
Efficient Implementation of a Threshold Modified
Min-Sum Algorithm for LDPC Decoders

Yanfang Liu, Wei Tang, Member, IEEE, and David G. M. Mitchell, Senior Member, IEEE

Abstract—In this brief, we present a hardware efficient imple-
mentation of a threshold modified min-sum algorithm (MSA) to
improve the performance of a low density parity-check (LDPC)
decoder. The proposed architecture introduces a novel lookup
table based threshold attenuation technique, called threshold
attenuated MSA (TAMSA). The proposed TAMSA implemen-
tation is shown to improve bit error rate (BER) performance
compared to the conventional AMSA and MSA. Furthermore, a
layered version of the TAMSA implementation is investigated to
reduce hardware cost. Utilizing circuit optimization techniques,
including a parallel computing structure, the proposed layered
TAMSA field-programmable gate array (FPGA) implementation
results show that the modified architecture requires no extra
circuit power or circuit area compared to conventional AMSA,
and only 0.07% extra leaf cells compared to conventional MSA.

Index Terms—LDPC codes, min-sum algorithm, LDPC de-
coder, attenuation, FPGA.

I. INTRODUCTION

As a class of linear block codes, low-density parity-check
(LDPC) codes were originally proposed by Gallager in the
1960’s [1], but were not considered practical for a long
time due to prohibitive hardware requirements [2]. MacKay
rediscovered LDPC codes in the 1990’s [3] and showed that
LDPC codes are capable of approaching channel capacity
with low-complexity iterative message passing (MP) decod-
ing. Since then, significant effort has been made to develop
hardware efficient decoders, e.g., [4], [5], [6], and LDPC
codes have been included in many communication standards,
such as IEEE 802.6, IEEE 802.20, IEEE 802.3, DVB-RS2,
and CMMB. The min-sum algorithm (MSA) is widely used
for hardware implementation of LDPC decoders since no
estimation of the channel signal-to-noise ratio (SNR) is needed
over the additive white Gaussian noise (AWGN) channel, as
well as its low complexity and robustness against quantization
error [7], [8], [9]. However, the MSA incurs a degradation
in performance when compared to the (more complex) sum
product algorithm (SPA) due to approximations involved in
the message computation [2]. Empirically, MSA is observed to
have little degradation in performance compared to the SPA for
short code lengths, but for long code lengths the degradation
can vary from several tenths of a decibel (dB) to one dB [10].

This material is based upon work supported by the National Science
Foundation under Grant Nos. ECCS-1710920, OIA-1757207, ECCS-2015573,
and ECCS-1652944.

Yanfang Liu, Wei Tang, and David G. M. Mitchell are with the Klipsch
School of Electrical and Computer Engineering, New Mexico State University,
Las Cruces, NM, USA. (Email: {viviliu,wtang,dgmm}@nmsu.edu)

Correspondence should be addressed to: Yanfang Liu, 1125 Frenger Mall,
Las Cruces, New Mexico 88003 USA. Email: viviliu@nmsu.edu

To improve the decoding performance, two modifications
of MSA, called attenuated MSA (AMSA) and offset MSA
(OMSA) were proposed in [11], [12] to reduce the approxi-
mation error. Both variants have been shown to achieve better
bit error rate (BER) performance at low to moderate SNRs
when compared to the conventional MSA. Moreover, to save
hardware resources, a layered version of MSA, AMSA, and
OMSA were employed and shown to have faster convergence
speed, reducing iterations and decoder power consumption, as
well as circuit area [13], [14], [15], [16].

To further improve the performance of quantized LDPC
decoders, threshold AMSA (TAMSA) and threshold OMSA
(TOMSA) were proposed in [17]. The TAMSA (respectively,
TOMSA) selectively attenuates (offsets) the outgoing log-
likelihood ratio (LLR) message used to update a variable node
during MP decoding of an LDPC code if this value has a
magnitude below some threshold τ , while allowing an LLR to
reach the maximum quantizer level if the magnitude is greater
than τ . Given that most of the decoding failures in the high
SNR regime occur due to problematic graphical objects that
are randomly distributed in the Tanner graph of LDPC codes,
the authors of [17] showed that the new algorithms are less
prone to decoding failures and can significantly improve the
performance compared to AMSA and OMSA.

