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ABSTRACT: A low-coordinate, high spin (S = 3/2) organo-
metallic iron(I) complex is a catalyst for the isomerization of
alkenes. A combination of experimental and computational
mechanistic studies supports a mechanism in which alkene
isomerization occurs by the allyl mechanism. Importantly, while
substrate binding occurs on the S = 3/2 surface, oxidative addition
to an ;'-allyl intermediate only occurs on the S = 1/2 surface. Since
this spin state change is only possible when the alkene substrate is
bound, the catalyst has high immunity to typical o-base poisons
due to the antibonding interactions of the high spin state.

B INTRODUCTION

Driven in part by perceived advantages in cost and toxicity,
recent years have seen an explosion of interest in the
development of iron-based catalysts for transformations of
organic substrates."”” While substantial efforts have been made
toward developing iron catalysts that replicate the reactivity of
noble metal congeners, it has also been recognized that new
catalysts may benefit from the intrinsic properties of iron.” Most
notably, the rich landscape of redox and spin states associated
with iron complexes has the potential for accessing reactivity
that is largely unavailable to noble metal complexes.

Due to relatively small ligand field strengths, particularly with
low coordination numbers, iron complexes are often high spin;
moreover the changes in geometry, ligands, and/or oxidation
state that occur during the course of a reaction may also be
associated with changes in the metal spin state. “Two-state
reactivity” emerges when these spin state changes lower the
energy of the transition state (Figure 1).* While extensively
investigated in the context of high valent iron oxo chemistry,”
two-state reactivity has also been proposed for low valent
organometallic iron complexes, with the prototypical example
being the transient 16-electron species *Fe(CO),.° Although
this species has a triplet ground state, reactions involving ligand
binding require spin crossover to the low-lying 'Fe(CO), state.”

Two-state reactivity has been proposed for the reactions of a
number of low-coordinate iron complexes, including S-hydride
elimination from three-coordinate Fe(II) alkyl complexes,®
oxidative addition by four-coordinate Fe(0) complexes” and C—
H activation by Fe(Il) complexes.'® Moreover, multiple spin
states have been implicated in the reaction mechanisms of low
valent iron catalysts,"' including aldehyde hydrosilylation,"*
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Figure 1. Reaction coordinates for two-state reactivity leading to
lowered activation barriers. Red and blue curves represent different spin
states. (a) Spin state change occurs before the transition state, providing
a product with a different spin state than reactant; (b) transition state is
on a different spin state than reactant and product, leading to “spin
acceleration”.

alkene-isomerization-hydroboration,* [2 + 2] cycloadditions,"*
and C—C coupling."

Due to differential occupancies of antibonding orbitals, simple
ligand field considerations lead to the expectation that two spin
states of the same d-electron count may differ in their reactivity.
Indeed, it has been shown that both the redox potentials and
activation energies for electron transfer in a series of cytochrome
P450 substrate analogues are directly related to the spin state of
iron(I11)."*"” We hypothesized that such spin-state reactivity
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differences could be used to engineer catalyst selectivity.
Specifically, we anticipated that entry into the catalytic cycle
could be gated by substrates that convert the catalyst spin state
to that of the transition state for an appropriate elementary step.
For example, substrates that convert a high spin catalyst to its
low spin form are expected to create the appropriate d-orbital
vacancies required for 2e” organometallic reactions.

In this work, we report a high spin (S = 3/2) iron(I) complex
that is a catalyst for a model organometallic reaction, namely
alkene isomerization. A combined experimental and computa-
tional investigation reveals the involvement of two spin states,
with the transition states for substrate isomerization only
accessible on the low spin (S = 1/2) surface. Since the partially
filled d-orbitals of the high spin state result in weak ligand
binding in the ground state, this confers immunity against typical
o-basic catalyst poisons. To the best of our knowledge, this work
shows for the first time that the attributes of two-state reactivity
allow for new reaction selectivity. We anticipate that the
concepts described for this model system will be applicable to
other catalytic reactions.

