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ABSTRACT

In groundwater-limited settings, such as Puerto Rico and other Caribbean islands, societal, ecological, and
agricultural water needs depend on regular rainfall. Though long-range numerical weather predication
models explicitly predict precipitation, such quantitative precipitation forecasts (QPF) critically failed to
detect the historic 2015 Caribbean drought. Consequently, this work examines the feasibility of developing a
drought early warning tool using the Galvez—Davison index (GDI), a tropical convective potential index,
derived from the Climate Forecast System, version 2 (CFSv2). Drought forecasts are focused on Puerto Rico’s
early rainfall season (ERS; April-July), which is susceptible to intrusions of strongly stable Saharan air and
represents the largest source of hydroclimatic variability for the island. A fully coupled atmosphere—ocean—
land model, the CFSv2 can plausibly detect the transatlantic advection of low-GDI Saharan air with multi-
month lead times. The mean ERS GDI is calculated from semidaily CFSv2 forecasts beginning 1 January of
each year between 2012 and 2018 and monitored as the initialization approaches 1 April. The CFSv2
demonstrates a broad region of statistically significant correlations with observed GDI across the eastern
Caribbean up to 30 days prior to the ERS. During 2015, the CFSv2 forecast a low-GDI tongue extending
across the Atlantic toward the Caribbean with 60-90 days lead time and placed Puerto Rico’s 2015 ERS
beneath the 15th percentile of all 1982-2018 ERS forecasts with up to 30 days lead time. A preliminary GDI-
based QPF tool tested herein is a statistically significant improvement over climatology for the driest years.
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1. Introduction

In 2015, the U.S. commonwealth of Puerto Rico (PR)
was struck by a historic, record-breaking drought.
Though the year began with relatively normal precipi-
tation, rainfall deficits quickly accumulated during April
and May, which traditionally mark the onset of the early
rainfall season (ERS; April-July). By its conclusion, the
2015 ERS observed the driest such 4-month period ever
recorded at Luis Mufioz Marin International Airport in
San Juan, PR, surpassing even the drought of record,
1993, in severity during the ERS. Beyond precipitation,
the 2015 drought was associated with historically low
discharges in the Rio Piedras watershed, acute reduc-
tions in soil moisture, and mandatory water rationing
(NOAA/NCEI 2016; O’Connell et al. 2018; Ramirez
et al. 2018). A particularly unique aspect of the 2015
drought is that it was most severe during Puerto Rico’s
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ERS, and subsequent hydroclimatic analyses by Miller
et al. (2019a) have since shown that the ERS contrib-
utes the most variability to the annual precipitation
outcome. Effectively, wetter (drier) ERSs are associated
with pluvial (drought) years, a statistically significant
relationship that is not present during other seasons.
Though media outlets opted to attribute the 2015
drought to the strong ongoing El Nifio event, subsequent
research has scrutinized the relationship between ENSO
and Caribbean drought (Torres-Valcarcel 2018). In con-
trast, Mote et al. (2017) proposed that the drought was
associated with an anomalously active Saharan air layer
(SAL), a tongue of hot, dry, dust-laden air extending
from Saharan Africa, across the Atlantic, and sometimes
into the Caribbean. Though prior research has linked
ENSO to North African dust emission (DeFlorio et al.
2016), the presence of the SAL directly suppresses con-
vective activity by creating a warm, stable pocket that
prevents nascent cumulus updrafts from maturing into
deep moist convective storms. The high dust content of
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FIG. 1. The four subdomains for which CFS GDI predictions are averaged and analyzed as well as the distribution
of CFS QPF preceding the 2015 ERS drought. (a) View of the largest two domains: the tropical North Atlantic
(TNA) and the eastern Caribbean. (b) An inset view of the smallest two domains: Puerto Rico and San Juan with
the TJSJ radiosonde site marked by a red star. The inset viewing window in (b) corresponds to the “E. Caribbean”
domainin (a). (c) The distribution of CFS QPFs averaged over cells containing Puerto Rico predicted during March
2015 (odd number days only), the month leading up to the start of the ERS. The red dashed line indicates the

observed 2015 ERS precipitation anomaly.

the layer further alters convective growth through the
direct (e.g., Yu et al. 2006) and indirect aerosol effect
(e.g., Rosenfeld and Gutman 1994). The former ref-
erences aerosol absorption of incoming solar radia-
tion, further warming the layer, whereas the latter
describes the microphysical consequences of the dust
acting as abundant cloud condensation nuclei. Though
the SAL is a normal part of the tropical North Atlantic
and Caribbean climate system, dust concentrations at
Miami, Florida, and Barbados typically are highest in
June or July (Zuidema et al. 2019). However, in 2015,
strong SAL intrusions were first documented in April
and continued for several months (Mote et al. 2017,
Zuidema et al. 2019).

Whereas Mote et al. (2017) examined a synoptic mech-
anism for the 2015 drought, recent work by Hosannah et al.
(2019) investigated local-scale processes associated with
Puerto Rico convective rainfall. Observations showed
spatially varying precipitation anomalies across the island
during the 2015 drought, which the authors attributed to
locally modulated manifestations of the synoptic forcing.
For example, in western Puerto Rico, sea breeze conver-
gence and orographic uplift were found to reduce the effect
of dust on rainfall. However, eastern Puerto Rico, which
receives the most direct influence from SAL, was more
sensitive to dust-rainfall influences.

