; P<107%, Wilcoxon rank-sum test).

Feature suppression decreases pattern correlations by the selec-
tive inhibition of MCs with high activity and large contributions to
initial correlations. To confirm that this mechanism can account
for whitening in the OB, we set the activity of MCs in functional
cohorts (the ten MCs with the highest r,,)) to the population mean
for each odor pair. As predicted, this ‘targeted suppression’ of func-
tional cohorts resulted in decorrelation and variance normalization
(Extended Data Fig. 5b). To further dissect the mechanism of fea-
ture suppression, we took advantage of simulations. We first ranked
simulated MCs by their r,,, for bile-acid-evoked activity patterns
in experiments (same ranking as in Fig. 5c). As observed experi-
mentally, simulated MCs with large r,,, were strongly inhibited
between ¢, and t,, whereas the mean activity of other MCs remained
unchanged (Fig. 6a). Direct analysis of inhibitory inputs to individ-
ual MCs confirmed that MCs with large r;,, received substantially
more inhibition than other MCs. This specific targeting of inhibi-
tion to MCs with large r,,, was abolished when connectivity was
randomized (Fig. 6b). Therefore, simulations precisely reproduced
the activity changes in individual neurons that resulted in whiten-
ing, implying that simulations recapitulated the underlying mecha-
nism. Moreover, these results further show that decorrelation and
whitening of inputs cannot be achieved by global inhibition but rely
on interactions among specific subsets of neurons.

We next performed selective manipulations of the wiring dia-
gram. We first selected the MCs with the highest r,,, for each pair
of bile acid stimuli (MC cohorts, 19 MCs in total; Extended Data
Fig. 9a) and deleted their connections onto INs (11% of all MC—IN
connections; Fig. 6¢, ‘selective deletion’). As a control, we deleted the
same fraction of feedforward connections of random subsets of MCs.

<
<

Fig. 5 | Disynaptic connectivity underlying feature suppression.

a, Schematic illustration of contrast enhancement by unidirectional

lateral inhibition (left) and downscaling of cohort activity by reciprocal
inhibition (right; feature suppression). Arrow length and grayscale indicate
activity. b, Example of MC activity patterns evoked by two bile acids

(TCA and GCDCA) that were decorrelated between t, and t,. MCs are
ranked from top to bottom by their individual contribution to the pattern
correlation r at t, (r,;; Pearson correlation). ¢, Left: average contribution

of MCs to all pairwise correlations between activity patterns evoked by
bile acids at t, and t,. MCs were ranked by r,, for each pair of patterns,

as in b. Sorted vectors of correlation contributions were then averaged
over odor pairs. Mean mean bile-acid-evoked activity of MCs (middle)
and mean contribution of MCs to pattern variance (right). MCs were
sorted by r,,; and averaged as in the left panel. Gray and black curves show
correlation contribution, activity and variance (var) contribution at t,and t,,
respectively (same sorting of individual neurons by r,, for all curves). Insets
enlarge the top part of the curves (20 MCs with the highest r, ).

d, Example of disynaptic retrograde tracing of functional cohorts in the
wiring diagram. Blue, three MCs with the highest r;,, for the odor pair
shown in b (‘starter MCs'); green, 12 INs with the largest number of
synaptic inputs to the starter MCs; red, 48 MCs with the largest number
of disynaptic inputs to the starter MCs. Transparency represents the
number of synaptic connections. Note that the MCs with strong disynaptic
connectivity to the starter MCs include the starter MCs themselves,
consistent with pronounced reciprocal connectivity among functionally
related MC cohorts. e, Disynaptic MC-IN-MC connectivity as a function
of correlation contribution at t, (r,;; same ranking of MCs as in b and c).
For each pair of bile acids, the ten MCs with the highest r;; were selected
as starter cells. Disynaptic inputs from all MCs were then represented in a
vector and averaged over odor pairs. Note the strong over-representation
of disynaptic connectivity within the cohort of starter cells (gray shading).
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Whereas random deletions had almost no effect, the selective dele-
tion of feedforward connections from MC cohorts abolished pattern
decorrelation and variance normalization (Fig. 6d,e). Ranking of
MCs by their r;,, in experimental data demonstrated that the activity
of MCs with high r,,, values was not substantially reduced between
t, and t, when MC—IN connections originating from cohorts were
deleted. Asaconsequence, these MCs continued tomakelarge positive
contributions to pattern correlation and variance at t, (Fig. 6f). The
selective deletion of MC—IN connections from functional cohorts
therefore abolished whitening because it disrupted feature suppres-
sion. To corroborate this result, we redirected feedforward connec-
tions of MCs within cohorts to randomly selected IN targets, which
perturbed the connectivity of cohorts without changing the total
number of connections in the network. This manipulation (Fig. 6c,
‘selective permutation’) also abolished whitening (Fig. 6d.,e) and
eliminated the specific inhibition of MCs with high r,, at ¢, (Fig. 6f),
as observed for the ‘selective deletion’ of connections.

Finally, we randomized all connections except for those between
the 19 cohort MCs and their IN partners (Fig. 6¢, ‘selective preserva-
tion’). Wefound that pattern decorrelation remained intact (Fig. 6d,e),
contrary to the loss of decorrelation after full randomization of the
wiring diagram (Fig. 3d,e). Variance normalization was partially
reduced, as expected because cohorts were selected on the basis of
bile acid but not amino acid patterns. The activity of MCs with high
1, was strongly reduced at t, (Fig. 6f), demonstrating that pattern
decorrelation and partial variance normalization were generated by
feature suppression. Therefore, specific manipulations of the wiring
diagram demonstrated that whitening was mediated by disynaptic
interactions that suppressed the activity of correlation-promoting
MC cohorts.

