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Neuronal activity patterns evoked by natural stimuli are trans-
formed in the brain to extract relevant information. At early 
processing stages, activity patterns often contain correlations 

and intensity variations that originate from the statistics of natural 
scenes and from the tuning of sensory receptors1. This statistical 
structure complicates the classification of sensory inputs because it 
does not usually reflect behaviorally relevant stimulus categories2. 
For example, visual scenes might be dominated by a large number of 
pixels representing sky, while the biologically most important infor-
mation is conveyed by a small subset of pixels representing specific 
objects (for example, a hawk or a sparrow). Hence, correlations in 
sensory inputs can complicate meaningful pattern classification and 
object recognition. This problem can be alleviated by whitening, a 
fundamental transformation in signal processing that decorrelates 
patterns and normalizes their variance. Whitening is therefore often 
used early in a pattern classification process to remove undesired 
correlations and to optimize the use of coding space3.

In the visual and auditory systems, whitening of individual 
neurons’ responses to natural stimuli supports efficient coding by 
redundancy reduction4–7. Efficient pattern classification, however, 
requires whitening of activity patterns across neuronal populations. 
This form of whitening occurs in the OB8–10 where axons of olfac-
tory sensory neurons expressing the same odorant receptor con-
verge onto discrete glomeruli. Odors evoke distributed patterns of 
input activity across glomeruli that can overlap substantially when 
odorants share functional groups11–13. The variance (contrast) of 
these glomerular activity patterns varies dramatically as a func-
tion of odor concentration. The output of the OB is transmitted 
to higher brain areas by mitral cells (MCs), which receive sensory 
input from individual glomeruli and interact with other MCs via 
multisynaptic interneuron (IN) pathways (Fig. 1a). Unlike glomeru-
lar inputs, activity patterns across MCs become rapidly decorrelated 
during the initial phase of an odor response8,14–18, and their variance 
depends only modestly on stimulus intensity10,19. Neuronal circuits 
in the OB therefore decorrelate and normalize population activity 
patterns, resulting in a whitening of odor representations. Pattern 
decorrelation predicted learning in odor discrimination tasks9,16, 

consistent with the assumption that whitening facilitates pattern 
classification. However, it remains unclear how this transformation 
is achieved by interactions between neurons in the OB network.

Efficient whitening can be achieved by transformations that are 
adapted to the correlation structure of input patterns1. Such adap-
tive whitening requires prior knowledge about inputs and tuning-
dependent connectivity between specific cohorts of neurons. Hence, 
whitening of sensory representations is thought to depend on an 
evolutionary memory of stimulus space that is contained in the wir-
ing diagram of neuronal circuits. This hypothesis is difficult to test 
in the OB because tuning and functional connectivity cannot be 
inferred from topographical relationships between neurons11,20–22. 
Moreover, because interactions between MCs are multisynaptic via 
INs, relevant inhibitory interactions cannot be visualized by trans-
synaptic tracing across one synapse.

Adaptive whitening and other memory-based processes are 
likely to depend on higher-order features of neuronal connectivity 
that cannot be detected by sparse sampling of pairwise connections. 
We therefore used a ‘functional connectomics’ approach that com-
bines population-wide neuronal activity measurements with dense 
reconstructions of wiring diagrams, taking advantage of the small 
size of the larval zebrafish brain. We first measured odor responses 
of neurons in the OB by multiphoton calcium imaging and subse-
quently reconstructed the synaptic connectivity among all neurons 
by serial block-face scanning electron microscopy (SBEM)23–26. 
We found that higher-order features of multisynaptic connectivity 
specifically suppressed the activity of correlated MC ensembles in 
a stimulus-dependent manner, resulting in decorrelation and vari-
ance normalization. The wiring diagram of the OB is therefore 
adapted to the correlation structure of its inputs and mediates a 
whitening operation on the basis of contrast reduction rather than 
contrast enhancement.

Results
Reconstruction of the wiring diagram and mapping of neuronal  
activity. We previously reconstructed the skeletons of 1,003  
neurons in an SBEM image stack of the OB from a zebrafish larva 
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(4.5 d after fertilization), accounting for 98% of all neurons in the 
OB, and classified them as MCs (n = 745), INs (n = 254) and ‘atypical 
projection neurons’ (n = 4)25,26. We now annotated the synaptic con-
nections of these neurons to reconstruct the full wiring diagram of 
the OB. Human annotators followed each of the reconstructed skel-
etons and manually labeled all input and output synapses (Fig. 1b,c).  
Subsequently, synapses of INs were annotated again by different 
annotators. Hence, each synapse involved in MC–IN–MC connec-
tivity motifs should have been encountered at least three times. To 
obtain a conservative estimate of the wiring diagram with few false 
positives, we retained only synapses that were annotated at least 
twice by independent annotators.

Each synapse was assigned a unitary weight so that the total con-
nection strength between a pair of neurons equaled the number of 
synapses. The resulting wiring diagram contained 19,874 MC→IN 
synapses, 17,524 MC←IN synapses (Fig. 1d) and 13,610 synapses 
between INs. We also observed contact sites between MCs associated  

with the same glomerulus where plasma membranes showed strong 
staining, but these sites usually lacked vesicles. Therefore, we did 
not consider synaptic connections between MCs. Axons of sensory 
neurons frequently made synapses onto MCs, but synapses onto INs 
were rare (Extended Data Fig. 1a)26.

On average, connected pairs of MCs and INs made 3.1 MC→IN 
synapses and 2.9 MC←IN synapses per pair, and pairs of connected 
INs made 2.6 synapses in each direction. A hallmark of synaptic 
connectivity in the adult OB is reciprocal dendrodendritic synaptic 
connections between the same MC–IN pair. In the larval OB, 52% 
of MC→IN synapses and 51% of MC←IN synapses were associ-
ated with a synapse of the opposite direction, usually within 2.5 μm, 
between the same pair of neurons (Fig. 1b). Hence, reciprocal syn-
aptic connectivity is already prominent at larval stages.

Before preparation of the OB sample for SBEM, we measured 
neuronal activity by multiphoton imaging of the calcium indica-
tor GCaMP5, which was expressed under the pan-neuronal elavl3 
promoter27. Somata observed in electron microscopy (EM) were 
mapped onto the light microscopy data using an iterative landmark-
based affine alignment procedure followed by manual proofread-
ing (Fig. 2a,b and Extended Data Fig. 1b). Somatic calcium signals 
evoked by four amino acid odors (10−4 M) and four bile acid odors 
(10−5 M) were measured sequentially in six optical planes (Fig. 2a–c 
and Extended Data Fig. 2) and temporally deconvolved to estimate 
odor-evoked firing rate changes28. The dynamics of neuronal popu-
lation activity were then represented by time series of activity vec-
tors for each odor stimulus (232 MCs and 68 INs).

Decorrelation and contrast normalization of activity patterns 
across MCs were characterized previously in the OB of adult zebraf-
ish8,14,15 and mice16–18 where >90% of neurons are GABAergic INs. 
In the larval OB, in contrast, INs account for only 25% of all neu-
rons26. Most of these INs are likely to be periglomerular and short 
axon cells, because INs with the typical morphology of granule cells 
appear only later in development. We therefore asked whether the 
core circuitry present in the larval OB already performs computa-
tions related to whitening.

Correlations between activity patterns evoked by different bile 
acids were high after stimulus onset and decreased during the sub-
sequent few hundred milliseconds (Fig. 2d,e). Patterns evoked by 
amino acids, in contrast, were less correlated throughout the odor 
response, which was expected because most amino acids have dis-
similar side chains. Further analyses of pattern decorrelation there-
fore focused on activity patterns evoked by the four bile acids, 
whereas other analyses included all eight odors. To quantify pat-
tern decorrelation, we computed the mean difference in pairwise 
Pearson correlations between a time window shortly after response 
onset (t1) and a later time window (t2) that was chosen so that the 
mean population activity across MCs was not significantly different 
from that at t1 (Fig. 2d; P = 0.57, Wilcoxon rank-sum test). Pattern 
correlations across MCs, however, were significantly lower at t2 than 
at t1 (P = 0.03, Wilcoxon rank-sum test), demonstrating that MC 
activity patterns were reorganized and decorrelated. Activity across 
INs followed the mean MC activity with a small delay and did not 
exhibit an obvious decorrelation during the early phase of the odor 
response (Fig. 2d). These findings are consistent with observations 
in the adult OB29. The natural time course of olfactory input to the 
OB of zebrafish larvae is likely to be slow because these animals live 
in slow waters close to the substratum30 and because the temporal 
resolution of their olfactory sensory neurons is low31. We therefore 
assume that the dynamics of odor-evoked population activity in the 
OB are fast compared to the kinetics of natural sensory inputs.