In this paper, we present a novel implementation of the
TAMSA algorithm using look-up tables (LUTs) for message
quantization and attenuation, and also investigate a layered
TAMSA algorithm to reduce hardware cost. To demonstrate
our approach, we implement the (155, 64) Tanner code
[18], which is attractive for hardware implementation due to
its quasi-cyclic (QC) structure. Simulation results of MSA,
AMSA, TAMSA, and layered TAMSA show that the layered
TAMSA decoder gains approximately 0.4dB at a bit error rate
(BER) equal to 10−9 over the MSA and AMSA, with a 0.1dB
performance gain compared to TAMSA. We then consider a
hardware implementation of these algorithms where, according
to the QC structure, we consider a full-parallel architecture to
speed up the decoding process. It is shown that, as a result
of the LUT-based approach, the performance gain achieved
by the proposed layered TAMSA implementation is achieved
with no extra hardware cost when compared to AMSA by
comparing the LUT, leaf cell, power, and area values from the
synthesis results, and only 0.07% extra leaf cells compared to
conventional MSA.

II. MIN-SUM ALGORITHMS

In the following, we briefly describe the MSA and its
modifications. MP decoding [2] of LDPC codes operates by

2

𝑛 variable nodes

𝑚 check nodes

𝑽𝑖𝑗
𝑘 𝑪𝑗𝑖

𝑘

𝑣1 𝑣2 𝑣𝑖 𝑣𝑛

𝑐1 𝑐2 𝑐𝑗 𝑐𝑚

Fig. 1. Tanner graph of an LDPC code.

iteratively exchanging messages in the Tanner graph of an
LDPC code between variable nodes (white circles) and check
nodes (plus boxes), see Fig. 1. At the kth iteration, let Vk

ij

denote the LLR value passed from variable node vi to check
node cj and let Ck

ji denote the LLR value passed from check
node cj to variable node vi. The set of check nodes in the
graph connected to vi are represented by N(vi) and the set
of variable nodes connected to cj are represented by N(cj).
Assume that codeword u = (u1, u2, . . . , un) is transmitted on
an AWGN channel under binary phase shift keyed (BPSK)
modulation, where each zero is mapped to +1 and each one
is mapped to −1. Let p0 represent the probability that a 0 is
received from the channel and let p1 represent the probability
that a 1 is received from the channel. Let ri = ln(p0

p1
) denote

the LLR values received from channel for bit i [2]. The MSA
algorithm is initialized in iteration 0 by passing the received
value ri from each variable node vi to the check nodes in
N(vi) as V0

ij = ri. (1)

Following initialization, the outgoing message Ck
ji from check

node cj to variable node vi at iteration k is given by

Ck
ji =

 ∏
i′∈N(cj)\i

sign(Vk
i′j)

 min
i′∈N(cj)\i

|Vk
i′j |, (2)

where N(cj)\i denotes the set of all variable nodes connected
to check node j except vi. For iteration k > 0, the outgoing
message Vk

ij from variable node vi to check node cj is given
by Vk

ij = ri +
∑

j′∈N(vi)\j

Ck
j′i, (3)

where N(vi)\j denotes the set of all check nodes connected to
variable node i except cj . After all check nodes and all variable
nodes are updated, the hard decision estimate is computed

ûki =

{
0, ri +

∑
j′∈N(vi)

Ck
j′i > 0,

1, ri +
∑

j′∈N(vi)
Ck

j′i < 0.
(4)

If the hard decision û is a codeword, decoding stops, otherwise
the decoder starts the next iteration until some pre-specified
amount of decoder iterations Imax are reached.