Discussion

We used a functional connectomics approach in a small vertebrate
to explore the mechanism of whitening in the OB. Whitening is a
computation related to object classification and associative memory
that requires specific transformations of neuronal activity patterns.
Such computations are thought to rely on specific wiring diagrams
that are adapted to relevant inputs. Consistent with this notion, we
found that whitening was achieved by specific multisynaptic inter-
actions that cannot be described by general topographic principles
or by the first-order statistics of connectivity between neuron types.
Functional connectomics is therefore a promising approach to dis-
sect distributed, memory-based computations underlying higher
brain functions.

Correlations between input patterns in the OB were dominated
by distinct subsets of strongly active input channels. This correla-
tion structure is likely to reflect the co-activation of different odorant
receptors by discrete functional groups'>"* and implies that input cor-
relations cannot be removed efficiently by contrast enhancement™-"".
Pattern decorrelation can also not be explained by the amplification
of specific responses through disinhibition because it persisted when
IN-IN connections were removed. Instead, patterns are decorrelated
by the selective inhibition of strongly active, correlation-promoting
MC cohorts. Pattern decorrelation is therefore achieved by a mecha-
nism that results in contrast reduction, rather than contrast enhance-
ment, which also supports contrast normalization.

The tuning-dependent MC-IN-MC connectivity required for
whitening might be established by molecular or activity-dependent
mechanisms. We reconstructed the wiring diagram of a larva at a
stage before activity-dependent effects were detected on the mor-
phological development of glomeruli®, suggesting that the initial
assembly of neuronal connections might rely primarily on molec-
ular cues. Projections of INs are enriched between glomeruli that
receive input from odorant receptors of the same families®, raising
the possibility that glomerular targeting of sensory neurons® and
INs involve related mechanisms. However, the development of spe-
cific connectivity among OB neurons remains to be explored.

Lateral inhibition between neurons with similar tuning is often
assumed to sharpen tuning curves by amplifying asymmetries in the
input. In the OB, however, triplet connections between related MCs
are enriched in reciprocal connectivity. Such connectivity results in
feedback inhibition that is independent of the precise input pattern
and downscales activity without amplifying asymmetries (Fig. 5a,
right). Reciprocally connected MC<IN«<MC cohorts therefore
mediate feature suppression because the inhibitory feedback gain
within the cohort is larger than the mean feedback gain when an
appropriate feature is present. This mechanism can explain the
selective and odor-dependent inhibition of correlation-promoting
MC cohorts.

Functional connectomics permitted us to test the significance of
this mechanism by implementing the wiring diagram in a network
of minimally complex model neurons. Simulations included only
~30% of the MC population and did not quantitatively reproduce
all details of the measured population activity. Nevertheless, the
dynamics that resulted in whitening by feature suppression was pre-
served, demonstrating that the computational function of the circuit
is determined to a large extent by its connectivity. Whitening was
robust against input noise and parameter variations, presumably

>
>

Fig. 6 | Mechanism of whitening analyzed by targeted manipulations of the wiring diagram. a, Mean correlation contribution, activity and variance
contribution of MCs responding to bile acids at t, (light blue) and t, (dark blue) in simulations (correlation contribution: n=6 bile acid pairs; activity and
variance contribution: n=_8 odors). MCs were ranked by the correlation contribution r,,, observed in experimental data, as in Fig. 5c. Insets enlarge the top
parts of the curves (20 MCs with the highest r,,;) and compare simulation results to experimental data (gray and black) for the same 20 MCs.

b, Simulated synaptic inputs as a function of time during stimulus presentation for all MCs. For each odor pair, MCs were ranked by the correlation
contribution r;, in experimental data, as in a and Fig. 5¢c. Ranked matrices were normalized and averaged over odor pairs. Inset: synaptic inputs to the

20 MCs with the highest r, .. Top: original wiring diagram; bottom: randomized wiring diagram. ¢, Schematic: selective deletion, selective permutation and
selective preservation of MC cohort connectivity in simulations. FF, feedforward. d, Pattern correlation (Pearson) and s.d. of pattern variance (normalized)
at t, observed in simulations under different conditions. Horizontal black lines show mean values at t,. Dots show means, error bars show s.d., filled bars
show difference to corresponding values at t, and box plots show the median, 25th percentile and 75th percentile. For simulations using the original
wiring diagram, variability was determined across odor pairs (correlation; bile acids only; n=6) or individual odors (s.d. of variance; n=8). Significance
tests compare values at t, to experimental values at t, (correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with df1=df2=7 degrees

of freedom). For other simulation results, variability was measured across n="50 different network simulations (repetitions). Significance tests compared
repetitions to the mean value observed experimentally at t, (two-tailed t-test with 49 degrees of freedom). *P < 0.05, ***P < 0.001; NS, not significant.

P values, from left to right: correlation: 0.04, 10~° (t=5.0), 1073 (t=10.5), 10~ (t=5.1), 0.67 (t=0.4); s.d. of variance: 0.04 (F=5.2), 1077 (t=6.3),

1045 (t=53.8), 0.07 (t=1.84),10~* (t=4.22). e, Time courses of mean activity, mean pattern correlation (bile acid pairs) and s.d. of pattern variance in
simulations using different wiring diagrams. The shaded area shows s.d. across different permutations (n=50). f, Mean correlation contribution, activity
and variance contribution of the 20 MCs with the highest r,,, observed experimentally and in simulations using different wiring diagrams. MCs were
ranked by r,,, observed in experimental data as in a and in Fig. 5¢ (same ranking under all conditions). Gray, t;; colored, t, (mean over 50 repetitions for all

permutations). Sel., selective.
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because the essential connectivity exhibits substantial redundancy.
Precisely targeted manipulations of the wiring diagram confirmed
that feedback inhibition among correlation-promoting MC cohorts
was necessary and sufficient to achieve whitening. Hence, whiten-
ing in the OB depends on higher-order features of connectivity and
is produced by a network mechanism that differs from canonical
computations in the retina and other sensory systems, presumably
because the statistical properties of sensory inputs differ between
sensory modalities.

