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Abstract

Spatially coupled (SC) low-density parity-check (LDPC) codes can achieve capacity approach-
ing performance with low message recovery latency when using sliding window (SW) decoding. An
SC-LDPC code constructed from a protograph can be generated by first coupling a chain of block
protographs and then [ifting the coupled protograph using permutation matrices. In this paper, we
introduce a systematic design to eliminate 4-cycles in a coupled protograph. Further using a quasi-
cyclic (QC) lifting, we introduce a procedure for constructing QC-SC-LDPC codes of girth at least
eight. This can be interpreted as a multi-stage graph lifting process that yields a greater flexibility in
designing QC-SC-LDPC codes with a large girth than previous approaches. Simulation results show
the design leads to improved decoding performance, particularly in the error floor, compared to random
constructions. Finally, we determine the minimum coupling width required to eliminate 4-cycles in a

coupled protograph.
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I. INTRODUCTION

Since the original work of Thorpe [1], it has been recognized that protographs provide an
efficient method of constructing low-density parity-check (LDPC) codes. Analyzing the iterative
decoding thresholds and minimum distance growth properties of small protographs facilitates
the construction of code ensembles with good asymptotic properties after applying a graph-
lifting procedure [2]. Protograph-based methods were used to construct good spatially coupled
LDPC (SC-LDPC) codes in [3], where an edge-spreading procedure is first used to couple
together a chain of block code protographs (thus introducing memory to the code), followed
by graph lifting using permutation matrices. This two-step code design procedure was shown
to result in SC-LDPC code ensembles with thresholds approaching the maximum a posteriori
(MAP) thresholds of their underlying LDPC block code ensembles, i.e., they exhibit the threshold
saturation effect [4] [5] [6] [3], and linear growth of minimum distance with block length, i.e., the
ensembles are asymptotically good. If the permutation matrices used in the lifting procedure are
circulants (shifted identity matrices), a quasi-cyclic (QC) ensemble results, a desirable property
for practical implementation [7]. One important aspect of finite-length LDPC code design is to
maximize the girth of the Tanner graph representation of the parity-check matrix to ensure that
the convergence behavior of iterative decoding is not negatively affected by short cycles. For
protograph-based constructions of QC-LDPC codes, this can be accomplished by applying the
Fossorier condition [8] to the graph lifting.

Several constructions of QC-SC-LDPC codes have been proposed recently in the literature
[7] [9]-[15]. Most of these approaches, including [11]-[15], focus on constructions of QC-SC-
LDPC codes that are based on a certain underlying block code structure. The goal of these papers
is to devise good edge spreading (or coupling) connections given the underlying code. These
approaches typically involve minimizing the harmful objects (cycles, absorbing sets) based on
the structure of the underlying code and were shown in those papers to result in QC-SC-LDPC
codes with improved code performance. However, the computational complexity of searching
for a good edge spreading limits the memory (or coupling width) of the resulting QC-SC-
LDPC codes to be small. For example, in [11] and [15], optimization techniques were used to

minimize the number of 6-cycles in circulant-based SC-LDPC codes. Due to the complexity of
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the optimization, however, this approach is limited to coupling widths less than or equal to two.
Direct designs of time-invariant QC-SC-LDPC codes, based on the polynomial representation
of the parity-check matrix of the code, were also investigated in [16]-[20]. The design of more
general SC-LDPC codes was also considered in [4] [21] [22], where protographs were constructed
with the smallest constraint length needed to avoid 4-cycles. Finally, memory efficient hardware
implementations of QC-SC-LDPC codes have been addressed in [23].

A primary motivation of this paper is the heuristic construction of SC-LDPC code designs with
large coupling widths, since such designs have been shown to be capable of better performance
on a fixed latency basis [24].! Motivated by the results of [25] [26], we also take a more general
multi-stage lifting approach that can be used to improve the design of the code at each lifting
stage, where reduction/elimination of problematic objects can be achieved at the different stages,
including at the first graph-lifting, i.e., the protograph design stage. Our idea also depends on
the fact that the girth of a lifted graph is lower bounded by the girth of its base graph [12].
Hence, starting from a block code protograph with good asymptotic threshold and distance
properties, we design the edge spreading in two stages to maximize the girth and minimize the
number of short cycles in the SC protograph. The edge-spreading procedure can be interpreted
as decomposing a base matrix B (corresponding to a block code protograph) into a number of
component matrices, which are then used to form an SC base matrix Bgc. In our approach, we
identify several sub-blocks of Bgc that guide the design of the component matrices, leading to
an SC protograph with a girth of at least six.

By further performing a circulant-based graph-lifting of Bgc and applying the Fossorier
condition to generate an SC parity-check matrix Hgc, we obtain QC-SC-LDPC codes with
a girth of at least eight.? Simulation results show that substantial performance gains, particularly
in the error floor, are achieved using the two-stage design approach compared to random code
constructions. Note that, with an undesigned SC protograph, the Fossorier condition can still be
applied to yield an SC-LDPC code of girth eight. However, the existence of many short cycles

in the protograph makes the process very complex. The two-stage approach, on the other hand,

'The decoding latency depends on the product of the coupling width and the graph lifting factor, so codes with a large
coupling width can still have small latency.