To reduce the BER performance loss of MSA when com-
pared to SPA, the attenuated MSA (AMSA) was proposed in
[11]. AMSA operates as MSA, but where (2) is replaced by

Ck
ji = α

 ∏
i′∈N(cj)\i

sign(Vk
i′j)

 min
i′∈N(cj)\i

|Vk
i′j |, (5)

where α > 0 is a constant. AMSA reduces the negative effect
of overestimating the LLR magnitudes in MSA and improves
performance in the low SNR region; however, neither of
them necessarily achieves good performance in the high SNR
region. Threshold AMSA (TAMSA) was proposed in [17] to
improve performance in high SNR region compared to AMSA
and MSA. The new algorithm is based on the assumption that
small problematic graphical objects, called trapping sets, are
the major cause of the performance loss in high SNR. TAMSA
operates as MSA, but where (2) is replaced by

Ck
ji =



(∏
i′∈N(cj)\i

sign(Vk
i′j)

)
min

i′∈N(cj)\i
|Vk

i′j |,

if min
i′∈N(cj)\i

|Vk
i′j | ≥ τ,

α

(∏
i′∈N(cj)\i

sign(Vk
i′j)

)
min

i′∈N(cj)\i
|Vk

i′j |,

otherwise.
(6)

TAMSA locally reduces the magnitudes of the check node
LLRs by adding a simple threshold test compared to AMSA
(5), which improves the performance with a negligible com-
plexity increase.

In this paper, we also consider a layered version of TAMSA,
with modified update rules. The algorithm is initialized by (1),
then the outgoing message Vk

ij at iteration k > 0 is replaced
by Vk

ij = Vk−1
i − Ck−1

ji , (7)

where C0
ji = 0, and the outgoing message Ck

ji for some
subset of check nodes is computed following (6). The choice
of subsets will very depending on the code and desired
parallelization (See Section IV-A). Message Vk

ij is updated
again for the variable nodes connected to the selected subset
of check nodes as Vk

ij = Vk
ij + Ck

ji. (8)

The decoder repeats (6) and (8) until all check nodes and
variable nodes are updated. Finally, the hard decision estimate
is replaced by

ûki =

{
0, Vk

i > 0,

1, Vk
i < 0.

(9)

If the hard decision û is a codeword, decoding stops, otherwise
the decoder starts the next iteration from (7) until some pre-
specified amount of decoder iterations Imax are reached.

III. FINITE PRECISION REPRESENTATION OF LLRS

Practical hardware implementation of LDPC decoders re-
quires a finite precision representation of LLRs. The effects
of clipping and quantization on the MSA were investigated in
[12]. Moreover, a quantized density evolution (DE) algorithm
was used to find the optimal attenuation parameter α from (5)
for quantized AMSA in [11]. In the remainder of this section,
we describe our method of representing LLRs with finite
precision in the hardware implementation of these algorithms
and present simulation results comparing MSA, AMSA, and
TAMSA (both regular and layered), based on this strategy.

3

In [17], the authors used a 5-bit quantizer for LLR values.
In this paper, we propose a 4-bit LUT to map the magnitude
of LLRs (and the LLRs after attenuation), and one extra bit for
the sign of the LLRs. Table I shows the LUT used to convert
received floating-point LLRs to quantized LLRs, where the
LLRs are represented as a range. This mapping is done once in
order to quantize ri as a 4-bit string with 1 bit sign. After this,
all operations in (2)-(9) are performed with (4+1)-bit strings.
Attenuation (multiplication by α in (5) or (6)) is not computed
in real-time, rather it is computed in advance for each range
of LLRs, for a given α, with a resulting LUT for the new
mapping. The LUT for attenuation of the mapping in Table
I with α = 0.8 is shown in Table II. Threshold attenuation
can be achieved by modifying Table II. For example, for τ =
1.425 and α = 0.8, quantized LLRs smaller than 1010 will
be attenuated according to (6). In this case, the TAMSA LUT
will be the same as Table II for LLRs 0000 to 1001, but LLRs
1010 to 1111 will not be attenuated.1