In the visual cortex, functionally related principal neurons make
stronger excitatory connections than random subsets of neurons®.
Such connectivity can arise from Hebbian plasticity mechanisms,

enhance representations of sensory features and amplify spe-
cific inputs in memory networks after learning. The connectivity
observed in the OB, in contrast, results in disynaptic inhibitory inter-
actions between functionally related principal neurons. Functional
connectivity in the OB is therefore similar in structure, but oppo-
site in sign, to excitatory connectivity motifs in the visual cortex.
As a consequence, the connectivity in the OB suppresses, rather
than amplifies, specific features in the input. Such a mechanism
appears useful to attenuate the effect of irrelevant sensory inputs
and to reduce undesired correlations. The mechanism of feature
suppression is consistent with networks that have been opti-
mized for whitening in a theoretical framework with biologically
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plausible constraints*~, and inhibitory functional interactions
between neurons with related tuning have also been observed in
the rodent neocortex*’. The elementary microcircuit that mediates
whitening in the OB might therefore contribute to similar computa-
tions also in other brain areas.
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Methods
Animals and preparation. Adult zebrafish (Danio rerio) were maintained and bred
under standard conditions at 26.5°C. Embryos and larvae of a double-transgenic
line (elavi3:GCaMP5 X vglut:DsRed)*** in nacre background were raised at 28.5°C
in standard E3 medium®’.

Imaging experiments were performed as described previously***. In brief,
larvae 4-5 d after fertilization were contained in a small drop of aerated E3
without methylene blue or N-phenylthiourea. Larvae were then paralyzed by the
addition of 20 ul of fresh mivacurium chloride (Mivacron, GlaxoSmithKline)*’ and
embedded in 2% low-melting agarose (type VII, Sigma) in a perfusion chamber
that was inclined by 30° to improve dorsal optical access to the OBs. Agarose
covering the noses was carefully removed. A constant stream of E3 (2ml min™")
was delivered through a tube in front of the nose and removed by continuous
suction. Throughout the experiment, it was ensured that larvae showed a normal
heartbeat. Larvae that were not fixed for EM recovered from paralysis after a few
hours and continued to develop without obvious defects. All animal procedures
were performed in accordance with official animal care guidelines and approved by
the Veterinary Department of the Canton of Basel-Stadt (Switzerland). The sex of
zebrafish larvae is not yet determined at the age used in this study.

Odor stimulation. Odor application was performed as described®. In brief, odors
were delivered to the nose through the E3 medium using a computer-controlled,
pneumatically actuated HPLC injection valve (Rheodyne). The rise time of
stimuli was approximately 500 ms*'. All experiments were carried out at room
temperature (~22°C). The odor set comprised one food odor’’, four bile acids
(glycochenodeoxycholic acid (GCDCA), taurocholic acid (TCA), taurodeoxycholic
acid (TDCA) and glycocholic acid (GCA); Sigma-Aldrich) and four amino acids
(tryptophan, lysine, phenylalanine and valine; Fluka). Stock solutions of GCDCA,
TCA, TDCA, tryptophan, lysine, phenylalanine and valine at 5x 10~ M in E3
were kept refrigerated and diluted 1:500 (GCDCA, TCA and TDCA) or 1:50
(tryptophan, lysine, phenylalanine and valine) in aerated E3 medium immediately
before the experiment. A stock solution of GCA was prepared in 50% ethanol

and 50% E3 at 2.5X 107* M, refrigerated and diluted 1:250 immediately before

the experiment. In a given trial, an odor was applied twice for a duration of ~3 s
with an inter-stimulus interval of 60s. Successive trials with different odors were
separated by at least 2min.

Multiphoton calcium imaging. Multiphoton imaging was performed using a
microscope equipped with a mode-locked Ti:sapphire laser (SpectraPhysics) and
a %20 objective (NA 1.0, Zeiss) as previously described™. GCaMP5 was excited

at 910 nm, and emission was detected through green (535+25nm) and red
(610+37.5nm) emission filters in separate channels. Images (256 X 256 pixels)
were acquired at 128 ms per frame using SCANIMAGE and EPHUS software®>**
for a total of 2 min in each trial. Trials were performed sequentially in six focal
planes that were separated by approximately 10 um along the dorsal-ventral axis
of the OB. The field of view covered the entire cross-section of the OB and parts
of the adjacent telencephalon. Ten stimulus trials (nine odors and one E3 control),
each including two odor applications, were performed in each focal plane. The
order of stimuli was E3, food, GCDCA, TCA, TDCA, GCA, tryptophan, lysine,
phenylalanine and valine. In addition, 2 min of spontaneous activity was recorded
in each focal plane. After completion of all trials, a stack of images covering the
whole OB was acquired with a z-step interval of 0.5 um.

Automated drift correction. Slow mechanical drift, which might be caused by
capillary forces acting on the agarose matrix™, was corrected between trials by
an automated routine. This routine acquired a small stack (+3 um around the
focus; 0.5-um steps) and compared images to a reference acquired previously by
cross-correlation after standardizing image columns and rows. The field of view
was then automatically translated in x, y and z to maximize the cross-correlation
to the reference.

Electron microscopy. Preparation and imaging of this sample were described
previously*>°. Briefly, tissue was stained en bloc with osmium, uranyl acetate
and lead aspartate using an established protocol’>”” with minor modifications
and embedded in Epon resin with silver particles to minimize charging®*".
Multi-tile images were acquired in high vacuum using a scanning electron
microscope (QuantaFEG 200, FEI) equipped with an automated ultramicrotome
inside the vacuum chamber (3View, Gatan). The section thickness was 25 nm,
the pixel size was 9.25 % 9.25nm? and the electron dose was 17.5 e~ per nm?
The dataset comprised 4,746 successive sections, of which one section was
lost owing to technical problems. The final stack was cropped to a size of
72.2%107.8x118.6 um>.