B RESULTS AND DISCUSSION

Synthesis and Characterization. Treatment of the iron
chloride precursor Ph,B(‘Bulm),FeCI(THF)"® with 1 equiv of
LiCH,Bu in pentane gives the yellow complex Ph,B-
(‘Bulm),FeCH,Bu (1) in 95% yield (Scheme 1). The molecular
structure of 1 shows a planar, three-coordinate iron center, with
the sum of angles about iron = 359.9° (Figure 2). The iron-

Figure 2. Molecular structures of 1—3. Thermal ellipsoids are shown at
50% probability, ligand tert-butyl groups represented as wireframes, and
hydrogen atoms and the [K(2.2.2-cryptand)]* cation of 2 and 3
omitted for clarity. Pink, black, orange, and blue ellipsoids represent
boron, carbon, iron, and nitrogen atoms, respectively.
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carbene bond distances of 2.1000(13) and 2.0936(14) A are
consistent with a high spin (S = 2) configuration. The distance to
the a carbon of the neopentyl ligand is 2.0534(15) A, similar to
previously characterized high spin iron(II) alkyl complexes.'” At
80 K, the *"Fe Mossbauer spectrum of 1 shows a symmetric
quadrupole doublet centered at § = 0.34 mm/s, with AE, = 1.41
mm/s, similar to three-coordinate high-spin iron(II) f-
diketiminate® and iron(II) NHC alkyl complexes.”' The
solution magnetic moment, determined by Evans’ method
(,ueff— 5.0(3) ug), confirms the high spin formulation of complex

Reducmg 1 by 1 equiv of KCy in the presence of 2.2.2-
cryptand provides dark red [K(2.2.2-cryptand)][Ph,B-
(‘Bulm),FeCH,Bu(N,)] (2) in 60% yield following workup.
The molecular structure of 2 shows a four-coordinate iron
center, with the bis(carbene)borate, neopentyl and dinitrogen
ligands completing the coordination sphere (Figure 2). The
iron-carbene (2.117(4) and 2.113(4) A) and iron-neopentyl
(2.121(5) A) bond distances are longer than in 1, suggesting
that iron remains high spin after reduction.”

While no resonances are observed between +200 and —60
ppm in the 'H NMR spectrum of 2, a strong N—N stretch at
1897 cm™! confirms that the N, ligand remains bound to iron.
This frequency is significantly lower than other four-coordinate
iron(I) complexes such as [Li(Et,0),][""PDIFe(CH,Bu)-
(N,)] (vny = 1948 cm™'), (PNP)Fe(N,) (PNP = 2,5-bis(di-
tert-butylphosphinomethyl)pyrrolide) (1964 cm™"), [(ICy);Fe-
(N,)][BPh,] (ICy = 1,3-dicyclohexylimidazol-2-ylidene) (1967
cm™"), or PhB(AdIm);FeN, (1928 cm™")** suggesting a high
degree of n-backbonding in 2. A doublet centered at 6 = 0.52
mm/s (AE, = 1.70 mm/s) is observed in the Mdssbauer
spectrum of 2 (80 K), whose asymmetry is likely due to the onset
of slow relaxation in this noninteger spin complex.”* While the
differences in coordination geometry between 1 and 2 hinder
direct comparison of the spectroscopic parameters, the greater
isomer shift in 2 relative to 1 is consistent with a high spin
iron(I) assignment.”*“*> In addition, these parameters are
comparable to high-spin iron(I) hydride complexes supported
by a f-diketiminate ligand.26 Complex 2 is therefore assigned as
high-spin (S = 3/2) iron(I), which is also consistent with the
solution magnetic moment (¢ = 4.2(3) pi).

Complex 2 reacts with one equivalent of PhnC=CPh to yield
purple [K(2.2.2-cryptand)][Ph,B(‘Bulm),Fe(CH,'Bu) (1>
PhC=CPh)] (3) in 65% isolated yield. The molecular structure
of 3 confirms the formulation of the product, with #*~PhC=
CPh replacing the dinitrogen ligand (Figure 2). The Fe—C bond
to the neopentyl ligand is nearly parallel with the acetylene
ligand (torsion angle 166.6(4)°) and is almost perpendicular to
the C—Fe—C plane containing the donor atoms of the
bis(carbene)borate ligand (torsion angle 86.6(4)°). The C—C
bond distance of 1.281(7) A is elongated from free PhAC=CPh
due to strong backdonation from the iron center.