The contrast of MC activity patterns, as measured by the vari-
ance of activity across the population, increased shortly after 
stimulus onset and peaked slightly later than pattern correla-
tion. Subsequently, variance decreased and became more uniform 
across odors, as reflected by a significant decrease in the s.d. of the  
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Fig. 1 | Neuronal organization and computations in the OB. a, Schematic 
illustration of whitening in the OB. Top: correlated input patterns with 
different variance. Bottom: decorrelated output patterns with similar 
variance. Center: highly simplified illustration of the OB circuit. MCs 
receive excitatory input from a single glomerulus and interact via inhibitory 
INs. Whitening requires multisynaptic interactions between specific 
subsets of MCs that are mediated by INs and defined by the wiring 
diagram. Interactions between INs and top-down inputs to the OB are 
not shown. b, Example of a reciprocal synapse between an MC and an 
IN. c, Reconstructions of an MC (left) and an IN (right). Gray volumes 
show glomeruli and dots depict synapses. Colors denote synapse class: 
blue, unidirectional nonsensory input; red, unidirectional output; magenta, 
reciprocal; green, input from sensory neurons. d, Simplified representation 
of the wiring diagram between MCs and INs (binarized connection 
strength). Colored matrix elements show MC→IN synapses (blue), 
MC←IN synapses (orange) and reciprocal synapses (black).
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variance across odors between t2 and t1 (Fig. 2d; P = 0.003, F-test; 
t1 was slightly shifted relative to the time window for correlation 
analysis to cover the peak of the variance). Hence, MC activity  
patterns in the larval OB became decorrelated and normalized for 
contrast, consistent with the whitening of odor representations in 
the adult OB.

Whitening can facilitate pattern classification but might also 
introduce noise. We therefore quantified the reliability of odor 
classification using a template-matching procedure based on sin-
gle-trial responses and found that classification success, as well as 
the separation of correct and incorrect classifications, was slightly 
higher at t2 than at t1 (Extended Data Fig. 3). Hence, pattern decor-
relation did not compromise the reliability of odor identification by 
a simple classifier but facilitated pattern separation.

Computational consequences of connectivity. Although contrast 
normalization can be achieved by global scaling operations such 
as divisive normalization32, pattern decorrelation requires inter-
actions between distinct subsets of neurons9. In theory, pattern 
decorrelation could be achieved by large networks with sparse and 
random connectivity33, but this architecture is inconsistent with the 
low number of INs in the larval OB. Smaller networks can decor-
relate specific input patterns when their connectivity is adapted to 
the covariance structure of these inputs, suggesting that decorrela-
tion in the OB is an input-specific transformation of odor repre-
sentations that is encoded in the wiring diagram. To explore this 
hypothesis, we first asked whether whitening can be reproduced  
by implementing the wiring diagram in a network of minimally 
complex single-neuron models (Fig. 3a).
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Fig. 2 | Odor-evoked population activity in the OB. a, Mapping of the six optical image planes selected for calcium imaging onto the EM-based 
reconstructions of neurons. Thickness of planes shows range of drift between trials. b, One optical image plane showing raw GCaMP5 fluorescence (left) 
and the corresponding oblique slice through the EM image stack (right). The dashed line outlines the ipsilateral brain hemisphere; continuous white 
outlines show glomerular neuropil. Tel, telencephalon; OB, olfactory bulb. The region outlined by the red square is enlarged; white dots depict somata 
in corresponding locations. Bottom left: fluorescence change evoked by an odor stimulus in the same field of view. Arrowheads depict locations of two 
responsive somata in different images. The alignment of EM images with optical images was repeated in all n = 6 image planes with similar results.  
c, Activity (deconvolved calcium signals) of MCs (n = 232) and INs (n = 68) in response to four bile acids (BAs) and four amino acids (AAs) during 
two time windows, t1 and t2. d, Left: time courses of odor-evoked activity (n = 8 odors), pattern correlation (Pearson; n = 6 bile acid pairs) and pattern 
variance (n = 8 odors). Activity was determined by low-pass filtering and deconvolution of somatic calcium signals. The horizontal bar indicates time 
of odor stimulation. Black, mean measures across MCs; gray, individual odors (variance) or odor pairs (correlation). Light blue, mean measures across 
INs. Correlation was measured only between activity patterns evoked by bile acids, because patterns evoked by amino acids were already dissimilar 
at response onset. Right: mean measures for MCs during t1 and t2 (activity, correlation and mean variance: two-sided Wilcoxon rank-sum test; s.d. of 
variance: F-test with df1= df2 = 7 degrees of freedom; F = 14.0). Black markers and error bars show mean ± s.d.; gray lines show individual datapoints.  
AU, arbitrary units. e, Matrices showing Pearson correlations between activity patterns across MCs (left; n = 232) and INs (right; n = 68) at t1 and  
t2. Odors: TCA, taurocholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; TDCA, taurodeoxycholic acid; Trp, tryptophan;  
Phe, phenylalanine; Val, valine; Lys, lysine.
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We first simulated a network of threshold–linear rate neurons 
with 208 MCs, representing all recorded MCs with input and output 
synapses, and 234 INs, representing all connected INs. Connections 
between individual neurons were given by the wiring diagram. 
Excitatory sensory input into MCs was defined by the odor-evoked 
activity pattern at t1. INs received no sensory input because synapses 
from sensory neurons onto INs were rare (Extended Data Fig. 1a).  

All connections made by neurons of the same type (MC or IN) 
had the same weight scaling. The time course of stimuli consisted 
of a fast initial rise followed by a slow decay33, approximating the 
response time course of olfactory sensory neurons in zebrafish8. 
Because connectivity was fixed, the final network model had only 
6 degrees of freedom (corresponding to the thresholds, synaptic 
weight scaling factors and time constants of each neuron type).
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Fig. 3 | Whitening depends on connectivity. a, Architecture of the simulated network. Sensory input was targeted to MCs but not to INs. b, Time courses 
of simulated odor-evoked activity, pattern correlation (Pearson) and s.d. of pattern variance obtained with different IN–IN connection strengths (100%, 
20% and 0%). 100% corresponds to the same strength as MC←IN connections. Measures were calculated across all n = 208 MCs. c, Simulated network 
without IN–IN connections. d, Time courses of simulated activity, pattern correlation (Pearson) and s.d. of pattern variance obtained with different wiring 
diagrams (no IN–IN connections). Measures were calculated across all n = 208 MCs. Blue, original wiring diagram obtained by circuit reconstruction; 
dark red, fully randomized connectivity; light red, co-permutation of feedforward (MC→IN) and feedback (MC←IN) connectivity. Shaded areas show s.d. 
across permutations. e, Pattern correlation and s.d. of pattern variance at t2. Horizontal black lines show mean experimental values at t1; s.d. of pattern 
variance is normalized to the experimental value at t1. Statistical comparisons of correlation and s.d. of variance were performed using a two-tailed t-test 
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(correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with df1 = df2 = 7 degrees of freedom). For other simulation results, variability was 
measured across n = 50 different network simulations (repetitions). Significance tests compare repetitions to the mean value observed experimentally at t1 
(two-tailed t-test with 49 degrees of freedom). *P < 0.05, **P < 0.01; NS, not significant. P values, from left to right: correlation: 0.03, 0.04, 0.81 (t = 0.23), 
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disynaptic connectivity matrix between all MCs included in activity measurements and simulations (WMC→IN × WMC←IN; Methods). Grayscale represents  
the number of disynaptic MC–IN–MC connections (normalized). Bottom: example of a disynaptic connectivity matrix with the same order of MCs after 
co-permuting WMC→IN and WMC←IN.
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Correlations between simulated population responses to bile 
acids increased rapidly and subsequently decreased. Consistent with 
experimental observations, the mean correlation decreased signifi-
cantly between two time windows, t1 and t2, that were chosen so that 
the mean activity was not significantly different (Fig. 3b). The vari-
ance (contrast) of activity patterns and its s.d. across stimuli peaked 
slightly later than the correlation and decreased thereafter (Fig. 3b). 
Correlations between IN activity patterns remained higher than 
correlations between MC activity patterns throughout the odor 
response (Extended Data Fig. 4a). Hence, simulation results were in 
good agreement with experimental observations.

To examine the contribution of IN–IN connections to the 
observed pattern transformations, we modified the strength of  
IN–IN synapses from 100% (same strength as MC←IN connec-
tions) to 0% (no IN–IN connections). Reducing IN–IN connection 
weights slightly decreased the mean activity, consistent with a dis-
inhibitory effect of IN–IN connections, and slightly decreased pat-
tern variance and its s.d. Pattern decorrelation, however, remained 
almost unaffected (Fig. 3b). IN–IN connectivity was therefore omit-
ted in further simulations for simplicity (Fig. 3c).

To exclude the possibility that pattern decorrelation by simulated 
networks reflects a chaotic process, we examined responses to inputs 
with biologically realistic amounts of noise (Methods). Although 
activity patterns representing different odors became decorrelated, 
correlations between noisy representations of the same stimuli 
remained high (Extended Data Fig. 4b), demonstrating that pattern 
decorrelation did not reflect an amplification of noise.

Randomizing the wiring diagram by independent shufflings 
of the feedforward connectivity matrix WMC→IN and the feedback 
connectivity matrix WMC←IN abolished pattern decorrelation and 
contrast normalization (Fig. 3d,e). Hence, whitening depended 
on the wiring diagram. To corroborate this conclusion, we exam-
ined whether the reorganization of activity patterns underlying 
whitening can be predicted from connectivity without an explicit 
simulation of network dynamics. Activity patterns at t1 were mul-
tiplied by the feedforward connectivity WMC→IN, normalized, and 
thresholded to generate a hypothetical pattern of IN activity. This 
activity pattern was then multiplied by the feedback connectiv-
ity WMC←IN to predict the pattern of feedback inhibition onto 
MCs. The feedback pattern was subtracted from the MC activity 
at t1 (subtractive inhibition), or the MC activity pattern at t1 was 
divided by the pattern of feedback inhibition neuron by neuron 
(divisive inhibition; Extended Data Fig. 5a). This simple algebraic 
procedure reproduced both pattern decorrelation and variance 
normalization, independently of whether inhibition was subtrac-
tive or divisive (Extended Data Fig. 5b). Whitening was again 
abolished when connectivity matrices were randomized. These 
results confirm that the wiring diagram contains information 
essential for whitening.