%In this paper, we have restricted our approach to eliminating cycles of length four and length six in the two design stages;
however, we believe that the approach could be suitably generalized to other design criteria.
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makes it much easier to apply the Fossorier condition, since the SC protograph has already
been designed to have girth six. In addition, in contrast to optimization methods [11] [15],
our heuristic approach allows us the possibility of using larger coupling widths, which make
it easier to guarantee girth six. Although the proposed multi-stage design framework does not
carry any guarantee of optimality, it does allow us the flexibility in code design needed to
reduce/eliminate harmful objects in the Tanner graph, e.g., cycles, absorbing sets, and so on.
Moreover, compared to the time-invariant QC-SC-LDPC code designs in [16]-[20], our approach
can produce periodically time-varying QC-SC-LDPC codes (of which time-invariant QC-SC-
LDPC codes are a special case), which have the potential of yielding larger minimum (free)
distances [3]. Further, if non-circulant or random liftings are desired, our approach still guarantees
a code with girth at least six and lends itself to asymptotic analyses of the SC-LDPC code
ensembles derived from the designed protographs, for which we then compute belief propagation
(BP) iterative decoding thresholds over the binary erasure channel (BEC). Finally, we perform
an heuristic search for the minimum coupling width required to eliminate 4-cycles in a coupled

protograph.

II. SC-LDPC CODES

The construction of a protograph-based SC-LDPC code can be described as a two-step pro-
cedure — first protograph coupling and then graph lifting [3]. A block protograph [1] is a small
bipartite graph with n. check nodes and n, variable nodes, where n. < n,. It can be represented
by a base matrix

B = [B(r, $)lncxn, (D
where B(r, s), a non-negative integer, is the row-r column-s entry, r = 1,...,n,, s =1,...,n,.
The entries determine the number of edges that connect check node r to variable node s in the
protograph. For example, Fig. 1(a) shows a block protograph defined by B = [3 3]. To construct
an SC protograph, we first replicate the block protograph as an infinite chain, as shown in
Fig. 1(b), and then spread edges from the variable nodes of the protograph at time instant ¢
by connecting them to check nodes at time instants ¢ to ¢ + w. Repeating this spreading over
all the protographs in the chain yields an SC protograph with coupling width w, as shown in
Fig. 1(c) for the case w = 2. This edge spreading can be interpreted as decomposing B into

w + 1 component matrices of the same size, i.e., By, By, ..., B, such that
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Fig. 1. (a) Block protograph for B = [3 3], (b) an infinite chain of block protographs, (c) coupling the protographs with
w = 2, and (d) a finite chain of L coupled protographs.

B(r,s) = ZBi(r, s), 2)

so the coupled protograph maintains the same check node and variable node degrees as the
original block protograph. If the block protograph has a regular structure that exhibits uniform
check node and variable node degrees, as in Fig. 1(a), the constructed SC protograph will also
be regular. In practice, an SC protograph is terminated after a finite number L of coupled
block protographs, where L is called the coupling length. The terminated protograph contains
Ln, variable nodes and (L + w)n. check nodes, as shown in Fig. 1(d). The corresponding

(L 4+ w)n. x Ln, SC base matrix

By
B, By
Bw Bw—l BO
By = ©
Bw Bw—l BO
Bw Bw—l
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exhibits a diagonal band of nonzero entries. Note that the first and last wn. check nodes have
reduced degrees, i.e., the terminated protograph has a slight irregularity at both ends, which is

an important feature in realizing the saturation threshold effect of SC-LDPC codes [3], [4], [5],

[6].
The parity-check matrix Hg@ of an SC-LDPC code can be obtained by an M -fold matrix

expansion from Béé) that corresponds to an M-fold graph-lifting of the terminated SC proto-

graph [27]. In the lifted graph, each check node and variable node is replaced by M copies of the

original node and each edge is replaced by M edges connecting M pairs of check and variable

nodes. From Bé? = [Bé? (7, ) (L+w)nex Ln» Héé) is generated by replacing each nonzero entry

in Béé) by a non-overlapping sum of B(Sé)(r, s) M x M binary permutation matrices P, and
replacing each zero entry by the M x M all zero matrix, so that Héé) also exhibits a diagonal
band of nonzero entries. The constraint length and design rate of the corresponding code are

v = Mny(w+ 1) and Rgé) =1- (L+—:3nc, respectively, and the asymptotic rate is given by

L
limy o0 joé) £ Rgéo) =1— Ze, Hg@ defines a particular SC-LDPC code, whose girth (denoted

Uz

g) is given by the length of the shortest cycle in the corresponding Tanner graph. We restate here
a Lemma from [12]. (Other similar girth characterizations of LDPC codes have been reported

in [34] [35] [36].)

Lemma 1. The girth of the Tanner graph of Hg? is lower bounded by the girth of the

protograph of Béé).
Proof- Let g and ¢ denote the girths of the Tanner graphs of Bé]é) and Hé? respectively.

) contains a cycle of length less than g. Since Hgé) is comprised of

’ . (L
Assume g < g, i.e., HgS
permutation matrices, which contain only a single one in any row or column, this implies that
there also exists a cycle of length less than g in Bé?, which contradicts the fact that the girth
of B is .2 m

This lemma motivates the design in Section III.

I1I. DESIGN OF B

Based on Lemma 1, the proposed approach aims to first eliminate (or reduce the number of)

4-cycles in Bé@. Then, using a systematic circulant-based lifting, we try to construct matrices

31f Bé? contains integer values greater than one, corresponding to a multi-edge protograph, its Tanner graph has girth g = 2,

and the lemma follows immediately.
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Fig. 2. Nonzero entries (solid circles) that form 4-cycles in Bé?, where B,, By, B. and By, a,b,¢,d € {0,1,...,w}, are

. . L
Ne X M, component matrices in Béc).

