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Abstract: Ontogenetic changes in venom composition have important ecological implications due
the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation
has direct medical consequences for the treatment of snakebite. However, ontogenetic changes
are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus
nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and
test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven
C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary
components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry.
In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and
biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition
and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected
clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained
more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes;
however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes.
Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults;
however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic.
Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa)
of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine
effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have
difficulty neutralizing some human envenomations and, therefore, it may be necessary improve
the immunization mixture in Mexican antivenoms to account for low molecular mass proteins,
like myotoxins.
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Key Contribution: Clear ontogenetic venom variation was detected in C. m. nigrescens where venoms
from juvenile snakes were, in general, more toxic and procoagulant but less proteolytic. Additionally,
Mexican antivenoms were not effective at recognizing and neutralizing low molecular mass proteins,
such as mycotoxins, predominantly found in juvenile venoms.

1. Introduction

Phenotypic variation as a result of ontogenetic changes during the life of an organism result from
differential selection pressures through time [1]. Because of the different pressures, the realized niche
also differs through time based on size and maturity. Differences can include the utilization of different
habitats [2], risk to predation [3], and diet breadth [2,4,5]. For example, many species of snakes are
known to change the prey composition of their diet based on their size [6–9]. The change in diet is
possibly due to the increase in gape size through time [10]. For venomous snakes, there is evidence that
many species undergo ontogenetic changes in venom composition that likely accompany the changes
in diet [11–14]. The switch in phenotype tends to be associated with size at sexual maturity when the
animals become capable of reproduction. For example, Margres et al. [15] reported that ontogenetic
shift in venom composition of C. adamanteus occurred at 102 cm, the size at which the species reaches
sexual maturity. Phenotypic changes through time have relevant ecological implications for the species
as well as medical implications. Understanding ontogenetic venom variation is important from medical
and biotechnological perspective because these phenotypic differences have direct consequences for
the treatment of snake bites.

In general, more toxic and procoagulant venoms have been detected in newborn or juvenile
snakes compared to adults [16–22]. These ontogenetic differences in biological activities of venoms
could be reflected in different clinical manifestations in people bitten by newborn, juvenile or adult
snakes. Differences in venom composition during different life-stages may cause antivenoms that are
effective against adult venoms to be ineffective against the venom of juveniles [17,23]. Disentangling
phenotypic differences due to ontogeny is challenging because many venom phenotypes, such as
rattlesnakes, also have a high level of intraspecific and interspecific variability. Some rattlesnake species
display different phenotype of venom (e.g., neurotoxic and hemorrhagic) though their distribution,
where more severe envenomations may be expected in areas where rattlesnakes with neurotoxic
venoms are distributed [24,25]. But, even when the differences are not as diverse as neurotoxic
and hemorrhagic, there is still high levels of variability across the geographic distribution of many
species [14,21,26].

Rattlesnake (Viperidae: Crotalus and Sistrurus) venoms are complex cocktails of proteins
containing from 30 to over 100 toxins [27] with key ecological functions for prey acquisition and
defense [28]. These proteins are grouped into families according to their sequence similarity,
activity and structure [29]. The number and proportion of these protein families in snake venoms
can vary at inter and intra-specific levels. Generally, the most abundant venom components in
rattlesnakes are myotoxins (Myo), phospholipase A2s (PLA2s), snake venom metalloproteinases
(SVMPs), and snake venom serine proteinases (SVSPs) [30]. Intraspecifically, venom variation has
been observed in individuals from different geographic regions [31–35], age [13,14,19,21,36,37] and
less commonly sex [38,39]. Snake venom variation may be mediated by genetic polymorphisms [40,41],
presence/absence of genes that code for specific toxins (e.g., PLA2s and SVMPs) [42,43], and/or
post-translational modifications [44,45]. Additionally, age-related venom variation has been associated
more frequently to differences in the expression of some specific toxin families [15].
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There are approximately 50 species of rattlesnakes which are only found in the New World. Mexico
contains the highest number of rattlesnake species with 43 (42 Crotalus and 1 Sistrurus: Data taken from
www.reptiledatabase.org). Recent studies have demonstrated important intraspecific venom variation
in several rattlesnake species distributed in Mexico including: Crotalus morulus [46], C. culminatus,
C. simus, C. tzabcan [47], C. s. scutulatus [33,48] and C. polystictus [21]. Additionally, in several species
of rattlesnakes, ontogenetic changes have been documented that correspond with different toxin
families. In species such as C. culminatus and C. tzabcan, a reduction in the amount of myotoxins
in venoms as snakes increase their size has been detected [49], but in other species, the opposite
occurs [50]. Additionally, SVMPs have been shown to increase as species such as C. oreganus helleri,
C. o. oreganus, Crotalus polystictus and C. simus get larger [19,21,23,49]. However, even in relatively
abundant and widely distributed rattlesnake species, there is little information on the composition of
their venoms and the implications of possible ontogenetic venom variation in public health or in the
efficacy of antivenoms.

The Black-tailed Rattlesnake (Crotalus molossus) is a large bodied species that reaches adult size at
approximately 57.6 and 65.3 cm snout-vent length (SVLs), for males and females, respectively [51] Due
to the large size differences from neonate (total body length (TBL): ~30 cm) to adult (up to 152.4 cm
TBL) [52,53], this species would likely undergo changes in diet composition through time which may
be accompanied by venom differences. Balderas-Valdivia et al. [54] reported that C. m. nigrescens adults
from La Reserva Ecologica del Pedregal in Mexico City feed predominately on rodents, while younger
snakes consume predominately lizards. A similar pattern was reported by Werler and Dixon [55] for
the closely related Eastern Black-tailed Rattlesnake, C. ornatus, from Texas, which shifts from lizards to
rodents as they transition from juveniles to adults.

The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is one of four subspecies
within C. molossus (the other three are C. m. estebanensis, C. m. molossus and C. m. oaxacus) and
has the largest distribution in Mexico. Its distribution extends from Northern Durango, Southern
Chihuahua and Northern Nuevo León south to Western Veracruz and Northern Oaxaca [53]. Despite
the fact that this subspecies is broadly distributed in Mexico, little is known about the biochemical
and biological activities of its venom. Previous research reported that C. m. nigrescens venom is rich
in hydrolytic enzymes such as thrombin-like proteases (21.4 kDa) and proteinase E (75 kDa) [56]
and it can have myotoxins α (crotamine-like) [57]. Additionally, ontogenetic venom variation
in fibrinolytic and complement inactivation activities was detected in the Northern Black-tailed
Rattlesnake (C. m. molossus) [58] so it is possible this change also occurs in C. m. nigrescens. Although
there is no information available about human envenomations by C. m. nigrescens, it has been reported
that C. m. molossus bites induce edema, ecchymosis, coagulopathy, thrombocytopenia, swelling,
and hemorrhagic blebs [59,60]. Additionally, compartment syndrome was reported for one patient
bitten by this subspecies [61].

www.reptiledatabase.org
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Here, we use range-wide sampling of C. m. nigrescens to assess venom variability to test for
ontogenetic changes in the biochemical and biologic activities of the venom. We were able to collect a
range of sizes for this species and place the variability in a geographic context. This study represents
the most complete characterization of the biochemical and biological properties of this subspecies and
will be of help for future analyses on related subspecies and species.

2. Results

2.1. Crotalus Molossus Nigrescens Samples

Venom samples were obtained from twenty-seven C. m. nigrescens from eight states in Mexico
(Figure 1; Table 1). Sixteen snakes were male, nine were females, and two were unknown (CM10 and
CM28). The total body length (TBL) of the snakes ranged from 37 to 105 cm (Table 1), but could not be
recorded for three individuals (CM21, CM26 and CM28). These three individuals were medium to
large adults.Toxins 2018, 10, x FOR PEER REVIEW  4 of 27 

 

 
Figure 1. Geographic distribution of the twenty-seven C. m. nigrescens samples analyzed in this study. 
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Figure 1. Geographic distribution of the twenty-seven C. m. nigrescens samples analyzed in this study.
Snakes with a total body length (TBL) less than and greater than 70 cm are represented with blue
diamonds and red stars, respectively.
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Table 1. Biologic and biochemical properties of C. m. nigrescens venoms from Mexico sorted by total body length (TBL) from smallest to largest.