https://dx.doi.org/10.1021/jacs.0c07300
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Unlike its precursor 2, the '"H NMR spectrum of complex 3
displays resonances between 35 and —10 ppm, although the spin
state is unchanged (S = 3/2), as determined by Evans’ method
(Mo = 5.1(3) pig). The C=C stretching frequency presents at
1769 cm™' (KBr), similar to C=C stretches observed for
acetylene adducts of iron(I) S-diketiminate complexes.”” The
’Fe Mbssbauer spectrum of complex 3 at 80 K shows a
symmetric doublet with an isomer shift 6 = 0.42 mm/s and
quadrupole splitting AE, = 1.99 mm/s. This isomer shift is
lower than that of complex 2, consistent with a greater degree of
m-backbonding from iron into better z-acid diphenylacetylene.
The increased backbonding increases the covalency between the
ligand and metal, which in turn decreases the isomer shift.”®

Catalytic Alkene Isomerization. Complex 2 catalyzes the
isomerization of 1-hexene to 2-hexene (10 mol % 2, 40 °C).
Complete isomerization to 2-hexene in a 4:1 trans:cis ratio
occurs within 24 h, as determined by 'H and “C{'H} NMR
spectroscopies.”” This ratio is that expected based on the
thermodynamic stabilities of the two isomers, suggesting there is
no kinetic selectivity. While we have not attempted to optimize
the catalytic conditions, the mild reaction conditions are
notable. By contrast, the iron(II) complex 1 does not catalyze
1-hexene isomerization.

Since iron nanoparticles have been previously implicated in
the catalytic isomerization of alkenes,”® we have conducted
control experiments to test for nanoparticle formation. While
the limited solubility of elemental iron in mercury’ is a
complicating factor, it is notable that the addition of elemental
mercury does not impede the catalytic activity of 2. Additionally,
the insensitivity of the catalyst to large excesses of typical
poisons (see below) is not consistent with nanoparticle catalysis.

Kinetics and Mechanistic Experiments. Kinetic analysis
of the rate of 1-hexene isomerization reveals a first-order
dependency for 1-hexene. The kinetic traces do not show
induction periods, which is also consistent with a molecular
catalyst. An Eyring analysis of the temperature dependent rate
constants (30 °C — 60 °C) gives activation parameters AH* =
11.5 + 0.5 kcal/mol and AST = —31.5 + 1.5 e.u. The magnitude
of AS* is notable, suggesting a highly ordered transition state.
These activation parameters give AG* = 21.6 + 1.0 kcal/mol at
40 °C.

An isotope labeling experiment provides additional mecha-
nistic insight. At 40 °C, the rate of 1—hexene—3,3—D232
isomerization (ks = 2.97 X 107> s™") provides a kinetic isotope
effect, ky/kp = 2.9. The KIE is temperature independent, and
thus tunneling does not play a role in the reaction mechanism.
The combined experimental results are most consistent with
alkene isomerization by 2 occurring by the allyl mechanism, akin
to many other low valent iron complexes.

Importantly, neopentane is not observed during catalysis. In
addition, no new deuterium-containing products are observed
when the reaction of 2 with D,C=C(D)CD; is monitored by
*H NMR spectroscopy. Thus, products resulting from loss of the
neopentyl ligand, e.g. (H;C);CCH,D or D,C=C(D)CH,C-
(CH;); are not observed within the detection limits of the
measurement. Together, these observations suggest that the
neopentyl ligand remains bound to iron during catalysis.

Computational Investigation. While the experimental
data are most consistent with the allyl mechanism for alkene
isomerization, they do not provide insight into the role of spin
states. Since the strength of the ligand field is expected to
increase for 7°-allyl intermediates in the allyl mechanism, lower
spin states may be catalytically relevant. We therefore used

computational methods to better understand the isomerization
mechanism, and particularly the involvement of other spin
states. For computational expediency, these calculations were
performed with 1-butene as the substrate; however, all other
features of the experimental system were retained. It is also
important to note that these calculations are calibrated to
experimental measurements.”* While several possible mecha-
nisms were investigated,”* only the allyl mechanism is consistent
with experimental observations. The lowest energy computed
cycle is shown in Scheme 2, with the reaction coordinate shown
in Figure 3.
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Substitution of the dinitrogen ligand by the alkene substrate
provides entry into the catalytic cycle. This step is calculated to
be modestly uphill thermodynamically (AG = 2.1 kcal/mol).
The alkene can bind in one of two isoenergetic orientations,
where the alkyl tail is either syn or anti to the diphenylborate
group. Despite the stronger ligand field, the iron(I) 7*-alkene
complex *A is calculated to have an S = 3/2 ground spin state. As
described above, the crystallographically characterized ;*-alkyne
complex 3 has a high spin (S = 3/2) ground state.