Though large-scale synoptic mechanisms, such as the
SAL, were clearly instrumental in the development of
the 2015 Caribbean drought, the National Centers for
Environmental Prediction’s (NCEP) seasonal numeri-
cal weather prediction (NWP) model failed to detect the
looming precipitation anomaly. The 2015 annual as-
sessment of the Climate Forecast System, version 2
(CFSv2), found that it actually predicted slight positive
precipitation anomalies for the March-May 2015 period
when the historic drought initiated (Wang 2016) as well
as the entirety of the ERS in Puerto Rico (Fig. 1).
Fortunately, recent analyses of Puerto Rican hydro-
climate have been aided by a newly developed convec-
tive potential index development specifically for the
tropics, the Galvez—Davison index (GDI). Daily values
of this unitless composite parameter were shown to
correlate with post—-Hurricane Maria cloud cover over
Puerto Rico (Miller et al. 2019b), whereas ERS mean
GDI was shown to correspond strongly with coincident
precipitation totals across the island (Miller et al.
2019a). Similarly, Ramseyer et al. (2019) found that
daily GDI, when incorporated into a neural network,
could help predict ERS dry day occurrence with >90%
accuracy in eastern Puerto Rico. Given the recent de-
velopments supporting the GDTI’s utility in precipitation
analyses, a natural extension of the aforementioned work
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is to ask, “Could NWP models have successfully fore-
casted the anomalously low GDI associated with the
2015 Caribbean drought?”

The Weather Prediction Center (WPC) currently pro-
duces publicly accessible GDI forecast maps from the four-
times-daily operational Global Forecast System (GFS)
initializations. However, the GFS only extends 14 days
beyond the initialization time, and consequently, cannot
provide the lead time necessary to produce a seasonal GDI
forecast. In contrast, the CFSv2 (hereafter simply CFS),
operated by NCEP, provides ~9-month global forecasts
following its operationalization in 2011. Though coarser
than the GFS, this study will assess the ability of the CFS to
anticipate seasonal drought events in Puerto Rico such as
the 2015 drought.

2. Data and methods

The GDI will be derived from CFS ERS forecasts
from 1 January through 31 March for 2012-18. The
evolution of the forecast ERS GDI will then be analyzed
to determine if (and potentially with what lead time) the
CFS can yield reliable predictions of Puerto Rico GDI
values. Additionally, the CFS GDI forecasts will be used
to predict coincident precipitation totals using the sta-
tistical relationships developed by Miller et al. (2019a).
This study will evaluate an accessible, reproducible
framework for anticipating drought with months-long
lead time in a hydrologically vulnerable region that is
highly relevant to emergency and water managers in
Puerto Rico and elsewhere in the Caribbean.

Operationalized by NCEP in March 2011, the CFSv2
(Saha et al. 2014) is a fully coupled land—ocean—atmosphere
model with T126 spectral resolution, corresponding to
roughly 100-km gridded resolution, and 64 hybrid sigma-
pressure vertical levels. The CFS, which shares many
similarities with the Climate Forecast System Reanalysis
(CFSR), is initialized four times daily, producing ~9-month
forecast period with output available every 6 h. For
this study, 0000 UTC CFS forecasts from the National
Centers for Environmental Information (NCEI) were
gathered for every other day beginning on 1 January of
each year, the first CFS forecast capturing the entire
ERS. For each initialization, the forecast conditions
were retrieved for only 0000 UTC each day during the
122-day ERS. The 0000 UTC output fields along were
selected to minimize the data retrieval burden required
for the analysis, while also capturing the thermodynamic
state of the atmosphere nearest to the evening TJSJ
radiosonde launches described later in this section.

Prior to the operationalization of the CFSv2, NCEP
produced limited reforecasts covering the period from
1982 to 2011. Extended-range reforecasts are available
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at 5-day, rather than daily, intervals, as is the case for the
operational CFSv2. Further, only reforecasts initialized
during February and March encompass the entire ERS.
Because of the limited reforecast availability (6 fore-
casts during the 30 days preceding the ERS versus 15-16
forecasts via the data retrieval described above), refore-
casts will not be used to generate seasonal GDI fore-
casts as with the operational runs, but rather will help
interpret any drought signal present in the 2015 fore-
cast by comparison to a larger sample of comparable
simulations.

The CFS has a rich legacy of providing seasonal and
subseasonal precipitation forecasts as intended. For
instance, Tian et al. (2017) assessed CFS precipitation
and temperature forecast skill over the conterminous
United States, while Kim et al. (2012) focused on the
entire Northern Hemisphere. Although space, time,
and environmental factors are significant, their work
suggests robust application for precipitation forecasts.
However, within a multimodel global drought fore-
casting investigation, the CFS failed to represent
some small-scale forcings (Yuan and Wood 2013).
CFS forecasts have also been used to predict more
acute hazardous weather phenomena such as hail
and tornado activity (Carbin et al. 2016; Lepore
et al. 2018).