Hé? with girth g > 8. Due to the diagonal nature of Bé@ (see (3)), a careful examination of

its structure is needed in the design.

A. Preliminaries

To illustrate the procedure, we consider the common case when the base matrix is all-
ones, i.e., B = 1, 4, , resulting in an (n.,n,)-regular protograph. A 4-cycle in a coupled
protograph corresponds to four nonzero entries that form a rectangular array in Bé?. Fig. 2
shows demonstrative sketches of all possible patterns of 4-cycles in Béé), which leads to the
following lemma.

Lemma 2. In Bg?, 4-cycles may be contained in: 1) one component matrix of Bé? (see Fig.
2(a)); 2) two component matrices that appear in the same row or the same column of Bé? (see
Figs. 2(b) and 2(c)); 3) four component matrices that appear in a rectangular array of Bgé) (see
Fig. 2(d)).

We now decompose Bé? as follows:

e The representative block By is defined as
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-Bw Bwfl e BO
Bw Ce Bl
Br £ _ E 4)

with size (w + 1)n. X (w + 1)n,. By comparing (4) to (3), and noting the repeating diagonal
structure of Bg?, it can be seen that any combination of one, two, or four component matrices

that contain a 4-cycle in Bgé)

will appear in Bg. Therefore, if Br does not contain 4-cycles,
neither will Béé). To help explain our design, the following two definitions based on By are
given:

o A constituent block B¢ is defined as

Bs1 Bso -+ By By
B; Bz, --- By, B

Bc2 | oo P (5)
B, B, --- B,.1 B,.2
| B, B, - B, B,

where w = a4+ —2 and «, 8 > 1, with size an. x fn,. B¢ is obtained by forming a rectangular
matrix from By that contains B in the upper right corner and one of the B, component matrices
all along the diagonal of By (except those in the upper left and lower right corners) in the lower
left corner. Hence, there are w — 1 choices for B¢. Note that when w = 2, B¢ is unique, and
when w = 1, B¢ does not exist. Note that each constituent block includes all component matrices
B;. For a given B¢, we define the weight wt(B;) of a component matrix B; as the number of
times it is included in B¢, where > jwit(B;) = af;

o Excluded patterns Bg ) are defined as

Bl = B, By BY=|"|.

- |B, B,
BY = [% T¥|, =34 ng 6)
B, By
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where a;, b;, ¢;,d; € {0,1,...,w} and ng is the number of excluded patterns. Block Bg) (resp.
B](f)) is the n. X 2n, (resp. 2n. X n,) single row (resp. column) pattern (pair of component
matrices) that appears in By but cannot appear in B¢, whereas Bg ) , ] =3,4,...,ng, are all
2n. X 2n,, rectangular patterns that appear in Bg but not in B¢. The number of excluded patterns
ng depends on w and the given B¢, while the particular set of excluded patterns depends on
the given B¢. Note that when w = 2, there are only two excluded patterns B(El) and B](f), since
the one 2n,. x 2n, rectangular pattern in By also appears in B¢. Also, when w = 1, the only
excluded patterns are Bg) and B](f).
The following example illustrates the above definitions.

Example 1. When w = 4, we have

B, B; B, B, B,
B, B; B, B,
Bx

I
I
o
¥

B¢ can be chosen as the 3n,. x 3n, pattern

B, B; By
BC: B3 B2 B1 5
B, Bs; By

where wt(By) = wt(By) = 1, wt(B;) = wt(B3) = 2, and wt(Bs) = 3. The excluded patterns

are

B; B B, B
B](El) - [B4 BO} ’ BI(EQ) - ) Bl(ig) = ’ " 7B](54) = ' ’ )
B4 B4 Bl B4 B3

where, following the notation of (6), we have a3 = 3, b3 =0,c3 =4,d3 =1and ay =1, by = 0,
Cqy = 4, d4 = 3.

Note that the constituent block can also be chosen as the 2n,. x 4n, pattern

B; B, By By
B, B; B, B,

Bc =
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or the 4n, x 2n, pattern

B, B
B, B,
B; B,
B, By

In each of these cases, wt(Bg) = wt(By) = 1 and wt(B;) = wt(By) = wt(B3) = 2. The

2n. x 4n, choice of B¢ results in the excluded patterns

B B, B B, B
B](El) - [B4 B0:| ’ BI(EZ) - " ’ BI(ES) = i ’ aB](E4) = ’ ' )
B4 B4 B2 B4 B3
B](EE)) _ Bl BO B(G) _ Bl BO
B; B, B, Bj;
while the 4n. x 2n, choice of B¢ results in the excluded patterns
B B; B B; B
BS) _ [B4 Bo} ’ B1(~:2) _ 0 7 B](Eg) _ 3 0 ,B,(54) _ 3 1 7
B, B, B, B, B,
B, B B, B
B](55) _ 2 0 ,B](Eﬁ) _ 2 0 m
B3 B1 B4 B2