Neuron reconstruction and synapse annotation. Skeletons of all neurons in the
OB were reconstructed as previously described**. Briefly, three independent
skeletons of each neuron were generated manually from seed points at somata.
Skeletons were converged and mismatches were corrected as described, and high
accuracy was verified by measures of precision and recall*. Tracing was performed
using KNOSSOS (https://www.knossostool.org) or PYKNOSSOS (https://github.
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com/adwanner/PyKNOSSOS). Most skeletons were generated by a professional
high-throughput image annotation service (https://www.ariadne.ai).

Synapses were annotated manually using PyKNOSSOS in ‘flight’ mode™. In
the default configuration, PyKNOSSOS displays image data in four viewports:
the yx viewport (imaging plane) and three mutually orthogonal viewports of
arbitrary orientation. In flight mode, the latter is perpendicular to the direction
of the current neurite. We found that this ‘auto-orthogonal’ view increases tracing
speed and facilitates the identification of branch points and synapses. Annotators
followed skeletonized reference neurons along precalculated paths to ensure that
all neurites were annotated. Most synapses were annotated by a professional image
annotation service (https://www.ariadne.ai).

Synapses were identified by a cloud of vesicles that touched the plasma
membrane, often at a site of intense staining. Annotators defined synapses by
placing three nodes: (1) a node in the presynapse, (2) a node in the synaptic cleft
and (3) a node in the postsynapse. Nodes in the presynapse and postsynapse were
skeleton nodes of the presynaptic and postsynaptic neurons if these skeletons were
available. In addition, annotators assigned a confidence level ¢ to each synapse.
This confidence level was introduced because synapse identification is not
unambiguous; rather, human experts can disagree whether a given structure is a
synapse or not, even when image quality is high.

Synapses were then classified as ‘input synapse, ‘output synapse, ‘sensory
synapse’ or ‘unknown’ Input and output synapses were synapses of the reference
neuron with the corresponding directions, excluding synapses with sensory
neurons. Sensory synapses were input synapses received by the reference neuron
from axons of sensory neurons, which were identified by their dark cytoplasm®.
Unknown structures resembled synapses but did not display all characteristic
features. These structures often included intense staining of the membrane but
no clearly associated vesicle cloud. We therefore speculate that some of these
structures might be gap junctions.

We first annotated input and output synapses of all MCs and INs independently
of each other. Hence, each synapse should have been encountered twice, once from
the presynaptic side and once from the postsynaptic side. Synapses of INs were
then annotated again by different individuals, resulting in threefold redundancy
for each MC-IN synapse. To minimize the number of false positives, the final
wiring diagram retained only MC-IN synapses that were annotated on the MC and
at least once on the IN. As a control, we also repeated connectivity analyses and
simulations with a wiring diagram that included only synapses that were annotated
at least three times. This wiring diagram produced very similar results (data not
shown).

Each synapse was assigned a unitary weight. As a consequence, the strength of

the connection between two neurons in each direction was given by the number of
synapses between this pair of neurons. In addition, we tested two other methods
to determine synaptic strength. First, connection strength was binarized such that
all connections had strengths of 0 or 1, independent of the number of synapses.
Second, we defined the weight of a synapse as its mean confidence level ¢ and the
total weight of a connection as the sum of the confidence levels of all synapses.
In addition, we tested various confidence thresholds to discard synapses with low
confidence before determining the weights. Similar results were obtained with all
methods and a wide range of confidence thresholds, implying that the results are
highly robust.

Correlation between multiphoton and SBEM image stacks. Mapping of
multiphoton to SBEM image data might be complicated by (1) mechanical
distortions introduced by the sample preparation procedure, (2) shrinkage due to
loss of extracellular space induced by chemical fixation*” and (3) developmental
changes occurring during the approximately 3 h between the first calcium
imaging trial and the final fixation of the tissue. Initial observations indicated that
distortions between image datasets were mostly linear (rotation, translation and
shrinkage), whereas nonlinear distortions appeared minimal and developmental
changes were negligible. We therefore used an affine transformation to map
multiphoton images into the SBEM stack, followed by manual fine adjustment of
regions of interest (ROIs) for the extraction of calcium signals.

An initial affine transformation matrix was fitted to a set of corresponding
points that were selected manually in both datasets. The EM volume was then
transformed onto the two-photon images, the position of existing points were
optimized manually and additional pairs of corresponding points were selected.
The transform was then recalculated on the basis of the updated set of landmarks,
and this procedure was iterated until asymptotic behavior was observed.

All somata of the OB were outlined manually in the SBEM dataset and mapped
onto the time-averaged multiphoton fluorescence images of each trial, resulting in
7,280 mappings of somatic outlines in the SBEM dataset to ROIs in 66 multiphoton
images (11 trials at each of 6 optical planes). The position of all ROIs was then
manually adjusted to optimize the mapping in each trial. The average displacement
of ROIs during manual adjustment was small (593 +833 nm, mean +s.d.; Extended
Data Fig. 1b), demonstrating that the accuracy of the initial affine mapping was
already high.

INs in the larval zebrafish OB were previously divided into three classes based
on morphological criteria®. The 68 INs in the activity dataset included neurons
from all three classes without an obvious bias (13/53 INs of class 1, 20/78 INs
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of class 2 and 31/123 INs of class 3). Moreover, they included 4/4 neurons that
were previously classified as atypical projection neurons®. We did not observe an
obvious bias of IN classes for specific connectivity motifs.

Analysis of calcium signals. Individual frames of multiphoton image time series
were low-pass spatially filtered with a mild two-dimensional Gaussian kernel
(0=1.2 pixels). Baseline fluorescence F was calculated as the average fluorescence
during a 2-s window before response onset. Traces representing relative changes
in fluorescence (AF/F) in each ROI were averaged over the two successive odor
applications in each trial and band-pass filtered in time using a Butterworth

filter with a cutoff frequency of 0.2 times the frame rate. The average population
response onset (t=0) was determined manually from all raw AF/F traces and fixed
for all trials. Firing rate changes of neurons represented by individual ROIs were
estimated by temporal deconvolution of calcium signals as previously described*
using standard parameters (g, =3 8, thr ;. = 0).