TABLE I
FLOATING-POINT LLRS TO 4-BIT STRINGS

Received LLR Map Received LLR Map
[0, 0.075) 0000 [1.125, 1.275) 1000

[0.075, 0.225) 0001 [1.275, 1.425) 1001
[0.225, 0.375) 0010 [1.425, 1.575) 1010
[0.375, 0.525) 0011 [1.575, 1.725) 1011
[0.525, 0.675) 0100 [1.725, 1.875) 1100
[0.675, 0.825) 0101 [1.875, 2.025) 1101
[0.825, 0.975) 0110 [2.025, 2.175) 1110
[0.975, 1.125) 0111 [2.175,∞) 1111

TABLE II
ATTENUATED 4-BIT STRINGS FOR α = 0.8

LLR Attenuated LLR LLR Attenuated LLR
0000 0000 1000 0110
0001 0001 1001 0111
0010 0010 1010 1000
0011 0010 1011 1001
0100 0011 1100 1010
0101 0100 1101 1010
0110 0101 1110 1011
0111 0110 1111 1100

Fig. 2 shows simulation results for quantized MSA, AMSA,
TAMSA, and layered TAMSA with an attenuation factor α =
0.8 for all attenuated algorithms and a threshold τ = 1.425
for threshold algorithms (using the LUTs as described above).
All algorithms were allowed a maximum of 100 iterations.
We observe that both TAMSA and layered TAMSA result in
significantly improved performance over the AMSA and MSA;
with the best performance resulting from layered TAMSA,
which offers close to 0.4dB gain at a BER equal to 10−9

over AMSA and MSA. AMSA and TAMSA (the two dashed
curves) have exactly the same performance for 1dB-4dB.
TAMSA, by design, will attenuate almost all of the time at
low Eb/N0 (for an appropriately chosen threshold τ) since
there is a high probability of at least one weak incoming
LLR to a check node, resulting in approximately equal BER
performance to AMSA. On the other hand, at high Eb/N0,

1Note that the TAMSA algorithm makes use of quantizer mapping 1111,
unlike AMSA, which helps decoder convergence.

1 2 3 4 5 6 7
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N 0[dB]

Bi
t
Er
ro
r
Ra

te
(B
ER

)

MSA
AMSA
TAMSA
Layered TAMSA

Fig. 2. Simulation results comparing the decoding performance of quantized
MSA, AMSA, TAMSA, and layered TAMSA for a (155, 64) QC Tanner
LDPC code.

TAMSA selectively attenuates based upon message reliability
and yields significantly better BER performance than both
AMSA and MSA.

Another important metric related to decoder power con-
sumption is the average number of iterations (ANI) performed
for each algorithm. The results are summarized in Table III.
We observe that both AMSA and TAMSA provide a significant
reduction in the average number of iterations when compared
to MSA at low SNR, with similar numbers elsewhere.

TABLE III
AVERAGE NUMBER OF ITERATIONS RECORDED

FOR THE (155, 64) QC TANNER CODE

Eb/N0 MSA [17] AMSA [17] TAMSA [17]
1dB 68.95 59.28 59.24
2dB 30.4 23.13 22.9
3dB 7.82 6.28 6.2
4dB 3.06 2.95 2.87
5dB 1.97 1.98 1.98
6dB 1.44 1.46 1.46
7dB 1.09 1.10 1.10
8dB 0.85 0.86 0.86

IV. SYSTEM DESIGN CONSIDERATIONS

In this work, we implement layered TAMSA with a
(155, 64) QC Tanner code as an example. In this section,
we introduce this particular LDPC code and strategies to
implement the corresponding decoder in hardware.