The above definitions lead to the following theorem.
Theorem 3. The coupled protograph of Béé) does not have any 4-cycles if the chosen B¢ and
its associated B](Ej ), j=1,2,...,ng, do not contain any 4-cycles.
Proof: The result follows directly from Lemma 2. For case 1), B¢ includes all possible
component matrices B;,7 = 0,1, ..., w. For cases 2) and 3), B¢ and Bg), 7 =1,2,..., ng, have
been defined such that they contain all possible patterns of component matrices that can result

in 4-cycles in Bg, and hence in Béé). Therefore, if there are no 4-cycles in the chosen B¢ and

the associated Bg ), j=1,2,..., ng, there are no 4-cycles in Béé). [ |
Based on Theorem 3, we now proceed to design the component matrices B; such that neither
the chosen B¢ nor its associated B](Ej ) contain any 4-cycles. The proposed design includes two

stages: Stage 1 initializes the component matrices based on the B}(Ej); Stage 2 modifies the

component matrices based on Be.
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B. Design Stage 1

Given a base matrix B = 1,,_.,, and a representative block B with coupling width w, a
constituent block B¢ is chosen and its associated excluded patterns Bg ) are determined. Then
the Stage 1 design insures that the component matrices and the excluded patterns do not contain
any 4-cycles. Let I, denote the n. X n. identity matrix. Furthermore, let &, (n,—n.) denote
an n. X (n, — n.) binary matrix with a minimum row weight of one and a maximum column

weight as small as possible.* Stage 1 is summarized as Design Rule 1 below.

Design Rule 1 Initialize the component matrices (Stage 1)

1.1: Let By = [I,,, Encx(nv_nc)], where =, (n,—n.) 18 chosen as above such that there is no
4-cycle in By.
1.2: Initialize B,, such that it contains no 4-cycle and there are no 4-cycles in Bg) or BI(EZ),
the minimum row weight of B, is two, and, given these constraints, B,, has a maximum
column weight as small as possible.
1.3: Initialize B, Bs,...,B,_; such that

1) B(r,s) =1 Bi(r,s), ie., (2) is satisfied;

2) There is no 4-cycle in any of the component matrices B;, : = 1,2,...,w — 1, or in the

excluded patterns B](Ej) (1 =3,4,...,ng).

In the above design, note that Step 1.1 insures that the minimum row weight of By is two.
Requiring each row of By and B, to have a minimum row weight of two is desirable since
they are the only component matrices in the top and bottom rows of Béé), respectively, and a
row weight of at least two is needed to assist the startup and termination of decoding. Since
By = [I,. E..x(n,—n.), We must ensure Z,,_(,—n.) has no 4-cycles. When n, —n. > n., this
is equivalent to ensuring the maximum column weight of &, . (,,—n.) is one. However, when
Ny, — Ne < N, Maintaining a minimum row weight of one for &,y (n,—n.) Will inevitably make
the maximum column weight greater than one. In this case, &, (n,—n,) must be designed such

that no set of four 1s will appear in a rectangular array. Furthermore, restricting the maximum

column weights of By and B, to be as small as possible simplifies Step 1.3. The remaining

*If gy — ne > ne (Rggo) > %), the maximum column weight of Enex(ny—ne) €an be as low as one. If ng—ne < ne (Rggo) <
%), it will have a maximum column weight greater than one.
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component matrices By, Bo, ..., B,_; are then initialized based on the already chosen B, and
B, and avoiding 4-cycles in the excluded patterns B](Ej ) (j = 3,4,...,ng). The following example
illustrates Design Rule 1.

Example 2. Given B = 13,3 and w = 4, Bg, Bg, BS), B](f), B}(ES), and B](f) are given in
Example 1, where Bc is the 3n. x 3n, pattern, i.e., « = = 3. We employ Design Rule 1 to

initialize the component matrices. First, we let

Bo=[I3 Esxs]=1(0 1 0

o
—
(e
@)
—

Placing By into B}(f), we then initialize

01 1000O0O0
B,=|1 000001 0[,
01 00O0T1QO0O

such that neither B](El) nor B](f) contains any 4-cycles. In order to initialize By, B,, and B3, we

place both By and B, into the excluded patterns B(ES) and B](;). To satisfy (2), as well as to

avoid 4-cycles in these two excluded patterns, we design B; and Bj as

00 00O0O0O0O 00001O0O0®O0
Bi=100 00000 O0f, Bs=100 10010 0f,
000O0O0O0O0OO© 000O0O0OO0O0OT1

and then B, is given by

000O0O0OGO0T171
Bo=100010000
10011000

The above design ensures that there are no 4-cycles in all the component matrices and excluded
patterns.

Finally, we place the initialized component matrices into B¢ and check if it contains any 4-
cycles. If not, the coupled protograph of B(S]é) has g > 6, and the design is complete. Otherwise,

we proceed to Stage 2 to eliminate (or reduce the number of) 4-cycles that remain in Bc. In this
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example, there are two 4-cycles in B¢, so Stage 2 is needed to further modify the component

matrices. l

C. Design Stage 2

Design Rule 2 Modify the component matrices (Stage 2)
2.1: Identify a 4-cycle in B¢ with entries

Be(z1,11) =1, Be(z1,y2) =1,
Be(z2,y1) =1, Be(xa,42) = 1.

2.2: Suppose that the four entries belong to component matrices B;,, B;,, B;,, and B;,, where
(i1,19,13,14) € {0,1,...,w}. Denote these entries as

Bil(rl,sl) =1, Bi2(7“1752) =1,
B, (r2,51) =1, By, (r2,52) = 1.