At each CFS forecast period (i.e., daily 0000 UTC
fields during the ERS), the authors computed the GDI
for the entire tropical North Atlantic. The GDI was
developed by Gélvez and Davison (2016) as a method of
characterizing convective potential specifically in trop-
ical environments. The GDI is the sum of three com-
ponent terms, the column buoyancy index (CBI), the
inversion index (II), and the midlevel warming index
(MWI). The CBI is a positive term corresponding to the
concentration of heat and humidity in the vertical,
whereas the II is a negative term representing the det-
rimental effects of the trade wind inversion. The MWI
is a simple modification of the 500-hPa temperature
reflecting the stabilizing/destabilizing effects of warm
ridges/cool troughs. For each CFS initialization, the
mean GDI is calculated for each month, April-July, as
well as the entire ERS. The mean ERS GDI was com-
puted by averaging all 0000 UTC GDI forecasts during
the 122-day ERS for each semidaily CFS initialization.
Thus, each year received ~45 ERS GDI forecasts (one
forecast every two days for 90 days), except for 2016
(46 forecasts due to leap year) and 2017 (35 forecasts
due to corrupted archive files prior to 19 January).

The CFS GDI forecast is assessed across four dif-
ferent scales, the tropical North Atlantic (TNA),
eastern Caribbean, Puerto Rico, and San Juan, PR (Fig. 1).
For the first three domains, ERAS5 reanalysis (European
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FIG. 2. CFS GDI bias calculated by subtracting the 7-yr ERAS mean GDI from the CFS GDI. Bias maps are stratified by initialization
month and forecast period.

Centre for Medium-Range Weather Forecasts 2017)
serves as the verification field. ERAS is produced using
4D-Var data assimilation in CY41R2 of ECMWEF’s
Integrated Forecast System, and it is the highest reso-
lution global reanalysis product available with 137 ver-
tical model levels and a spatial resolution of ~31km.
The 1° X 1° ERAS grid is used to match the spatial reso-
lution of the CFS. As with the CFS output, the GDI is
calculated for each 0000 UTC period between April and
July, and then averaged by month as well as the entire
ERS. For the finest scale, the sole CFS grid cell containing
San Juan, PR, is extracted, and compared against observed
GDI derived from 0000 UTC San Juan, PR, radiosonde
launches (TJSJ). These sounding data were retrieved from
the IGRA, version 2, dataset (Durre et al. 2006). The
CFS’s ability to detect the 2015 Caribbean drought is
assessed by comparing the mean 2015 GDI to non-
drought years as the initialization time approaches the
start of the ERS. Further, the 2015 GDI will be con-
textualized within the larger CFS reforecast and
ERAS periods of record to determine if the GDI was
forecasted to occupy an appreciably low percentile.

The evolution of the forecast GDI is tracked for each
of the four domains.

Uniquely for the San Juan domain, the forecast GDI
can serve as the basis for a seasonal QPF prediction.
Miller et al. (2019a) developed an empirical relation-
ship between the mean ERS GDI determined from
0000 UTC TJSJ radiosonde observations and the total
ERS precipitation in Puerto Rico. After comparing
and calibrating the mean CFS-predicted ERS GDI
to TJSJ radiosonde-derived values, the calibrated
CFS is used to predict island-averaged precipitation
from the linear regression relationship developed by
Miller et al. (2019a). In the aforementioned analysis,
mean GDI values corresponded strongly to ERS pre-
cipitation with R> = 0.82 though correlations were
much weaker outside of the ERS. Equation (1) de-
scribes the ERS GDI-precipitation relationship (Miller
et al. 2019a):

precipitation (mm) = 275.6 mm + (47.91 %) XGDI.
1)
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FI1G. 3. Pearson correlation coefficient (R) values for the 7-yr CFS-ERAS relationship. The R maps are stratified by initialization month
and forecast period, and statistically significant cells with a p value < 0.05 are stippled.

Climatological observed precipitation is determined from
the Daymet precipitation archive (Thornton et al. 2017),
a 1-km gridded daily precipitation estimate previously
utilized in Puerto Rico hydroclimate analyses (Mote
et al. 2017).

3. Results

Results will be presented for each of the domains
shown in Fig. 1. CFS GDI forecasts were binned by
initialization month (i.e., January, February, and
March), representing a 60-90-, 30-60-, and 0-30-day
lead time, respectively.

a. Operational CFS GDI validation

CFS GDI forecasts for each lead time category
(corresponding to the month the CFS was initialized)
were compared to the ERAS GDI valid for the fore-
cast period (Figs. 2 and 3). Figure 2 depicts the CFS
GDI bias across the entire TNA by subtracting the
mean ERAS GDI for all 7 years from the mean CFS
GDI. Two areas of bias are clearly visible: a low bias
over the eastern Pacific (CFS < ERAS) and a high bias
(CFS > ERADJ) east of the Lesser Antilles. The latter
bias, which peaks in June and July at 20-25 units, is

most relevant for the Puerto Rico drought forecast.
Curiously, the high bias intensifies as the initialization
period nears the forecast period. For instance, the
ERS GDI forecast bias over Puerto Rico for all runs
initialized in January is 3.11, whereas the bias in-
creases to 4.86 and 5.61 for February and March ini-
tializations, respectively. Across all initializations, the
high bias east of the Lesser Antilles is greatest during
June and July when the maximum bias is roughly 23
and 21 units, respectively.