ID Sex TBL (cm) Locality
% of Crotamine-
Like Myotoxins

in Venom

% of
SVMPs in

Venom

% of SVSPs
in Venom

HPA
Hydrolysis

(U/mg)

Azocasein
Hydrolysis

(U/mg)

MCD-P (µg
of Venom)

Fibrinogenolytic
Activity

CM16 F 37 La Ascensión, N. L. 9.7 41.1 25.1 2.2 ± 0.04 0.31 ± 0.02 13.5 α

CM08 M 40 Ignacio López Rayón, Dgo. 15.3 31.8 38.0 14.0 ± 0.3 1.35 ± 0.01 10.3 α

CM18 F 47.5 Genaro Codina, Zac. 30.0 33.6 22.9 7.0 ± 0.3 0.32 ± 0.01 14.7 α

CM10 ND 49.5 Real de Catorce, S. L. P. 31.8 26.0 24.6 11.1 ± 0.1 ND 24.5 ND
CM04 F 60 Mapimí, Dgo. 48.6 14.0 18.7 7.0 ± 0.7 0.94 ± 0.08 416 α

CM02 M 64 Pedriceña, Dgo. 52.7 18.1 12.5 3.6 ± 0.08 1.4 ± 0.06 36 α

CM03 F 67 Matamoros, Coah. 8.8 44.6 15.8 12.8 ± 0.6 3.8 ± 0.13 390 α

CM17 M 67 Guadalupe del Carnicero, S. L. P. 6.0 41.5 25.4 50.5 ± 2.9 3.2 ± 0.01 301 α and β

CM22 F 68 Miquihuana, Tam. 2.2 35.6 29.5 9.6 ± 0.08 1.9 ± 0.06 44 ND
CM06 F 69 Agua Puerca, Dgo. 41.2 21.9 14.0 19.4 ± 0.7 1.9 ± 0.03 151 α

CM24 M 70 Matamoros, Coah. 1.8 57.32 6.22 178.3 ± 4.0 8.4 ± 0.27 >400 * α and β

CM11 M 72 Tepezalá, Ags. 6.5 47.1 20.4 136.5 ± 4.2 4.2 ± 0.18 43.3 α and β

CM14 M 72 Genaro García, Zac. 4.5 61.3 14.5 152.7 ± 2.5 3.6 ± 0.19 271 * α and β

CM05 M 72.5 Nazas, Dgo. 0 59.5 12.3 174.7 ± 2.6 7.5 ± 0.27 75 α and β

CM19 F 75 Genaro Codina, Zac. 3.2 56.5 11.5 163.8 ± 11.0 6.3 ± 0.16 >400 α and β

CM25 F 78.5 Agua Puerca, Dgo. 4.4 51.6 13.2 142.3 ± 4.3 7.7 ± 0.25 182 α and β

CM07 M 80 Barreal de Guadalupe, Coah. 4.3 49.3 13.2 24.9 ± 1.8 3.8 ± 0.15 350 α

CM15 M 80.5 La Ascensión, N. L. 0 50.1 21.6 68.0 ± 1.33 3.9 ± 0.01 470 α and β

CM12 M 82 Genaro García, Zac. 0 67.5 12.4 183.3 ± 6.5 6.0 ± 0.05 0 † α and β

CM13 M 93 Genaro García, Zac. 0 67.7 5.1 203.8 ± 3.2 7.2 ± 0.21 0 † α and β

CM27 F 102 Milpillas de Arriba, Ags. 0 44.8 14.8 99.8 ± 7.4 3.4 ± 0.20 33.5 α

CM01 M 105 Jimulco, Coah. 0 56.1 16.4 112.2 ± 4.1 5.8 ± 0.14 269* α and β

CM09 M 105 Emiliano Zapata, Dgo. 0 45.2 14.9 184.9 ± 6.3 7.0 ± 0.12 81.8 α and β

CM23 M 105 Matamoros, Coah. 0 60.6 11.1 156.7 ± 12.0 7.0 ± 0.21 0 † α and β

CM21 M ND Ojuelos, Jal. 0 61.8 14.5 180.3 ± 15.5 4.4 ± 0.10 177 ND
CM26 M ND La Loma, Dgo. ND ND ND 134.6 ± 5.6 6.6 ± 0.40 267 α and β

CM28 ND ND Sierra del Laurel, Ags. 0 54.3 16.7 50.6 ± 4.4 3.8 ± 0.06 45.3 α and β

ND: not determined due to lack of venom; TBL: total body length; Sex: F (female); M (male); MCD-P: Minimum coagulant dose plasma; HPA: hide powder azure; SVMP: snake venom
metalloproteinases; Ags. Aguascalientes; Coah: Coahuila; Dgo: Durango; Jal: Jalisco; N. L.: Nuevo León; S.L.P.: San Luis Potosí; Tam: Tamaulipas; Zac: Zacatecas; † No coagulant activity
was observed even after adding up to 400 µg of venom; * Only partial clot was detected.
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2.2. SDS-PAGE

In general, C. m. nigrescens venoms had diverse electrophoretic pattern in terms of number
and intensity of bands (Figure 2). Venoms from six individuals (CM02, CM04, CM06, CM08, CM16,
and CM18) displayed a prominent band near 10 kDa that was absent or less intense in the remaining
venoms. These six venoms belong to individuals with a TBL of less than 70 cm. These six venoms
also lacked a series of bands located between 20 and 25 kDa (PI-SVMPs) that were detected in the
remaining venoms. Other prominent differences were observed in the area located between 50 and
75 kDa (PIII-SVMPs), where 13 of the 27 individuals (CM03, CM07, CM11, CM12, CM13, CM14, CM15,
CM16, CM18, CM198, CM21, CM27, and CM28) had a conspicuous band that was less intense in the
remaining venoms (Figure 2).
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Figure 2. 15% SDS-PAGE of C. m. nigrescens venoms from Mexico under reducing conditions. Venoms
of individuals with a TBL of less than 70 cm are marked with an asterisk (*). Variation in the bands
with molecular masses ~10 kDa, from 20 kDa to 25 kD, and from 50 kDa to 75 kDa are marked with
red, yellow and purple boxes, respectively. Based on western blot and ESI-MS analyses, these bands
correspond to crotamine like-myotoxins, PI-SVMPs, and PIII-SVMPs, respectively. 15 µg of venom was
loaded per lane and gels were stained with Coomassie blue. kDa: kilodaltons.

2.3. Determination of the Primary Components in C. m. nigrescens Venoms

All but one venom sample was separated by RP-HPLC with the goal of visualizing differences in
the protein profiles of the venoms (Figures 3 and 4, Figure S1). Clear differences were detected in the
RP-HPLC profiles of C. m. nigrescens venoms related to the TBL of snakes. In general, chromatograms
tended to be less complex, in terms of total number of fractions, in venoms of larger snakes with TBL
>70 cm (Figure 4, Figure S1). Sixteen venoms had peaks between 30 and 40 min of elution that were
absent in the other ten venoms (Figure 3, Figure S1). The seven largest measured individuals and the
two unmeasured adults lacked these peaks and the thirteen smallest snakes had them. Of the snakes
between 72.5 and 80 cm, only one lacked the peaks. Because peaks eluting from 30 to 40 min were
highly abundant in the venom of CM04, we used this venom for further analysis to determine the
composition of the peaks observed eluting from 30 to 40 min (Figure 5A) and correspond to proteins
with an apparent molecular mass close to 10 kDa from SDS-PAGE (Figure 5B). From this venom (CM04),
we collected fractions that eluted from 30 to 38 min (Fractions 6, 7, 8, 9, and 10; Figure 5A) and using
ESI-MS mass spectrometry obtained seven proteins with molecular masses: 5129.17 Da (from fraction
6), 5071.90 Da (from fraction 6), 5143.14 Da (from fraction 7), 5180.00 Da (from fraction 7), 4958.53 Da
(from fraction 8), 5143.60 Da (from fraction 9) and 5082.50 Da (from fraction 10) (Figure S2). In addition,
fractions 6–10 all induced hind limb spastic paralysis in mice, a characteristic effect generated by
crotamine-like myotoxins. The i.v. LD50 calculated for fraction 8 was 2.23 mg/kg. Additionally,
through N-terminal sequencing of fraction 8, we determined that the partial protein sequence was
comprised of 34 amino acids (YKRCLKKGGHCFPKTVICLPPSSDFGKMDCRWKW) and showed 100%
match to the partial sequence of crotamine 3 from C. oreganus helleri (Uniprot access: AEU60011.1).
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Thus, molecular mass, N-terminal sequence, and biological activity indicate that fractions eluting
between 30 and 40 min correspond to crotamine-like myotoxins.