2.3: Among these four entries, identify those that have not previously been flipped. Pick one
that belongs to a component matrix of the highest weight and denote it B; (1, s’), where ¢’ €
{i1,19,13,14} and (', s") € {(r1,51), (11, 52), (12, $1), (r2, S2)}. Flip down the entry B, (r', s")
such that

Bi(r',s): 1 — 0, (7)
Also flip down all entries in Bg )( j=1,2,...,ng) and Bc that correspond to entry B,/ (1’, s).
2.4: Flip up an entry B;(r’, s") such that

B;(r',s): 0 — 1, 8)

where i € {0,1,...,w} and i # ¢, conditioned on

1) The entry has not been previously flipped (down or up); .

2) The flipping does not create new 4-cycles in B; or in any Bg ) that includes B;;

3) The number of 4-cycles contained in B¢ does not increase after the flipping (down and
up) process is completed.
Also flip up all entries in Bg)(j =1,2,...,ng) and Bc that correspond to entry B;(r', s').
2.5: If the flipping in Step 2.4 succeeds, go to Step 2.6; else, reflip By (7', s') to its original
value, i.e.,

By(r',s): 0 — 1. 9)

Also reflip all entries in B](Ej) (j = 1,2,...,ng) and Bc that correspond to entry By (1, s),
and go to Step 2.3.

2.6: Repeat Steps 2.1 to 2.4 until all 4-cycles are removed or there are no more eligible entries
to flip.

Stage 2 modifies the initialized component matrices to remove the remaining 4-cycles in B,

if possible. In order to further distinguish between an entry in B¢ and one in B;, we use B¢(z, y)
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to denote the row-z column-y entry in B¢, forx = 1,...,n, and y = 1,..., n,. Stage 2 is
characterized by a so-called check-and-flip process in which, if a 4-cycle exists in B¢, one of
its nonzero entries is flipped down from 1 to 0. Since the flipped entry belongs to a component
matrix, maintaining (2) requires that we also flip up an entry from O to 1 in one of the other
component matrices. But this flipping should not create 4-cycles in this component matrix or in
the excluded patterns that contain this component matrix. Moreover, the number of 4-cycles in
B¢ should not increase. Stage 2 is summarized as Design Rule 2 below.

In Step 2.2 of the design, 7y, i, 23, and ¢4 do not need to be distinct. In Step 2.3, we prioritize
the “flipping down” of a nonzero entry of a component matrix that has maximum weight in Bc.
In doing so, we remove the most nonzero entries in B¢, so that more 4-cycles are likely to be
removed. It is possible that none of the four entries in an identified 4-cycle allows a complete
flipping (both flipping down and flipping up), in which case the remaining 4-cycle is labelled
dormant. However, a dormant 4-cycle can be targeted for flipping again if some other complete
flipping occurs and it still exists. For small coupling widths w, though, it may not be possible to
eliminate all dormant 4-cycles in B¢. Increasing w allows more freedom in the design, making
it easier to eliminate 4-cycles in B¢. However, this also increases the design complexity, since
the constituent block B¢ is larger and there are more component matrices B; and excluded
patterns Bg ) to consider, meaning that the flipping up of Step 2.4 must satisfy more conditions.
In general, Stage 2 either eliminates all 4-cycles or minimizes the number of 4-cycles in B¢
and, as a result, in Bg?. The following example illustrates Design Rule 2.

Example 3. Given the component matrices By, By, . .., B, that were initialized in Example 2,
we form the constituent block B¢ shown in Fig. 3(a). We see that there are two 4-cycles, defined
by entries Bc(1,7), Bc(1,20), Be(8,7), and B¢(8,20) (or Bo(1,7),Bg(1,4),B4(2,7), and
B2(2,4) in component matrix notation), and B¢(1,17), Be(1,20), Bc(9,17), and Bc(9, 20) (or
Bo(1,1),B((1,4),B5(3,1), and B4(3,4) in component matrix notation), which are highlighted
by the squares.

We now apply Design Rule 2 to remove these 4-cycles. Take the 4-cycle defined by B¢(1,7),
B¢(1,20), B¢(8,7), and B¢(8,20) as an example, which belong to component matrices Bs, By,
B,, and Bo, respectively. Since wt(By) = 3 and wt(By) = wt(By) = 1, entry B¢(1,7) is chosen
to be flipped down from 1 to 0, so that ¢/ = 2 and (1, s') = (1, 7), and we also flip down the other

two By(1,7) entries that appear in B¢. (Note that B, is not contained in any of the excluded
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(c) The modified B¢ after 4 flippings.

The Stage 2 design of Example 3.

Fig. 3.



IEEE TRANSACTIONS ON COMMUNICATIONS, MINOR REVISION 16

patterns for this choice of Bc¢.) Fig. 3(b) shows the modified B¢ in which the three flipped down
By(1,7) entries are highlighted by the circles. In order to maintain the edge-spreading condition
(see (2)), we must flip up an entry B;(1,7), where ¢ # 2. Since B4(1,7),B3(1,7),B;(1,7), and
By(1,7) have not been previously flipped, we choose the two B3(1,7) entries, corresponding to
Bc(4,7) and B¢(7,15), to be flipped up from 0 to 1, which is highlighted by the triangles in
Fig. 3(b). We then check and find that this flipping up step does not create new 4-cycles in Bj
or in the excluded patterns B}(El), B}(;), B}(;’), or Bgl) and that it does not increase the number of
4-cycles in B¢. As a result, the targeted 4-cycle in B¢ has been removed. The other 4-cycle in
B¢ can be removed in a similar manner. In all, a total of 4 flippings (flipping down B¢(1,7)
and B¢(3, 1), and flipping up B¢(4,7) and B¢ (6, 1)) are required to remove the two 4-cycles in
Bc. The resulting B¢ is shown in Fig. 3(c). Its girth is six, which is highlighted in the figure.
As a result, we can insure that Béé) also has girth g = 6. B