Analyses of population activity were restricted to neurons represented by ROIs
with a radius of >2 pixels in all trials (corresponding to an area of 3.14 um? 232
MCs and 68 INs). For network simulations and mechanistic analyses of whitening,
we considered only the 208 MCs that were presynaptic and postsynaptic to at least
one IN and excluded 24 presumably premature MCs. Population responses to
different odors were compared by calculating the Pearson correlation coefficient
between the population activity vectors of MCs for the different stimuli at a given
time point after response onset.

Network modeling. MCs are glutamatergic, whereas most or all INs in the

developing zebrafish OB express GABA*. We therefore considered MCs to be

excitatory and INs to be inhibitory. MCs and INs were simulated as threshold-

linear units with a state variable representing firing rate. r'(f) and u/(t), representing

the firing rates of MC i and IN j, respectively, followed the equations of motion
dari(t)

The - a () + Gy S' () = Gl Whycoi - [u(t) — O],

i du(t ; Co
I ﬁ ==t (t) + Gl Winwic - [1(t) — Bmic]

where the vectors Oy and Oyy are firing thresholds, W{N&Mc and WI"\,[CHIN
correspond to the reconstructed IN-to-MC and MC-to-IN connectivity weight
matrices of the j* IN and of the i MC, respectively, and the vectors r(t) and u(t)
represent the firing rates of the MC and IN, respectively. [], denotes half-wave
rectification:

0, x(t)<0

w0l = {

7i1c and 7y are the time constants for the individual MCs and INs, respectively.
Gl.» G| and Gixc are the individual scaling factors for sensory, inhibitory and
excitatory input, respectively. To account for the natural variability in biological
systems, the parameter values for each of the cells in each of the individual
simulation runs were drawn from a Gaussian distribution with an s.d. of 1% of the

distribution mean. The distribution means of the different parameters were:
Ggen = 6, Gexe = 0.7, Ginh = 3.5, Omc = 2, Oix = 50, 7yic = 1, 7iv = 80

The time course of sensory input S(f) was modeled as the difference of
exponentials, as described previously*:

a
§(t) = —aj00 + 11—30(1 —e ™ — a4 ae " )witha = 0.8,7, = 1/150, 74
—a

1/600, aj, = 1/150

To model S(t), the individual sensory input of MC i, we used its experimentally
measured activity ; during #, and modulated the time course according to 5(¢):
5(8)

Si(t) = Eziﬂ, where $ip.x = nfzaéc(E(t))

The differential equations were solved in MATLAB with a fixed step size of
1 ms using a first-degree Newton—Cotes integration scheme or using an adaptive
step-size-embedded Runge-Kutta—Fehlberg (4,5) scheme. Both integration
schemes led to qualitatively very similar results, and therefore the former method
was used for simplicity for the simulated data shown here.

In an iterative, semiautomated parameter search, we identified a suitable
parameter range that fulfilled the following criteria:

(1) The peak firing rates of individual neurons do not exceed a physiologically
realistic range (<200 Hz).

(2) 'The strength of inhibition is appropriate to reproduce the time course of the
average population activity, correlation and variance.

(3) The activity, correlation contribution and variance contribution of individual
MCs at t, and t, are in good correspondence to experimental measurements.

Parameters for which these criteria were fulfilled were found by parameter
variations in pilot studies. Results were usually robust against variations of each
parameter by +50% around the values reported above.

To simulate responses to noisy inputs, we assumed that an MC receives
convergent input from 40 olfactory sensory neurons of the same type, each spiking
with Poisson statistics. Simulated firing rates of sensory neurons were calculated in
25-ms windows, averaged over convergent sensory neurons and scaled to obtain a
total input to each MC with the same mean as in the noiseless case. Assuming that
each sensory neuron makes ten synapses onto MCs, the total number of sensory
neurons would be approximately 3,000 per epithelium.

Analysis of triplet motifs. Occurrences of disynaptic MC-IN-MC and IN-MC-IN
motifs were counted after binarizing connections. We enumerated all neuron
triplet combinations in the reconstructed wiring diagram and tested for graph
isomorphism against all four disynaptic motif types. The obtained motif counts
were compared against a reference model where the forward and backward
connectivity of the MCs were permuted independently while maintaining the
node count and edge density (n=10,000 permutations). z scores and
P values were obtained by computing the mean and s.d. of each motif type in the
permuted networks.

To compare motif frequency as a function of pairwise tuning similarity,
we divided the MC pairs into two groups, one with a tuning correlation higher
than a threshold (for example, 7 > 0.5) and one with a tuning correlation lower
than the threshold (r £0.5), and counted the occurrences of MC-IN-MC and
IN-MC-IN motifs in each group. We then compared the motif counts against a
reference model where we permuted the pairwise tuning similarity between MCs
and regrouped them by tuning correlation while maintaining the same network
topology (n=10,000 permutations). z scores and P values were then obtained by
computing the mean and s.d. of each motif type in the permuted groups.

Additional analyses. The contribution of individual MCs to the Pearson

correlation coefficient
1 &K(xi—x\(yi—>y
rin—lé( sdy )( sd,

between population activity patterns was calculated by determining the summand
(g) (y iy ) for each MC. Similarly, the contribution of individual MCs to the

sdy sdy
variance

1 n
var, = m;(x,- — 56)2

of the population activity patterns was calculated by determining the summand
(x: — X)7 for each MC. Here, x, and y, are responses of MCs to odors x and y, s.d.,
and s.d., are the s.d. of population responses to odors x and y, and 7 is the total
number of MCs in the population.

