
Encoding and Monitoring Responsibility Sensitive Safety Rules
for Automated Vehicles in Signal Temporal Logic

Mohammad Hekmatnejad, Shakiba Yaghoubi, Adel Dokhanchi, Heni Ben Amor, Aviral
Shrivastava, Lina Karam, and Georgios Fainekos

{mhekmatn,syaghoub,adokhanc,hbenamor,ashriva6,karam,fainekos}@asu.edu
Arizona State University

Tempe, AZ, USA

ABSTRACT

As Automated Vehicles (AV) get ready to hit the public roads unsu-
pervised, many practical questions still remain open. For example,
there is no commonly acceptable formal definition of what safe
driving is. A formal definition of safe driving can be utilized in
developing the vehicle behaviors as well as in certification and legal
cases. Toward that goal, the Responsibility-Sensitive Safety (RSS)
model was developed as a first step toward formalizing safe driving
behavior upon which the broader AV community can expand. In
this paper, we demonstrate that the RSS model can be encoded in
Signal Temporal Logic (STL). Moreover, using the S-TaLiRo tools,
we present a case study of monitoring RSS requirements on selected
traffic scenarios from CommonRoad. We conclude that monitoring
RSS rules encoded in STL is efficient even in heavy traffic scenar-
ios. One interesting observation is that for the selected traffic data,
vehicle parameters and response times, the RSS model violations
are not frequent.
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1 INTRODUCTION

Self-driving or Automated Vehicles (AV) promise to improve trans-
portation efficiency and safety by eliminating human biases and
driver errors [22]. Toward that goal, multiple technology and au-
tomotive companies have been working on different products to
achieve full or partial autonomy. Even though autonomy has the po-
tential to help save lives (directly and/or indirectly), software bugs
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and errors can negate the potential benefits of this technology. Bugs
lurk in the software primarily due to complex interactions between
sensors, vehicle dynamics, and software. In fact, the challenge is
so critical that some of the recent AV incidents and accidents can
be attributed in part to erroneous decisions by the software, e.g.,
[7, 16]. Similar challenges can be observed with Advanced Driver
Assistance Systems (ADAS), e.g., arbitrary emergency braking sys-
tem activation without an imminent collision [21]. On the other
hand, it is well understood that not all accidents can be avoided in
mixed-driver environments, e.g., a human driver losing control and
colliding with an AV [2].

This raises the question under what assumptions can we es-
tablish AV or ADAS safety? Early on, Loos et al. [17] established
assumptions under which an abstract model of an Adaptive Cruise
Control system can be inductively proved safe using a theorem
prover for hybrid dynamical systems. Such verified models can
also be used for monitoring compliance at runtime [20]. More re-
cently, Shalev-Shwartz et al. [27] provided a more extensive study
on the formalization of rules for a safe-driver model referred to as
Responsibility-Sensitive Safety (RSS) model. Namely, RSS attempts
to formalize the interpretation of the “Duty of Care" from Tort law
in different driving scenarios. The RSS model goes beyond the high-
way driving scenario introduced in [17] and includes urban and
rural road driving scenarios as well as simplified lateral dynamics
(not only longitudinal reasoning in each lane). The basic premise
of [27] is that if all the road vehicles drive according to the RSS
model, then all the vehicle interactions on the roads will be safe. In
other words, it is possible to formalize what behaviors an AV should
exhibit in order to never cause an accident. In addition, a formal
model like RSS can help us assign blame when an accident happens,
i.e., we can identify which vehicle violated the safety rules.

Works like [17, 27] establish provable safety under simplifying
assumptions. However, as also highlighted in [24], there is a seman-
tic gap between provable properties on simplified models and what
can be proved about the real system or even about a high-fidelity
model of the real system. For example, the simplest safety property
which can be formulated is longitudinal safety between two cars
on the highway. For this example, the assumption is that when the
distance between the two cars becomes potentially unsafe, then the
rear vehicle is allowed to accelerate up to a response time with an
acceleration less than a maximum value and after that, it should
slow down with at least a minimum braking deceleration that guar-
antees safety. If the assumption mentioned above is satisfied, then
safety is guaranteed.

However, the question then becomes how do we establish that
this assumption is satisfied on the real AV or a high-fidelity model
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of the AV under a range of weather, road, and vehicle conditions?
Toward that goal, in this paper, we formalize the RSS model assump-
tions [27] in Signal Temporal Logic (STL) [5, 18] as a way to encode
the requirements for safe vehicle operation in logic. With the RSS
assumptions encoded in assume-guarantee logical conditions in
STL, a range of verification and testing tools could be employed to
verify and validate AV compliance. For instance, [4], which encodes
similar safety rules to RSS [27] in STL, recommends using existing
STL based tools [5] for testing and monitoring. With an encoding
of safety rules in STL, requirements-driven testing frameworks
[6, 9, 23, 28] could be used to directly search for invalidating sce-
narios under probabilistic guarantees. Along the same lines, the
authors in [24] categorize and review all the existing hybrid dy-
namical system tools which could be used to verify the RSS rules
with more complex vehicle dynamics.

Contributions: In this paper, we demonstrate that the RSS
model can be encoded in assume-guarantee STL requirements. Due
to space limitations, we present in detail only two RSS scenarios,
but the rest of the scenarios can be similarly encoded in STL. To
motivate how the resulting STL requirements could be used in
practice, we monitor multiple real driving data scenarios offline
over some of the RSS rules written in STL [3]. Interestingly, it is
observed that the RSS rules are not frequently violated by human
drivers assuming fast reaction times. The code for the case study is
distributed with S-TaLiRo [25].

2 PRELIMINARIES

In the following, N is the set of natural numbers and R the set
of reals. For this work, we assume that there is a set of vehicles
V = {e, 1, . . . ,m}, where e stands for the ego1 vehicle and 1 to
m are the vehicles that the ego vehicle needs to consider in its
immediate environment. We view the behavior of each vehicle
v ∈ V as a discrete time signal (also referred to as trace in the
following) σ (v) : Nv → Y, where Nv ⊆ N is the domain of
the signal and (Y, d) is a space equipped with a generalized quasi-
metric d : Y×Y → V [26]. In this context,V is a lattice which can
be equipped with a complement (negation (-)) operator to define the
set of truth values for STL (see [1] for a more detailed discussion).
For example, if V = R≥0 � R≥0 ∪ {+∞}, then the truth values of
STL would be over the set R = R ∪ {±∞}.

We assume the same constant sampling rate ∆t for all the signals
σ (v) for each vehicle v as well as the same time domain Nv = N .
That is, the value of the signal at sample i , i.e., σ (v)(i), is sampled
at time i∆t . The results in this case study do not depend on the
assumption of a constant sampling rate, but this assumption greatly
simplifies the notation. Moreover, we drop the superscript (v) from
σ (v) since the discussion applies equally to all the vehicles under
consideration.