A second area with differences in terms of number and relative abundance of fractions among
chromatograms was located between 60 to 70 min (Figures 3 and 4, Figure S1). The western blot
analysis of CM04 venom revealed that this area predominately contained SVSPs with a molecular
mass between 25 kDa and 37 kDa (Figure 5C).
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Figure 3. Reverse-phase HPLC chromatograms of representative C. m. nigrescens venoms of snakes
less than 70 cm ordered by total body length (TBL). An analytic C18 reverse-phase column (Vydac®,
Deerfield, IL, USA, 218 TP 4.6 mm × 250 mm) was used. Retention time is along the x axis for each
panel and labeled every twenty min. Proteins were detected at 215 nm and absorbance is indicated
on the left axis. The acetonitrile gradient is shown in the HPLC graph and the percentage value
corresponds to the right axis for each panel. Crotamine-like myotoxins (Myo), snake venom serine
proteases (SVSPs), and snake venom metalloproteinases (SVMPs) are illustrated in blue, green and
red, respectively.
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Figure 4. Reverse-phase HPLC chromatograms of representative C. m. nigrescens venoms of snakes
greater than 70 cm ordered by total body length (TBL). An analytic C18 reverse-phase column (Vydac®,
Deerfield, IL, USA, 218 TP 4.6 mm × 250 mm) was used. Retention time is along the x axis for each panel
and labeled every twenty min. Proteins were detected at 215 nm and absorbance is indicated on the
left axis. The acetonitrile gradient is shown in the HPLC graph and the percentage value corresponds
to the right axis for each panel. The regions where crotamine-like myotoxins (Myo), snake venom
serine proteases (SVSPs), and snake venom metalloproteinases (SVMPs) elute are illustrated in blue,
green and red, respectively.

The final elution region with clear variation was the region corresponding to fractions that
eluted after 78 min (Figures 3 and 4, Figure S1). Using specific polyclonal antibodies against SVMPs,
we determined that these fractions correspond to SVMPs with molecular masses in the range of 20 kDa
to 75 kDa (Figure 5D).

The percentage of crotamine-like proteins in venoms, calculated from chromatograms, ranged
from 1.8% to 52.7% (Table 1). Interestingly, a significant relationship (r2 = 0.27; p = 0.009) between the
relative abundance of crotamine-like myotoxins in venoms and the TBL of snakes was identified.
The percentage of myotoxins in venom became less abundant in larger snakes and completely
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disappears in venoms of the largest snakes (Figure 6A). On the other hand, the calculated percentage of
SVSPs in C. m. nigrescens venoms varied from 5.1% to 38% (Table 1) and again, there was a significant
relationship (r2 = 0.36; p = 0.002) with a reduction of SVSPs in venoms from larger snakes (Figure 6B).
Finally, there was a significant relationship with TBL (r2 = 0.30; p = 0.005) where SVMPs increased with
greater TBL (Figure 6C; Table 1).Toxins 2018, 10, x FOR PEER REVIEW  9 of 27 
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Figure 5. Elution profile of one representative C. m. nigrescens venom (CM04) by RP-HPLC, as well
as SDS-PAGE and western blot analysis of its fractions. 5.5 mg of venom was fractionated on a C18
column. Twenty four fractions were collected (A) and separated by 15% SDS-PAGE under reducing
conditions (B). All fractions were analyzed by western blot using polyclonal antibodies against SVSPs
(C), SVMPs (D), and PLA2s (E). Antibodies were obtained from rabbit immunized with C. simus venom.
RP-HPLC fractions 6, 7, 8, 9, and 10 were further analyzed by ESI-MS mass spectrometry to determine
molecular mass of the proteins within those fractions. The acetonitrile gradient is shown in the HPLC
graph and the percentage value corresponds to the right axis for each panel.
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Figure 6. Approximate relative percentage of crotamine-like myotoxins (A), SVSPs (B), SVMPs (C), and
proteolytic activity over hide powder azure (D) and azocasein (E) of crude venoms of C. m. nigrescens
as a function of snake total length. Solid lines are linear curves (A–C) and sigmoidal curves (D,E).

2.4. Hide Powder Azure (HPA) Hydrolysis

All 27 C. m. nigrescens venoms analyzed had proteolytic activity on HPA. Venoms hydrolyzed
the HPA in ranges from 2.2 U/mg (CM16) to 203.8 U/mg (CM13) (Table 1). A significant positive
relationship (r2 = 0.55; p < 0.001) between snake TBL and activity on HPA was detected. As the
length of snakes increased, the proteolytic activity also increased (Figure 6D). Proteolytic activity of
all venoms was completely abolished with ethylenediaminetetraacetic acid (EDTA) indicating this
activity is mediated by SVMPs.

2.5. Azocasein Hydrolysis

Similar to what was observed with the HPA substrate, the 26 venoms tested were able to hydrolyze
azocasein with a significant positive relationship (r2 = 0.76; p < 0.001) between snake TBL and azocasein
hydrolysis (Figure 6E). Venoms showed azocaseinolytic activity in the range from 0.31 U/mg (CM16)
to 8.4 U/mg (CM24) (Table 1). Azocaseinolytic activity was completely inhibited with EDTA indicating
that this activity is completely mediated by SVMPs.

2.6. Gelatin Hydrolysis

To evaluate the gelatinolytic activity of venoms, zymograms with gelatin as the substrate were
carried out on 25 of the 27 venoms. Venoms degraded gelatin in different regions of the gel and
with different intensity (Figure 7A). Most of the venoms hydrolyzed gelatin below 37 kDa, however,
gelatinolytic activity was more heterogenous in the region above 37 kDa. For example, venoms such
as CM09 and CM25 had proteolytic activity throughout the gel but many had low activity including
CM01 (TBL: 105 cm), CM03 (TBL: 67 cm), CM07 (TBL: 80 cm), CM15 (TBL: 80.5 cm), CM16 (TBL:
37 cm), and CM22 (TBL: 68 cm). In general, venoms from snakes of smaller size (<70 cm) were less
proteolytic than venoms of larger snakes (>70 cm); however, some venoms of individuals greater than
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70 cm did not generate hydrolysis (CM01) or did in a reduced manner (CM07, CM15, and CM23)
(Figure 7A). Gelatinolytic activity was only slightly inhibited with EDTA, indicating that proteases
other than SVMPs (possibly SVSPs) generated most of the activity (Figure 7B).

Toxins 2018, 10, x FOR PEER REVIEW  11 of 27 

 

(Figure 7A). Gelatinolytic activity was only slightly inhibited with EDTA, indicating that proteases 
other than SVMPs (possibly SVSPs) generated most of the activity (Figure 7B). 

 
Figure 7. (A) Gelatinolytic activity of crude venoms of C. m. nigrescens. 1 mg/mL of gelatin was added 
to the 12% SDS-PAGE. 10 µg of venom were loaded per lane. Venoms of individuals with a TBL of 
less than 70 cm are marked with an asterisk (*). Bands containing proteolytic activity are seen as a 
clear band on the dark background. kDa: kilodaltons. Gels were stained with Coomassie blue. (B) 
Gelatinolytic activity of crude venoms of C. m. nigrescens preincubated with 20 mM EDTA for 30 min 
at 37 °C. Panel B shows the disappearance of activity at <37 kDa (yellow boxes), particularly for 
venoms CM12, CM13, CM14 (partially), CM19, CM23, CM24, CM25, CM26 and CM06. Additionally, 
an inhibition of the activity in the high molecular weight region (>100 kDa) was observed for the 
venoms CM18, CM19 and CM21. These data indicate that there are metalloproteases of type PIII and 
PI or PII that have been inhibited under the aforementioned conditions. 

2.7. Minimum Coagulant Dose (MCD-P) 

Twenty-four of the twenty-seven venoms produced a fibrin clot when they were incubated with 
human plasma, although at different rates. Of these, three venoms (CM01, CM14, and CM24) only 
formed partial clots while the remaining twenty-one venoms generated complete clots (Table 1). 
Three venoms (CM12, CM13, and CM23) of individuals greater than 70 cm TBL lacked coagulant 
activity despite adding 400 µg of venom (Table 1). Although the venoms from CM19 and CM24 had 
procoagulant activity, it was not possible to determine their MCD-P because adding up to 400 µg of 
venom only produced a blood clot after 10 min of reaction. The MCD-P of venoms ranged from 10.3 
µg to up to >400 µg (Table 1). Noticeably, venoms of individuals with a TBL of less than 50 cm (CM08, 
CM10, CM16, and CM18) showed the highest procoagulant activity with values in the range of 10.3-
24.6 µg. Although, in general, venoms of smaller snakes exhibited more thrombin-like action on 
plasma, some venoms of snakes longer than 100 cm had coagulant activity (CM23 and CM09, MCD-
P: 33.5 µg and 81.8 µg, respectively). Incubation of venoms with phenylmethylsulfonyl fluoride 
(PMSF) completely abolished the coagulant activity of all venoms while incubation with EDTA did 
not inhibit the activity. This indicates that coagulant activity is mediated by SVSPs and not by metal-
dependent proteolytic enzymes like SVMPs. 