Although the CFS high-GDI bias increases as
the lead time decreases, more importantly, the CFS
becomes a more accurate predictor of GDI as the
forecast period approaches. As the absolute values
of GDI become more inflated, the covariability of
the CFS and ERA GDI strengthens. Figure 3 depicts
the Pearson correlation coefficient (R) values be-
tween the CFS and ERAS5 GDI with stippling
marking grid cells with p values < 0.05. Although
large areas of the CFS domain correspond weakly
and/or inversely to the ERAS5 GDI, R values over the
eastern Caribbean are some of the largest in the
entire TNA, especially for March initializations.
Even during the January initializations, the earliest
CFS runs that capture the entire ERS, pockets of
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F1G. 4. CFS GDI forecasts for the entire TNA during the 2015 ERS. Forecasts are averaged for January, February, and March
initializations and with the ERAS reanalysis pictured for validation.

statistical significance are present in the Caribbean. for February and March initializations, respectfully.
Specifically, over the island of Puerto Rico, the mean Thus, CFS forecasts begin detecting a meaningful ERS
p value for the CFS-ERAS5 ERS relationship strengthens = GDI signal at least one month before the onset of
from 0.27 for January initializations to 0.10 and 0.02 the ERS.
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CFS GDI Forecasts: 2016
FIG. 5. As in Fig. 4, but for 2016.
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b. Drought detection during CFSv2 operational
lifetime

To highlight a potential drought signal in CFS fore-
casts, the predicted GDI for 2015, which witnessed the
prolific Caribbean drought, is compared to 2016, a
slightly wetter-than-average ERS. Mote et al. (2017)
thoroughly documented the evolution of the 2015
Puerto Rico drought in relation to the SAL, which was
characterized by exceptionally low GDI values indicat-
ing the reduced potential for convective precipitation.
Thus, comparatively low GDI values during 2015 will
serve as evidence that the CFS is resolving this impor-
tant drought-causing mechanism. Figure 4 shows the
ERS CFS forecast for 2015 which clearly depicts a
tongue of depressed GDI values extending from the
Sahara to the eastern Caribbean. This feature was
forecast to be most prominent in April, which corre-
sponds well to its maximum intensity in the ERAS
dataset. However, the CFS forecasts steadily increase
the GDI values within the SAL as the lead times de-
creases such that the March initializations forecast a less
intense SAL than the earliest CFS runs. When com-
pared to 2016 (Fig. 5), a wetter-than-average ERS, the
2015 SAL signature in the CFS forecast becomes even
more apparent. In 2016, January CFS initializations do
not even contain a —10 GDI contour for April, and GDI
predictions for the entire eastern Caribbean are roughly
5-10 units greater than predicted for 2015. Though
Figs. 4 and 5 are only case studies of the CFS perfor-
mance in the ERS, this example illustrates the ability of
the CFS to distinguish between an exceptionally drier-
than-average ERS and a wetter-than-average ERS with
several months lead time.

Despite the somewhat weak correlation coefficients
for January and February initializations (Fig. 3), the
CFS GDI forecast still provides value by detecting the
driest years with several months lead time. The corre-
lation coefficient is sensitive to instances where the CFS
forecast misdiagnoses relatively average GDI years as
above-average years; however, advance notice is most
crucial only for the lowest GDI, and consequently,
drought-prone years. Therefore, Fig. 6 displays the 7-yr
time series of the CFS GDI forecast as well as the ERAS
GDI for the eastern Caribbean, Puerto Rico, and San
Juan domains. For the San Juan, PR, domain, the GDI
computed from the TJSJ radiosonde serves as the vali-
dation dataset. According to the time series in Fig. 6, the
CFS clearly captures the broadest patterns of the eastern
Caribbean GDI time series as early as January. The CFS
initializations during this timeframe were less accurate as
the spatial domain narrows to PR only and San Juan only.
The CFS also stumbles in 2013, by missing the relatively
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large GDI values that year, as well as 2018 when it only
projected a marginal decrease in GDI from 2017.

However, in the broadest sense, the CFS captures some
of the most prominent and important features of the time
series. For instance, the CFS replicates the sharp transi-
tion of low GDI values during the 2015 ERS to high values
in 2016. Further, and perhaps, most importantly, the
March CFS initializations identify the three lowest GDI
years over all three domains in Fig. 6 (i.e., 2014, 2015,
2018). In fact, within the Puerto Rico domain, the CFS
identifies these same three years a month earlier, during
its February initializations. As the GDI-precipitation
findings of Miller et al. (2019a) suggest and Fig. 6 also
shows, these three lowest GDI ERSs were also the three
driest years across Puerto Rico. As rule of thumb during
the 7 years analyzed, whenever the mean ERS GDI pre-
dicted by March CFS initialization was less than 7.5, Puerto
Rico experienced below-average ERS precipitation.