The analysis of disynaptic connectivity as a function of tuning correlation
(Fig. 4c and Extended Data Fig. 7¢) included only neurons that showed an obvious
response, because correlation measurements are sensitive to noise. A neuron was
classified as responsive when the average of the two largest responses exceeded
the mean across all neuron-odor pairs by 0.6 s.d. When applied to the matrix
representing all MCs and odors, approximately 30% of MCs were classified
as responsive by this criterion. Weights of input synapses were normalized for
each neuron to the sum of all inputs to that neuron, and final plots were
normalized to the mean.

Statistical analysis. No statistical methods were used to predetermine sample
sizes, but our sample sizes are similar to or larger than those reported in previous
publications®'*'*'*, Reconstruction of the wiring diagram required no sampling
because all neurons and synapses were annotated. Neurons were randomly
assigned to annotators for reconstruction. The study included only one animal.
Stimulus presentation was not randomized. Annotators were blinded to the
identity of neurons. Otherwise, data collection and analysis were not performed
with blinding to the conditions of the experiments. No animals or data points
were excluded from analyses. Statistical comparisons were performed using a two-
sided Wilcoxon rank-sum test, a two-tailed ¢-test, a permutation test or an F-test.
Normality and equal variance were tested when statistical tests were used that
make these assumptions.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Image data are available under https://doi.org/10.7281/T1MS3QN7 and can be
accessed through the NeuroData web services (http://neurodata.io/wanner16)®.
They can also be viewed interactively using PyKNOSSOS (https://github.com/
adwanner/PyKNOSSOS)*. The skeleton reconstructions and soma outlines of the
1,022 neurons can be downloaded from https://doi.org/10.5281/zenodo.58985 as
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previously described”. All other data that support the findings of this study are
available from the corresponding author upon reasonable request.

Code availability

PyKNOSSOS is available at https://github.com/adwanner/PyKNOSSOS. Detailed
instructions on how to access and analyze image data using PyKNOSSOS were
published previously”. All other code used in this study is available from the
corresponding author upon reasonable request.
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Extended Data Fig. 1| Sensory input to INs and mapping of datasets. a, Distribution of the fraction of synaptic inputs onto INs that originated from
sensory axons. The average fraction of synaptic inputs onto INs that came from sensory neurons was 5.9 + 4.6% (mean =+ s.d.). This is an upper-

bound estimate because structures in EM images were classified as sensory synapses even when they were small and when synaptic features such as
postsynaptic densities and vesicle clusters were ambiguous. No obvious synaptic connections were observed from OB neurons onto axon terminals of
sensory neurons. b, Displacement of regions of interest (ROIs) during manual proofreading. ROls representing somata were mapped from the EM dataset
to optical image planes in each trial by an affine transformation that was determined by an iterative landmark-based procedure (Methods). Subsequently,
the position of each ROl was adjusted manually on the optical image (n = 7,280 ROls; six image planes with 11 trials each). The mean displacement

(+ s.d.) during manual adjustment (proofreading) was small (593 + 833 nm), implying that automated mapping was highly reliable.
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Extended Data Fig. 2 | Calcium imaging of odor responses. a, Raw calcium signals (AF/F) evoked by eight odors in neurons that were present in all trials
and included in simulations (208 MCs and 68 INs; average of two trials). Gray bars indicate odor stimulation. b, Raw calcium signals (AF/F) evoked

by eight odors and E3 medium in neurons that were present in all trials and included in simulations (176 MCs and 50 INs; average of two trials; sorted by
response to E3 medium). ¢, Correlation matrices of MC activity patterns at t; and t, after excluding 10 MCs with highest responses to E3 medium

(all MCs in b except for the first 10; n =166 MCs in total). Calcium signals were deconvolved to estimate firing rate changes as in Fig. 2. As observed

in the full dataset (Fig. 2e), MC activity patterns evoked by similar odors were correlated at t, and became decorrelated at t,. The main results were
therefore not affected by possible responses to E3 medium.
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Extended Data Fig. 3 | Decoding of odor identity from MC activity patterns. a, Pearson correlation matrices showing similarities of activity patterns
across odors and trials at t, and t, (average over 100 repetitions). In each repetition, two activity patterns (trials) were generated for each odor by
randomly assigning the first or second response of each neuron to each trial. Note the high correlations between activity patterns representing the same
odor in different trials, particularly at t,. b, Success rates of odor identification by template matching. For each odor, the vector representing the odor in one
trial (test vector) was correlated to vectors representing all odors in the other trial (templates) and assigned to the odor represented by the template with
the highest correlation. Dots show the mean fraction of correct identifications, error bars show s.d., boxes show median, 25" percentile and 75t percentile
(n =100 repetitions each). Dashed gray line shows chance level. Top: identification based on patterns averaged over time windows t, and t, (see text).
Bottom: identification based on single frames within t, and t,. Left: tests and templates included all MCs. Center, right: the 10 or 100 MCs with the highest
contribution to the initial pattern correlation (highest r,;;) were omitted for each odor pair. Omitting the 10 MCs with the highest r;,, (cohorts) had almost
no consequence on odor identification, confirming that information about precise odor identity is conveyed predominantly by other MCs.
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Extended Data Fig. 4 | Additional simulation results. a, Mean Pearson correlation between IN activity patterns (blue) and the corresponding MC activity
patterns (black) evoked by different bile acid inputs in simulations (n = 6 bile acid pairs each). Correlations between IN activity patterns remain higher
than correlations between MC activity patterns. b, Mean Pearson correlation between simulated MC activity patterns evoked by inputs representing
different odors (blue; all bile acid pairs) and between activity patterns evoked by inputs representing the same odors in trials with input noise (purple;

all bile acids). Shading shows s.d.. Noise was modeled based on conservative estimates of the number and firing rates of olfactory sensory neurons