We next performed more specific manipulations to explore 
how whitening depends on higher-order structure in the wir-
ing diagram. In simulations without IN–IN connections, we first 
applied the same shufflings to MC→IN connections (WMC→IN) 
and to MC←IN connectivity (WMC←IN). This co-permutation of 
feedforward and feedback connectivity shuffles the off-diagonal 
elements in the disynaptic connectivity matrix (lateral inhibition) 
but preserves the overall distribution of disynaptic MC→IN→MC 
connection strengths and the on-diagonal elements (self-inhi-
bition; Fig. 3f). Similarly to the independent randomization of 
WMC→IN and WMC←IN, co-permutation of WMC→IN and WMC←IN abol-
ished whitening (Fig. 3d,e). Moreover, whitening was abolished 
when input channels were permuted to produce novel input pat-
terns with the same statistical properties and correlations (Fig. 3e).  
These results show that whitening is mediated by higher-order  
features of multisynaptic connectivity that are adapted to patterns 
of sensory input.

Higher-order structure of connectivity. The shortest synaptic path 
between two MCs associated with different glomeruli is a disynaptic 
interaction via one IN (MC–IN–MC). To identify properties of the 
wiring diagram that mediate whitening, we analyzed MC–IN–MC 
triplets. There are seven possible triplet configurations that repre-
sent four topological motifs (Fig. 4a). We found that the motif con-
taining no reciprocal connection (motif 1) was under-represented, 
whereas the other motifs were over-represented, compared to ran-
domized networks (Fig. 4b). The strongest over-representation 
was observed for motif 4, which contained reciprocal connections 
between both MCs and the IN. Hence, MC–IN–MC triplets fre-
quently contained reciprocal connections.

To determine whether disynaptic connectivity between MCs 
depends on their tuning, we constructed an input tuning curve for 
each MC from the responses to the eight odors at t1. We then quan-
tified the Pearson correlation between the input tuning curves of 
MC pairs and the number of disynaptic MC–IN–MC connection 
paths across all motifs. The mean number of disynaptic connections 
increased with the input tuning correlation (Fig. 4c, left). MCs with 
similar tuning were more likely to be connected through motifs 
with reciprocal connections, particularly motifs 2 and 4 (Fig. 4d  
and Extended Data Fig. 6). Consistent with this observation, the 
correlation between tuning similarity and disynaptic connectivity of 
MC pairs remained strong when only reciprocal connections were 
considered (Fig. 4c, right). Hence, triplets mediate interactions pref-
erentially between MCs with similar tuning, and these interactions 
frequently contain reciprocal connections.

As for MC–IN–MC connections, motifs with one or two recipro-
cal connections were also over-represented in IN–MC–IN triplets, 
but no simple relationship was apparent between input tuning and 
disynaptic IN–MC–IN connectivity (Extended Data Fig. 7a–c). In 
addition, we found that the tuning of synaptic inputs and outputs 
of individual INs was significantly correlated and that large sets 
of fully reciprocally connected neurons (‘maximal cliques’) were 
strongly over-represented in the wiring diagram (Extended Data 
Fig. 7d–g). These observations further demonstrate that the con-
nectivity among OB neurons is not random but is governed, at least 
in part, by functional response properties.

Mechanism of whitening. Unidirectional lateral inhibition between 
functionally related neurons sharpens tuning curves and enhances 
pattern contrast in the retina34 and elsewhere (Fig. 5a, left). In ide-
alized networks with reciprocal connectivity, in contrast, inhibi-
tion does not amplify asymmetries in inputs, and self-inhibition 
is usually stronger than lateral inhibition (assuming equal synap-
tic strength; Fig. 5a, right). Hence, reciprocal triplet connectivity 
should primarily downregulate, rather than sharpen, the activity 
of neurons in connected cohorts. As illustrated in Extended Data 
Fig. 8, computational effects of contrast enhancement (by uni-
directional connectivity) or suppression of cohorts (by partially 
reciprocal connectivity) depend on the properties of input pat-
terns. Contrast enhancement can decorrelate inputs when stimu-
lus-specific information is contained in strong responses, because 
strong responses are emphasized whereas weak responses are  
suppressed4,34. However, when strong responses are nonspecific, 
contrast enhancement fails to decorrelate patterns because it 
enhances noninformative responses while suppressing weaker, 
potentially informative, responses. Under these conditions, patterns 
may be decorrelated by the selective suppression of strongly active 
cohorts, which can, in principle, be achieved by cohort-specific 
reciprocal inhibition (Extended Data Fig. 8).

To examine the basis of pattern correlations in the OB, we analyzed 
population activity patterns evoked by bile acids at t1. For each pair 
of patterns, we quantified the contribution ri,t1 of MC i to the Pearson 
correlation r and ranked MCs by their ri,t1 (see example in Fig. 5b;  
rankings differed between odor pairs). Ranked measurements of 
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correlation contribution, activity and variance contribution of indi-
vidual MCs were then averaged over odor pairs (Fig. 5c). For each 
odor pair, pattern correlations at t1 were dominated by high contri-
butions from a small fraction of MCs that were also strongly active  
(Fig. 5c, left and middle). Hence, correlated odor representations 
overlapped primarily in strongly responsive MCs at t1, consistent with  
observations in the adult OB9.

We then examined changes in the activity of individual neurons 
underlying the decorrelation and contrast normalization between 
t1 and t2. The activity of MCs with large ri,t1 values was significantly 
lower at t2 than at t1 (Fig. 5b,c). The mean activity of MCs that did not 
strongly contribute to the initial correlation, in contrast, remained 
similar. As a consequence, the contribution of MCs with large ri,t1 
to the overall correlation decreased, resulting in a decorrelation of 
population activity patterns between t1 and t2. Pattern decorrelation 
can therefore be attributed, at least in part, to the selective inhibition 
of MC cohorts that dominated the initial pattern correlations. MCs 
with high ri,t1 also made strong contributions to pattern variance at 
t1 (Fig. 5c) because their activity was substantially higher than the 
population mean. Because the selective inhibition of these cohorts 
between t1 and t2 changed the activity of these MCs toward the pop-
ulation mean, the inhibition of these MCs also decreased pattern 
variance and its s.d. across odors. Pattern decorrelation and contrast 
normalization can therefore be attributed to a common mechanism 

that targets inhibition to specific MC cohorts and results in contrast 
reduction rather than contrast enhancement.

The selective suppression of activity in cohorts of co-responsive 
MCs cannot be achieved by global changes in subtractive or divi-
sive inhibition because inhibition within cohorts needs to be stron-
ger than the mean inhibition across the population in response to 
defined sets of odors. To explore how specific wiring generates such 
stimulus- and ensemble-specific inhibition, we defined functional 
cohorts of MCs for each pair of bile acid stimuli as the ten MCs 
with the highest ri,t1 (Extended Data Fig. 9a). We then determined 
the disynaptic MC inputs to these cohorts by retrograde tracing 
through the wiring diagram across two synapses. Inputs to MCs 
within a cohort were strongly biased toward MCs of the same cohort 
(Fig. 5d,e). Consistent with this finding, the density of MC–IN–MC 
triplets, particularly motifs 2 and 4, was significantly higher within 
cohorts than among randomly chosen MC subsets (Extended Data 
Fig. 9b). Hence, cohorts of MCs are not only functional ensembles 
defined by similar initial responses but are also anatomical ensem-
bles with a high density of disynaptic MC–IN–MC connections.

The dense disynaptic connectivity implies that MCs in a cohort 
will be strongly inhibited when the cohort is activated as a whole. 
Indeed, the activity of MCs and the associated presynaptic INs in 
a cohort evolved in opposite directions during an odor response 
(Extended Data Fig. 9c). As a consequence of cohort-specific  
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connectivity, inhibition of MCs within a cohort will be stronger 
than the mean level of inhibition. The specific suppression of activ-
ity underlying whitening can thus be attributed to dense recipro-
cal connectivity within cohorts that is activated by specific sets of 
odors. Cohorts therefore function as ‘feature detectors’, where a ‘fea-
ture’ is a molecular stimulus property that efficiently activates many 
MCs in the ensemble. When a feature is present, the activity of the 
corresponding MC cohort is downregulated by feedback inhibition, 
and the representation of the feature in population activity patterns 
is suppressed, which reduces correlations between related patterns. 
Pattern decorrelation can therefore be explained by a mechanism 
that involves ‘feature suppression’ through specific connectivity. 
Features may correspond to functional groups that promote high 
correlations of afferent activity patterns because they activate over-
lapping sets of odorant receptors. This hypothesis predicts that 
MCs within functional cohorts exhibit similar input tuning to  

suppress the representation of such features. Indeed, the mean cor-
relation between tuning curves of MCs at t1 was significantly higher 
within cohorts (r = 0.56 ± 0.40; mean ± s.d.) than across all MCs 
(r = 0.01 ± 0.38; P < 10−84, Wilcoxon rank-sum test).