Intuitively, the above design can be seen as guiding the spreading of the n.n, 1’s in B over the
w ~+ 1 component matrices in such a way that 4-cycles are eliminated in the coupled protograph.
As another example, given the block protograph defined by B = 15,4 and coupling width w = 2,
we can apply the above two stage design to obtain

1 001 0010 0100

0 — , D1 = , D2 =
01 01 0 00O 1 010

L)

thus insuring that the coupled protograph of Béc does not contain any 4-cycles. The resulting

coupled protograph, which in this case has girth g = 12, is shown in Fig. 4.

Fig. 4. A coupled protograph with coupling width w = 2 and girth g = 12.
If Stage 2 does not eliminate all the 4-cycles in B¢ for a particular set of initial component

>We note here that it is easier to design a Bg that does not contain any 4-cycles for larger values of w, since the individual
component matrices are sparser.
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matrices B;,7 = 0,1,...,w, designed in Stage 1, or if it results in a By or B, with minimum
row weight less than two (for example, in the coupled protograph of Fig. 4, the minimum
row weight of B, is one), the design can be repeated with a different set of initial component
matrices. Alternatively, one can impose maintaining a minimum row weight of two for By and
B,, as a constraint when flipping down in Step 2.3 (although this may limit our ability to find
a 4-cycle free B¢). In the case of unterminated codes (or codes with large L) that are decoded
with sliding window (SW) decoding, the row weight of B, has little effect on performance, and
hence the constraint on B, can be relaxed. Further, for w > 2, there are multiple choices for
B¢, each of which is associated with a different set of excluded patterns. Our experience has
shown that the choice of B¢ does not affect whether or not 4-cycles can be eliminated (although
choosing different sets of initial component matrices can yield different results). This follows
from the fact that, when using a different constituent block and its associated excluded patterns,
the two-stage design has already checked through all possible patterns that could contain 4-
cycles. In other words, different choices of B, along with the associated excluded patterns B,(Ej ),
and the subsequent component matrix initialization only affect the scheduling of the flipping,
not whether 4-cycles can be eliminated.® Finally, we note that, after achieving girth g = 6, the
design procedure can be continued in an attempt to reduce the number of 6-cycles in the coupled
protograph. The way in which finding a 4-cycle free Bg depends on the code parameters n.,

n,, and w will be discussed in the following subsection.

D. Coupling Width Required to Eliminate 4-Cycles

In order to apply our approach to other SC protographs, it is helpful to identify what is the
minimum w required to achieve girth 6, since we will typically want small w to minimize latency.
Based on the base matrix B = 1,,_.,,,, the proposed design can be seen as assigning the n.n, 1s
in B to the w + 1 component matrices By, By, ..., B, in a way such that Bg does not contain
4-cycles. Intuitively, a larger w gives more design freedom, so that the Stage 1 design can already
ensure that Br does not contain 4-cycles when w is sufficiently large. However, the proposed
design can result in many possibilities for the designed component matrices. Due to the heuristic
nature of the design, it is difficult to theoretically characterize the minimum w for insuring a

The search complexity can be reduced by choosing Bc in (5) such that « = 3—1, 3, or 3+ 1, which minimizes the number
of excluded patterns (see Example I).



IEEE TRANSACTIONS ON COMMUNICATIONS, MINOR REVISION 18

TABLE 1
THE MINIMUM w THAT INSURES Br DOES NOT CONTAIN 4-CYCLES.

(Ne,ny) W (Me,ny) W (Ne,ny) W (Mg, ny) W
2,3 1 3.4 2 &5 2 (,6 4
2,4 2 (3,5 2 46 3 (5,7 4
2,5 2 (3,6) 3 &7 4 (5,8 5
2,6) 3 3.7 3 48 5 (5,9 6
2,7 3 (3,8 4 49 5 (5,100 8
2,8 4 (3,9 4 4,100 6
2,90 4 (3,100 5
2,100 5 @3,11) 5
2, 11) 5 (3,12) 6
2,12) 6

4-cycle free Bg.” Alternatively, we have employed an exhaustive search for the minimum w
resulting from the proposed design with given (n., n,) pairs. Our results obtained using Design
Rules 1 and 2, thus ensuring the minimum row weight of 2 for the initial By and B, needed
to assist the startup and termination of decoding, are shown in Table 1. Our search results echo
some existing characterizations in the literature of the minimum coupling width needed to ensure
a coupled protograph contains no 4-cycles. For example, our results match well with Lemma 4
of [16], which gives a lower bound on w needed to ensure a 4-cycle-free SC parity-check matrix
for a time-invariant construction of the same type as our more general time-varying construction.
Also, when n. = 2, our search results exactly match the coupled protograph design of [33], for
which the minimum w that ensures no 4-cycles is 4> when n, is even and ”“T_l when n, is odd.