Typically, the space Y will depend on the fidelity of the vehicle
model under consideration, e.g., the model of chassis, tires, suspen-
sion, powertrain, etc. Even though the RSSmodel for some scenarios
considers rotational dynamics (besides translational), for the scenar-
ios in this case study, we will only consider a 6-dimensional space:
position on the plane, forward and lateral velocity, and forward and
lateral acceleration, i.e.,Y = R6. In case there exists other variables

1The term ego vehicle refers to the vehicle which is under consideration or evaluation.

characterizing the behavior of the vehicle, e.g., a Boolean signal
indicating whether the vehicle is in danger or not, then these can
also be included in Y.

2.1 STL and STL Robustness

Originally, Signal Temporal Logic (STL) [18] was defined to ex-
press bounded time requirements over continuous-time (CT) sig-
nals. However, the extension over discrete-time (DT) signals, which
we introduce here, is straightforward by using the standard Metric
Temporal Logic (MTL) semantics as presented in [11].

Definition 2.1 (STL Syntax for DT signals). Let x be a vector

variable, i.e., x = [x1, . . . ,xn ]
T , p(x) be a function over the reals, and

I be any non-empty interval of R≥0. The syntax for Signal Temporal

Logic (STL) formulas is provided by the following grammar:

ϕ ::= T | p(x) ≥ 0 | ¬ϕ | ϕ ∨ ϕ | ©I ϕ | ϕUIϕ

where T is true, ©I is the next sample operator, and UI is the until

operator.

For this case study, we will be using a quantitative interpreta-
tion of the STL semantics (see [5] for an overview). In order to
define quantitative semantics with a topological interpretation over
arbitrary predicates p(x) ≥ 0, we will need to use a generalized

quasi-metric d [26] (referred to simply as a metric for brevity in the
following) to define a signed distance function:

Definition 2.2 (Signed Distance). Let x ∈ X be a point, S ⊆ X

be a set and d be a metric. Then, we de�ne the Signed Distance from

x to S to be

Distd(x , S) :=

{

− inf{d(x ,x ′) | x ′ ∈ S} if x � S

inf{d(x ,x ′) | x ′ � S} if x ∈ S

Intuitively, the distance function returns positive values when x

is in the set S and negative values when x is outside the set S . The
metric d must be at least a generalized quasi-metric as described
in [1] which also includes the case where d is a metric as it was
introduced in [11]. We should point out that we use the extended
definition of supremum (�) and infimum (�). That is to say, the
supremum of the empty set is defined to be the bottom element of
the domain, while the infimum of the empty set is defined to be
the top element of the domain. For example, when V = R≥0, then
inf ∅ := +∞.

We review STL semantics that map a formula φ and a trace σ
to a value drawn from a lattice V � V ∪ {−v | v ∈ V}. In this
work, even though we need an arbitrary lattice of truth valuesV
to treat Boolean signals, in most of the examples, we assume that
V = R≥0 (with the usual negation (-) over the reals). We denote
the robust valuation of the formula φ over the trace σ at sample
i by [[φ]]d(σ , i). The semantics for a predicate p(x) ≥ 0 evaluated
at time i over trace σ is defined as the distance between σ (i) and
the set [[p(x) ≥ 0]] � {x | p(x) ≥ 0}. Intuitively, this distance
represents how robustly the point σ (i) lies within (or is outside) the
set [[p(x) ≥ 0]]. If this distance is zero, then the smallest perturbation
of the point σ (i) can affect the outcome of σ (i) ∈ [[p(x) ≥ 0]].

Definition 2.3 (Discrete-Time Robust Semantics). Consider
an extended generalized quasi-metric space (Y, d). Let σ : N → Y
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be a trace, then the robust semantics of an STL formula φ with respect

to σ at time sample i is de�ned as:

[[T]]d(σ , i) :=
⊔

V := �

[[p(x) ≥ 0]]d(σ , i) := Distd(σ (i), [[p(x) ≥ 0]])

[[¬φ1]]d(σ , i) := −[[φ1]]d(σ , i)

[[φ1 ∨ φ2]]d(σ , i) := [[φ1]]d(σ , i) � [[φ2]]d(σ , i)

[[©Iφ1]]d(σ , i) :=
{

[[φ1]]d(σ , i + 1) if i + 1 ∈ N and (i + 1)∆t ∈ (i∆t + I)

−� � ⊥ otherwise (i.e., the bottom element)

[[φ1UIφ2]]d(σ , i) :=

⊔

i′∈{j ∈N | j∆t ∈(i∆t+I)}

(

[[φ2]]d(σ , i
′) �

�

i≤i′′<i′

[[φ1]]d(σ , i
′′)

)

where � is the top element of the lattice, and t + I = {t ′′ | ∃t ′ ∈

I . t ′′ = t + t ′}.

Intuitively, the requirement ©Iφ states that φ should be true
at the next sample, which should occur some time in the physical
time interval I. For example, consider ∆t = 0.1 and the formula
ψ = ©[0,0.1]T, thenψ is true (�) at sample i since (i + 1)∆t − i∆t =

∆t ∈ [0, 0.1]. However, for ∆t = 0.2, ψ would evaluate to false
(⊥). The operator φ1UIφ2 states that φ2 should be satisfied at
some time in the interval I and until then φ1 should hold. The
other common Boolean and temporal operators can be defined as
syntactic abbreviations (see [11, 18]). For example, �Iϕ ≡ TUIϕ

stands for eventually at some time in the time interval I, ϕ should
be true, and �Iϕ ≡ ¬�I¬ϕ stands for always during the interval
I, ϕ should be true. When I = [0,∞), we will be dropping I from
the notation, e.g., �[0,∞)ϕ ≡ �ϕ.

An important operator that we will be using in this work is
the release operator φ1RIφ2 ≡ ¬(¬φ1UI¬φ2), which states that
φ2 should always hold during the time interval I up to (but not
including) the time when φ1 becomes true. In fact, we will need a
slightly modified version of the release operator R which does not
require φ2 to happen at all if φ1 has happened in the past:

[[φ1RIφ2]]d(σ , i) :=

�

i′∈{j ∈N | j∆t ∈(i∆t+I)}

(

[[φ2]]d(σ , i
′) �

⊔

i≤i′′≤i′

[[φ1]]d(σ , i
′′)

)

We refer to the above operator as non-strict release operator. In fact,
any non-strict release formula such as φ1RIφ2 can be rewritten as
φ1RI (φ1 ∨ φ2) using the release operator.

In the following, we let (σ , i) |= φ denote the standard Boolean
STL satisfiability. Note that Boolean satisfiability reduces to an
application of Def. 2.3 wherein the metric d is the discrete metric.
It is easy to show that if the signal satisfies the property, then its
robustness is non-negative and, similarly, if the signal does not
satisfy the property, then its robustness is non-positive [11]. The
robustness [[φ]]d(σ , i) can be computed in polynomial time in the
size of the formula and the time domain N of σ (see [5] for different
computation algorithms).