Feature suppression decreases pattern correlations by the selec-
tive inhibition of MCs with high activity and large contributions to 
initial correlations. To confirm that this mechanism can account 
for whitening in the OB, we set the activity of MCs in functional 
cohorts (the ten MCs with the highest ri,t1) to the population mean 
for each odor pair. As predicted, this ‘targeted suppression’ of func-
tional cohorts resulted in decorrelation and variance normalization 
(Extended Data Fig. 5b). To further dissect the mechanism of fea-
ture suppression, we took advantage of simulations. We first ranked 
simulated MCs by their ri,t1 for bile-acid-evoked activity patterns 
in experiments (same ranking as in Fig. 5c). As observed experi-
mentally, simulated MCs with large ri,t1 were strongly inhibited 
between t1 and t2, whereas the mean activity of other MCs remained 
unchanged (Fig. 6a). Direct analysis of inhibitory inputs to individ-
ual MCs confirmed that MCs with large ri,t1 received substantially 
more inhibition than other MCs. This specific targeting of inhibi-
tion to MCs with large ri,t1 was abolished when connectivity was 
randomized (Fig. 6b). Therefore, simulations precisely reproduced 
the activity changes in individual neurons that resulted in whiten-
ing, implying that simulations recapitulated the underlying mecha-
nism. Moreover, these results further show that decorrelation and 
whitening of inputs cannot be achieved by global inhibition but rely 
on interactions among specific subsets of neurons.

We next performed selective manipulations of the wiring dia-
gram. We first selected the MCs with the highest ri,t1 for each pair 
of bile acid stimuli (MC cohorts, 19 MCs in total; Extended Data 
Fig. 9a) and deleted their connections onto INs (11% of all MC→IN 
connections; Fig. 6c, ‘selective deletion’). As a control, we deleted the 
same fraction of feedforward connections of random subsets of MCs.  

d

c

b

C
on

tr
ib

ut
io

n 
to

 r
(t

1)
 

M
C

s 
(r

an
ke

d)

M
C

s 
(r

an
ke

d)

r  = 0.69 r  = 0.30

GCDCA
TCA

GCDCA
TCA

t1 t2

Contribution to r 

50

100

150

200

Activity (AU)

Disynaptic input

Contribution to var
 (AU)

0 0.05

0

10

20

t1t2

0 1 2

0

10

20

t1t2

0 0.1

0

10

20

t1t2

MCs

INs

MCs

Overlay
e

 M
C

s 
(r

an
ke

d)

0

0 0.05 0.1 0 0.04 0.08 0 1 2

HighLow
Activity

0 1,000 2,000

50

100

150

200 0 2,000

0

10

20

Output

Input

a

Feature
suppression

Contrast
enhancement

Reciprocal
connectivity

Unidirectional
connectivity

Fig. 5 | Disynaptic connectivity underlying feature suppression.  
a, Schematic illustration of contrast enhancement by unidirectional 
lateral inhibition (left) and downscaling of cohort activity by reciprocal 
inhibition (right; feature suppression). Arrow length and grayscale indicate 
activity. b, Example of MC activity patterns evoked by two bile acids 
(TCA and GCDCA) that were decorrelated between t1 and t2. MCs are 
ranked from top to bottom by their individual contribution to the pattern 
correlation r at t1 (ri,t1; Pearson correlation). c, Left: average contribution 
of MCs to all pairwise correlations between activity patterns evoked by 
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sorted by ri,t1 and averaged as in the left panel. Gray and black curves show 
correlation contribution, activity and variance (var) contribution at t1 and t2, 
respectively (same sorting of individual neurons by ri,t1 for all curves). Insets 
enlarge the top part of the curves (20 MCs with the highest ri,t1).  
d, Example of disynaptic retrograde tracing of functional cohorts in the 
wiring diagram. Blue, three MCs with the highest ri,t1 for the odor pair 
shown in b (‘starter MCs’); green, 12 INs with the largest number of 
synaptic inputs to the starter MCs; red, 48 MCs with the largest number 
of disynaptic inputs to the starter MCs. Transparency represents the 
number of synaptic connections. Note that the MCs with strong disynaptic 
connectivity to the starter MCs include the starter MCs themselves, 
consistent with pronounced reciprocal connectivity among functionally 
related MC cohorts. e, Disynaptic MC–IN–MC connectivity as a function 
of correlation contribution at t1 (ri,t1; same ranking of MCs as in b and c). 
For each pair of bile acids, the ten MCs with the highest ri,t1 were selected 
as starter cells. Disynaptic inputs from all MCs were then represented in a 
vector and averaged over odor pairs. Note the strong over-representation 
of disynaptic connectivity within the cohort of starter cells (gray shading).
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Whereas random deletions had almost no effect, the selective dele-
tion of feedforward connections from MC cohorts abolished pattern 
decorrelation and variance normalization (Fig. 6d,e). Ranking of 
MCs by their ri,t1 in experimental data demonstrated that the activity 
of MCs with high ri,t1 values was not substantially reduced between 
t1 and t2 when MC→IN connections originating from cohorts were 
deleted. As a consequence, these MCs continued to make large positive 
contributions to pattern correlation and variance at t2 (Fig. 6f). The 
selective deletion of MC→IN connections from functional cohorts 
therefore abolished whitening because it disrupted feature suppres-
sion. To corroborate this result, we redirected feedforward connec-
tions of MCs within cohorts to randomly selected IN targets, which 
perturbed the connectivity of cohorts without changing the total 
number of connections in the network. This manipulation (Fig. 6c,  
‘selective permutation’) also abolished whitening (Fig. 6d,e) and 
eliminated the specific inhibition of MCs with high ri,t1 at t2 (Fig. 6f),  
as observed for the ‘selective deletion’ of connections.

Finally, we randomized all connections except for those between 
the 19 cohort MCs and their IN partners (Fig. 6c, ‘selective preserva-
tion’). We found that pattern decorrelation remained intact (Fig. 6d,e),  
contrary to the loss of decorrelation after full randomization of the 
wiring diagram (Fig. 3d,e). Variance normalization was partially 
reduced, as expected because cohorts were selected on the basis of 
bile acid but not amino acid patterns. The activity of MCs with high 
ri,t1 was strongly reduced at t2 (Fig. 6f), demonstrating that pattern 
decorrelation and partial variance normalization were generated by 
feature suppression. Therefore, specific manipulations of the wiring 
diagram demonstrated that whitening was mediated by disynaptic 
interactions that suppressed the activity of correlation-promoting 
MC cohorts.

Discussion
We used a functional connectomics approach in a small vertebrate 
to explore the mechanism of whitening in the OB. Whitening is a 
computation related to object classification and associative memory 
that requires specific transformations of neuronal activity patterns. 
Such computations are thought to rely on specific wiring diagrams 
that are adapted to relevant inputs. Consistent with this notion, we 
found that whitening was achieved by specific multisynaptic inter-
actions that cannot be described by general topographic principles 
or by the first-order statistics of connectivity between neuron types. 
Functional connectomics is therefore a promising approach to dis-
sect distributed, memory-based computations underlying higher 
brain functions.

Correlations between input patterns in the OB were dominated 
by distinct subsets of strongly active input channels. This correla-
tion structure is likely to reflect the co-activation of different odorant 
receptors by discrete functional groups12,13 and implies that input cor-
relations cannot be removed efficiently by contrast enhancement35–37. 
Pattern decorrelation can also not be explained by the amplification 
of specific responses through disinhibition because it persisted when 
IN–IN connections were removed. Instead, patterns are decorrelated 
by the selective inhibition of strongly active, correlation-promoting 
MC cohorts. Pattern decorrelation is therefore achieved by a mecha-
nism that results in contrast reduction, rather than contrast enhance-
ment, which also supports contrast normalization.

The tuning-dependent MC–IN–MC connectivity required for 
whitening might be established by molecular or activity-dependent 
mechanisms. We reconstructed the wiring diagram of a larva at a 
stage before activity-dependent effects were detected on the mor-
phological development of glomeruli38, suggesting that the initial 
assembly of neuronal connections might rely primarily on molec-
ular cues. Projections of INs are enriched between glomeruli that 
receive input from odorant receptors of the same families26, raising 
the possibility that glomerular targeting of sensory neurons39 and 
INs involve related mechanisms. However, the development of spe-
cific connectivity among OB neurons remains to be explored.

Lateral inhibition between neurons with similar tuning is often 
assumed to sharpen tuning curves by amplifying asymmetries in the 
input. In the OB, however, triplet connections between related MCs 
are enriched in reciprocal connectivity. Such connectivity results in 
feedback inhibition that is independent of the precise input pattern 
and downscales activity without amplifying asymmetries (Fig. 5a, 
right). Reciprocally connected MC↔IN↔MC cohorts therefore 
mediate feature suppression because the inhibitory feedback gain 
within the cohort is larger than the mean feedback gain when an 
appropriate feature is present. This mechanism can explain the 
selective and odor-dependent inhibition of correlation-promoting 
MC cohorts.