¢. QPF validation

Whereas section 3b identified episodes of low forecast
GDI values to hindcast drought, this section will leverage
the empirical GDI-precipitation relationship [Eq. (1)]
developed by Miller et al. (2019a) to produce a CFS QPF
tool for Puerto Rico. Because Eq. (1) was computed using
GDI values derived from the TJSJ radiosonde deploy-
ments, the CFS output for the cell containing San Juan, PR
(Fig. 1), will be calibrated against observed TJSJ GDIs for
the same period. Overall, the CFS forecast for San Juan,
PR, yields ERS mean GDIs that are roughly 1.5 units too
high compared to TJSJ radiosondes. The measured mean
ERS GDI between 2012 and 2018 was 4.82 (Table 1)
versus 6.25 predicted by the CFS. However, consistent with
the TNA forecasts in Fig. 2, CFS GDI forecasts initialized
during January, 3 months before the onset of the ERS
showed a smaller high bias than those produced in
March, the month immediately prior to the ERS.

As the CFS initializations approach the onset of the
ERS, the relationship between predicted and observed
GDI strengthens (Fig. 7). The observed-predicted R*
values steadily increase from 0.13 to 0.27 to 0.55 for
initializations during January, February, and March,
respectively. Though the CFS-predicted GDI explains
55% of the variability in actual ERS GDI during the
month immediately preceding the ERS, the 0.056 p value
for this relationship lies just beyond the 0.05 significance
level. The near significance is likely related to the small,
7-yr dataset used to form the relationship. In fact, when
the correlation is recalculated with integer-only precision,
the p value for March initializations decreases to 0.031.

Using the linear regression relationships plotted in
Fig. 7, the San Juan-only CFS mean GDI prediction is
calibrated to yield GDI values that more closely correspond
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FIG. 6. Time series of CFS vs ERAS/TJSJ-derived GDI for each of the three domains shown in Fig. 1. The observed precipitation for the
Puerto Rico domain is based on the ERS island-wide average precipitation from the Daymet dataset.

to the observed GDI means. This calibration will allow the
CFS-predicted means to be inserted into the seasonal QPF
tool displayed in Eq. (1). Because the CFS GDI bias grows
larger as the ERS approaches nearer (Table 1), a different
calibration is developed for the January, February, and
March initializations [Egs. (2)—(4)], respectively:

GDI,,,, =2.12 +0.52XGDI, 2)
GDI,;, = —1.36 + 0.91 X GDI, 3)
GDI,,,, = —8.73 + 1.81XGDL )

After tuning the forecast ERS GDI using Egs. (2)-(4),
the calibrated value is then inserted into Eq. (1) to

produce the ERS QPF. Because the QPF is a simple
linear transformation of the GDI, its time series is not
shown. Instead, the CFS QPFs are compared against the
climatology forecast to demonstrate the added value of
the GDI-based QPF.

Because the focus of this paper is advanced detection
of the driest years (specifically, 2015), Fig. 8 illustrates
the percent error of the CFS and climatology QPF as a
function of the ERS total precipitation. The mean
island-wide ERS precipitation between 1981 and 2010
was 510 mm for Puerto Rico. This climatological forecast
was, by definition, most accurate for near-normal ERSs
while poorest for exceptionally dry or wet ERS years.
Compared to the climatology forecast, the GDI-based

020z 1snbny 6z uo 1sanb Aq 4pd-¥8Z06 L PWYI/0LZZS6Y/SYZ L/9/ L Z/APd-eie/wyl/Bio-00s1ewe s|euinol//:dpy woly papeojumoq



JUNE 2020

MILLER AND RAMSEYER

TABLE 1. Mean ERS GDI values calculated from TJSJ radio-

sondes and the CFS grid cell containing San Juan, PR (Fig. 1b).
CFS means are aggregated across the entire ERS study period and
also stratified by initialization month. (C.I. stands for confidence

interval.)

Source Mean ERS GDI (95% C.1.)
TISJ 4.82
Jan-Mar CFS 6.25 (5.86-6.64)
Jan CFS 4.77 (4.04-5.50)
Feb CFS 6.71 (6.07-7.36)
Mar CFS 7.26 (6.69-7.83)

QPF shows that it is more skillful, particularly for the
driest years. For January CFS initializations, the
precipitation—percent error regression functions are
fairly similar with the CFS QPF characterized by a
smaller percent error during the driest years. The dif-
ference between the CFS and climatology ‘‘forecasts”
becomes more apparent among the February and March
initializations. With each successive month, the CFS
95% confidence interval for the percent error includes
0% over a greater range of ERS precipitation totals. In
particular, by February, the 95% confidence intervals
between the CFS QPF and the climatology forecasts
contain only minimal overlap, with the confidence in-
tervals for dry years completed separated during the
March initializations. Thus, the CFS-based QPF is a
statistically significant improvement over climatology
for the driest years in the CFS operational lifetime. In
contrast, the mean ERS QPF predicted by the CFS for
Puerto Rico during March initializations was 533 mm
(Fig. 1a), compared to 285 mm produced by the GDI-
based method. The former represents a +4.7% pre-
cipitation anomaly, whereas the observed 2015 ERS
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precipitation, 279 mm, was a —45.3% departure from
normal (Fig. 1a).