Figure 7. (A) Gelatinolytic activity of crude venoms of C. m. nigrescens. 1 mg/mL of gelatin was
added to the 12% SDS-PAGE. 10 µg of venom were loaded per lane. Venoms of individuals with a
TBL of less than 70 cm are marked with an asterisk (*). Bands containing proteolytic activity are seen
as a clear band on the dark background. kDa: kilodaltons. Gels were stained with Coomassie blue.
(B) Gelatinolytic activity of crude venoms of C. m. nigrescens preincubated with 20 mM EDTA for
30 min at 37 ◦C. Panel B shows the disappearance of activity at <37 kDa (yellow boxes), particularly for
venoms CM12, CM13, CM14 (partially), CM19, CM23, CM24, CM25, CM26 and CM06. Additionally,
an inhibition of the activity in the high molecular weight region (>100 kDa) was observed for the
venoms CM18, CM19 and CM21. These data indicate that there are metalloproteases of type PIII and
PI or PII that have been inhibited under the aforementioned conditions.

2.7. Minimum Coagulant Dose (MCD-P)

Twenty-four of the twenty-seven venoms produced a fibrin clot when they were incubated with
human plasma, although at different rates. Of these, three venoms (CM01, CM14, and CM24) only
formed partial clots while the remaining twenty-one venoms generated complete clots (Table 1).
Three venoms (CM12, CM13, and CM23) of individuals greater than 70 cm TBL lacked coagulant
activity despite adding 400 µg of venom (Table 1). Although the venoms from CM19 and CM24 had
procoagulant activity, it was not possible to determine their MCD-P because adding up to 400 µg
of venom only produced a blood clot after 10 min of reaction. The MCD-P of venoms ranged from
10.3 µg to up to >400 µg (Table 1). Noticeably, venoms of individuals with a TBL of less than 50 cm
(CM08, CM10, CM16, and CM18) showed the highest procoagulant activity with values in the range of
10.3–24.6 µg. Although, in general, venoms of smaller snakes exhibited more thrombin-like action on
plasma, some venoms of snakes longer than 100 cm had coagulant activity (CM23 and CM09, MCD-P:
33.5 µg and 81.8 µg, respectively). Incubation of venoms with phenylmethylsulfonyl fluoride (PMSF)
completely abolished the coagulant activity of all venoms while incubation with EDTA did not inhibit
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the activity. This indicates that coagulant activity is mediated by SVSPs and not by metal-dependent
proteolytic enzymes like SVMPs.

2.8. Fibrinogenolytic Activity

All 24 C. m. nigrescens venoms analyzed, hydrolyzed human fibrinogen; however, fifteen venoms
hydrolyzed both the α- and β-chains of fibrinogen and nine venoms hydrolyzed only the α-chain
of fibrinogen (Table 1; Figure 8). Fourteen of the fifteen venoms that cleaved both fibrinogen chains
belonged to individuals with a TBL greater than 70 cm, while seven of the nine venoms that only
hydrolyzed α-fibrinogen corresponded to snakes with a TBL of less than 70 cm (Table 1). Interestingly,
venoms with α-chain specificity formed a fibrin clot that was not observed in venoms with α- and
β-chains affinity, which indicates that thrombin-like SVSPs are responsible of the fibrinogenolytic
activity in these venoms.
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Figure 8. Fibrinogenolytic activity of crude venoms of C. m. nigrescens. 150 µg of fibrinogen were
incubated with 5 µg of each venom for 15 min at 37 ◦C. Venoms of individuals with a TBL of less than
70 cm are marked with an asterisk (*). Venoms marked with a cross (+) generated a fibrinogen clot.
Fibronogenolytic activity was visualized on 12% SDS-PAGE and it is marked with a red box. 10 µg of
fibrinogen/venom mix were loaded per lane. kDa: kilodaltons. Gels were stained with Coomassie blue.

2.9. Median Lethal Dose (LD50)

To reduce the number of mice sacrificed, only nine representative venoms were analyzed for LD50.
C. m. nigrescens venoms had toxicity in the range of 1.13 mg/kg to 4.3 mg/kg (Table 2). Five of the six
venoms of snakes with a TBL of less than 70 cm were significantly more toxic (with a median LD50 of
1.5 mg/kg) than venoms of snakes with a TBL greater than 70 cm (with a median LD50 of 4.03 mg/kg;
U = 0.00; p = 0.03). The one venom (CM04), corresponding to an individual with a size of 60 cm, had a
LD50 of 4.1 mg/kg. This toxicity value was similar to those displayed by venoms of snakes with a TBL
greater than 70 cm (Table 2). In addition, venoms from snakes less than 70 cm (CM03, CM04, CM06,
CM08, CM16 and CM18), provoked hind limb spastic paralysis of all mice injected. This effect was not
observed in the mice injected with venoms from snakes greater than 70 cm (CM09, CM15 and CM19).
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Table 2. Toxicity and minimum hemorrhagic dose (MHD) of representative C. m. nigrescens venoms
from Mexico.

ID TBL (cm) LD50 (mg/kg) MHD (µg)
Neutralization

(ED50) Antivipmyn®

(µLAV/3LD50)

Neutralization (ED50)
Faboterapico
Polivalente

Antiviperino®

(µLAV/3LD50)

CM16 37 1.26 * 6.10 ND ND
CM08 40 1.71 * 19.30 ND ND
CM18 47.5 1.13 * 4.0 222.0 (204.4–241.1) ** 240.1 (184.1–313.1) **
CM04 60 4.10 * >25 ND ND
CM03 67 1.71 * ND ND ND
CM06 69 1.72 * 21.90 246.2 (214.1–283.0) ** 158.0 (121.7–205.1) **
CM19 75 4.20 10.26 >450 >450
CM15 80.5 3.60 8.30 ND ND
CM09 105 4.30 10.95 322.1 (309.3–335.3) 411.1 (401.7–420.7)

* Provoked hind limb spastic paralysis of all mice injected during LD50 tests. ** Mice presented hind limb spastic
paralysis during neutralization studies. ED50: effective dose 50%: neutralizing potency expressed as microliters of
antivenom that neutralized 3 times the median lethal dose (LD50). >450: Mice did not survive with volumes less
than or equal to 450 µL. ND: not determined.

2.10. Minimum Hemorrhagic Dose (MHD)

To reduce the number of mice sacrificed, only eight representative C. m. nigrescens venoms were
analyzed for MHD. With the exception of the venom from CM04 which lacked hemorrhagic activity
despite injecting up to 25 µg, the remaining venoms displayed hemorrhagic activity (Table 2). The most
hemorrhagic venoms were CM18, CM16, and CM15 with MHD values of less than 4.0 µg, 6.1 µg and
8.3 µg, respectively. Of the remaining venoms with hemorrhagic activity, venom CM06 was the least
active with a MHD of 21.9 µg (Table 2). In addition, no apparent relationship between hemorrhagic
activity and TBL of snakes was observed.