Functional connectomics permitted us to test the significance of 
this mechanism by implementing the wiring diagram in a network 
of minimally complex model neurons. Simulations included only 
~30% of the MC population and did not quantitatively reproduce 
all details of the measured population activity. Nevertheless, the 
dynamics that resulted in whitening by feature suppression was pre-
served, demonstrating that the computational function of the circuit 
is determined to a large extent by its connectivity. Whitening was 
robust against input noise and parameter variations, presumably 

Fig. 6 | Mechanism of whitening analyzed by targeted manipulations of the wiring diagram. a, Mean correlation contribution, activity and variance 
contribution of MCs responding to bile acids at t1 (light blue) and t2 (dark blue) in simulations (correlation contribution: n = 6 bile acid pairs; activity and 
variance contribution: n = 8 odors). MCs were ranked by the correlation contribution ri,t1 observed in experimental data, as in Fig. 5c. Insets enlarge the top 
parts of the curves (20 MCs with the highest ri,t1) and compare simulation results to experimental data (gray and black) for the same 20 MCs.  
b, Simulated synaptic inputs as a function of time during stimulus presentation for all MCs. For each odor pair, MCs were ranked by the correlation 
contribution ri,t1 in experimental data, as in a and Fig. 5c. Ranked matrices were normalized and averaged over odor pairs. Inset: synaptic inputs to the  
20 MCs with the highest ri,t1. Top: original wiring diagram; bottom: randomized wiring diagram. c, Schematic: selective deletion, selective permutation and 
selective preservation of MC cohort connectivity in simulations. FF, feedforward. d, Pattern correlation (Pearson) and s.d. of pattern variance (normalized) 
at t2 observed in simulations under different conditions. Horizontal black lines show mean values at t1. Dots show means, error bars show s.d., filled bars 
show difference to corresponding values at t1 and box plots show the median, 25th percentile and 75th percentile. For simulations using the original 
wiring diagram, variability was determined across odor pairs (correlation; bile acids only; n = 6) or individual odors (s.d. of variance; n = 8). Significance 
tests compare values at t2 to experimental values at t1 (correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with df1 = df2 = 7 degrees 
of freedom). For other simulation results, variability was measured across n = 50 different network simulations (repetitions). Significance tests compared 
repetitions to the mean value observed experimentally at t1 (two-tailed t-test with 49 degrees of freedom). *P < 0.05, ***P < 0.001; NS, not significant. 
P values, from left to right: correlation: 0.04, 10−5 (t = 5.0), 10−13 (t = 10.5), 10−5 (t = 5.1), 0.67 (t = 0.4); s.d. of variance: 0.04 (F = 5.2), 10−7 (t = 6.3), 
10−45 (t = 53.8), 0.07 (t = 1.84), 10−4 (t = 4.22). e, Time courses of mean activity, mean pattern correlation (bile acid pairs) and s.d. of pattern variance in 
simulations using different wiring diagrams. The shaded area shows s.d. across different permutations (n = 50). f, Mean correlation contribution, activity 
and variance contribution of the 20 MCs with the highest ri,t1 observed experimentally and in simulations using different wiring diagrams. MCs were 
ranked by ri,t1 observed in experimental data as in a and in Fig. 5c (same ranking under all conditions). Gray, t1; colored, t2 (mean over 50 repetitions for all 
permutations). Sel., selective.
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because the essential connectivity exhibits substantial redundancy. 
Precisely targeted manipulations of the wiring diagram confirmed 
that feedback inhibition among correlation-promoting MC cohorts 
was necessary and sufficient to achieve whitening. Hence, whiten-
ing in the OB depends on higher-order features of connectivity and 
is produced by a network mechanism that differs from canonical 
computations in the retina and other sensory systems, presumably 
because the statistical properties of sensory inputs differ between 
sensory modalities.

In the visual cortex, functionally related principal neurons make 
stronger excitatory connections than random subsets of neurons40. 
Such connectivity can arise from Hebbian plasticity mechanisms,  

enhance representations of sensory features and amplify spe-
cific inputs in memory networks after learning. The connectivity 
observed in the OB, in contrast, results in disynaptic inhibitory inter-
actions between functionally related principal neurons. Functional 
connectivity in the OB is therefore similar in structure, but oppo-
site in sign, to excitatory connectivity motifs in the visual cortex. 
As a consequence, the connectivity in the OB suppresses, rather 
than amplifies, specific features in the input. Such a mechanism 
appears useful to attenuate the effect of irrelevant sensory inputs 
and to reduce undesired correlations. The mechanism of feature  
suppression is consistent with networks that have been opti-
mized for whitening in a theoretical framework with biologically  
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plausible constraints41–43, and inhibitory functional interactions 
between neurons with related tuning have also been observed in 
the rodent neocortex44. The elementary microcircuit that mediates 
whitening in the OB might therefore contribute to similar computa-
tions also in other brain areas.
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Methods
Animals and preparation. Adult zebrafish (Danio rerio) were maintained and bred 
under standard conditions at 26.5 °C. Embryos and larvae of a double-transgenic 
line (elavl3:GCaMP5 × vglut:DsRed)45,46 in nacre background were raised at 28.5 °C 
in standard E3 medium47.

Imaging experiments were performed as described previously48,49. In brief, 
larvae 4–5 d after fertilization were contained in a small drop of aerated E3 
without methylene blue or N-phenylthiourea. Larvae were then paralyzed by the 
addition of 20 µl of fresh mivacurium chloride (Mivacron, GlaxoSmithKline)50 and 
embedded in 2% low-melting agarose (type VII, Sigma) in a perfusion chamber 
that was inclined by 30° to improve dorsal optical access to the OBs. Agarose 
covering the noses was carefully removed. A constant stream of E3 (2 ml min−1) 
was delivered through a tube in front of the nose and removed by continuous 
suction. Throughout the experiment, it was ensured that larvae showed a normal 
heartbeat. Larvae that were not fixed for EM recovered from paralysis after a few 
hours and continued to develop without obvious defects. All animal procedures 
were performed in accordance with official animal care guidelines and approved by 
the Veterinary Department of the Canton of Basel-Stadt (Switzerland). The sex of 
zebrafish larvae is not yet determined at the age used in this study.

Odor stimulation. Odor application was performed as described48. In brief, odors 
were delivered to the nose through the E3 medium using a computer-controlled, 
pneumatically actuated HPLC injection valve (Rheodyne). The rise time of 
stimuli was approximately 500 ms51. All experiments were carried out at room 
temperature (~22 °C). The odor set comprised one food odor51, four bile acids 
(glycochenodeoxycholic acid (GCDCA), taurocholic acid (TCA), taurodeoxycholic 
acid (TDCA) and glycocholic acid (GCA); Sigma-Aldrich) and four amino acids 
(tryptophan, lysine, phenylalanine and valine; Fluka). Stock solutions of GCDCA, 
TCA, TDCA, tryptophan, lysine, phenylalanine and valine at 5 × 10−3 M in E3 
were kept refrigerated and diluted 1:500 (GCDCA, TCA and TDCA) or 1:50 
(tryptophan, lysine, phenylalanine and valine) in aerated E3 medium immediately 
before the experiment. A stock solution of GCA was prepared in 50% ethanol 
and 50% E3 at 2.5 × 10−3 M, refrigerated and diluted 1:250 immediately before 
the experiment. In a given trial, an odor was applied twice for a duration of ~3 s 
with an inter-stimulus interval of 60 s. Successive trials with different odors were 
separated by at least 2 min.

Multiphoton calcium imaging. Multiphoton imaging was performed using a 
microscope equipped with a mode-locked Ti:sapphire laser (SpectraPhysics) and 
a ×20 objective (NA 1.0, Zeiss) as previously described52. GCaMP5 was excited 
at 910 nm, and emission was detected through green (535 ± 25 nm) and red 
(610 ± 37.5 nm) emission filters in separate channels. Images (256 × 256 pixels) 
were acquired at 128 ms per frame using SCANIMAGE and EPHUS software53,54 
for a total of 2 min in each trial. Trials were performed sequentially in six focal 
planes that were separated by approximately 10 µm along the dorsal–ventral axis 
of the OB. The field of view covered the entire cross-section of the OB and parts 
of the adjacent telencephalon. Ten stimulus trials (nine odors and one E3 control), 
each including two odor applications, were performed in each focal plane. The 
order of stimuli was E3, food, GCDCA, TCA, TDCA, GCA, tryptophan, lysine, 
phenylalanine and valine. In addition, 2 min of spontaneous activity was recorded 
in each focal plane. After completion of all trials, a stack of images covering the 
whole OB was acquired with a z-step interval of 0.5 µm.

Automated drift correction. Slow mechanical drift, which might be caused by 
capillary forces acting on the agarose matrix55, was corrected between trials by 
an automated routine. This routine acquired a small stack (±3 µm around the 
focus; 0.5-µm steps) and compared images to a reference acquired previously by 
cross-correlation after standardizing image columns and rows. The field of view 
was then automatically translated in x, y and z to maximize the cross-correlation 
to the reference.

Electron microscopy. Preparation and imaging of this sample were described 
previously25,26. Briefly, tissue was stained en bloc with osmium, uranyl acetate 
and lead aspartate using an established protocol56,57 with minor modifications 
and embedded in Epon resin with silver particles to minimize charging25,26. 
Multi-tile images were acquired in high vacuum using a scanning electron 
microscope (QuantaFEG 200, FEI) equipped with an automated ultramicrotome 
inside the vacuum chamber (3View, Gatan). The section thickness was 25 nm, 
the pixel size was 9.25 × 9.25 nm2 and the electron dose was 17.5 e− per nm2. 
The dataset comprised 4,746 successive sections, of which one section was 
lost owing to technical problems. The final stack was cropped to a size of 
72.2 × 107.8 × 118.6 μm3.