d. Contextualizing the 2015 CFS forecast

Though the CFS performance during its operational
period is promising, the brief 7-yr sample size prevents
more confident conclusions about its drought detection
skill. To form stronger determinations, two additional
methods are implemented to contextualize the poten-
tially anomalous nature of the 2015 GDI forecast. The
first method mirrors the calibration used to fit the CFS-
predicted GDI values for San Juan to the TISJ-observed
GDI during the same period. However, this case, the
CFS mean ERS GDIs for the eastern Caribbean and
Puerto Rico will be calibrated against the same spatial
averages from the ERAS reanalysis. Figure 9 depicts the
regression relationships for each lead time category and
region. The fitted regression shown in Fig. 9 can be used
to generate a calibrated CFS GDI forecast that can be
compared to the 40-yr ERAS period of record.

Table 2 provides the calibrated ERS GDI forecasts as
well as the percentile rank of these values within the
ERAS distribution. The percentile rank of the eastern
Caribbean GDI steadily decreases as the lead time de-
creases and approaches the forecast period. However,
the calibration, (performed separately for each lead
time category based on the regression equations shown
in Fig. 9), is not statistically significant until the 0-30-day
lead time category. During this period, the calibrated
GDI predicted by the CFS fell within 16.3th percentile
of the 40-yr ERAS GDI distribution. Similarly, neither
does the forecasted Puerto Rico GDI statistically
significantly correspond to the ERAS mean until the
0-30-day lead time category. Within 30 days of the ERS

January February March
Initializations Initializations Initializations
12
9 _ R2=0.27 J R?2=0.55
_ p: 0.229 p: 0.056
O 6 - - —~
O
a 3 -1 — v 4 - F
= o 2 /’/ ///
0 . /// . R =013 . ,/ . . //
P @ p: 0.436 /, @ //
‘3 4 T I 1 T I T I T T I T
-3 0 3 6 9 12 -3 0 3 6 9 12 -3 0 3 6 9 12
CFS GDI CFS GDI CFS GDI

F1G. 7. Mean ERS GDI predicted by the CFS during all initializations collected in each month is plotted against the observed GDI from
TJSJ radiosondes for the same forecast period. The least squares regression relationship (red line) is also plotted for each month.
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FIG. 8. Percent error for CFS total ERS precipitation forecast (red) for (a) January,
(b) February, and (c) March initializations vs climatology (blue). The percent error is pro-
portional to the difference between the statistical Puerto Rico QPF forecast determined using
Eq. (1) and the island-averaged total ERS precipitation from the Daymet dataset. The dashed
lines depict the ordinary least squares regression relating the percent error to the total ERS
precipitation, and the shaded regions correspond to the 95% confidence intervals for the like-

colored regressions.

onset, the calibrated 2015 CFS GDI occupied the 13.8th
percentile of the 40-yr ERAS distribution.

The second method leverages the longer period of
record available for CFSv2 reforecasts produced by
NCEP. As mentioned in section 2, the reforecasts,
though extending further into the historical record, are
initialized at a coarser temporal resolution than their
operational counterparts. However, characterizing the
CFS-predicted 2015 GDI within the 37-yr reforecast
record provides a more direct, apples-to-apples-type
comparison than the ERAS5-based method. Because
the CFS demonstrated a persistent high bias, any effort
to compare the 2015 CFS GDI to the ERAS dataset
necessarily involves a calibration technique like the
one performed in Fig. 9. Instead, computing the per-
centile rank of the 2015 CFS GDI within the 37-yr
reforecast/operational dataset neutralizes the CFS’s
high bias by allowing it to equally affect all forecasts in
the distribution. Over the eastern Caribbean, the 2015

GDI predicted by the CFS with a 0-30-day lead time
resided in the 23.0th percentile of all 1982-2018 ERS
forecasts (Table 3). In contrast, when the GDI was
spatially averaged over Puerto Rico alone, the 2015 CFS
forecast represented the 14.9th percentile (Fig. 10).
Though not shown in Table 3, the forecasted April-only
GDIs over both the eastern Caribbean and Puerto Rico
were the lowest in the entire CFS reforecast/operational
period of record.

4. Discussion

Drought in the eastern Caribbean has important
ecological and economic impacts, and seasonal-scale
predictability can provide months-long lead time to
prepare stakeholders for dry conditions. The results
presented here indicate that using the CFS-based GDI
forecasts can provide a skillful tool in predicting drier-
than-normal ERSs. In particular, the CFS showed
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FIG. 9. Calibration functions used to adjust the CFS-predicted GDI for the ERS to representative ERAS values.
The best-fit regression equations represented by the red lines are shown in the bottom right corner of each pane
along with their associated coefficient of determinations (R?). Coefficient of determinations with p values < 0.05 and

<0.01 are denoted by * and **, respectively.

statistically significant skill in identifying the driest
year (2015) across the eastern Caribbean with a 1-month
lead time (Fig. 8). Additionally, the CFS uniformly fore-
casts the transition from the driest to the wettest ERS
(2015-16) across each scale analyzed.