2.2 Responsibility-Sensitive Safety (RSS)

RSS is a safety modeling paradigm for autonomous driving cars
which is based on responsibilities. In structured roads, the premise
of RSS is that although a self-driving car might be in a car acci-
dent, it never causes an accident. RSS formalizes the following four
common-sense rules [27]:

• “Keep a safe distance from the car in front of you, so that if
it brakes abruptly you will be able to stop in time”

• “Keep a safe distance from cars on your side, and when
performing lateral manoeuvres and cutting into another
carâĂŹs trajectory, you must leave the other car enough
space to respond”

• “You should respect right-of-way rules, but right-of-way is
given not taken”

• “Be cautious of occluded areas, for example, a little kid might
be occluded behind a parked car”

In this case study, we demonstrate the formalization in temporal
logic of only the first two rules for monitoring real traffic scenarios,
which are taken from the CommonRoad library.We specifically used
real traffic scenarios, because autonomous vehicle driving datasets
do not usually have ground truth data for the non-autonomous
vehicles.

2.3 CommonRoad

CommonRoad is a composable framework for benchmarking mo-
tion planning on roads [3]. It provides an efficient format for storing
all the necessary driving data in different driving scenarios. It is
composed of the scenario data (road network, static and dynamic
obstacles and the planning problem for the ego vehicle), ego vehicle
model, and cost functions. CommonRoad scenarios are represented
in XML files [15], and multiple real and handcrafted scenarios are
available online on the CommonRoad website2. In this work, some
of the real driving scenarios are monitored and tested against RSS
specifications.

3 RSS FORMALIZATION PROBLEM

3.1 From Cartesian to Lane-Based Coordinate
System

CommonRoad uses a global Cartesian coordinate system for local-
izing objects in scenarios, while safety requirements in RSS are
defined in a lane-based coordinate system. In [27], the authors
proposed a transformation from global positions in a Cartesian
system to a lane-based coordinate system, which we use in this
work (reviewed below).

In their model, the lane’s center is represented as a smooth
curve r formed as a concatenation of linear or arc-shaped pieces
r (1), ...., r (K ). The curve r can be represented as r : [Ymin ,Ymax ] →

R
2 that maps a “longitudinal” position Y ∈ [Ymin ,Ymax ] ⊂ R into

(x ,y) ∈ R2, such that x is on the global x − axis , and y is on the
global y − axis . Letw : [Ymin ,Ymax ] → R+ be a continuous lane-
width function that maps the longitudinal position Y into a positive
width value and let r⊥(Y ) denotes the normal unit-vector at the
position Y . The subset of the points on the plane that fall into the

2https://commonroad.in.tum.de
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lane is given by [27]:

D = {r (Y ) + αw(Y )r⊥(Y ) | Y ∈ [Ymin ,Ymax ],α ∈ [−
1

2
,+

1

2
]}

The assumption in the above formula is that for any arc-shaped
lane-piece r (k ) with radius Rk , the width of the lane along r (k )

does not exceed Rk/2. Note that what we refer to as a plane here is
not a restriction, and all the definitions are extendable to surfaces.
For points (x ′,y′) belonging to the subset D, the transformation
from the global coordinates (x ′,y′) to the lane coordinates (Y ′

,α ′)

is γ : D → R2 defined as [27]:

γ (x ′,y′) = {(Y ′
,α ′) | Y ′ ∈ [Ymin ,Ymax ],α

′ ∈ [−
1

2
,+

1

2
],

(x ′,y′) = r (Y ′) + α ′w(Y ′)r⊥(Y ′)}.

In this case, the term lane-based coordinate system is used to refer to
γ (D) = [Ymin ,Ymax ]×[−1/2,+1/2] [27]. Letγ (x ′,y′)y , andγ (x ′,y′)α
denote the first coordinate Y ′ and the second coordinate α ′. Where
it is needed, we denoted γ (x ′,y′)x to refer to α ′w(Y ′).

For two cars c1 and c2 that are on the same lane, it is desirable
to define γ such that their logical ordering is preserved:

• If c1 is behind c2, then γ (x1,y1)y < γ (x2,y2)y , and
• If c1 is to the left of c2, then γ (x1,y1)α < γ (x2,y2)α .

If we use w(Y ′)-units to represent the width of curves in the
above coordinate system, then the lateral movement on the curve
falls in α ∈ [−1/2,+1/2]. The lateral argument in the lane-based
coordinates captures the notion of lateral maneuvers in widening/-
narrowing lanes. In these lanes, if the car moves on one of the
boundaries, it is not considered to have a lateral movement, even
though it gets closer to/farther from the lane center. Longitudi-
nal/lateral velocity/acceleration are the first/second derivatives of
the longitudinal/lateral positions.

In CommonRoad the road network is composed of atomic, in-
terconnected drivable road segments called lanelets. Lanelets are
defined by their left and right bounds, which are represented by
an array of points (a polyline)[3]. As a result, roads in Common-
Road consist of linear pieces r (k ), and they are almost everywhere
smooth. For points on the intersection of consecutive linear seg-
ments, circular approximations can be used to convert from the
Cartesian coordinate to the lane-based coordinate system. The di-
rected curve in the middle of the lane can be calculated using the
lanelet’s left and right boundaries.

3.2 Safe Longitudinal and Lateral Distances

Definition 3.1 (Safe Longitudinal Distance —same direc-
tion (Def. 1 in [27])). A longitudinal distance between a car cb that

drives behind another car cf , where both cars are driving at the same

direction, is safe w.r.t. a response time ρ if for any braking of at most

alon
maxBr

, performed by cf , if cb will accelerate by at most alon
maxAcc

during the response time, and from there on will brake by at least

alon
minBr

until a full stop then it will not collide with cf .

The below formula (Lemma 2 in [27]) calculates the safe distance
between cars cb , cf w.r.t. the parameters in the above definition:

dmin,lon =max(db,preBr + db,brake − df ,brake , 0),

db,preBr = υ
lon
b

ρ + 1
2a

lon
maxAcc

ρ2,

db,brake =
(υ lon
b
+ρalon

maxAcc
)2

2alon
minBr

, df ,brake =
υ lon
f

2

2alon
maxBr

In the above equation, the maximum distance that two cars can tra-
verse before they stop without a collision is db,preBr +db,brake for
the rear car and df ,brake for the front car. Therefore, the minimum
needed distance for them not to collide is the total longitudinal
movement of the rear car minus the longitudinal movement of the
front car for the same period of time. Obviously, if the result became
negative, then a collision happened.

Definition 3.2 (Safe Lateral Distance (Def. 6 in [27])). The
lateral distance between cars cl , cr driving with lateral velocities vl ,

vr is safe w.r.t. parameters ρ,alat
minBr

,alat
maxAcc

, and μ, if during the

time interval [0, ρ] the two cars will apply lateral acceleration of

alat
maxAcc

toward each other, and after that the two cars will apply

lateral braking of alat
minBr

, until they reach zero lateral velocity, then

the �nal lateral distance between them will be at least μ.