Neuron reconstruction and synapse annotation. Skeletons of all neurons in the 
OB were reconstructed as previously described25,26. Briefly, three independent 
skeletons of each neuron were generated manually from seed points at somata. 
Skeletons were converged and mismatches were corrected as described, and high 
accuracy was verified by measures of precision and recall26. Tracing was performed 
using KNOSSOS (https://www.knossostool.org) or PyKNOSSOS (https://github.

com/adwanner/PyKNOSSOS). Most skeletons were generated by a professional 
high-throughput image annotation service (https://www.ariadne.ai).

Synapses were annotated manually using PyKNOSSOS in ‘flight’ mode25. In 
the default configuration, PyKNOSSOS displays image data in four viewports: 
the yx viewport (imaging plane) and three mutually orthogonal viewports of 
arbitrary orientation. In flight mode, the latter is perpendicular to the direction 
of the current neurite. We found that this ‘auto-orthogonal’ view increases tracing 
speed and facilitates the identification of branch points and synapses. Annotators 
followed skeletonized reference neurons along precalculated paths to ensure that 
all neurites were annotated. Most synapses were annotated by a professional image 
annotation service (https://www.ariadne.ai).

Synapses were identified by a cloud of vesicles that touched the plasma 
membrane, often at a site of intense staining. Annotators defined synapses by 
placing three nodes: (1) a node in the presynapse, (2) a node in the synaptic cleft 
and (3) a node in the postsynapse. Nodes in the presynapse and postsynapse were 
skeleton nodes of the presynaptic and postsynaptic neurons if these skeletons were 
available. In addition, annotators assigned a confidence level c to each synapse. 
This confidence level was introduced because synapse identification is not 
unambiguous; rather, human experts can disagree whether a given structure is a 
synapse or not, even when image quality is high.

Synapses were then classified as ‘input synapse’, ‘output synapse’, ‘sensory 
synapse’ or ‘unknown’. Input and output synapses were synapses of the reference 
neuron with the corresponding directions, excluding synapses with sensory 
neurons. Sensory synapses were input synapses received by the reference neuron 
from axons of sensory neurons, which were identified by their dark cytoplasm58. 
Unknown structures resembled synapses but did not display all characteristic 
features. These structures often included intense staining of the membrane but 
no clearly associated vesicle cloud. We therefore speculate that some of these 
structures might be gap junctions.

We first annotated input and output synapses of all MCs and INs independently 
of each other. Hence, each synapse should have been encountered twice, once from 
the presynaptic side and once from the postsynaptic side. Synapses of INs were 
then annotated again by different individuals, resulting in threefold redundancy 
for each MC–IN synapse. To minimize the number of false positives, the final 
wiring diagram retained only MC–IN synapses that were annotated on the MC and 
at least once on the IN. As a control, we also repeated connectivity analyses and 
simulations with a wiring diagram that included only synapses that were annotated 
at least three times. This wiring diagram produced very similar results (data not 
shown).

Each synapse was assigned a unitary weight. As a consequence, the strength of 
the connection between two neurons in each direction was given by the number of 
synapses between this pair of neurons. In addition, we tested two other methods 
to determine synaptic strength. First, connection strength was binarized such that 
all connections had strengths of 0 or 1, independent of the number of synapses. 
Second, we defined the weight of a synapse as its mean confidence level c and the 
total weight of a connection as the sum of the confidence levels of all synapses. 
In addition, we tested various confidence thresholds to discard synapses with low 
confidence before determining the weights. Similar results were obtained with all 
methods and a wide range of confidence thresholds, implying that the results are 
highly robust.

Correlation between multiphoton and SBEM image stacks. Mapping of 
multiphoton to SBEM image data might be complicated by (1) mechanical 
distortions introduced by the sample preparation procedure, (2) shrinkage due to 
loss of extracellular space induced by chemical fixation59 and (3) developmental 
changes occurring during the approximately 3 h between the first calcium 
imaging trial and the final fixation of the tissue. Initial observations indicated that 
distortions between image datasets were mostly linear (rotation, translation and 
shrinkage), whereas nonlinear distortions appeared minimal and developmental 
changes were negligible. We therefore used an affine transformation to map 
multiphoton images into the SBEM stack, followed by manual fine adjustment of 
regions of interest (ROIs) for the extraction of calcium signals.

An initial affine transformation matrix was fitted to a set of corresponding 
points that were selected manually in both datasets. The EM volume was then 
transformed onto the two-photon images, the position of existing points were 
optimized manually and additional pairs of corresponding points were selected. 
The transform was then recalculated on the basis of the updated set of landmarks, 
and this procedure was iterated until asymptotic behavior was observed.

All somata of the OB were outlined manually in the SBEM dataset and mapped 
onto the time-averaged multiphoton fluorescence images of each trial, resulting in 
7,280 mappings of somatic outlines in the SBEM dataset to ROIs in 66 multiphoton 
images (11 trials at each of 6 optical planes). The position of all ROIs was then 
manually adjusted to optimize the mapping in each trial. The average displacement 
of ROIs during manual adjustment was small (593 ± 833 nm, mean ± s.d.; Extended 
Data Fig. 1b), demonstrating that the accuracy of the initial affine mapping was 
already high.

INs in the larval zebrafish OB were previously divided into three classes based 
on morphological criteria26. The 68 INs in the activity dataset included neurons 
from all three classes without an obvious bias (13/53 INs of class 1, 20/78 INs 
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of class 2 and 31/123 INs of class 3). Moreover, they included 4/4 neurons that 
were previously classified as atypical projection neurons26. We did not observe an 
obvious bias of IN classes for specific connectivity motifs.

Analysis of calcium signals. Individual frames of multiphoton image time series 
were low-pass spatially filtered with a mild two-dimensional Gaussian kernel 
(σ = 1.2 pixels). Baseline fluorescence F was calculated as the average fluorescence 
during a 2-s window before response onset. Traces representing relative changes 
in fluorescence (ΔF/F) in each ROI were averaged over the two successive odor 
applications in each trial and band-pass filtered in time using a Butterworth 
filter with a cutoff frequency of 0.2 times the frame rate. The average population 
response onset (t = 0) was determined manually from all raw ΔF/F traces and fixed 
for all trials. Firing rate changes of neurons represented by individual ROIs were 
estimated by temporal deconvolution of calcium signals as previously described28 
using standard parameters (τdecay = 3 s, thrnoise = 0).

Analyses of population activity were restricted to neurons represented by ROIs 
with a radius of ≥2 pixels in all trials (corresponding to an area of 3.14 µm2; 232 
MCs and 68 INs). For network simulations and mechanistic analyses of whitening, 
we considered only the 208 MCs that were presynaptic and postsynaptic to at least 
one IN and excluded 24 presumably premature MCs. Population responses to 
different odors were compared by calculating the Pearson correlation coefficient 
between the population activity vectors of MCs for the different stimuli at a given 
time point after response onset.

Network modeling. MCs are glutamatergic, whereas most or all INs in the 
developing zebrafish OB express GABA48. We therefore considered MCs to be 
excitatory and INs to be inhibitory. MCs and INs were simulated as threshold–
linear units with a state variable representing firing rate. ri(t) and uj(t), representing 
the firing rates of MC i and IN j, respectively, followed the equations of motion
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dt
¼ �ri tð Þ þ Gi

senS
i tð Þ � Gi

inhW
i
MC IN  u tð Þ � θIN½ þ

τjIN 
duj tð Þ
dt
¼ �uj tð Þ þ Gj

excW
j
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I

 are firing thresholds, Wj
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correspond to the reconstructed IN-to-MC and MC-to-IN connectivity weight 
matrices of the jth IN and of the ith MC, respectively, and the vectors r tð Þ

I
 and u tð Þ
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represent the firing rates of the MC and IN, respectively. []+ denotes half-wave 
rectification:
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 are the time constants for the individual MCs and INs, respectively. 
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sen
I

, Gi
inh
I

 and Gj
exc
I

 are the individual scaling factors for sensory, inhibitory and 
excitatory input, respectively. To account for the natural variability in biological 
systems, the parameter values for each of the cells in each of the individual 
simulation runs were drawn from a Gaussian distribution with an s.d. of 1% of the 
distribution mean. The distribution means of the different parameters were:

Gsen ¼ 6; Gexc ¼ 0:7; Ginh ¼ 3:5; θMC ¼ 2; θIN ¼ 50; τMC ¼ 1; τIN ¼ 80

The time course of sensory input Si(t) was modeled as the difference of 
exponentials, as described previously33:

~s tð Þ ¼ �aj;1 þ aj;1
1� α

1� e�τrt � αþ αe�τdtð Þwith α ¼ 0:8; τr ¼ 1=150; τd

¼ 1=600; aj;1 ¼ 1=150

To model Si(t), the individual sensory input of MC i, we used its experimentally 
measured activity âi

I
during t1 and modulated the time course according to ~s tð Þ

I
:

Si tð Þ ¼ âi
~s tð Þ
~smax

; where~smax ¼ max
t≥ 0

~s tð Þð Þ

The differential equations were solved in MATLAB with a fixed step size of  
1 ms using a first-degree Newton–Cotes integration scheme or using an adaptive 
step-size-embedded Runge–Kutta–Fehlberg (4,5) scheme. Both integration 
schemes led to qualitatively very similar results, and therefore the former method 
was used for simplicity for the simulated data shown here.

In an iterative, semiautomated parameter search, we identified a suitable 
parameter range that fulfilled the following criteria:

	(1)	 The peak firing rates of individual neurons do not exceed a physiologically 
realistic range (<200 Hz).