When contextualized within a climatological period of
record using two different methods, the 2015 CFS ERS
forecast represented approximately the lowest 15% of
all CFS GDI forecasts over the island of Puerto Rico
under both techniques. Though the CFS did not predict
2015 as the lowest GDI on record, it did correctly place it
in a climatologically low percentile with up to 30 days of
lead time. The ~15th percentile predicted by the CFS is
comparable to existing hydrological drought criteria.

For instance, the National Drought Monitoring Center
currently defines “moderate drought” as the 11-20th
percentiles of streamflow and soil moisture (Svoboda
et al. 2002). Moreover, the standardized precipitation
index (SPI) (McKee et al. 1993), which is uniquely tied
to probability, defines drought as SPT = —1.00. This SPI
threshold is established so that locations spend approx-
imately 16% of their time in this category, which again
aligns with the ~15th GDI percentile predicted by the
CFS in 2015.

The CFS’s proficiency at detecting GDI anomalies
with appreciable lead times is especially important given
the model’s failure to detect reduced 2015 rainfall in
its explicit precipitation fields as described in section 1.

TABLE 2. Percentile ranks of calibrated CFS GDI forecasts for the 2015 ERS using the regression relationships shown in Fig. 9. Eastern
Caribbean and Puerto Rico percentiles are determined from the 40-yr (1979-2018) GDI climatology computed from ERAS reanalysis.

Calibrated ERS GDI  p value of calibration =~ Percentile rank

Region Lead time (days)  CFS mean ERS GDI
Eastern Caribbean 60-90 6.04
30-60 6.28
0-30 6.93
Puerto Rico 60-90 4.96
30-60 4.84
0-30 5.24

0.55 0.11 36.3
-1.10 0.06 27.5
—2.96 0.01 16.3

432 0.28 43.8

2.42 0.11 31.3

0.41 0.02 13.8
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TABLE 3. Percentile ranks of CFS GDI forecasts for the 2015 ERS within the 1982-2018 reforecast/operational period of record (CFS
reforecasts for 1982-2011). Reforecasts, which were produced at less frequent intervals than operational forecasts, are only evaluated for

the 0-30-day lead time category.

Region Lead time (days) CFS mean ERS GDI 37-yr mean ERS GDI Percentile rank
Eastern Caribbean 0-30 6.93 8.01 23.0
Puerto Rico 0-30 5.24 7.03 14.9

The 21-day CFS QPF (based on initializations during
1-10 February) for March, April, and May 2015,
mostly aligning with the drought onset, predicted
normal to slightly above normal precipitation across
the eastern and central Caribbean (Wang 2016). The
too-wet forecast was maintained during the entire ERS
with the 16 March 2015 CFS initializations analyzed
collectively predicting +4.65% anomaly (Fig. 1c). Only
one of the sixteen 0000 UTC CFS runs predicted
a precipitation deficit comparable to what occurred.
Thus, a CFS drought forecast cannot be obtained by
simply consulting the modeled precipitation fields ahead
of the upcoming ERS. The improvement of the GDI-
based reforecasts upon the explicit CFS precipitation
predictions illustrate the potential weakness of NWP
convective and microphysics parameterizations when
predicting seasonal totals, underscoring the value of the
QPF technique demonstrated here.

In addition to the spatial representation of the SAL,
the CFS-based GDI correctly captures the timing of the
2015 drought which initiated in Puerto Rico during
April and reached peak intensity in early June (Mote
et al. 2017). The CFS skillfully identifies the anoma-
lously low GDI values over the eastern Caribbean do-
main at the April onset of the drought during each
initialization window (Fig. 4, top row). Comparing the
2015 and 2016 ERS forecasts, the CFS detected a de-
cidedly less favorable convective environment in 2015,
particularly in April and May during the drought’s ini-
tiation and intensification (Figs. 4 and 5). This finding
implies that, although the CFS does not resolve dust
emission or transport, it can resolve the synoptic- to
global-scale atmospheric circulations that advect hot,
dry air characteristic of the SAL.

The approach presented here is also a statistically
significant advancement in drought prediction com-
pared to climatology (Fig. 8). While the CFS forecasts
and climatology both underestimate wet years and
overestimate dry years (though this is a trivial state-
ment for the climatology forecast), the CFS-based GDI
technique convincingly outperforms climatology for
the driest years. The CFS demonstrates a ~50% error
at ~90 days lead time for the most extreme dry year
(Fig. 8a), which nonetheless represents a large im-
provement over climatology (89% error). From the

January to March initialization periods, the CFS
shows steady improvement in drought predictability,
likely due to the assimilation of more representative
initial conditions. By the March initializations, the
CFS is producing mean seasonal precipitation fore-
casts within 15% of the observed precipitation for
2015-type droughts (Fig. 8c). In contrast, the GDI-
based QPF technique struggles during wet years. For
January initializations, the mean CFS QPF underes-
timates precipitation by 48.6% for the most extreme
wet years (Fig. 8a). Taken at face value, the CFS
forecast is slightly more accurate than climatology for
pluvial years, but only during February and March ini-
tializations. However, the 95% confidence intervals
shown in Fig. 8 reveal that the GDI-based QPF is sta-
tistically indistinguishable from climatology in those
environments.