For calculation of the safe lateral distance we use the Lemma 4 in
[27], by which for two cars cl , cr the minimum safe lateral distance
between them where cl is to the left of the cr is

dmin,lat = μ +max(dl,preBr + dl,brake

− (dr,preBr − dr,brake ), 0),

dl,preBr =
υ lat
l
+υ lat

l,ρ

2 ρ, dl,brake =
υ lat
l,ρ

2

2alat
minBr

,

dr,preBr =
υ latr +υ latr ,ρ

2 ρ, dr,brake =
υlatr ,ρ

2

2alat
minBr

,

υlat
l,ρ
= υlat

l
+ ρalat

maxAcc
, υlatr,ρ = υ

lat
r − ρalat

maxAcc

In the above equation, the maximum distance that two cars can
traverse before they stop without a collision is dl,preBr + dl,brake
for the left car, and dr,preBr −dr,brake for the right car. Therefore,
the minimum needed distance for them not to collide is the total
movement of the left car (toward the positive latitude axis) minus
the movement of the right car (toward the positive latitude axis)
for the same period of time.

Definition 3.3 (Dangerous Longitudinal Situation and
Dangerous Threshold time3 (Definition 3 in [27])). Time t is

dangerous for cars cb , cf if the distance between them at time t is

non-safe (according to De�nition 1 or De�nition 2 in [27]). Given a

dangerous time t , its dangerous threshold time, denoted t lon
b

, is the

earliest longitudinally dangerous time such that all the times in the

interval [t lon
b
, t] are dangerous. In particular, an accident can only

happen at time t if it is dangerous, and in that case, we say that the

dangerous threshold time of the accident is the dangerous threshold

time of t .

Next, we refer to what are “proper responses” to the dangerous
situations.

3Also called Blame Time in earlier versions of [27]
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Definition 3.4 (Proper Response to Dangerous Longitudi-
nal Situations (Definition 4 in [27]) —same direction). Let t
be a dangerous time for cars cb , cf and let t lon

b
be the corresponding

dangerous threshold time. The proper behavior of the two cars (and

say that cb is the rear car) is to comply with the following constraints

on the longitudinal speed:

(1) cb acceleration must be at most amaxAcc during the interval

[t lon
b
, t lon
b
+ ρ) and at most −aminBr from time t lon

b
+ ρ until

reaching a safe longitudinal situation. After that, any non-

positive acceleration is allowed.

(2) cf acceleration must be at least −amaxBr until reaching a safe

longitudinal situation. After that, any non-negative accelera-

tion is allowed.

Lemma 3.1 (STL Translation of Def. 3.4 – Longitudinal
Safety Specification). An STL formula which formalizes Def. 3.4

of proper response to a dangerous longitudinal situation at dangerous

threshold time t lon
b

is formulated as:

φlonresp ≡ �

(

(Slon
b,f

∧ ©¬Slon
b,f

) → ©P lon
)

P lon ≡
(

Slon
b,f

R[0,ρ)(A
lon
b,maxAcc

∧Alon
f ,maxBr

)∧

Slon
b,f

R[ρ,+∞)(A
lon
b,minBr

∧Alon
f ,maxBr

)
)

where the de�nitions of the predicates are:

Slon
b,f

≡ γ (xf ,yf )y − γ (xb ,yb )y − dmin,lon > 0,

Alon
b,maxAcc

≡ alon
b

≤ alonmaxAcc ,

Alon
b,minBr

≡ alon
b

≤ −alonminBr ,

Alon
f ,maxBr

≡ alon
f

≥ −alonmaxBr ,

and (xb ,yb ), and (xf ,yf ) are the Cartesian coordinates of cb and cf ,

respectively.

The above formula is an assume-guarantee requirement in which
the antecedent of the implication (→) becomes true if a longitudi-
nally safe situation changes to the longitudinally dangerous situa-
tion. The consequent states what needs to be done immediately after
the unsafe situation until the hazardous situation is resolved. The
antecedent is a conjunction of two formulas representing a moment
(dangerous threshold time) when the longitudinal distance between
two cars is safe, but immediately after that, it becomes unsafe. The
consequent starts with a next operator for which two formulas
must hold. The first formula, Slon

b,f
R[0,ρ)(A

lon
b,maxAcc

∧Alon
f ,maxBr

),

is a release requirement in [0, ρ). It necessities that the maximum
allowed acceleration for the rear vehicle and the maximum allowed
deceleration for the front vehicle should be observed up to time ρ
or until the distance between the vehicles is safe again. The other
formula, Slon

b,f
R[ρ,+∞)(A

lon
b,minBr

∧Alon
f ,maxBr

), is also a release re-

quirement. It necessities that the minimum allowed deceleration
for both vehicles should be observed after time ρ up to the time
that the distance between the vehicles is safe again.

Definition 3.5 (Dangerous Lateral Situation and Danger
Threshold time (Definition 7 in [27])). Time t is laterally dan-

gerous for cars cl , cr if the lateral distance between them at time

t is non-safe (according to De�nition 6 in [27]). Given a laterally

dangerous time t , its Lateral Danger Threshold time, denoted t lat
b

,

is the earliest laterally dangerous time such that all the times in the

interval [t lat
b
, t] are laterally dangerous. In particular, an accident

can only happen at time t if it is laterally dangerous, and in that case,

we say that the laterally threshold time of the accident is the laterally

Danger Threshold time of t .

Definition 3.6 (Lateral Proper Response (Definition 8 in
[27])). Let t be a laterally dangerous time for cars cl , cr , let t

lat
b

be the corresponding laterally Danger Threshold time, and w.l.o.g.

assume that at that time cl was to the left of cr . The laterally proper

response of the two cars is to comply with the following constraints

on the lateral speed:

(1) If t ∈ [t lat
b
, t lat
b
+ ρ) then both cars can do any lateral action

as long as their lateral acceleration, a, satis�es |a | ≤ alat
maxAcc

.

(2) Else, if t ≥ t lat
b
+ ρ:

• Before reaching μ-lateral-velocity of 0 (see De�nition 5 in

[27]), cl must apply lateral acceleration of at most −alat
minBr

and cr must apply lateral acceleration of at least alat
minBr

,

• After reaching μ-lateral-velocity of 0, cl can have any non-

positive μ-lateral-velocity and cr can have any non-negative

μ-lateral-velocity.

Lemma 3.2 (STL Translation of Definition 8 in [27] – Lat-
eral Safety Specification). An STL formula which formalizes Def.