A. LDPC codes
The parity-check matrix of the (155, 64) QC Tanner code

is given by

H =

 I1 I2 I4 I8 I16
I5 I10 I20 I9 I18
I25 I19 I7 I14 I28

, (10)

where Ix is a 31 × 31 identity matrix with rows shifted
cyclically to the left by x positions. According to this specific
QC structure, we use a full-parallel architecture to implement
layered MSA, layered AMSA, and layered TAMSA to speed

4

VRAM
Hard Decision

/Iteration Number

Address generator

CNU

CNU #0

CNU #1

CNU #2

CNU #30

PISO

Data (Initial LLR)

VRAM

Storage Elements

SIPO
CRAM

Storage Elements

LLR

MIN

Decoder Controller

Output

Data Flow Control Flow

Fig. 3. System Diagram.

up the decoding process. Specifically, we use 31 check node
unit (CNU) modules in the LDPC decoder. At each iteration,
message Vk

ij is computed by (7). We then compute Ck
ji using

(2), (5), or (6), where appropriate for the first 31 rows in
parallel (j = 1, 2, . . . , 31), then update all connected variable
node LLRs using Vk

ij using (8). This is repeated for the next
31 rows (j = 32, 33, . . . , 62), and then the final 31 rows
(j = 63, 64, . . . , 93) in the parity-check matrix (10). After
these three batches of parallel computation, one iteration is
completed, the iteration number increases by 1, and the sign
of the LLRs is calculated for the hard decision according to
(9). The decoder stops either if the hard decisions give a valid
codeword or the iteration number achieves a preset maximum
iteration number Imax.

B. System Design

The Decoder system consists of several important build-
ing blocks, as shown in Fig. 3, where the black arrows
represent data flow and the white arrows represent control
flow. The input serial data V0

ij is first converted into parallel
data by the SIPO (serial-in parallel-out). The data is then
stored in the VRAM. The VRAM also stores the temporary
variable node LLRs Vk

ij during the decoding process. The
Decoder Controller controls the decoding process, and the val-
ues of check nodes and variable nodes are updated according
to the status of the Decoder Controller and the equations (5)-
(8). First, according to the parity check matrix of the (155, 64)
QC Tanner code in (10), the Decoder Controller asks the
Address Generator to generate several addresses to access the
data V0

ij stored in the VRAM. Then this data is sent to the
CNU, where the minimum values and sub-minimum (second
minimum) values are calculated according to (2), (5), or (6),
the Decoder Controller then asks Address Generator to gener-
ate addresses to store the minimum and sub-minimum values
to CRAM. Meanwhile, Vk

ij is computed according to (8) and
stored back into the VRAM. After a decoding iteration is com-
plete, the Decoder Controller asks the VRAM Hard Decision
to make a hard decision according to the the sign of LLRs
and decide whether it is a valid codeword (which means

LLR

MIN

CNU unit

Adder

MIN
SubMIN

D Q

CLK

D Q

CLK

SIPO

SIPO

Full-
Subtractor

MUX

Adder
Adder

Adder
Full

Adder

PISO
LLR (to VRAM)

MIN (to CRAM)

Lookup Table

Fig. 4. CNU Architecture.

the decoding is successful). If it is successful, then the
final data is sent to the output of the Decoder. If not, the
Decoder Controller compares the number of current iterations
with a predetermined maximum iteration number Imax. If
the number of iterations is smaller than Imax, the decoder
starts the next iteration of decoding, computing Vk

ij using (7)
and updating the VRAM, otherwise, the Decoder Controller
finishes the decoding process and outputs the result from the
VRAM.