Despite its encouraging performance, the CFS fore-
casts were also associated with apparent limitations,
most notably the need to calibrate the CFS GDI due to a
persistent high GDI bias across much of the TNA
(Fig. 2). Figure 4 suggests that the overall positive GDI
bias throughout the ERS in the Caribbean is largely
produced during the June and July forecast period.
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=
v
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S
-
=]
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4 6 8 10
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FIG. 10. Histogram of the CFS 37-yr (1982-2018) GDI distribu-
tion of all 0-30-day ERS forecasts averaged over all cells con-
taining Puerto Rico. The position of the 2015 forecast within the
distribution, corresponding to the 14.9th percentile, is marked by
the red dashed line.
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Upon initial inspection, such positive biases are likely
partially driven by warm SST biases across this portion
of the domain, particularly during the 2014 and 2015
drought years (Wang et al. 2015; Wang 2016); however,
future research should more fully engage the high-GDI
artifact. Additionally, the tongue of lower-than-normal
GDI values observed during the 2015 drought across
much of the TNA is not fully captured by the CFS
(Fig. 4), which likely contributes to the high-GDI bias in
the eastern Caribbean (Fig. 2). As described earlier, this
feature is interpreted to indicate SAL outbreaks that
occurred during the 2015 ERS (Mote et al. 2017). While
the feature is not entirely resolved, the CFS does expand
the lower GDI values farther west than climatology
for the 2015 ERS, as seen by comparing Figs. 4 and 5. In
2015, the CFS predicted negative GDI values extending
westward into portions of the eastern Caribbean (Fig. 4,
bottom row), whereas in 2016, the negative GDI corridor
only extends into the central tropical North Atlantic,
several hundred kilometers east of Puerto Rico (Fig. 5,
bottom row). Critically, this anomalous westward extent
of lower GDI values in 2015 was predicted with a 3-month
lead time; however, the CFS eventually dampened the
low-GDI tongue as the forecast period drew nearer.

5. Conclusions

Drought early warning tools for Puerto Rico, as well
as the broader eastern Caribbean, are sorely needed due
to the extensive hydrological, ecological, and economic
impacts on these small islands. Specifically, dry condi-
tions during the ERS are disproportionately related to
the annual hydroclimatic outcome in this region (Miller
et al. 2019a), meaning drought prediction efforts can be
concentrated on a single season rather than the entire
year. Recalling from section 1, the question posed by
this paper was “Could NWP models have successfully
forecast the anomalously low GDI associated with the
2015 Caribbean drought?”’ Based on the evidence pro-
vided herein, the answer is a compelling “Yes.” Though
the purpose of this paper was not to develop a Puerto
Rico drought early warning tool, it does provide a strong
motivation for doing so.

The research presented here provides encouraging
evidence for an added-value forecasting tool for ERS
drought with as much as a 60-90-day lead time. In con-
trast, the 0-30-day CFS precipitation forecast preceding
the initiation of the 2015 drought was unable to resolve
the drying that would soon occur (Fig. 1c). Although the
CFS GDI forecasts uniformly overpredict GDI (which
taken at face value poorly predicted dry years), the
predictions are significantly correlated with ERAS-
derived GDIs over the Caribbean with 0-30-day lead
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times and as well as radiosonde-derived GDI values
from San Juan, PR (Fig. 7, R? = 0.55; p = 0.056).
Further, the GDI-based QPF tool outperforms clima-
tology for lower-than-normal GDI environments, with
clear statistical significance evident in the 0-30-day
lead time window.

The CFS GDI forecasts presented here are a first-
step toward an advanced warning decision-making aid.
However, several issues exposed within this analysis
need to be addressed before such a product could be
operationalized. For instance, the CFS high-GDI bias
was addressed in the QPF analysis when CFS GDIs
were calibrated against TJSJ-derived GDIs; however,
ideally, no such calibration would be necessary. More
work should explore the origin of the high-GDI bias as
well as its peculiar intensification as the lead time de-
creases. Further, the GDI’s subcomponents were not
forecast with uniform accuracy. Though not shown, the
CFS’s predictive skill was disproportionately tied to its
accurate prediction of the CBI while it comparatively
struggled to resolve the II and MWI. Future research
should more thoroughly analyze the CFS’s accuracy
among the GDI’s subcomponents with the aim of po-
tentially restructuring the GDI, so that it is more robust
to systematic NWP errors.

Last, the GDI-QPF relationship for Puerto Rico
employed in section 3 was facilitated by previous GDI-
based hydroclimate work for that region. The GDI
likely possess statistically significant precipitation fore-
casting skill in other eastern Caribbean locations; how-
ever, the lack of existing empirical GDI-precipitation
relationships in these areas prevent a broader validation
of the CFS’s drought detection capability. Future work
should examine the extensibility of GDI-based QPF
tools beyond Puerto Rico.
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