	(2)	 The strength of inhibition is appropriate to reproduce the time course of the 
average population activity, correlation and variance.

	(3)	 The activity, correlation contribution and variance contribution of individual 
MCs at t1 and t2 are in good correspondence to experimental measurements.

Parameters for which these criteria were fulfilled were found by parameter 
variations in pilot studies. Results were usually robust against variations of each 
parameter by ±50% around the values reported above.

To simulate responses to noisy inputs, we assumed that an MC receives 
convergent input from 40 olfactory sensory neurons of the same type, each spiking 
with Poisson statistics. Simulated firing rates of sensory neurons were calculated in 
25-ms windows, averaged over convergent sensory neurons and scaled to obtain a 
total input to each MC with the same mean as in the noiseless case. Assuming that 
each sensory neuron makes ten synapses onto MCs, the total number of sensory 
neurons would be approximately 3,000 per epithelium.

Analysis of triplet motifs. Occurrences of disynaptic MC–IN–MC and IN–MC–IN  
motifs were counted after binarizing connections. We enumerated all neuron 
triplet combinations in the reconstructed wiring diagram and tested for graph 
isomorphism against all four disynaptic motif types. The obtained motif counts 
were compared against a reference model where the forward and backward 
connectivity of the MCs were permuted independently while maintaining the 
node count and edge density (n = 10,000 permutations). z scores and  
P values were obtained by computing the mean and s.d. of each motif type in the 
permuted networks.

To compare motif frequency as a function of pairwise tuning similarity, 
we divided the MC pairs into two groups, one with a tuning correlation higher 
than a threshold (for example, r > 0.5) and one with a tuning correlation lower 
than the threshold (r ≤ 0.5), and counted the occurrences of MC–IN–MC and 
IN–MC–IN motifs in each group. We then compared the motif counts against a 
reference model where we permuted the pairwise tuning similarity between MCs 
and regrouped them by tuning correlation while maintaining the same network 
topology (n = 10,000 permutations). z scores and P values were then obtained by 
computing the mean and s.d. of each motif type in the permuted groups.

Additional analyses. The contribution of individual MCs to the Pearson 
correlation coefficient
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 for each MC. Similarly, the contribution of individual MCs to the 
variance

varx ¼
1

n� 1

Xn

i¼1

xi � �xð Þ2

of the population activity patterns was calculated by determining the summand 
xi � �xð Þ2
I

 for each MC. Here, xi and yi are responses of MCs to odors x and y, s.d.x 
and s.d.y are the s.d. of population responses to odors x and y, and n is the total 
number of MCs in the population.

The analysis of disynaptic connectivity as a function of tuning correlation 
(Fig. 4c and Extended Data Fig. 7c) included only neurons that showed an obvious 
response, because correlation measurements are sensitive to noise. A neuron was 
classified as responsive when the average of the two largest responses exceeded 
the mean across all neuron–odor pairs by 0.6 s.d. When applied to the matrix 
representing all MCs and odors, approximately 30% of MCs were classified  
as responsive by this criterion. Weights of input synapses were normalized for  
each neuron to the sum of all inputs to that neuron, and final plots were 
normalized to the mean.

Statistical analysis. No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to or larger than those reported in previous 
publications8,10,14,15. Reconstruction of the wiring diagram required no sampling 
because all neurons and synapses were annotated. Neurons were randomly 
assigned to annotators for reconstruction. The study included only one animal. 
Stimulus presentation was not randomized. Annotators were blinded to the 
identity of neurons. Otherwise, data collection and analysis were not performed 
with blinding to the conditions of the experiments. No animals or data points 
were excluded from analyses. Statistical comparisons were performed using a two-
sided Wilcoxon rank-sum test, a two-tailed t-test, a permutation test or an F-test. 
Normality and equal variance were tested when statistical tests were used that 
make these assumptions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Image data are available under https://doi.org/10.7281/T1MS3QN7 and can be 
accessed through the NeuroData web services (http://neurodata.io/wanner16)25. 
They can also be viewed interactively using PyKNOSSOS (https://github.com/
adwanner/PyKNOSSOS)25. The skeleton reconstructions and soma outlines of the 
1,022 neurons can be downloaded from https://doi.org/10.5281/zenodo.58985 as 
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previously described25. All other data that support the findings of this study are 
available from the corresponding author upon reasonable request.

Code availability
PyKNOSSOS is available at https://github.com/adwanner/PyKNOSSOS. Detailed 
instructions on how to access and analyze image data using PyKNOSSOS were 
published previously25. All other code used in this study is available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Sensory input to INs and mapping of datasets. a, Distribution of the fraction of synaptic inputs onto INs that originated from 
sensory axons. The average fraction of synaptic inputs onto INs that came from sensory neurons was 5.9 ± 4.6% (mean ± s.d.). This is an upper-
bound estimate because structures in EM images were classified as sensory synapses even when they were small and when synaptic features such as 
postsynaptic densities and vesicle clusters were ambiguous. No obvious synaptic connections were observed from OB neurons onto axon terminals of 
sensory neurons. b, Displacement of regions of interest (ROIs) during manual proofreading. ROIs representing somata were mapped from the EM dataset 
to optical image planes in each trial by an affine transformation that was determined by an iterative landmark-based procedure (Methods). Subsequently, 
the position of each ROI was adjusted manually on the optical image (n = 7,280 ROIs; six image planes with 11 trials each). The mean displacement  
(± s.d.) during manual adjustment (proofreading) was small (593 ± 833 nm), implying that automated mapping was highly reliable.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNATurE NEurOscIEncE