in zebrafish larvae (Methods). Three noisy trials were simulated for each odor, resulting in n =12 correlations between same-odor trials and n = 54
correlations between different-odor trials. Patterns evoked by different inputs were decorrelated whereas noisy versions of the same inputs were not

decorrelated.
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Extended Data Fig. 5 | Algebraic transformations of sensory inputs. a, Schematic: simple algebraic approach to approximate transformations of MC
activity patterns by feedback inhibition. Input activity patterns (MC activity at t,) were multiplied by the feed-forward connectivity matrix Wy,c_
normalized and thresholded. Normalization and thresholding are basic operations performed by the neuronal circuits of the OB'® and by individual
neurons, respectively. The resulting IN activity patterns were multiplied with the feedback connectivity matrix Wy, _, resulting in odor-specific patterns
of feedback inhibition onto MCs. Feedback inhibition was either subtracted from the MC activation patterns (subtractive inhibition), or MC activation
patterns were divided by the feedback inhibition patterns (divisive inhibition), followed by thresholding. Scaling factors and thresholds were adjusted so
that effects on the mean activity were small. b, Mean activity, Pearson pattern correlation and s.d. of pattern variance at t, after algebraic transformations
of input patterns as described in a (“"Experiment”: experimental results). Horizontal black lines show mean experimental values at t;; activity and s.d.

of pattern variance is normalized to the experimental value at t,. Dots show means, error bars show s.d., filled bars show difference to corresponding
values at t;. Box plots show median, 25% percentile, and 75" percentile. For experimental results and simulations using the reconstructed wiring diagram,
variability was measured across odor pairs (correlation; bile acids only; n = 6) or individual odors (s.d. of variance; n = 8). Significance tests compare
values at t, to experimental values at t, (correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with dfl = df2 = 7 degrees of freedom). For
results obtained with randomized wiring diagrams (W random), variability was measured across n = 50 permutations of the wiring diagram. Significance
tests compare repetitions to the mean value observed experimentally at t; (two-sided Wilcoxon rank-sum test). *, p < 0.05; **, p < 0.01; ***, p < 0.0071;
n.s., not significant. In “targeted suppression”, the activity of the 10 MCs that contributed most strongly to the pattern correlation at t, for each odor pair
(“functional cohort”) was set to the population mean. No other manipulations or algebraic operations were performed. P-values: activity: 0.57, 0.57, 0.25,
0.23 0.17; Pearson correlation: 0.03, 0.04, 0.98, 0.04, 0.008; s.d. of variance: 0.003, 10-%, 10-2¢, 10~%, 107,
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Extended Data Fig. 6 | Occurrence of connectivity motifs as a function of tuning correlation. Z-scores quantify the over-representation of motifs among
MC pairs with signal correlations greater than a threshold between -0.8 and 0.8. For each motif, color-coded bars show z-scores for different signal
correlation thresholds. Z-scores were determined by comparison against 10,000 shufflings of the tuning correlation matrix as in Fig. 4d.
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Extended Data Fig. 7 | Functional connectivity between interneurons. a, IN-MC-IN triplets included in the analysis. Connections between INs were analyzed
separately (see below and main text) to facilitate the comparison to MC-IN-MC triplets (Fig. 4). b, Left: number of IN-MC-IN motifs found in the wiring
diagram (considering only INs with activity measurements and at least one MC—IN and MC«IN connection; n = 66). Right: z-score quantifying over- or
under-representation of motifs as compared to 10,000 independent randomizations. ¢, Top: disynaptic connections between responsive INs as a function of
tuning similarity (Pearson correlation), normalized to the mean (n = 992 neuron pairs; neurons were included only when their activity exceeded a threshold;
see Methods; number of neuron pairs per bin: 192, 218, 178, 228, 176). Dots and error bars show mean + s.e.m. when tuning curves were determined using all
eight odor stimuli. Box plots show median, 25" percentile and 75" percentile across results when tuning curves were determined by all possible combinations
of four odors. Bottom: result of the same analysis including only reciprocal connections (motif 4; n = 992 neuron pairs). d, Left: Pearson correlations between
the mean tuning curves of MC inputs to INs (n = 57 INs). INs were ordered by optimal leaf ordering for hierarchical clustering. Right: Pearson correlations
between the mean tuning curves of the MC targets of INs (same ordering of INs). INs were included in the analysis when their activity was measured, when
they received input from at least 1 MC and 1IN for which activity measurements were available, and when they targeted at least 1 MC and 1IN for which activity
measurements were available. e, X-axis: Pearson correlation between the tuning curves of each IN and the mean tuning curves of MC inputs to the same IN
(Mninputs)- Y-aXis: Pearson correlation between the tuning curves of each IN and the mean tuning curves of its MC targets (ryy i0)- I, correlation coefficient;

*** p =10 (two-tailed t-test, n = 63 INs). INs were included in the analysis when their activity was measured, when they received input from at least 1 MC for
which activity measurements were available, and when they targeted at least 1 MC for which activity measurements were available. f, Black: number of maximal
IN cliques in the wiring diagram as a function of clique size. Gray curve shows expectation based on randomized wiring diagrams (10,000 permutations).