To implement the CNU, we consider the full-parallel struc-
ture described in Section III. For the CNU unit, the LLRs
and minimal values from previous iteration are sent to the
unit serially, where two SIPO units are applied. There are
5 Full-Subtractor modules used to implement (7), and 5
Full-Adder modules used to implement (8). The sign and
the magnitude values to be sent to each variable node are
calculated separately. First, the signs of all variable nodes
connected to this check node are multiplied together to form∏

i∈N(cj)
sign(Vij). The sign of the outgoing message to each

variable node is computed by multiplying
∏

i∈N(cj)
sign(Vij)

with the sign of the corresponding variable node. Second,
the minimum value and the sub-minimum value among the
incoming messages from vi ∈ N(cj) are determined. In
[19], the authors proposed bit-serial circuits to determine
the minimum and sub-minimum values. Here, we transform
them to a parallel design to speed up the CNU module. The
architecture used to determine the minimum is shown in Fig. 5.
There are five 4-bit inputs corresponding to the five incoming
quantized LLRs (Data i bit 1, Data i bit 2, . . . , Data i bit 4, for
i = 0, 1, . . . , 4) and one 4-bit output (min bit 1, min bit 2, . . . ,
min bit 4). The circuits to determine the sub-minimum value
is similar, except that it has four 4-bit data inputs because
the previously found minimum value is not used. Let M1,j

represent the minimum value and let M2,j represent the sub-
minimum value input to cj . Finally, we compare each value of
the variable node with M1,j to determine the minimum value:
if the variable node message vki equals M1,j , we assign M2,j

as the minimum value in (2), (5) and (6), otherwise, M1,j is
used for minimum value. Using this method, we avoid multiple
calculations to update each check node. Layered AMSA and
TAMSA require an additional LUT for attenuation; however,

5

min bit 2

Data 4 bit 3

Data 4 bit 4

Data 1 bit 4

Data 0 bit 4

Data 1 bit 3

min bit 4

Data 0 bit 3

Data 1 bit 2

min bit 3

Data 4 bit 2

Data 0 bit 2

Data 1 bit 1

Data 4 bit 1

Data 0 bit 1

min bit 1

Fig. 5. Circuit architecture for minimum computation.

the hardware costs are same for each case. Note that, although
we have focused our discussion on the implementation on
the (155, 64) QC Tanner code, the above architecture suitably
generalizes for other QC LDPC codes.

Regarding low-power hardware design considerations, we
do not consider a pipeline structure for our particular design
given that we use a full-parallel architecture and since the
layered decoder requires a complete computation of the first 31
rows in the parity-check matrix to continue the computation of
the following 31 rows. However, for different LDPC codes, a
pipeline structure is a popular choice to speed up the decoding
process. The comparison of hardware resources used in layered
MSA, layered AMSA, and layered TAMSA are summarized
in Table IV. The FPGA device used is a Xilinx Kintex 7
FPGA and the Vivado design suite software was used for the
design and simulation environment. The power consumption
and area are determined using a Cadence SOC Encounter tool
based on a 0.18um CMOS process. The highest frequency that
the design can achieve is 700 MHz. The power and area of
layered MSA, AMSA, and TAMSA are the same, when the
clock is 500 MHz (CLK1) and 100 MHz (CLK2), respectively.
The data comparison shows that layered TAMSA requires no
extra hardware resources compared to layered AMSA, and
both attenuated algorithms require only 0.07% extra leaf cells
compared to conventional layered MSA.

TABLE IV
COMPARISON OF HARDWARE RESOURCES

Layered MSA Layered AMSA Layered TAMSA
LUT 14.9k 14.9k 14.9k
FF 10.4k 10.4k 10.4k

BRAM 13.50 13.50 13.50
Leaf cells 2830 2832 2832

Power (CLK1) 38480011.06 38480011.06 38480011.06
Area (CLK1) 72314.61 72314.61 72314.61

Power (CLK2) 9854972.14 9854972.14 9854972.14
Area (CLK2) 71167.19 71167.19 71167.19

V. CONCLUSION

In this paper, we presented a hardware efficient implementa-
tion of the threshold attenuated min-sum algorithm (TAMSA)
to improve the performance of an LDPC decoder. The TAMSA
algorithm was shown to improve the BER performance com-
pared to the conventional AMSA with no extra hardware
cost. Furthermore, a layered TAMSA architecture was pro-
posed to reduce the hardware cost. Using circuit optimization
techniques, including a full-parallel computing structure, the
FPGA implementation results of layered TAMSA show that
the modified architecture adds no extra circuit power or circuit

area compared to conventional AMSA, and only 0.07% extra
leaf cells compared to conventional MSA.