3.6 of proper response to a dangerous lateral situation at dangerous

threshold time t lat
b

is:

φlatr esp ≡ �

(

(Slat
l,r

∧ ©¬Slat
l,r

) → ©P lat
)

where P lat is de�ned as

P lat ≡
(

P lat0,ρ ∧ P
lat,1
ρ,∞ ∧ P

lat,2
ρ,∞

)

and the subformulas P lat0,ρ , P
lat,1
ρ,∞ and P lat,2ρ,∞ are de�ned as

P lat0,ρ ≡ Slat
l,r

R[0,ρ)(A
lat
l,maxAcc

∧Alatr,maxAcc )

P
lat,1
ρ,∞ ≡

(

Slat
l,r

∨V lat
l,stop

)

R[ρ,+∞)A
lat
l,minBr

∧

(

Slat
l,r

∨V lat
r,stop

)

R[ρ,+∞)A
lat
r,minBr

P
lat,2
ρ,∞ ≡ Slat

l,r
R[ρ,+∞)

(

V lat
l,stop

→ ©�(V lat
l,neд

)
)

∧

Slat
l,r

R[ρ,+∞)

(

V lat
r,stop → ©�(V lat

r,pos )
)

and the de�nitions of the predicates are:

Slat
l,r

≡ γ (xr ,yr )α − γ (xl ,yl )α − dmin,lat > 0,

Alat
l,maxAcc

≡ |alat
l

| ≤ alatmaxAcc , A
lat
r,maxAcc ≡ |alatr | ≤ alatmaxAcc ,

Alat
l,minBr

≡ alat
l

≤ −alatminBr , A
lat
r,minBr ≡ alatr ≥ alatminBr ,

V lat
l,stop

≡ υ
μ−lat

l
= 0, V lat

r,stop ≡ υ
μ−lat
r = 0,

V lat
l,neд

≡ υ
μ−lat

l
≤ 0, V lat

r,pos ≡ υ
μ−lat
r ≥ 0,

and (xl ,yl ) and (xr ,yr ) are the Cartesian coordinates of cl and cr ,

respectively.
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The above formula is an assume-guarantee requirement, inwhich
the antecedent of the implication (→) becomes true if a laterally
safe situation changes to the laterally dangerous situation. The con-
sequent is what should be done immediately until the hazardous
situation becomes safe again. The antecedent is a conjunction of
two formulas representing a moment (dangerous threshold time)
that the lateral distance between two cars is safe, but immediately
after that, it becomes unsafe. The consequent starts with a next
operator for which three formulas must hold. The first formula P lat0,ρ
is a release requirement, which states that in [0, ρ) the maximum
allowed acceleration should be respected by both cars immediately
up to the time ρ or the time that the distance between the vehicles

is safe again. The second formula P lat,1ρ,∞ is a conjunction of two
release requirement, which states that from time ρ, the minimum
allowed deceleration for both vehicles should be observed up to the
time that the distance between the vehicles is safe again or vehicles
μ-lateral-velocity becomes zero. We separated release formulas for
each vehicle because we want both cars to apply their brakes during
a dangerous situation even if one car reached zero μ-lateral-velocity.
Also, any vehicle that reaches zero μ-lateral-velocity has to satisfy
one of the release formulas in the third formula. In the third formula
P
lat,2
ρ,∞ , each of the release formulas has an implication sub-formula.

The implications require that, at the next time, the left vehicle at-
tains a non-positive μ-lateral-velocity and the right vehicle attains
a non-negative velocity until they reach a safe lateral distance.

Definition 3.7 (Dangerous Situation andDangerous Thresh-
old time (Definition 9 in [27])). Time t is dangerous for cars c1,

c2 if it is both longitudinally and laterally dangerous (according to

De�nition 3 and De�nition 7 in [27]). Given a dangerous time t, its

dangerous threshold time, denoted tb , ismax{t lon
b
, t lat
b

} where t lon
b

,

and t lat
b

are the longitudinal and lateral dangerous threshold times,

respectively. In particular, an accident can only happen at time t if

it is dangerous, and in that case the dangerous threshold time of the

accident is the dangerous threshold time of t .

Definition 3.8 (Basic Proper Response to Dangerous Situa-
tions (Definition 10 in [27])). Let t be a dangerous time for cars

c1, c2 and let tb , t
lon
b

, t lat
b

be the corresponding dangerous threshold

time, longitudinal dangerous threshold time, and lateral dangerous

threshold time, respectively. The basic proper response of the two cars

is to comply with the following constraints on the lateral/longitudinal

speed:

• If tb = t lon
b

, then the longitudinal speed is constrained accord-

ing to Def. 3.4.

• If tb = t lat
b

, then the lateral speed is constrained according to

Def. 3.6.

Lemma 3.3 (STL Translation ofDef. 3.8 forMonitoring—Basic
Proper Response Specification). Longitudinal and lateral safety

requirement for an ego vehicle is formulated as

φ
lat,lon
resp ≡ φlon ∧ φlat ∧ φlat,lon

φlon ≡ �

(

(

¬Slat
l,r

∧ Slon
b,f

∧ ©(¬Slat
l,r

∧ ¬Slon
b,f

)
)

→ ©P lon
lat

)

φlat ≡ �

(

(

¬Slon
b,f

∧ Slat
l,r

∧ ©(¬Slat
l,r

∧ ¬Slon
b,f

)
)

→ ©P lat
lon

)

φlat,lon ≡

�

(

(

Slat
l,r

∧ Slon
b,f

∧ ©(¬Slat
l,r

∧ ¬Slon
b,f

)
)

→ ©(P lat
lon

∨ P lon
lat

)

)

where P lat
lon

and P lon
lat

are modi�ed versions of P lat and P lon where the

propositions Slat
l,r

and Slon
b,f

are replaced with the formula (Slat
l,r

∨Slon
b,f

).

Some important remarks are in order for the noticeable differ-
ences between Def. 3.8 and Lemma 3.3.

Remark 3.1. At a �rst reading, Lemma 3.3 may appear to have

more conditions than the original de�nition Def. 3.8. Lemma 3.3

determinizes the conditions and respective proper responses of Def. 3.8.

Under a non-deterministic model of computation, if both conditions

in Def. 3.8 became true at the same time, then the consequents would

be checked for satisfaction non-deterministically and no additional

case is required. Under a deterministic model of computation, if both

conditions in Def. 3.8 became true, then we need to explicitly check

for satisfaction of the disjunction of the consequents.

It is important to note that in continuous time, the event tb = t lon
b
=

t lat
b

is a measure zero event, so in practice such a case would never be

observed in real driving scenarios. However, any implementation that

monitors the requirement φlat,lonresp would use a digital clock (sampler),

and, hence, the satisfaction of both conditions in Def. 3.8 is a possible

event. In fact, in our case study, we observed many cases where both

conditions were activated.

Remark 3.2. Irrespective of whether a deterministic or a non-

deterministic model of computation is used, Def. 3.8 states that the

proper response for either violation is de�ned by the proper response

of Def. 3.4 (Lemma 3.1) or of Def. 3.6 (Lemma 3.2). However, Def.

3.4 (and, hence, Lemma 3.1) considers only longitudinal safety and

does not explicitly consider the possibility that the vehicle might later

become laterally safe. Similarly, Def. 3.6 (Lemma 3.2) only considers

lateral safety. The updated formulas P lat
lon

and P lon
lat

in φlat , φlon

and φlat,lon (as opposed to the original formulas P lat and P lon in

φlatr esp and φlonresp , respectively) are needed, because, now, we consider

both longitudinal and lateral safety at the same time. For example, if

the rear vehicle becomes longitudinally unsafe after being laterally

unsafe, then in the future it may become safe again by either achieving

lateral or longitudinal safety. The updated formulas P lat
lon

and P lon
lat

capture this possibility by releasing the safety requirements when

(Slat
l,r

∨ Slon
b,f

) becomes true.

Remark 3.3. De�nition 3.8 and its STL translation in Lemma 3.3

do not cover the cases in which both vehicles start from a longitu-

dinally and laterally dangerous situation. The below is a revision

of the Lemma 3.3 with a new conjunction formula φ¬lat,¬lon that
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completes the translation.