In accord with the allyl mechanism, oxidative addition of the
allylic C—H bond provides an iron(III) allyl hydride complex.
Here, the 5'-allyl isomers B (S = 1/2) and *B (S = 3/2) are
found to be 15.5 and 19.7 kcal/mol higher in energy than the
dinitrogen complex 2, respectively. Surprisingly, the 7°-allyl
complex *B’ (S = 1/2) is significantly higher in energy, making it
unlikely to be mechanistically relevant. While we were unable to
optimize the 77°-allyl complex on the S = 3/2 surface, this species
is expected to be even higher in energy. The greater stability of
the 57'-allyl intermediates is likely the result of destabilizing steric
interactions in the 77°-allyl complex *B’, where the iron center is
seven-coordinate.

A transition state for the oxidative addition step (*TS1) was
located on the S = 1/2 surface, with AG* =26.5 kcal/mol. This is
the highest energy species on the reaction surface, and the

https://dx.doi.org/10.1021/jacs.0c07300
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Figure 3. Calculated reaction coordinate for alkene isomerization by 2. Relative energies in kcal/mol. Orange and blue curves represent S=3/2 and § =

1/2 potential energy surfaces, respectively.

computed activation free energy is in good agreement with that
determined experimentally, where AGF =21.6 + 1.0 keal/mol.
Although an optimized transition state could not be located on
the S = 3/2 surface, linear synchronous transit (LST) and
quadratic synchronous transit (QST) analysis suggests the
barrier is at least 15 kcal/mol higher in energy. The need for a
spin state change can be understood by considering the orbital
requirements for oxidative addition. Specifically, two electron
oxidative addition requires an empty metal-based orbital to
create the new iron-hydride bond. However, since all orbitals are
atleast partially occupied in the S = 3/2 spin state, this reaction is
“spin blocked”.*®

The computed structure of *TS1 is “n*-allyl like” (Figure 4).
Compared to *A, in *TS1 there is an increase in the C1—C2
distance and a decrease in the C2—C3 distance, such that these
bonds are of similar length, and intermediate between single and
double bond lengths. In addition, the distances from iron to the
carbon atoms of the allyl ligand are similar to those in
structurally characterized iron 77°-allyl complexes.36 This highly
ordered transition state structure is in accord with the large
magnitude of the experimentally determined entropy of
activation, where AS¥ = —31.5 + 1.5 e.u. The allylic C-H
bond is largely broken in *TS1, as characterized by the long C3—
H distance (1.550 A) and an Fe—H distance (1.540 A) that is
similar to paramagnetic iron hydride complexes.”” These bond
length changes are also consistent with the experimentally
observed KIE, which shows that the rate depends on cleavage of
the allylic C—H bond.

The next step of the reaction mechanism involves rotation
about the Fe-allyl bond in *B. Here, the lowest energy structure

Figure 4. Computed transition state *TS1. Selected bond lengths (A):
Fe—H 1.541; Fe—Cl 2.120; Fe—C2 1.975; Fe—C3 2.119; Fe—C4
2.141; C1-C2 1.427; C2—C3 1.442; C3—H 1.550.

is computed to be the S = 3/2 5'-allyl intermediate *C, likely as a
result of decreased steric interactions upon rotation. However,
the small energy difference between the S = 3/2 (17.8 kcal/mol)
and S = 1/2 (15.2 kcal/mol) surfaces suggests the states are
highly mixed. Following bond rotation, reductive elimination
provides *D, in which the alkene ligand has been isomerized. As
with oxidative addition, reductive elimination is only viable on
the S = 1/2 surface, with the transition state (*TS2) also having
an “n*-allyl like” structure. The barrier to reductive elimination
(AG* = 17.0 keal/mol) is lower than that for oxidative addition,
likely due to attenuated steric interactions in this step. The final
step of the mechanism involves alkene ligand substitution to
release the isomerized product, which is computed to be
thermoneutral.