We observe that, for the same n., a larger n, requires a larger w to insure a 4-cycle free Bg.
For example, when (n.,n,) = (2,6), the minimum w is 3, while when (n.,n,) = (2,9), the
minimum w is 4. This is because increasing n, not only leads to more 1s to be assigned to the
component matrices, but the asymptotic rate Ré%o) =1 — 7= of the designed code also becomes
higher, making it more challenging to design a matrix By that does not contain 4-cycles. This can
also be seen by comparing designs with the same n.n, (the same number of 1s to be assigned),

where a smaller ratio of 7= (a higher asymptotic rate) requires a larger coupling width. For

"In recent papers [11] [15], optimization techniques were used to minimize the number of 6-cycles in array-based SC-LDPC
codes. Due to the complexity of the optimization, however, this approach is limited to values of w < 2, whereas our heuristic
design allows us to reach much larger values of w.
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example, when (n.,n,) = (4,6), the minimum w is 3, while the minimum values of w are 4
and 6 for (n.,n,) = (3,8) and (n.,n,) = (2,12), respectively. This is because the component
matrices of higher rate codes have relatively more columns than rows, making it easier to form
4-cycles, thus requiring a larger w to spread the 1s over more component matrices. Finally, for
the same asymptotic rate, we see that increasing n. (and n,) also leads to an increase in the
minimum required w. For example, (n.,n,) = (2,4) requires w = 2, while (n.,n,) = (3,6) and
(n¢,ny) = (4, 8) require w = 3 and w = 5, respectively. This is because, for the same ratio 7=, a
larger n. (and n,) means that there are more 1s to be assigned to the component matrices, and

consequently a larger w is required.

IV. BP DECODING THRESHOLDS OF THE DESIGNED CODE ENSEMBLES

The above coupled protograph design ensures that the constructed codes have large girth,
thereby yielding good error floor performance. However, the design does not guarantee good wa-
terfall performance. Therefore, we now compare the BP decoding thresholds of several designed
SC-LDPC protograph-based code ensembles over the BEC to those of undesigned (random edge
spreading) protograph-based ensembles constructed from the same all-one base matrix 1,,_x,.
Note that the Shannon limit of a BEC is 1 — ¢, where € is the erasure probability.

Fig. 5 shows the BP decoding thresholds of the designed and undesigned protograph-based
ensembles with different choices of n., n,, and w, where the coupling widths w are chosen such
that the designed protographs have girth g = 6. It can be seen that, in all cases, the BEC decoding
threshold decreases as the coupling length L increases (due to the increasing rate Rgfé)) up to a
certain point, after which the BP decoding thresholds of the SC-LDPC code ensembles saturate
and approach the MAP decoding thresholds of their underlying LDPC block code ensembles
(0.488, 0.497, and 0.499 for (3, 6), (4, 8), and (5, 10)-regular ensembles, respectively). This is
due to the structured irregularity at the beginning and end of the coupled graph that results in
threshold saturation and is consistent with [3], [4], [5], [6].

We observe that the designed and undesigned ensembles have similar BP decoding thresholds,
especially when L is large. This is due to the fact that our design does not change the row weight
of a full diagonal band (that contains B, B,,_1, ..., Bg) or the column weight of the SC base
matrix, and thus it has the same degree profile as an undesigned protograph. Comparing the

ensembles with different column (and row) weights, we see that, for the same asymptotic rate
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Fig. 5. BP decoding thresholds of designed and undesigned SC-LDPC code protograph-based ensembles.

Ré%o) = 0.5, increasing the column (and row) weight leads to a decrease in the BP decoding
threshold for small values of L, where the termination causes significant rate loss. But larger
column (and row) weights lead to better BP decoding thresholds as L becomes larger and
tends to infinity, where the rate loss approaches zero. This follows from the fact that block
code ensembles with larger column (and row) weights have better minimum distance properties,
and thus their MAP decoding thresholds are better. In contrast, for regular LDPC block code
ensembles, where threshold saturation does not occur, higher column (and row) weights result
in worse BP decoding thresholds. In summary we see that the BP thresholds of the designed
ensembles closely track those of undesigned ensembles and approach the MAP thresholds of the
underlying block code ensembles for large L, thus insuring that the designed codes also achieve

good waterfall performance.
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Fig. 6. A 3 x 3 grid of nonzero entries corresponding to a 6-cycle in Béé), where 11 < ro < rs3 and s1 < s3 < S3.

V. QC LIFTING BASED ON B{Y/

Given a designed Bg?, we can employ a systematic lifting using circulants in an attempt

to further reduce the multiplicity of short cycles and increase the girth. In this paper, we pay
particular attention to the removal of all 6-cycles (and any remaining 4-cycles) so that the
resulting Hg@ is QC and has g > 8, although the approach could be extended in a straightforward
way to target higher girth. Note that, without loss of generality, any 6-cycle can be represented
by a 3 x 3 grid of nonzero entries in Bé?, as illustrated in Fig. 6 for the 6-cycle highlighted
in Fig. 3(c). In general, circulants can be chosen using the Fossorier condition (Theorem 2.1 of
[8]) to avoid a 2k-cycle, k = 2,3, ..., in a parity-check matrix. For example, if the six nonzero
entries that constitute the 6-cycle in Fig. 6 (indicated by the solid circles) are lifted with different
circulants ISZ), where Ig\? denotes the shifted identity matrix with each row of the M x M identity

matrix I, cyclically shifted to the left by 6 positions, and the shifting factors satisfy

(03 — 09) # (02 — 05) + (04 — 07) mod M, (10)

then there are no 6-cycles in the lifted subgraph corresponding to Hé@ associated with this

6-cycle in Bé?. In this case, we say that the 6-cycle in the protograph has been “removed” by

lifting. In general, a QC lifting based on Bé? results in non-periodically time-varying SC-LDPC
codes, but for ease of implementation it is desirable to construct periodically time-varying, or

even time-invariant codes [31].> We treat these two cases separately below.