2.11. Toxic Components in Juvenile C. m. nigrescens Venoms

With the goal of determining the toxic components in venoms from juvenile snakes, CM04 and
CM08 venom were separated by size-exclusion chromatography. Five and seven fractions were
obtained from CM04 and CM08 venoms, respectively (Figure 9A,B, respectively). Only fraction three
(FIII) from CM04 venom and fractions two, three and four (FII, FIII and FIV) from CM08 venom were
able to kill mice after 60 µg were injected i.v. (Table 3). However, only FIII from CM08 venom is toxic
to mice after injecting only 20 µg (Table 3). Interestingly, while FIII from CM04 and FIV from CM08
caused hind limb spastic paralysis when injected in mice (indicating that they contained crotamine-like
myotoxins), FII and FIII from CM08 did not induced this effect but instead induced ophisthonos and
bleeding. Thus, FII and FIII from CM08 venom were further separated by RP-HPLC (Figure 9C,D,
respectively). Both molecular exclusion fractions eluted proteins in the range from 60 to 72 min by
RP-HPLC, however all RP-HPLC fractions lost their toxic activity in mice (possibly due to protein
denaturalization by acetonitrile used in RP-HPLC) since they were unable to kill mice despite adding
25 µg. SDS-PAGE reveled that RP-HPLC fractions obtained from CM08 FIII contain a unique band
between 25 kDa and 37 kDa (Figure 9E) and it was demonstrated by western blot using polyclonal
antibodies against SVSPs that this band correspond to SVSPs (Figure 9F). Unexpectedly, an additional
band between 50 kDa and 75 kDa was observed in the western blot, indicating that at least two SVSPs
generated most of the toxicity in juvenile snakes (Figure 9F).
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Figure 9. Size-exclusion chromatography of CM04 and CM08 venoms, RP-HPLC of size-exclusion
fractions, and SDS-PAGE and western blot of RP-HPLC fractions. Nine and five milligrams of venoms
CM04 (A) and CM08 (B), respectively, were loaded in a Cosmosil column (Diol-300, 7.5 × 600 mm) and
eluted by size-exclusion chromatography. Two-hundred micrograms of FII (C) and FIII (D) fractions
(the most toxic fractions to mice) from CM08 venom were further separated by RP-HPLC. RP-HPLC
fractions from FIII were analyzed by SDS-PAGE (E) and western blot (F) using polyclonal antibodies
against SVSPs. Two SVSPs with molecular masses in the range from 25 kD to 75 kDa were detected by
westen blot, indicating that SVSPs are responsible for generating most of the toxicity in juvenile snakes.

Table 3. Toxicity on mice of size-exclusion chromatography fractions from CM04 and CM08 venoms.

Fraction/Venom
Mortality with Different Amounts of Venom (µg/mice)

CM04 (60) CM08 (60) CM04 (45) CM08 (45) CM04 (20) CM08 (20)

FI 0/3 0/3 NA NA NA NA
FII 0/3 3/3 NA 1/3 NA 0/3
FIII 3/3 3/3 1/3 2/3 0/3 1/3
FIV 0/3 3/3 NA 1/3 NA 0/3
FV 0/3 0/3 NA NA NA NA
FVI NA 0/3 NA NA NA NA
FVII NA 0/3 NA NA NA NA

NA: Not applicable.
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2.12. Detection of Crotoxin-Like Neurotoxins at the Protein Level

To determine if neurotoxins similar to Crotoxin/Mojave toxin were present at the protein level,
an ELISA analysis was made using monoclonal antibodies against the basic subunit of crotoxin.
As previously reported in literature, none of the C. m. nigrescens individuals were positive for
neurotoxins in their venom [62,63]. As expected, the Type A C. s. scutulatus venom used as a control
was positive for Mojave toxin.

2.13. Neutralization Studies

Neutralizing activity of Mexican antivenoms Antivipmyn® and Faboterapico polivalente
antiviperino® were evaluated using venoms from four C. m. nigrescens individuals with different TBL
(CM06, CM09, CM18 and CM19). In general, both antivenoms neutralized venoms of juvenile snakes
(CM06 and CM18) better than venoms of the adults (CM09 and CM19). Antivipmyn® neutralized three
of the four venoms tested, with effective dose (ED50) values of 246.2 µL/3LD50, 322.1 µL/3LD50 and
222.0 µL/3LD50 for CM06, CM09 and CM18 venoms, respectively (Table 2). Similarly, Faboterapico
polivalente antiviperino® neutralized the same three venoms that Antivipmyn® did. The ED50 values
obtained were 158.0 µL/3LD50, 411.1 µL/3LD50 and 240.1 µL/3LD50 for CM06, CM09 and CM18
venoms, respectively. Neither of the two antivenoms were able to neutralize the CM19 venom despite
adding up to 450 µL of each antivenom. In addition, hind limb spastic paralysis induced by the
myotoxins in CM06 and CM18 venoms was not neutralized by any antivenom.

2.14. Immune Recognition of Antivenom

Although most proteins were recognized by the Mexican antivenoms Antivipmyn® and
Faboterapico polivalente antiviperino® (Figure 10B,C, respectively), proteins with molecular masses
lower than 20 kDa were weakly or not recognized. Importantly, crotamine-like myotoxins (~10 kDa
by SDS-PAGE, Figure 10A) of juvenile venoms (CM04, CM06 and CM18) were not recognized by
antivenoms, a result congruent with what was observed in the neutralization test where antivenoms
did not neutralize the activity of these proteins.
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Figure 10. SDS PAGE and western blot analysis of representative C. m. nigrescens venoms. (A) Venoms
(10 µg) were separated by 15% SDS-PAGE. Venoms (5 µg) on nitrocellulose were detected with
Antivipmyn® (B) and Faboterapico polivalente antiviperino® (C). Venoms of individuals with a TBL of
less than 70 cm are marked with an asterisk (*).

3. Discussion

The number and relative abundance of the protein families in rattlesnake venom varies broadly at
the intraspecific level. The factors commonly associated with intraspecific venom variation are the
snake’s age and their geographic distribution [13,32,64,65]. In our study, we detected clear variation,
in terms of relative abundance and presence/absence of proteins specifically associated with the length
of individual snakes. The protein profiles of C. m. nigrescens venoms as demonstrated by SDS-PAGE
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and RP-HPLC analyses, showed marked differences in venoms from snakes of different sizes classes.
The most abundant components in C. m. nigrescens venoms were SVMPs, SVSPs, and crotamine-like
myotoxins. However, the proportion of each of these components was variable among venoms from
smaller and larger snakes, where small snakes displayed more crotamine-like myotoxins and SVSPs
compared to larger snakes, but the opposite occurred with SVMPs (Figure 6A–C; Table 1). In the current
study, the threshold of venom change of C. m. nigrescens was at approximately 70 cm TBL. Snakes
with a size below this threshold were, in general, more toxic and procoagulant, but less proteolytic.
In addition, snakes with TBL less than 70 cm had venoms containing crotamine-like myotoxins that
were reduced or absent in the snakes with a TBL greater than 70 cm. It is likely that the ontogenetic
venom change observed in C. m. nigrescens corresponds with its sexual maturity, since this subspecies
acquires sexual maturity at approximately 70 cm of TBL [51].

Crotamine is a small, non-enzymatic protein composed of about 42 amino acids (4.8 kDa) that
was first isolated in the venom of C. durissus terrificus [66]. Among other effects, crotamine is capable
of inducing spastic paralysis in the hind limbs of mice that are injected with the toxin and generates
necrosis in muscle cells [67,68]. Previously, it had been reported that some rattlesnakes species,
including C. m. nigrescens, contain crotamine-like myotoxins (e.g., α-myotoxins) in their venom [57].
In the current study, sixteen C. m. nigrescens venoms contained crotamine-like myotoxins in different
proportion as demonstrated by RP-HPLC (Figure 3, Figure S1; Table 1). Interestingly, venoms of
snakes larger than 80 cm completely lacked this small toxin (Figure 4, Figure S1; Table 1). In addition,
only venoms containing crotamine-like myotoxins were able to cause hind limb spastic paralysis
of all mice injected. Crotamine-like myotoxins were also visualized by SDS-PAGE as a prominent
band near 10 kDa in venoms with the highest percentage of these proteins (e.g., CM02, CM04, CM06,
CM08, CM16, and CM18). This apparent molecular mass obtained by SDS-PAGE is similar to those
described in other analyses for this basic protein [23,47,69]. From venom CM04, we isolated at least
seven crotamine-like myotoxin isoforms with molecular masses ranging from 4958.53 Da to 5180.00 Da
and obtained the N-terminal sequence of one of them. Presence of multiple forms of crotamine-like
myotoxins in the same venom has been reported in other Crotalus venoms and these isoforms can
differ only in few amino acids [70], what could explain the variation in the molecular masses of the
isoforms detected in C. m. nigrescens venom. Additionally, the i.v. LD50 calculated for one of these
isoforms was 2.23 mg/kg, a value within the range reported for the toxicity of crotamine (from 0.07
to 32.76 mg/kg) [67]. Presence of myotoxins in the venom of juvenile snakes and their consequent
reduction in adult snakes has been reported in C. adamanteus and C. tzabcan (the juvenile has 34%
while the adult has 18.5% of myotoxins) [15,49]. However, an inverse pattern has been detected in
C. oreganus concolor and C. viridis viridis, where venoms of adult individuals expressed a greater amount
of myotoxins compared to juvenile snakes [14,71].