φ
lat,lon
resp ≡ φlon ∧ φlat ∧ φlat,lon ∧ φ¬lat,¬lon

φ¬lat,¬lon ≡ (¬Slat
l,r

∧ ¬Slon
r,f

) → ©(P lat
lon

∨ P lon
lat

)

In Section 5, we will use the above specification rule, i.e., Lemma
3.3 and Remark 3.3, for monitoring real scenario traffic with respect
to the proper response requirement.

The STL formula P lat
lon

is the conjunction of P lat0,ρ , P
lat,1
ρ,∞ , and

P
lat,2
ρ,∞ formulas, in each, the main operators are non-strict release

operators. In order for them to be satisfiable, the right-hand side
subformula must be satisfiable all the time, or up to the time that
the left-hand side becomes satisfiable. The left-hand side of all the
formulas is a disjunction of lateral and longitudinal safety require-

ments, except for P lat,1ρ,∞ . In this formula, the disjunctive formula
on the left-hand side of the first and second release operators have
other propositionsV lat

l,stop
andV lat

r,stop , respectively. In the case that

an ego car does not perform any lateral maneuver or does the lon-
gitudinal maneuver, then the μ-lateral-velocity is zero which then
stops the monitoring process. In other words, there are no more
requirements concerning the cause of the RSS violation.

Remark 3.4. RSS rules do not de�ne control logic, but rather re-
quirements for safety. As long as the RSS requirements are not violated,

then any controller could be designed.

RSS rules are not explicitly designed as controller rules. There
is no emergency action as a command, such as braking, acceler-
ating, or steering. All the predicates in the rules are referring to
sensor measurements, not activation commands. Therefore, these
rules are used for monitoring the closed loop – with controller –
behavior of traffic participants rather than giving them commands
or controlling them. It is important to note that still one can use
the monitor while there is a controller in place. For example, the
robustness output values of the monitor can be fed as inputs to the
learning component of a driving controller. The trivial goal is to
penalize the controller appropriately where the robustness values
are negative and vice versa for the positive values.

4 RSS ROBUSTNESS THROUGH STL

In this section, we highlight the connection between the notion of
STL robustness in monitoring a vehicle’s behavior with respect to
the surrounding traffic and the RSS model. The RSS rules require
pairwise monitoring of the interactions between the ego vehicle
and the vehicles in its surrounding environment. Given a pair of
vehicles behaviors σ (e) and σ (v), then the STL formulas introduced
in Sec. 3 can be evaluated for satisfaction over the combined vector
[(σ (e))T (σ (v))T ]T . Since the STL formulas are interpreted using
the robust semantics and there is a direct mapping between STL
formulas and RSS rules, the robustness computed for the STL for-
mulas implies a robustness interpretation for the RSS rules as well.
Namely, a positive value for the STL formula implies satisfaction
of the RSS rules, while a negative value implies violation of the
RSS rules. The greater the value of the robustness, the less likely is
to violate the RSS requirements and have an accident. Moreover,
the robustness value for an STL specification translates to physical
robustness values in terms of accelerations, velocities, or distances

of the two vehicles depending on the specification. In other words,
after evaluating the specification robustness, we can know exactly
why a specification was satisfied or violated, e.g., an appropriate
braking force was not applied. Besides, we can infer when a vehicle
behavior came close to a violation, e.g., the distance between two
vehicles was almost zero.

5 S-TALIRO APPLICATION ON REAL
FREEWAY TRAFFIC DATA

By formalizing the RSS requirements as STL formulas, we can mon-
itor the behavior of self-driving cars and measure their compliance
against the RSS specifications. We used the semantics in Def. 2.3 to
compute the robustness of some real traffic scenarios in Common-
Road. Specifically, we only considered highway traffic scenarios
which by design do not include intersections and wherein all the
self-driving cars are moving in the same direction (from west to
east). Note that our approach is not restricted to the presented
scenarios, and it applies to more general traffic scenarios that are
discussed in [27]. We used DP-TaLiRo [12, 25] as our offline moni-
toring tool for computing the robustness of the traffic scenarios.

We selected a scenario from CommonRoad (2017a) in which there
are six lanes (one of which was empty, so we omitted it) beginning
from west and stretching to east. There are 43 vehicles that all move
in the same direction as the lanes. All the vehicles except two of
them, start and end at the same lane during the monitoring. The
traffic scenario and the trajectories of the vehicles are shown in
Figure 1 (some trajectories are omitted to reduce traffic congestion).
Vehicles that are identified as obs-775 and obs-756 changed their
lane some time later in their trajectories (e.g. see the trajectory of
obs-775 in Fig. 2). We chose vehicles obs-775 and obs-779 along with
their trajectories for the case-study presented in this section. In the
remainder of this section, obs-775 and obs-779 are referred to as
the front car and the rear car, respectively. We only focus here on
monitoring longitudinal safety aspects of the trajectories according
to Def. 3.4 as the lateral safety aspects can be presented similarly.
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Figure 1: A traffic scenario taken from CommonRoad.

In the following discussion, the time units are in seconds, and
the spatial coordinates are in meters. For the rear car, the trajectory
start time is ts = 1.3 and end time is tf = 8, and for the front car they
are ts = 0 and tf = 8. Each car’s trajectory is sampled by delta-time
∆t = 0.1. The start position of the rear car is (xb = −16.33,yb =
−0.59) and for the front car, it is (xf = −5.59,yf = 2.71). The rear
car started from lane 3, and the front car started from lane 2. In
this longitudinal safety monitoring, we observed the world from
the ego car’s point of view that is the rear car. For the ego car, at
each time, we monitor a car that is moving in the ego car lane if
it is longitudinally the nearest car in front of the ego car. In our
example, in the beginning, car obs-775 is driving in lane 2, which
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Figure 2: Two trajectories from which one vehicle (dashed-

line and colored cyan) changed its lane from 2 to 3 and

crossed the border lines (marked the exit and entry of the

border crossing by asterisks). The trajectory of obs-779 is the

one corresponding to the ego vehicle in the case-study, and

the trajectory of obs-775 in magenta is for the front car in

the case-study. The lanes are tagged with numbers from 1 to

5, and their center line is represented as white-dashed lines.

Table 1: The parameter values in the case-study and experi-

ments.

parameter value parameter value

ρ 0.5 sec μ 0.4m
δt 0.1 sec alon

minBr
4m/s2

alon
maxAcc

5.5m/s2 alat
minBr

3m/s2

alon
maxBr

10m/s2 alat
maxAcc

3m/s2

excludes it from being monitored for evaluating the longitudinal
safety of ego car obs-779. The same applies if we consider obs-
775 as the ego car. However, after 4.5 seconds of driving along its
trajectory, the front car obs-775 changes its lane to 3 in front of
the car obs-779. At this time, the position of the rear car obs-779
is (xb = 16.86,yb = 0.25), and the position of the front car obs-
775 is (xf = 36.36,yf = 2.82). We use γ (x ′,y′)x to refer to the
lateral distance of position (x ′,y′) from the center-line of its lane.
In this work, the above lateral distance definition and γ (x ′,y′)α are
interchangeable as long as the width of the lanes are equal for all the
trajectories in a scenario. At time t = 4.5, the longitudinal distance
of the rear car from the start of lane 3 is 34.72 meters, and for the
front car, it is 54.37 meters. The new longitudinal distances qualify
the rear car (shorter longitudinal distance) as the ego car; therefore,
in this instance, if the antecedent of φlon in Lemma 3.3 is satisfiable,
then the proper response P lon

lat
is monitored. We calculated the

speed and acceleration of cars with a sampling interval of ∆t = 0.1
second.