Extended Data Fig. 2 | Calcium imaging of odor responses. a, Raw calcium signals (ΔF/F) evoked by eight odors in neurons that were present in all trials 
and included in simulations (208 MCs and 68 INs; average of two trials). Gray bars indicate odor stimulation. b, Raw calcium signals (ΔF/F) evoked  
by eight odors and E3 medium in neurons that were present in all trials and included in simulations (176 MCs and 50 INs; average of two trials; sorted by 
response to E3 medium). c, Correlation matrices of MC activity patterns at t1 and t2 after excluding 10 MCs with highest responses to E3 medium  
(all MCs in b except for the first 10; n = 166 MCs in total). Calcium signals were deconvolved to estimate firing rate changes as in Fig. 2. As observed  
in the full dataset (Fig. 2e), MC activity patterns evoked by similar odors were correlated at t1 and became decorrelated at t2. The main results were 
therefore not affected by possible responses to E3 medium.
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Extended Data Fig. 3 | Decoding of odor identity from MC activity patterns. a, Pearson correlation matrices showing similarities of activity patterns 
across odors and trials at t1 and t2 (average over 100 repetitions). In each repetition, two activity patterns (trials) were generated for each odor by 
randomly assigning the first or second response of each neuron to each trial. Note the high correlations between activity patterns representing the same 
odor in different trials, particularly at t2. b, Success rates of odor identification by template matching. For each odor, the vector representing the odor in one 
trial (test vector) was correlated to vectors representing all odors in the other trial (templates) and assigned to the odor represented by the template with 
the highest correlation. Dots show the mean fraction of correct identifications, error bars show s.d., boxes show median, 25th percentile and 75th percentile 
(n = 100 repetitions each). Dashed gray line shows chance level. Top: identification based on patterns averaged over time windows t1 and t2 (see text). 
Bottom: identification based on single frames within t1 and t2. Left: tests and templates included all MCs. Center, right: the 10 or 100 MCs with the highest 
contribution to the initial pattern correlation (highest ri,t1) were omitted for each odor pair. Omitting the 10 MCs with the highest ri,t1 (cohorts) had almost 
no consequence on odor identification, confirming that information about precise odor identity is conveyed predominantly by other MCs.
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Extended Data Fig. 4 | Additional simulation results. a, Mean Pearson correlation between IN activity patterns (blue) and the corresponding MC activity 
patterns (black) evoked by different bile acid inputs in simulations (n = 6 bile acid pairs each). Correlations between IN activity patterns remain higher 
than correlations between MC activity patterns. b, Mean Pearson correlation between simulated MC activity patterns evoked by inputs representing 
different odors (blue; all bile acid pairs) and between activity patterns evoked by inputs representing the same odors in trials with input noise (purple; 
all bile acids). Shading shows s.d.. Noise was modeled based on conservative estimates of the number and firing rates of olfactory sensory neurons 
in zebrafish larvae (Methods). Three noisy trials were simulated for each odor, resulting in n = 12 correlations between same-odor trials and n = 54 
correlations between different-odor trials. Patterns evoked by different inputs were decorrelated whereas noisy versions of the same inputs were not 
decorrelated.
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Extended Data Fig. 5 | Algebraic transformations of sensory inputs. a, Schematic: simple algebraic approach to approximate transformations of MC 
activity patterns by feedback inhibition. Input activity patterns (MC activity at t1) were multiplied by the feed-forward connectivity matrix WMC→IN, 
normalized and thresholded. Normalization and thresholding are basic operations performed by the neuronal circuits of the OB10 and by individual 
neurons, respectively. The resulting IN activity patterns were multiplied with the feedback connectivity matrix WMC←IN, resulting in odor-specific patterns 
of feedback inhibition onto MCs. Feedback inhibition was either subtracted from the MC activation patterns (subtractive inhibition), or MC activation 
patterns were divided by the feedback inhibition patterns (divisive inhibition), followed by thresholding. Scaling factors and thresholds were adjusted so 
that effects on the mean activity were small. b, Mean activity, Pearson pattern correlation and s.d. of pattern variance at t2 after algebraic transformations 
of input patterns as described in a (“Experiment”: experimental results). Horizontal black lines show mean experimental values at t1; activity and s.d. 
of pattern variance is normalized to the experimental value at t1. Dots show means, error bars show s.d., filled bars show difference to corresponding 
values at t1. Box plots show median, 25% percentile, and 75th percentile. For experimental results and simulations using the reconstructed wiring diagram, 
variability was measured across odor pairs (correlation; bile acids only; n = 6) or individual odors (s.d. of variance; n = 8). Significance tests compare 
values at t2 to experimental values at t1 (correlation: two-sided Wilcoxon rank-sum test; s.d. of variance: F-test with df1 = df2 = 7 degrees of freedom). For 
results obtained with randomized wiring diagrams (W random), variability was measured across n = 50 permutations of the wiring diagram. Significance 
tests compare repetitions to the mean value observed experimentally at t1 (two-sided Wilcoxon rank-sum test). *, p < 0.05; **, p < 0.01; ***, p < 0.001; 
n.s., not significant. In “targeted suppression”, the activity of the 10 MCs that contributed most strongly to the pattern correlation at t1 for each odor pair 
(“functional cohort”) was set to the population mean. No other manipulations or algebraic operations were performed. P-values: activity: 0.57, 0.57, 0.25, 
0.23 0.17; Pearson correlation: 0.03, 0.04, 0.98, 0.04, 0.008; s.d. of variance: 0.003, 10−23, 10−26, 10−21, 10−16.
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Extended Data Fig. 6 | Occurrence of connectivity motifs as a function of tuning correlation. Z-scores quantify the over-representation of motifs among 
MC pairs with signal correlations greater than a threshold between -0.8 and 0.8. For each motif, color-coded bars show z-scores for different signal 
correlation thresholds. Z-scores were determined by comparison against 10,000 shufflings of the tuning correlation matrix as in Fig. 4d.
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Extended Data Fig. 7 | Functional connectivity between interneurons. a, IN-MC-IN triplets included in the analysis. Connections between INs were analyzed 
separately (see below and main text) to facilitate the comparison to MC-IN-MC triplets (Fig. 4). b, Left: number of IN-MC-IN motifs found in the wiring 
diagram (considering only INs with activity measurements and at least one MC→IN and MC←IN connection; n = 66). Right: z-score quantifying over- or 
under-representation of motifs as compared to 10,000 independent randomizations. c, Top: disynaptic connections between responsive INs as a function of 
tuning similarity (Pearson correlation), normalized to the mean (n = 992 neuron pairs; neurons were included only when their activity exceeded a threshold; 
see Methods; number of neuron pairs per bin: 192, 218, 178, 228, 176). Dots and error bars show mean ± s.e.m. when tuning curves were determined using all 
eight odor stimuli. Box plots show median, 25th percentile and 75th percentile across results when tuning curves were determined by all possible combinations 
of four odors. Bottom: result of the same analysis including only reciprocal connections (motif 4; n = 992 neuron pairs). d, Left: Pearson correlations between 
the mean tuning curves of MC inputs to INs (n = 57 INs). INs were ordered by optimal leaf ordering for hierarchical clustering. Right: Pearson correlations 
between the mean tuning curves of the MC targets of INs (same ordering of INs). INs were included in the analysis when their activity was measured, when 
they received input from at least 1 MC and 1 IN for which activity measurements were available, and when they targeted at least 1 MC and 1 IN for which activity 
measurements were available. e, X-axis: Pearson correlation between the tuning curves of each IN and the mean tuning curves of MC inputs to the same IN  
(rIN-inputs). Y-axis: Pearson correlation between the tuning curves of each IN and the mean tuning curves of its MC targets (rIN-targets). r, correlation coefficient;  
***, p = 10-8 (two-tailed t-test, n = 63 INs). INs were included in the analysis when their activity was measured, when they received input from at least 1 MC for 
which activity measurements were available, and when they targeted at least 1 MC for which activity measurements were available. f, Black: number of maximal 
IN cliques in the wiring diagram as a function of clique size. Gray curve shows expectation based on randomized wiring diagrams (10,000 permutations).  
A maximal clique is a complete set of INs that are all reciprocally connected to each other. Top and bottom plots show distributions for cliques without a MC 
and cliques with one reciprocally connected MC, respectively. Maximal cliques with more than one MC do not exist because the wiring diagram contained no 
connections between MCs. g, Left: Mean Pearson correlation of tuning curves between neurons in maximal cliques as a function of clique size (n = 414; number 
per bin: 3, 19, 22, 44, 96, 99, 75, 29, 24, 3). Dots and error bars show mean ± s.e.m.; box plots show median, 25th percentile and 75th percentile. Gray curve 
shows mean after shuffling of tuning correlation matrix (right). Right: same analysis after shuffling of tuning correlation matrix (1,000 repetitions; n = 414,000; 
number per bin: 3,000, 19,000, 22,000, 44,000, 96,000, 99,000, 75,000, 29,000, 24,000, 3,000). Black curve shows mean of original data (left).
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Extended Data Fig. 8 | Effects of different transformations on pattern correlation. a, Schematic: effect of contrast enhancement on the correlation 
between displaced Gaussian patterns. The X-axis represents neurons while the Y-axis represents their activity. Blue and orange bars represent overlapping 
activity patterns evoked by two different stimuli. The similarity of activity patterns is quantified by the Pearson correlation coefficient, r. Note that many 
neurons respond to both stimuli but neurons showing maximal responses differ between stimuli. Hence, strongly active neurons convey stimulus-specific 
information. Contrast enhancement therefore decorrelates patterns because it emphasizes strongly active neurons and suppresses weakly active neurons. 
b, Effect of contrast enhancement on the Pearson correlation between activity pattern that overlap in strongly active neurons. Activity patterns have 
the same Pearson correlation as in a but their shape is slightly different: maximal responses to the two stimuli occur in the same neuron, and tails of 
moderately or weakly active neurons extend in opposite directions. Hence, stimulus-specific information is conveyed primarily by moderately or weakly 
active neurons while strong responses are non-specific. As a consequence, contrast enhancement fails to decorrelate these patterns. c, Patterns that 
overlap in strongly active neurons (same as in b; r: Pearson correlation) are decorrelated by selective inhibition of strongly active neurons, which results in 
contrast reduction. Decorrelation occurs because the relative contribution of moderately or weakly active neurons is enhanced as the activity of strongly 
active neurons is suppressed. Selective inhibition of strongly active units is generated by reciprocal inhibition that is stronger or denser within cohorts 
of co-tuned neurons. Inhibitory feedback gain is therefore higher than the average inhibitory feedback gain within a co-tuned cohort when the stimulus 
feature that activates the cohort is present (feature suppression).
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Extended Data Fig. 9 | Further characterization of functional cohorts. a, Composition of functional MC cohorts. For each pair of bile acid odors (X-axis), a 
functional MC cohort was defined as the 10 MCs that contribute most to the correlation between odor-evoked activity patterns at t1 (highest ri,t1).  
Gray pixels denote membership of each MC (Y-axis) in each cohort. Cohorts for different odor pairs overlapped substantially. Consistent with this 
observation, the mean Pearson correlation between tuning curves of MCs at t1 was significantly higher within cohorts (r = 0.56 ± 0.40; mean ± s.d.)  
than across all MCs (r = 0.01 ± 0.38; p = 10-84; two-sided Wilcoxon rank-sum test). Furthermore, we analyzed the mean tuning correlation at t1 among  
the 16 MCs that were not part of cohorts themselves but provided the highest number of disynaptic input connections to neurons inside cohorts  
(r = 0.23 ± 0.52; mean ± s.d.). This tuning correlation was lower than the tuning correlation within the cohort but still significantly higher than the mean 
tuning correlation across all MCs (p = 10-40; two-sided Wilcoxon rank-sum test). Similarly, the mean tuning correlation at t1 among the 16 MCs that 
received the most disynaptic output connections from neurons inside cohorts (r = 0.17 ± 0.53; mean ± s.d.) was lower than the tuning correlation within 
the cohort but significantly higher than the mean tuning correlation across all MCs (p = 10-17; two-sided Wilcoxon rank-sum test). b, Black: frequency 
of each MC-IN-MC triplet motif in MC cohorts (n = 6 cohorts for each motif). Dots show means, error bars show s.d., box plots show median, 25% 
percentile, and 75th percentile. Gray: frequency of MC-IN-MC triplet motifs among randomly selected MC subsets of the same size (n = 10 MCs; n = 600 
repetitions for each motif). Frequency of occurrence is normalized to the mean frequency in random subsets for each motif. **, p < 0.01; ***, p < 0.001 
(two-sided Wilcoxon rank-sum test). P-values: 0.002, 10-5, 0.0008, 0.0001. We also observed that the 10 INs receiving the largest number of MC inputs 
from each cohort were 1.7 times more likely to make direct connections than random subsets of INs (p = 0.007; two-sided Wilcoxon rank-sum test).  
c, Blue: mean activity of the 10 MCs in the functional cohort defined by responses to TCA and GCDCA (example odors in Fig. 5b). Green: mean activity  
of the 10 INs that were included in activity measurements and provided the highest synaptic input to the MC cohort. As expected, IN activity increased 
while MC activity decreased during odor application.
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