Thrombin-like SVSPs (TL-SVSPs) are able to hydrolyze both α and β chains of fibrinogen, releasing
fibrinopeptides A and B, respectively, but most of them preferentially act upon only on one of the
fibrinogen chains [72]. On the other hand, fibrinogenases can be classified as α-fibrinogenases and
β-fibrinogenases, where the first group hydrolyses preferentially (although not exclusively) α-chain
of fibrinogen, while the second group has more affinity for β-chain of fibrinogen. Unlike TL-SVSP,
fibrinogenases do not release fibrinopeptides A or B, do not induce fibrin clot formation and most
of them are SVMPs [73,74]. All venoms of C. m. nigrescens analyzed had fibrinogenolytic activity.
Interestingly, while fifteen venoms (most of them corresponding to snakes with a TBL greater than
70 cm) hydrolyzed both the α- and β-chains of fibrinogen, ten venoms (most of them belonging to
snakes with a TBL of less than 70 cm) hydrolyzed only the α-chain of this plasmatic protein and
generated a fibrin clot. In addition, C. m. nigrescens venoms of snakes with a TBL less than 60 cm
were the most procoagulant on human plasma with MCD-P values in the range of 10.3 µg to 24.6 µg.
Pre-incubation of venoms with SVSPs inhibitor (PMSF) completely inhibited the coagulant activity of
venoms, indicating that this activity is mediated solely by SVSPs. Similar results has been reported
in species such as C. durissus cumanensis [18] and C. d. terrificus [75] where venoms from neonate
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or juvenile snakes had MCD-P lower (more coagulant) than venoms of adult snakes. These results
suggest that fibrinogenases are responsible for activity in C. m. nigrescens venoms breaking both α- and
β-chains of fibrinogen, while TL-SVSPs would be responsible of the activity in venoms with affinity
only for the α-chain of fibrinogen.

Within C. m. nigrescens, there was also an increase in the relative abundance of SVMPs in venom
as the snakes increase in TBL. Similarly, a positive significant relationship was found between TBL of
snakes and the proteolytic activity on HPA and azocasein of their venoms. Specifically, the longer the
snake, the greater the proteolytic activity. Thus, taking into account that EDTA completely inhibited the
proteolytic activity over both substrates, it is likely that the increase in proteolytic activity in venoms
as the snakes get longer is related to the increase in the content of SVMPs in venom. Interestingly,
gelatinolytic activity did not increase with the length of snakes and was not completely inhibited by
EDTA which indicates that not only metal dependent proteolytic enzymes are associated with this
activity. An increase of SVMPs abundance and proteolytic activity with increasing snake size has
been reported in venom of other rattlesnakes such as C. oreganus helleri, C. o. oreganus, C. polystictus,
and C. simus [19,21,23]. Though, species such as C. o. concolor and C. viridis viridis exhibit a reduction
in the amount and activity of SVMPs as the snakes increase their longitude [14,71].

It has been proposed that juvenile snakes require toxic venoms to ensure rapid prey
immobilization when prey abundance is limited and since eating frequently allows them to reach the
adult stage (a less vulnerable stage against predators) more rapidly [15,76]. Comparatively, for adults
that feed on larger prey, having venoms rich in proteases (e.g., metalloproteases) is more important
to properly digest their prey than having toxic venoms [15,76]. In C. m. nigrescens, most of the
venoms of snakes with a TBL of less than 70 cm were more toxic and were equally hemorrhagic
compared to venoms of snakes with larger size. The main components related to toxicity in small C. m.
nigrescens snakes were SVSPs (with molecular masses between 25 kDa and 75 kDa) and coincidentally,
venom of juvenile snakes contained, in general, more SVSPs than venom of adult snakes. In addition,
mice injected with these SVSPs showed opisthotonos and bleeding. A group of TL-SVSPs (e.g., gyroxin,
crotalase, ancrod, leucurobin, and LM-TL) with molecular masses in the range from 30 kDa to 60 kDa
produce temporary episodes characterized by opisthotonos and rotations around the long axis of
mice [77,78] and can have high toxicity (e.g., LD50 of 0.07 µg/g in mice) [77]. Our results suggest that
a combination of myotoxic (crotamine-like myotoxins), procoagulant (TL-SVSPs) and hemorraghic
(SVMPs) components could induce faster paralysis and death in prey of juveniles C. m. nigrescens,
compared to venoms of adult snakes that lack myotoxins and have limited or no procoagulant activity.

Although venom variation related to age of snakes was demonstrated for C. m. nigrescens, venom
variation related to geographic distribution was not as clear. In general, C. m. nigrescens individuals
with similar TBL but from different localities from Mexico displayed similar venoms in terms of
protein profile, toxicity, and proteolytic activity related to SVMPs. Gelatinolytic, fibrinogenolytic,
and coagulant activities were more variable among venoms but even in these activities no patterns
were associated with geographic distribution. Rattlesnake venoms can be classified in two groups
according to their toxicity and SVMP mediated proteolytic activity, where Type I corresponds to venoms
with low or moderate toxicity and high proteolytic activity, while Type II venoms are more toxic and
less proteolytic [76]. Nevertheless, this classification can be made more complex if we take into account
that the main components of these venom groups, such as neurotoxins, SVMPs, and myotoxins,
can vary widely in terms of presence and relative abundance [25,34]. Further, some rattlesnake species,
such as C. helleri, C. horridus, C. scutulatus, and C. simus, can have populations with Type I, Type II,
and/or Type I + II venoms [31,33,34,47,79,80]. Taking into account their low toxicity (compared to
neurotoxic venoms), high proteolytic activity and lack of the Mojave toxin (in agreement with other
reports [62,63]), C. m. nigrescens venoms would be classified exclusively as Type I.

Both Mexican antivenoms (Antivipmyn® and Faboterapico polivalente antiviperino®) effectively
neutralized lethal activity of two juvenile C. m. nigrescens venoms. However, the western blot
analysis revealed that both Mexican antivenoms did not recognize proteins with molecular mass
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close to 10 kDa (e.g., crotamine-like myotoxins) from juvenile C. m. nigrescens venoms, suggesting
that both antivenoms lack specific antibodies against these small proteins. Another possibility is that
epitopes in small proteins (~10 kDa) were disrupted due to the reduced conditions used in SDS-PAGE,
so that antivenoms were not able to recognize them. However, neither antivenom neutralized the
activity of crotamine-like myotoxins in vivo, suggesting that antivenoms did not recognize and were
unable to neutralize denatured or native small proteins. In contrast, both antivenoms had difficulties
neutralizing lethality of venoms of adult snakes; one of the adult venoms was not neutralized by either
antivenom. It has been reported that venoms that have high LD50s need greater volume of antivenom
to neutralize the venom which could explain the lack of neutralization for one adult. For example,
C. culminatus venom with LD50s ranging from 66 to 162 µg/mouse is not neutralized with volumes
less than equal to 460 µL of antivenom [81]. The opposite relationship has been reported for snake
species such as Bothrops asper and C. durissus durissus, where antivenoms from Costa Rica were less
effective neutralizing newborn snake venoms compared to adult ones [17,82]. Other studies have
demonstrated that some experimental antivenoms from Costa Rica reacted weakly with proteins
with molecular masses lower than 20 kDa of B. asper venom [83]. Nevertheless, CroFab® antivenom
did recognize myotoxin a of juvenile and adult Crotalus viridis viridis venoms [71], indicating that
a representative selection of immunization mixtures in antivenoms production is crucial to have
antibodies able to neutralize intraspecific venom variation. Results suggest that Mexican antivenoms
could have problems neutralizing human envenomation by some adult C. m. nigrescens and a higher
than normal dose would be necessary to effectively neutralize the venom.

4. Conclusions

It has been demonstrated that rattlesnakes species such as C. o. helleri, C. o. oreganus, C. o. concolor,
and C. v. viridis undergo ontogenetic changes in their diet, in which they go from feeding mainly on
ectothermic animals (e.g., lizards) in juvenile stage to consume endothermic animals (e.g., mammals)
in the adult stage [14,19,71]. These same species undergo a marked change in the composition of their
venom in relation to age, indicating that diet plays in important role in the regulation of expression of
protein families in venom. Based on what is known in the C. molossus complex about diet [54,55], it is
likely that venom compositional changes are due to diet differences through time.

Therefore, it is possible to hypothesize that the ontogenetic venom variation observed in the
current study could be associated, at least in part, with differences in prey consumed by this subspecies
during its life cycle. However, it is necessary to corroborate this hypothesis with a diet analysis.