5.1 Analysis of Unsafe Trajectories

The STL formula φlon in Lemma 3.3 is used for monitoring the
longitudinal safety in this case-study. For this work, we computed
the safe lateral distances for the monitored cars based on Def. 3.2
(Def. 6 in [27]). For longitudinal safety monitoring, we built multi-
ple signals over time to represent safe longitudinal distances, safe
lateral distances, rear car accelerations, and front car accelerations.
These constitute the information we needed for monitoring lon-
gitudinal safety of both cars in our case-study based on Def. 3.7.
For computing the minimum safe lateral/longitudinal distances, we
used the parameters in Table 1.

We refer to two cars’ lateral/longitudinal distances subtracted
from their required safe lateral/longitudinal distances as lateral/-
longitudinal robustness safety. As illustrated in Fig. 3, the lateral
robustness safety between the two cars are negative through the
whole monitoring duration in our example. Similarly, their longi-
tudinal robustness safety are negative at all times except for two
short intervals [5.4, 5.4] and [5.7, 5.8] in which they are positive.
This caused the antecedent of the implication for the longitudinal
safety requirement φlon in Lemma 3.3 to become active two times
as it can be observed in the top diagram in Fig. 4. Next, the signals
need to be monitored for the consequent of the implication, which
is ©P lon

lat
in Lemma 3.3, but in this example, we used ©P lon in

Lemma 3.1 as all the lateral robustness safety values are negative
in this case study.

Unsafe Behavior: The second and third diagrams in Fig. 4 rep-
resent the evaluation of the two release subformulas in P lon . The
first subformula shown in the second subplot of Fig. 4 was true
for-all-times, but the second one toggled between true and false
three times as represented in the third subplot of Fig. 4. At the first
dangerous time t = 5.4, both subformulas are evaluated to true
until t = 5.7 for which the longitudinal distance became safe; there-
fore, the situation became safe. However, for the second dangerous
time t = 5.8, the second release and both longitudinal and lateral
robustness safeties are false during the interval [5.9, 7.5); therefore,
the whole formula is false as can be observed in the last diagram
in Fig. 4. The acceleration chart in Fig. 3 represented the cars’ ac-
celerations during the time, in which the ego car never applied the
minimum required brake deceleration 4m/s2 from t = 6.3 to the
end.

5.2 Analysis of Robustness

Besides computing the magnitude of the robustness of the under-
going monitoring example, we are interested in determining which
predicate’s violation dominated the magnitude of the robustness.
Please note that here robustness values are concrete and we con-
sider their unit (m,m/s , orm/s2) abstract for this case-study when
we compare the robustness values of predicates in each proposi-
tion. However, our monitoring tool can report the predicate whose
robustness magnitude calculates the final robustness, and therefore,
we can deduce its unit. The above implicitly implies that some mea-
suring units could be more in�uential in determining the magnitude
of the robustness.

Remark 5.1. Under the assumption that the monitored trajectory

signals are sampled at the same frequency, all the used predicates in

the STL speci�cation in Lemma 3.3 can be transformed into distance-

based inequalities. Therefore, the semantics of the STL robustness

computes a uniform distance-based magnitude.

Case-study’s Robustness: Assume that σ represents our input
signals for this case-study as introduced in Section 2.1. The ro-
bustness of the signals against the longitudinal safety specification
φlon is denoted as [[φlon ]]d(σ , 0) = −7.00. The negative sign of the
result states that (σ , 0) �|= φlon . Using DP-TaLiRo for the above
example, it returns a piece of auxiliary information in addition to
the magnitude of the robustness. Two data items from the auxil-
iary information are the predicate and the time that resulted in the
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Figure 3: Top: the lateral and longitudinal robustness safeties

are illustrated and compared with minimum robustness safety

zero. Bottom: longitudinal accelerations of the ego car and

the front car are depicted and compared with the minimum

andmaximumrequired brake accelerations, and themaximum

safe accelerations.
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Figure 4: A signal as in Figure 3 is checked against the longi-

tudinal safe response formula φlon in Lemma 3.3 (without the

global operator). Each segment of the above �gure represents

the truth value for a sub-formula in φlon . The topmost chart

detected two dangerous threshold times: �rst one responses

safely, and the second fails to response safely.

computed robustness. In our case, the predicate is Alon
r,minBr

and
the time is t = 6.4 from the beginning of the monitoring.

Table 2: Top-left, bottom-left, top-right: the �rst columns

in these tables represent the predicates in the speci�cation

formula φlon , φlat , and φlat,lon , respectively. The other two

columns represent the number of violations that each pred-

icate caused in each subformula. Subformula φlon is de�ned

in Lemma 3.1, and subformula φlat is de�ned in Lemma 3.2.

Subformulas φlon
lat

, φlat
lon

, and φlat,lon are de�ned in Lemma

3.3. Formula φlat,lon is the same as φlat,lon except that we

replaced P lat
lon

and P lon
lat

in it with P lat and P lon , respectively.

Bottom-right: the �rst row represents the total number of vi-

olations that happened in all the scenarios; The second row

represents the violation percentages.

predicates φlon φlon
lat

Slon
b,f

2 2

Slat
l,r

1 0

Alon
b,maxAcc

18 18

Alon
b,minBr

190 184

Alon
f ,maxBr

9 9

predicates φlat φlat
lon

Slon
b,f

0 0

Slat
l,r

9 8

Alat
l,maxAcc

188 186

Alat
l,minBr

0 0

Alat
r,maxAcc

256 256

Alat
r,minBr

0 0

V lat
l,stop

39 36

V lat
r,stop 0 0

V lat
l,neд

0 0

V lat
r,pos 0 0

predicates φlat,lon φlat,lon

Slon
b,f

0 0

Slat
l,r

0 0

Alat
l,maxAcc

0 0

Alat
l,minBr

0 0

Alat
r,maxAcc

5 3

Alat
r,minBr

0 0

V lat
l,stop

0 0

V lat
r,stop 0 0

V lat
l,neд

0 0

V lat
r,pos 0 0

Alon
b,maxAcc

0 0

Alon
b,minBr

4 0

Alon
f ,maxBr

1 1

Execution Statistics (Lemma 3.3)

# of violation 722 703
violation % 5.9% 5.74%

6 DISCUSSION AND FUTUREWORK

We ran a set of experiments on 29 real traffic scenarios taken from
CommonRoad (2017a) (including all the highway scenarios), and
the results are presented in Tables 2-3. As indicated in the first
row of Table 4, the performance of the monitoring algorithm of
S-TaLiRo for thousands of monitoring cases is still feasible. Some
statistics about the experiments are summarized in Table 4. In these
experiments, we used a Windows 10 machine with Intel Core i7
CPU 8550U@ 1.8GHZ, 16GB RAM, Matlab R2018b, and DP-TaLiRo.