A maximal clique is a complete set of INs that are all reciprocally connected to each other. Top and bottom plots show distributions for cliques without a MC
and cliques with one reciprocally connected MC, respectively. Maximal cliques with more than one MC do not exist because the wiring diagram contained no
connections between MCs. g, Left: Mean Pearson correlation of tuning curves between neurons in maximal cliques as a function of clique size (n = 414; number
per bin: 3,19, 22, 44, 96, 99, 75, 29, 24, 3). Dots and error bars show mean + s.e.m.; box plots show median, 25! percentile and 75" percentile. Gray curve
shows mean after shuffling of tuning correlation matrix (right). Right: same analysis after shuffling of tuning correlation matrix (1,000 repetitions; n = 414,000;
number per bin: 3,000, 19,000, 22,000, 44,000, 96,000, 99,000, 75,000, 29,000, 24,000, 3,000). Black curve shows mean of original data (left).
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Extended Data Fig. 8 | Effects of different transformations on pattern correlation. a, Schematic: effect of contrast enhancement on the correlation
between displaced Gaussian patterns. The X-axis represents neurons while the Y-axis represents their activity. Blue and orange bars represent overlapping
activity patterns evoked by two different stimuli. The similarity of activity patterns is quantified by the Pearson correlation coefficient, r. Note that many
neurons respond to both stimuli but neurons showing maximal responses differ between stimuli. Hence, strongly active neurons convey stimulus-specific
information. Contrast enhancement therefore decorrelates patterns because it emphasizes strongly active neurons and suppresses weakly active neurons.
b, Effect of contrast enhancement on the Pearson correlation between activity pattern that overlap in strongly active neurons. Activity patterns have

the same Pearson correlation as in a but their shape is slightly different: maximal responses to the two stimuli occur in the same neuron, and tails of
moderately or weakly active neurons extend in opposite directions. Hence, stimulus-specific information is conveyed primarily by moderately or weakly
active neurons while strong responses are non-specific. As a consequence, contrast enhancement fails to decorrelate these patterns. ¢, Patterns that
overlap in strongly active neurons (same as in b; r: Pearson correlation) are decorrelated by selective inhibition of strongly active neurons, which results in
contrast reduction. Decorrelation occurs because the relative contribution of moderately or weakly active neurons is enhanced as the activity of strongly
active neurons is suppressed. Selective inhibition of strongly active units is generated by reciprocal inhibition that is stronger or denser within cohorts

of co-tuned neurons. Inhibitory feedback gain is therefore higher than the average inhibitory feedback gain within a co-tuned cohort when the stimulus

feature that activates the cohort is present (feature suppression).
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Extended Data Fig. 9 | Further characterization of functional cohorts. a, Composition of functional MC cohorts. For each pair of bile acid odors (X-axis), a
functional MC cohort was defined as the 10 MCs that contribute most to the correlation between odor-evoked activity patterns at t, (highest r;,).

Gray pixels denote membership of each MC (Y-axis) in each cohort. Cohorts for different odor pairs overlapped substantially. Consistent with this
observation, the mean Pearson correlation between tuning curves of MCs at t; was significantly higher within cohorts (r = 0.56 + 0.40; mean + s.d.)

than across all MCs (r = 0.01 + 0.38; p = 10%; two-sided Wilcoxon rank-sum test). Furthermore, we analyzed the mean tuning correlation at t, among
the 16 MCs that were not part of cohorts themselves but provided the highest number of disynaptic input connections to neurons inside cohorts
(r=0.23 £ 0.52; mean + s.d.). This tuning correlation was lower than the tuning correlation within the cohort but still significantly higher than the mean
tuning correlation across all MCs (p = 10-%%; two-sided Wilcoxon rank-sum test). Similarly, the mean tuning correlation at t; among the 16 MCs that
received the most disynaptic output connections from neurons inside cohorts (r = 0.17 + 0.53; mean =+ s.d.) was lower than the tuning correlation within
the cohort but significantly higher than the mean tuning correlation across all MCs (p = 10"; two-sided Wilcoxon rank-sum test). b, Black: frequency

of each MC-IN-MC triplet motif in MC cohorts (n = 6 cohorts for each motif). Dots show means, error bars show s.d., box plots show median, 25%
percentile, and 75" percentile. Gray: frequency of MC-IN-MC triplet motifs among randomly selected MC subsets of the same size (n =10 MCs; n = 600
repetitions for each motif). Frequency of occurrence is normalized to the mean frequency in random subsets for each motif. **, p < 0.01; ***, p < 0.001
(two-sided Wilcoxon rank-sum test). P-values: 0.002, 10°, 0.0008, 0.0001. We also observed that the 10 INs receiving the largest number of MC inputs
from each cohort were 1.7 times more likely to make direct connections than random subsets of INs (p = 0.007; two-sided Wilcoxon rank-sum test).

¢, Blue: mean activity of the 10 MCs in the functional cohort defined by responses to TCA and GCDCA (example odors in Fig. 5b). Green: mean activity

of the 10 INs that were included in activity measurements and provided the highest synaptic input to the MC cohort. As expected, IN activity increased
while MC activity decreased during odor application.
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written in Matlab (version 8.1 and later). Electron microscopy was performed using software described in Wanner et al. (2016).

Data analysis Data analysis was performed using custom routines programmed in Matlab (version 8.1 and later). Neuron annotation was performed
using KNOSSOS (https://knossos.app/) and PyKNOSSOS (Wanner et al., 2016a,b).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The connectome was complete. Hence, all neurons were reconstructed and no sampling was necessary. For calcium imaging, the maximum
number of neurons was imaged that was technically possible and sufficiency was confirmed by subsampling.

Data exclusions  Calcium imaging: neurons were only excluded when their somata were represented by less than a fixed number of pixels to ensure that the
signal-to-noise ratio was sufficiently high. Omitting this thresholding procedure had no major effects on the results. Criteria for exclusion were
defined after acquisition of data but prior to analysis.

Replication Reconstruction was not replicated because it was technically not feasible given reasonable resources. However, because the connectome was
complete, analyses of the connectome did not require sampling. Analysis results were replicated as indicated in the manuscript using
bootstrap analyses.

Randomization  Not relevant for the analyses of this study because analyses were automated.

Blinding Annotators were blind to the identity of neurons. Blinding is not relevant for the remaining analyses of this study because analyses were
automated.
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Laboratory animals Zebrafish, elavi3:GCaMP5 x vglut:DsRed, age 4.5 days post fertilization, sex not determined yet at this stage

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve field-collected samples.

Ethics oversight All animal procedures were performed in accordance with official animal care guidelines and approved by the Veterinary

Department of the Canton of Basel-Stadt (Switzerland).
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