Based on this study and previous studies on rattlesnake venom variation, rattlesnakes appear
to evolve unique strategies given different environmental pressures exerted on them. In the case of
C. m. nigrescens, an ontogenetic venom change seems to be more advantageous than changes in the
venoms of adult individuals across their distribution. It is likely that further analysis of venom in the
remaining subspecies (C. m. estebanensis, C. m. molossus, and C. m. oaxacus) and species (C. ornatus,
C. basiliscus, and C. totonacus) in the Crotalus molossus species complex will find the same pattern that
we did in C. m. nigrescens.

5. Materials and Methods

5.1. Ethics Statement

We followed the guidelines described by the live animal use committees of the Facultad de
Ciencias Biológicas at UJED, the Universidad Nacional Autónoma de México, and the Secretaría de
Medio Ambiente y Recursos Naturales (SEMARNAT) of Mexico as well as developing our protocols in
accordance with the American Society of Ichthyologists and Herpetologists guidelines for use of live
amphibians and reptiles. SEMARNAT issued collecting permits (SGPA/DGVS/002288/18, 01090/17
and 03562/15; 13 March 2018; 10 February 2017; 7 April 2015, respectively, for samples collected
in Mexico.
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5.2. Crotalus Molossus Nigrescens Sampling

Snakes were captured in the field, venom was sampled, and then the animal was immediately
released after venom extraction and measurements were taken. Samples were obtained from
twenty-seven C. m. nigrescens from eight states (Aguascalientes, Coahuila, Durango, Jalisco,
Nuevo León, San Luis Potosí, Tamaulipas and Zacatecas) in Mexico (Table Table 1). When possible,
total body length (TBL) was measured and sex determined for each snake. Venom was extracted
manually by allowing each snake to bite sterile 100 mL plastic containers covered with parafilm.
Venoms were centrifuged at 14,000 rpm for 1 min to remove debris and the supernatant was lyophilized
and stored at −20 ◦C until use. Tests using mice were carried out only with representative venoms to
reduce the number of animals sacrificed.

5.3. Protein Concentration Determination

The protein concentration of each venom was obtained using the Pierce® Bicinchoninic Acid
(BCA) Protein Assay (Thermo Scientific, Rockford, IL, USA) following the manufacturer´s instructions
and using bovine serum albumin (BSA) as a standard.

5.4. SDS-PAGE

15% polyacrylamide gels were made on a Miniprotean III system (Bio-Rad, Hercules, CA, USA)
using the discontinuous system. Fifteen micrograms of each venom were dissolved in sample buffer
(50 mM Tris-HCl, pH 6.8, 25% SDS, 10% glycerol, and 0.002% bromo-phenol blue) and then we added
5% β-mercaptoethanol. Each of the 27 samples were boiled for 5 min and run at 120 V. Gels were
stained with 0.2% Coomassie brilliant blue R-250, 10% acetic acid, and 25% methanol for 8 h and rinsed
in 10% acetic acid and 10% methanol [33]. Standard molecular mass markers (Bio-Rad, Carlsbad, CA,
USA) were used as references.

5.5. Reverse-Phased High Performance Liquid Chromatography HPLC

Separation of 26 venom samples by RP-HPLC was carried out on an analytic C18 reverse-phase
column (Vydac®, Deerfield, IL, USA, 218 TP 4.6 mm × 250 mm) using an Agilent 1100 chromatograph.
One milligram of each venom was dissolved in 1.7 mL of water containing 0.1% trifluoroacetic acid
(TFA). Elution was performed as described by Castro et al. [47] at 1 mL/min by applying a gradient
toward solution B (acetonitrile, containing 0.1% TFA), as follows: 0% B for 5 min, 0 to 15% B over
10 min, 15 to 45% B over 60 min, 45 to 70% B over 10 min, and 70% B for 9 min. Proteins were detected
at 215 nm.

5.6. Identification of Protein Families in Representative C. m. nigrescens Venom by Western Blot

In order to determine the identity of the main fractions obtained from the RP-HPLC, fractions and
whole CM04 venom were analyzed by western blot using polyclonal antibodies against SVMPs,
SVSPs and PLA2s. Antibodies against SVMPs, SVSPs, or PLA2s were obtained from serum of
rabbits hyperimmunized with C. simus venom. An immunopurification step was carried out to
get specific antibodies against every protein family. Depending of the antibodies, a final step
of negative immunopurification was used to remove antibodies with cross-reactivity or residual
cross-contamination to SVMPs, SVSPs, or PLA2s.

Western blot was carried out as follow. Two micrograms of each fraction and five micrograms of
whole venom were separated by 15% SDS-PAGE. After electrophoresis, proteins were transferred to a
nitrocellulose membrane (Trans-blot 0.45 µm, Bio-Rad, Merck, Cork, Ireland) using a model HEP-1®

semi-dry immunotransference chamber (Thermo Scientific, Carlsbad, CA, USA). After transference
at 420 mA for 1 h, the membrane was blocked with 5% non-fat dry milk diluted in TBST buffer
(10 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 0.05% Tween-20, pH 8.4) for 2 h. The membrane was
then rinsed three times with TBST and incubated by shaking gently for 1 h at room temperature with
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antibodies against SVMPs, SVSPs, or PLA2s diluted 1 µg/mL in TBST. After three washes with TBST,
the membrane was incubated at room temperature for 1 h with goat antibodies against rabbit IgG
conjugated to alkaline phosphatase (Invitrogen, Eugene, OR, USA) diluted 1:7000. The membrane
was again rinsed with TBST and then developed by adding the BCIP/NPT substrate for alkaline
phosphatase (Invitrogen, Camarillo, CA, USA) [33].

5.7. Molecular Mass and N-Terminal Sequence Determination of Crotamine-Like Myotoxins

We determined the intact masses of crotamine-like myotoxins of venom from one individual
(CM04) using ESI-MS on an LCQ Fleet Ion Trap Mass Spectrometer. Amino-terminal sequencing of
one crotamine-like myotoxin (RP-HPLC fraction 8) was determined by automated Edman degradation
on a PPSQ-31A Protein Sequencer (Shimadzu, Tokyo, Japan).

5.8. Hide Powder Azure (HPA) Hydrolysis

We used the Hide Powder Azure (HPA) hydrolysis assay to determine proteolytic activity for
each of the 27 samples. Hydrolysis of HPA was determined by adding 25 µg of venom to 1 mL of a
solution containing 5 mg of HPA in 0.1 M Tris-HCl, pH 8.0. After 2 h of incubation, the reaction was
stopped by centrifugation at 14,000 rpm for 5 min. The supernatant was obtained and the absorbance
at 595 nm was measured. The absorbances of samples corresponding to HPA solutions incubated with
0.1 M Tris-HCI, pH 8.0, were subtracted from the absorbances of venom-containing samples. Analyses
were conducted in triplicate. A standard curve of HPA hydrolysis was created by adding 50 µL of
trypsin (2 mg/mL) to three concentrations of HPA (2, 4 and 6 mg/mL) and venom enzymatic activity
was calculated using the standard curve. A unit of enzymatic activity (U) was defined as the amount
of venom necessary to digest 1 mg of HPA in a 2 h period at room temperature and reported as specific
activity (U/mg) [33].

5.9. Azocasein Hydrolysis

Proteolytic activity of 26 venoms was evaluated using azocasein (Sigma-Aldrich, St. Louis, MO,
USA) as the substrate, as described by Castro et al. [47]. Ten micrograms of venom, dissolved in
20 µL 0.15 M NaCl, were added to 100 µL of 10 mg/mL azocasein, dissolved in 50 mM Tris0.15
M NaCl, 5 mM CaCl2, pH 8.0. After 60 min of incubation at 37 ◦C, the reaction was stopped by
adding 200 µL of 5% trichloroacetic acid. The mixture was centrifuged and 150 µL of the supernatant
was added to 150 µL of 0.5 M NaOH. Absorbances were recorded at 450 nm. The absorbances of
samples corresponding to azocasein solutions incubated with 0.15 M NaCl were subtracted from the
absorbances of venom-containing samples. One unit of proteolytic activity was defined as a change of
0.2 in absorbance per min.