https://dx.doi.org/10.1021/jacs.0c07300
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In summary, the computationally determined mechanism is
consistent with a reaction surface that traverses two spin states
(i.e., two-state reactivity). Importantly, this mechanism is
consistent with experimentally determined data, including the
magnitudes of AG* and AS* as well as the observed kinetic
isotope effect. An important insight from these studies is that S =
1/2 transition states are stabilized by the “#’-allyl like” geometry
of the alkene substrate.

The computational analysis also provides insight into the
unexpected stability of the neopentyl ligand (see above). While
reductive elimination of neopentane to provide Ph,B-
(‘Bulm),Fe(i*-allyl) (S = 3/2) from ?B is calculated to be
endergonic (AG = —14.2 kcal/mol), the transition state is
calculated to be thermally inaccessible (AG* > 40 kcal/mol).
Indeed, an LST calculation reveals that the transition state for
reductive elimination of neopentane is ~10 kcal/mol higher in
energy than for the reductive elimination of the isomerized
alkene. Since the orbital requirements for reductive elimination
are the same as those of oxidative addition (see above), this
reaction can only occur on the S = 1/2 surface. However, in
contrast to reductive elimination of the alkene, an “%*-allyl-like”
transition state for the reductive elimination of neopentane is
inaccessible. While the 7-allyl complex 2B’ provides another
entry point to the § = 1/2 surface, this species is also thermally
inaccessible. Finally, formation of neopentane requires C(sp°)-
H reductive elimination, which is less favorable than the C(sp*)-
H reductive elimination step leading to alkene isomerization.
Therefore, although neopentane reductive elimination is
thermodynamically favorable, kinetic barriers disfavor this
process.

Binding Studies. A key aspect of the proposed reaction
mechanism is that alkene binding only occurs on the § = 3/2
surface, whereas oxidative addition/reductive elimination only
occurs on the § = 1/2 surface. Thus, the reaction steps are
associated with distinct spin states, each with its own chemical
properties. This presents an opportunity to harness two-state
reactivity for selective catalysis.

Since all iron-based orbitals in the S = 3/2 state are at least
partially occupied, we anticipate that neutral o-donor ligands
will only weakly bind to the metal. High d-electron counts have
been shown to weaken the binding of additional ligands in low
coordinate 3d metal complexes.*® To provide support for this
hypothesis, the binding abilities of a series of 4-substituted
pyriéigines were evaluated according the equilibrium constant

Keq:
@N’Q By X /jN’QfBu
Ph, NK O J Keq Ph, N O J
o B —(Fe\ o x o5 _\/Fe\ ~ N
N= Ng, = N= N
\\,N\é N %N\é‘ 7

As demonstrated for the case of pyridine (X = H), significant
changes are observed in the UV—vis spectrum when the base is
titrated into a solution of 2 (Figure S28). These spectroscopic
changes allow K., to be determined according to a weak binding
model, providing K, = (5.4 £ 0.9) x 107%

[Z—PY] — Keq[PY]o
(2] Keq[PY]o + [N,]

(1)

where [2], and [py], are the initial concentrations of 2 of
pyridine, respectively.”* This study reveals that the binding of
pyridine to 2 is significantly less favorable than N, binding.
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Figure 5. Hammett parameters of 4-substituted pyridines linearly
correlate with the calculated log K, for 2 in THF.

There is a linear correlation between log K., and the Hammett
parameter (O’P)4O for a series of 4-substituted pyridines. The
positive slope (p = +2.8) indicates that electron-withdrawing
groups facilitate binding to 2 (Figure 5),*" counter to the typical
expectations for ligand binding. Remarkably, there is no
spectroscopic evidence that 4-dimethylaminopyridine
(DMAP) binds to 2, consistent with the Hammett plot
(predicted K,, = 4.1 X 107°). This binding is not kinetically
hindered, since reduction of the adduct between 1 and DMAP,
which can be generated in situ from 1 and excess DMAP,
provides 2 as the only iron-containing product.