In the following, we are interested only in the cases in which
the safety rules became violated. Therefore, we do not distinguish
between cases where the antecedent of the rule was never acti-
vated, and cases which the antecedent was activated, but then the
consequent became satisfied. However, we remark that such finer
categorization is possible using the interfaces proposed in [13]. In
our experiments (Tables 2-3), we used two versions of the RSS spec-
ifications in Def. 3.8. First, in relation to Remark 3.2, we modified
the formulas in Lemma 3.3 by replacing P lat

lon
and P lon

lat
with P lat

and P lon , respectively. This modification changed the consequents
of the formulas to be the same as what is stated in Lemma 3.1 and
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Table 3: Top: simillar to Table 2, formula φ¬lat,¬lon is the

same asφ¬lat,¬lon except that we replaced P lat
lon

and P lon
lat

with

P lat and P lon , respectively. Bottom: the �rst row represents

the total number of violations that happened in all the sce-

narios; the second row represents the violation percentages.

predicates φ¬lat,¬lon φ¬lat,¬lon

Slon
b,f

0 0

Slat
l,r

0 0

Alat
l,maxAcc

172 166

Alat
l,minBr

0 0

Alat
r,maxAcc

177 161

Alat
r,minBr

0 0

V lat
l,stop

420 350

V lat
r,stop 0 1

V lat
l,neд

0 0

V lat
r,pos 0 0

Alon
b,maxAcc

6 7

Alon
b,minBr

5 3

Alon
f ,maxBr

0 1

Execution Statistics (Remark 3.3)

# of violation 780 689
violation % 6.37% 5.63%

Table 4: Some statistics on our experiments.

item value

average runtime per monitor execution 21ms

average number of cars in each scenario 48
average number of surrounding cars to be monitored 8.8

average length of trajectories per car 6.8 s

Lemma 3.2. These consequents of the rules are actively monitored
when the distance of the ego car from a secondary car becomes
unsafe both laterally and longitudinally. On the other hand, part of
the conditions to dismiss a dangerous longitudinal/lateral situation
is if the longitudinal/lateral distance becomes safe again. As it is
stated in Remark 3.2, the above response is too conservative in real
scenarios for which if either of the distances became safe before
an accident happens, then the situation is not dangerous anymore.
Second, we ran our experiments with the formulas in Lemma 3.3,
and the results are illustrated in the third columns of the Tables
2-3. The new result confirms that by using the disjunction of lateral
and longitudinal safe distances to stop monitoring a dangerous
situation, the number of violations reduces in general (due to the
relaxed conditions).

Without considering Remark 3.3, about 5.9% of monitored tra-
jectories showed unsafe behaviors in the evaluated scenarios. As
it is shown in Table 3, by considering the rules in Remark 3.3, the
number of violations increased by a factor of 2.1, and the percentage
of unsafe behaviors increased to 12.3% (calculated by adding 6.37%
as the newly violation percentage to the former 5.9% violation per-
centage in Table 2). Among the conditions that contributed to an

Table 5: Sensitivity analysis of the RSS parameters. Units

for accelerations, time and distances are m/s2, seconds, and

meters, respectively. The value of μ is 0.4 as in Table 1.

parameter values

alon
max,accel

2.75 5.5 8.25

alat
max,accel

1.5 3 4.5

alon
max,brake

5 10 15

alon
min,brake

6 4 2

alat
min,brake

4.5 3 1.5

ρ 0.3 0.5 2 0.3 0.5 2 0.3 0.5 2
# of violations 20 33 435 90 204 606 261 583 902

unsafe behavior, the minimum longitudinal brake and maximum
lateral acceleration were the most frequently violated ones (i.e., see
Table 2). Note that the selected parameters (see Table 1) for the RSS
model directly affect the results. There are various types of cars
that are allowed to drive on motorways, and the CommonRoad
dataset did not include information on the types of the vehicles.
Also, the dataset did not include information on the road condi-
tions that can be used to determine the proper values for the RSS
parameters. As a result, we chose parameters in Table 1 for the RSS
rules that are reasonable for average passenger vehicles. For the
sake of completeness, in the following, we discuss the results of a
sensitivity analysis on the RSS parameters [10, 30]. We believe that
our results highlight the role of regulatory bodies in determining a
meaningful set of parameters for the RSS models.

6.1 Sensitivity Analysis on RSS Parameters

We chose a busy scenario from our monitoring experiments to do
sensitivity analysis on the RSS parameters. There are 9 different
parameter configurations based on two parameter categories: ac-
celeration/deceleration and response time. In order to create the
different configurations for our analysis, we used three multiplica-
tive factors which are applied to the base parameters in Table 1. The
lists of multiplicative factors are (0.5, 1, 1.5) for acceleration and
maximum-deceleration, (1.5, 1, 0.5) for minimum-deceleration,
and (0.6, 1, 4) for response time. For example for the response time,
in Table 5, we have 0.6×0.5 = 0.3, 1×0.5 = 0.5, and 4×0.5 = 2. The
results are summarized in Table 5. Based on Table 5, a pattern was
observed that by increasing the acceleration/deceleration bounds,
the number of violations increases. Another interesting observation
is that for slower response time, the number of violations increases
drastically. Most of the new violations are the result of violating
φ¬lat,¬lon . The slower the response time, the longer the required
safe longitudinal/lateral distances (i.e., see Def. 3.1 and Def. 3.2). The
longer safe distances cause both lateral and longitudinal robustness
safety to become negative in most of the cases and exclude the other
longitudinal and lateral safety rules from being triggered. In the
case of longer safe distances, the predicates that caused the highest
number of violations are Alat

l,maxAcc
, Alat

r,maxAcc
, and V lat

l,stop
.
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7 CONCLUSIONS

In this paper, we present a translation of the Responsibility-Sensitive
Safety (RSS) [27] rules into Signal Temporal Logic (STL) [5] formu-
las. The encoded formulas could be used for Automated Driving
System (ADS) model verification and/or automated test case genera-
tion for discovering control software bugs. In fact, the requirements
as presented in this work can be used directly for testing ADS us-
ing our Sim-ATAV framework [28, 29]. We view this as a major
motivation for formalizing the RSS model in STL. Now, it is straight-
forward to test the control and perception system stack against the
RSS model.

In this paper, however, we provide an alternative – but equally
important – application. We utilized the STL formulas to monitor
off-line naturalistic driving data provided with CommonRoad [15].
We demonstrated that the computation is efficient, and, most impor-
tantly, that the RSS rules are satisfied in the majority of the actual
vehicle trajectories (assuming fast reaction times by the drivers).
Finally, we remark that we are currently working toward on-line
(runtime) robustness monitoring [8] with the goal of deploying the
monitoring system on FPGAs similar to [14, 19].
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