5.10. Gelatinolytic Activity

Gelatin zymography was performed in 12% SDS-PAGE gels containing 1 mg/mL gelatin (Bio-Rad,
Carlsbad, CA, USA) for all 25 samples. The venoms (10 µg) were solubilized (5:1 venom/buffer) in
sample buffer (50 mM Tris-HCl, pH 6.8, 25% SDS, 10% glycerol, and 0.002% bromophenol blue) in the
absence of β-mercaptoethanol and without boiling. After electrophoresis at 120 V, the gels were placed
sequentially in renaturing buffer (5% Triton X-100 in 0.1 M Tris-HCl, pH 8) for 2 h and developing
buffer (0.1 M Tris-HCl, pH 8) for 10 min. Gels were then incubated in developing buffer at 37 ◦C for
12 h with gentle agitation. Gels were stained with staining solution (0.2% Coomassie brilliant blue
R-250, 10% acetic acid, and 25% methanol) and destained with 10% acetic acid plus 10% methanol.
Standard molecular mass markers (Bio-Rad, Carlsbad, CA, USA) were used as references [46,48].
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5.11. Minimum Coagulant Dose Plasma (MCD-P)

For all samples, various amounts of venom (from 10 µg to 400 µg), dissolved in 100 µL 0.15 M NaCl,
was added to 200 µL of citrated human plasma, previously incubated at 37 ◦C. Clotting timeswere
recorded and coagulant activity was expressed as the Minimum Coagulant Dose in plasma (MCD-P)
defined as the dose of venom inducing clotting in 60 s [84]. As a negative control, 100 µL of 0.15 M
NaCl without venom was added to citrated human plasma.

5.12. Fibrinogenolytic Activity

Fibrinogenolytic activity of the venoms was tested using the procedure described by
Borja et al. [46]. Human fibrinogen (150 µg; Sigma, St. Louis, MO, USA) was incubated with
24 individual venoms (5 µg) in 0.05 M Tris-HCl buffer, pH 8.0, at 37 ◦C for 15 min. The reaction
was stopped by adding reducing SDS-PAGE sample buffer (50 mM Tris-HCl, pH 6.8, 25% SDS,
10% glycerol, 0.002% bromophenol blue, and 5% β-mercaptoethanol) and heating to 100 ◦C for
5 min. Fibrinogenolytic activity was demonstrated by 12% SDS-PAGE. As a negative control, human
fibrinogen without venom was added to gels. Standard molecular mass markers (Bio-Rad, Carlsbad,
CA, USA) were used as references.

5.13. Enzymatic Inhibition Analysis

To evaluate the influence of SVMPs in proteolytic activities over HPA, azocasein, gelatin,
and human plasma, venoms were preincubated with 20 mM EDTA for 30 min at 37 ◦C before
carrying out the analyses [40]. Similarly, coagulant activity over human plasma was carried out
after preincubating venoms with 5 mM PMSF (inhibitor of serine proteases) for 15 min at 37 ◦C [85].
A concentrated stock of PSMF (167 mM) was prepared in 100% isopropanol. Then 3 µL of inhibitor
(167 mM) were added to 97 µL of PBS containing venom samples and incubated for 10 min before
being added to human plasma. A control of 3 µL of 100% isopropanol without inhibitor was used to
demonstrate that isopropanol itself does not inhibit enzyme activity.

5.14. Median Lethal Dose (LD50)

Nine representative venoms were dissolved in phosphate buffer solution (PBS), pH 7.2. The lethal
dose was determined by injecting different quantities of venom (from 10 µg to 150 µg) diluted in a
total volume of 0.5 mL into the caudal vein of male and female ICR-CD1 mice (18 to 20 g) in groups of
three [86]. The percentage of dead mice 24 h after inoculation was plotted against the logarithm of the
quantity of venom injected and analyzed with nonparametric methods using the program GraphPad
Prism V4 (GraphPad Sofware, La Jolla, CA, USA, 2005) to determine the LD50 value for each venom.

5.15. Minimum Hemorrhagic Dose (MHD)

Different quantities of eight representative venoms (from 5 µg to 25 µg) were injected
intradermally, in a volume of 50 µL PBS, to groups of three (male and female) ICR-CD1 mice (25–28 g);
3 h later, they were sacrificed by CO2, their skin removed, and the area of the hemorrhagic spot was
measured. The minimum hemorrhagic dose was defined as the dose of venom which induced a lesion
of 10 mm diameter [87].

5.16. Detection of Crotoxin-Like Neurotoxins at the Protein Level

Detection of crotoxin-like neurotoxins was carried out using the procedure previously described
to detect neurotoxins in C. s. scutulatus venoms [33]. Venom from two Mojave Rattlesnakes with Type
A and Type B venom from Arizona were used as control.
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5.17. Neutralization Studies

Neutralization studies were carried out using a modification of the procedure described by
Gutierrez et al. [88]. Venoms of four C. m. nigrescens individuals with different TBL (CM06, CM09,
CM18 and CM19) were challenged against two Mexican antivenoms: Antivipmyn® manufactured
by Bioclon (Lot. B-9F-22) and Faboterapico polivalente antiviperino® manufactured by Birmex
(Lot. FV030A). Amounts equivalent to 3 times the LD50 of each venom were incubated with different
volumes of each antivenom (from 50 µL to 450 µL of antivenom) dissolved in PBS in a constant final
volume of 500 µL for 30 min at 37 ◦C. Next, 500 µL of solution containing venom/antivenom were i.v.
injected in groups of three (male and female) ICR-CD1 mice (18 to 20 g) and the survival percentage
24 h after inoculation was recorded. As controls, groups of three mice were injected with venom alone
(positive) or antivenom alone (negative). Neutralization was expressed as Effective Dose 50% (ED50),
the volume of antivenom that prevents the death of half of the injected population [81].

5.18. Immune Recognition of Antivenom

To observe the immune recognition of both Mexican antivenoms (Antivipmyn® and Faboterapico
polivalente antiviperino®) towards the components of eight representative C. m. nigrescens venoms
(CM03, CM04, CM06, CM08, CM09. CM15, CM18, CM19), 10 µg of whole venom was separated by 15%
SDS-PAGE. After electrophoresis, proteins were transferred to a nitrocellulose membrane (Trans-blot
0.45 µm, Bio-Rad, Merck, Cork, Ireland) using a model HEP-1® semi-dry immunotransference chamber
(Thermo Scientific). After transference at 420 mA for 1 h, the membrane was blocked with 5% non-fat
dry milk diluted in TBST buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 0.05% Tween-20, pH 8.4)
for 2 h. The membrane was then rinsed three times with TBST and incubated by shaking rently
for 1 h at room temperature with Antivipmyn® or Favoterapico polivalente antiviperino® diluted
1:800 in TBST. After three washes with TBST, the membrane was incubated at room temperature for
1 h with goat antibodies against house IgG conjugated to alkaline phosphatase (Jackson Immuno
Reserach) diluted 1:7000. The membrane was again rinsed with TBSTand then developed by adding
the BCIP/NPT substrate for alkaline phosphatase (Sigma®).

5.19. Statistical Analysis

The SigmaPlot®11 (Systat Software Inc. (SSI), San Jose, CA, USA, 2008) statistical program
was used to determine the regression that best fit our data. We regressed the relative abundance of
myotoxins, SVSP, and SVMPs in the venom to the total body length of the snake and evaluated the fit
with linear curves. The relationship of proteolytic activity of venoms to snake total body length was
assessed by sigmoidal curves. Differences in LD50 between snakes with a TBL less than and greater
than 70 cm were compared by using the Mann-Whitney U test.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/12/501/
s1, Figure S1. Reverse-phase HPLC chromatograms of remaining C. m. nigrescens venoms of snakes with different
total body length (TBL). An analytic C18 reverse-phase column (Vydac®, Deerfield, IL, USA, 218 TP 4.6 mm ×
250 mm) was used. Retention time is along the x axis for each panel and labeled every twenty min. Proteins were
detected at 215 nm and absorbance is indicated on the left axis. The acetonitrile gradient is shown in the HPLC
graph and the percentage value corresponds to the right axis for each panel. The regions where crotamine-like
myotoxins (Myo), snake venom serine proteases (SVSPs), and snake venom metalloproteinases (SVMPs) elute
are illustrated in blue, green and red, respectively. Figure S2. Mass spectrometry of crotamine-like myotoxins.
RP-HPLC fractions 6 (A), 7 (B), 8 (C), 9 (D) and 10 (E) obtained from CM04 venom were analyzed using ESI-MS on
an LCQ Fleet Ion Trap Mass Spectrometer. Molecular masses calculated were 5129 Da (A), 5071 Da (A), 5143 Da
(B), 5180 Da (B), 4958 Da (C), 5143 Da (D), and 5082 Da (E).
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