A similar binding study for iron(II) complex 1 reveals a linear
correlation between log (K, ) and the Hammett parameter 6,,,,,
(Figure S26, p = —2.0). Thus, more basic 6-donor ligands bind
more strongly to 1, as expected from ligand field theory. Similar
observations have been made for other low-coordinate
transition metal complexes.****

The unusual ligand binding affinities of 2 can be rationalized
by considering the electronic structure of the hypothetical three-
coordinate, trigonal planar fragment [Ph,B-
("‘Bulm),FeCH,'Bu]~, which is formed by loss of N, from 2.
Interactions between this metal fragment and the added base
will determine the stability of the resultant complex. Notably,
the SOMO — 1 is appropriately oriented for a favorable o-
symmetry interaction with an additional ligand (Figure 6a).

a) b)
e oS ¢

Figure 6. Selected frontier orbitals of the three-coordinate fragment
[Ph,B(‘Bulm),FeCH,'Bu]~. (a) SOMO — 1; (b) SOMO — 4.

However, since this orbital is half-filled, this interaction will
necessarily be weak. Furthermore, the doubly occupied SOMO
— 4 has the appropriate symmetry for interaction with a 7-acidic
ligand (Figure 6b), with the lobes of this orbital oriented such
that the z-acidic ligand will occupy the apical position of the
resulting trigonal pyramidal iron complex. This electronic
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structure is consistent with the geometry observed for complex
2, where N, binds approximately perpendicularly to the trigonal
plane about the iron center. The negative charge of [Ph,B-
(‘Bulm),FeCH,Bu]~ will enhance these weak ¢-acid and good
m-base properties by increasing the orbital energies on the
complex. In addition, the negative charge will serve to
electrostatically repel incoming bases, further decreasing the
ligand binding affinities.

Alkene Isomerization in the Presence of o-Bases. The
poor afinity for o-bases suggests that 2 will be catalytically active
toward alkene isomerization in the presence of o-basic ligands.
Gratifyingly, high conversions to 2-hexene are observed in the
presence of excess triethylamine, N-methylpyrrole, 4-tert-
butylpyridine and pyridine,” bases that are often catalyst
poisons.** Some bases (e.g., butyronitrile, methylimidazole, and
4-CF;-pyridine) are observed to inhibit, although not
completely shut down catalysis."> Of the bases investigated,
only 4-methylthiazole completely inhibits isomerization (Table
S2).

The ability of 2 to catalyze alkene isomerization in the
presence of excess base was further investigated with DMAP,
whose strong o-donor abilities have been shown to inhibit other
homogeneous catalysts. Remarkably, there is no change in the
first-order rate constant (k) for the isomerization of 1-hexene
to 2-hexene in the presence of up to 0.75 M DMAP (Figure 7).

0 T T T T T T T 1
00 01 02 03 04 05 06 07 038

[DMAP] (M)

Figure 7. Catalytic isomerization of 1-hexene by 2 in the presence of
excess DMAP. No change in the first-order rate constant is observed.
Initial conditions: [2] = 50 mM; [1-hexene] = 0.5 M in THF-d,.

B CONCLUSIONS

A combined experimental and computational investigation of
the mechanism of alkene isomerization by the high spin (S = 3/
2) iron(I) complex 2 is most consistent with the reaction
occurring by the allyl pathway. These studies reveal that alkene
binding occurs on the S = 3/2 surface, whereas the transition
states that lead to alkene isomerization are on the § = 1/2
surface. Due to the high spin configuration, the binding of o-
bases on the S = 3/2 surface is generally weak, and consequently
2 has good immunity to these typical catalyst poisons.

While binding of the alkene substrate is likely enhanced by the
7-basic properties of 2, we anticipate that the concepts described
in this work can be extended to other catalytic processes. Thus,
transition-metal catalyzed reactions in which substrate binding
enables two-state reactivity may allow for selectivity based on
the reactivity properties of the two spin states. Catalytic
reactions that involve “spin acceleration” are expected to be

the most favorable in this regard due to the different spin states
of the reaction intermediates and reaction transition states.
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