REFERENCES
[1] R. G. Gallager, Low Density Parity Check Codes. MIT Press, 1963.
[2] S. Lin and D. J. Costello, Error control coding, Second Ed. Prentice

hall, 2001.
[3] D. J. MacKay, “Good error-correcting codes based on very sparse

matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, 1999.
[4] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible

LDPC decoder,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 54,
no. 6, pp. 542–546, 2007.

[5] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,
“A survey of FPGA-based LDPC decoders,” IEEE Commun. Surveys &
Tutorials, vol. 18, no. 2, pp. 1098–1122, 2015.

[6] T. T. Nguyen-Ly, V. Savin, K. Le, D. Declercq, F. Ghaffari, and
O. Boncalo, “Analysis and design of cost-effective, high-throughput
LDPC decoders,” IEEE Trans. Very Large Scale Integration (VLSI) Syst.,
vol. 26, no. 3, pp. 508–521, 2017.

[7] J. H. Lee and M. H. Sunwoo, “Low-complexity first-two-minimum-
values generator for bit-serial LDPC decoding,” IEEE Trans. Circuits
Syst. II: Express Briefs, vol. 63, no. 5, pp. 483–487, 2015.

[8] K. Cushon, C. Leroux, S. Hemati, S. Mannor, and W. J. Gross, “A min-
sum iterative decoder based on pulsewidth message encoding,” IEEE
Trans. Circuits Syst. II: Express Briefs, vol. 57, no. 11, pp. 893–897,
2010.

[9] K. Gunnam, J. M. C. Perez, and F. Garcia-Herrero, “Algorithms and
VLSI architectures for low-density parity-check codes: part 1-low-
complexity iterative decoding,” IEEE Solid-State Circuits Magazine,
vol. 8, no. 4, pp. 57–63, 2016.

[10] J. Chen, R. M. Tanner, C. Jones, and Y. Li, “Improved min-sum decoding
algorithms for irregular LDPC codes,” in IEEE Int. Symp. Inf. Theory.,
2005, pp. 449–453.

[11] J. Chen, A. Dholakia, E. Eleftheriou, M. P. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, 2005.

[12] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation
of min-sum algorithm and its modifications for decoding low-density
parity-check (LDPC) codes,” IEEE Trans. Commun., vol. 53, no. 4, pp.
549–554, 2005.

[13] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in IEEE Workshop on Signal Processing
Syst., 2004, pp. 107–112.

[14] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder
implementation for quasi-cyclic LDPC codes,” IEEE Journal on Selected
Areas in Commun., vol. 27, no. 6, pp. 985–994, 2009.

[15] Y. Sun and J. R. Cavallaro, “VLSI architecture for layered decoding of
QC-LDPC codes with high circulant weight,” IEEE Trans. Very Large
Scale Integration (VLSI) Syst., vol. 21, no. 10, pp. 1960–1964, 2012.

[16] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-rate layered
decoder architecture for block LDPC codes of the IEEE 802.11 n
wireless standard,” in IEEE Int. Symp. Circuits Syst., 2007, pp. 1645–
1648.

[17] H. Hatami, D. G. Mitchell, D. J. Costello, and T. Fuja, “A Threshold-
Based Min-Sum Algorithm to Lower the Error Floors of Quantized
LDPC Decoders,” in IEEE Trans. Commun., vol. 68, no. 4, pp. 2005-
2015, 2020.

[18] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, 2004.

[19] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A bit-serial
approximate min-sum LDPC decoder and FPGA implementation,” in
IEEE Int. Symp. Circuits Syst. (ISCAS), 2006, pp. 149–152.