8Note that, if we use the same set of circulants for lifting every column of Béé), we will obtain a time-invariant QC-SC-LDPC
code. However, the time-varying designs give us added flexibility, making it easier to achieve girth 8 for a given M. Also, if
M is too small, it may not be possible to achieve girth 8 at all with the time-invariant constraint.



IEEE TRANSACTIONS ON COMMUNICATIONS, MINOR REVISION 22

A. The Non-Periodic Case

We start by identifying all the nonzero entries that participate in 6-cycles of Bg?. The iden-
tified 6-cycles are then removed sequentially by selecting circulants according to the Fossorier
condition. (The remaining nonzero entries can be lifted using randomly generated circulants.)
However, since nonzero entries can participate in multiple 6-cycles, care must be taken to insure
that cycle removal does not create new short cycles elsewhere in the graph. In our approach,
the entries and shifting factors are recorded after removing each cycle. Before a new 6-cycle
is targeted for lifting, we first check to see if any of its nonzero entries have been previously
lifted. If so, they are left unchanged, and the shifting factors of the other nonzero entries in the
cycle are chosen such that the Fossorier condition is satisfied (if possible). For sufficiently large
M, we have found that there is enough freedom in choosing the shifting factors to construct

non-periodically time-varying QC-SC-LDPC codes with g > 8.

B. The Periodic Case

To construct periodically time-varying QC-SC-LDPC codes with period w-+ 1, we can proceed
by choosing the shifting factors for only the nonzero entries in the first w + 1 columns of Bé?
that participate in 6-cycles. In the following columns, the shifting factors in every set of w + 1
columns of Bgé) will be a replication of those in the first w + 1 columns. Note that this gives us
a more efficient lifting than in the non-periodic case, since we do not have to check the entire
coupled protograph of length L for 6-cycle removal, but only the first w + 1 columns of B(Sé).

Bg@ can be seen as consisting of L. columns of component matrices By, By, ..., B, as shown
in Fig. 7, where we index the columns as 7 = 1,2,... ,w,w+1,..., L. For n. > 2, 6-cycles can
be contained in component matrices that occupy the same row (or column) of Bé]é). However,
from Fig. 7 we can see that 6-cycles will not be contained in any two columns of component
matrices, indexed by 7 and 7o, respectively, if |73 — 73| > w, since in this case the two columns
will not have any component matrices that occupy the same row. This observation enables us
to design the shifting factors for the first w + 1 columns of Béé) as follows. We first design the
column 1 shifting factors such that all its 6-cycles are removed. The designed shifting factors of
column 1 are then replicated in column w + 2. Next, we design column 2 such that all 6-cycles

that exist in column 2 alone, jointly between columns 1 and 2, and jointly between columns 2

and w + 2 are removed. Then the designed shifting factors of column 2 are replicated in column
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Fig. 7. Periodic design of QC-SC-LDPC codes.

w + 3. Since this insures that the joint 6-cycles between columns 1 and 2 are removed and the
shifting factors of column w + 2 are replicas of those in column 1, there must also be no joint
6-cycles between columns w + 2 and w + 3. This process then continues until we design column
w + 1 such that all 6-cycles that exist within column w + 1 alone and jointly between column
w+ 1 and the previously designed columns (1, 2, ..., w, w+2, w+3, ..., 2w+ 1) are removed.
Following the design of column w + 1, all the shifting factors for the nonzero entries of all the
component matrices in the first w+ 1 columns that participate in 6-cycles have been chosen, i.e.,
no 6-cycles exist in the first w+1 columns of Bé?. This lifting design can then be replicated for
every following set of w41 columns of Bé?, so that the designed parity-check matrix Hg@ has
period w + 1 and girth g > 8. Again, a large lifting factor M gives more freedom in choosing
the shifting factors to insure g > 8.

As an enhancement to the above procedure, in both the non-periodic and periodic cases, the

6-cycle profile of the SC protograph could be generated. We could then determine the shifting
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)

factors for the nonzero entries of B(Sé that are involved in the most cycles, followed by the

others in decreasing order. This would improve our ability to eliminate 6-cycles, at a cost of the
increased complexity of ordering the nonzero entries of Béé) according to their cycle involvement.

The complexity of our proposed multi-stage code design approach depends on designing the
SC base matrix Bgc to avoid 4-cycles and then graph-lifting based on Bgc. The complexity
of designing Bgc depends on the number of 4-cycles that remain in the constituent block B¢
after initializing the component matrices in Stage 1. Similarly, the complexity of the lifting
based on Bgc depends on the number of 6-cycles (and any remaining 4-cycles) in Bgc. (In the
case of periodic QC lifting, the cycle counting is limited to the first w + 1 columns only of
Bsc, which considerably simplifies the problem.) Therefore, obtaining the cycle profile of B¢
following the Stage 1 design and the cycle profile of Bgc following the Stage 2 design is crucial

to characterizing the design complexity. However, due to the heuristic nature of the design, an

explicit characterization of the complexity is not feasible.

VI. NUMERICAL RESULTS
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Fig. 8. Performance of designed and undesigned SC-LDPC codes with (n¢,n.) = (3,6).
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In this section, we present the simulated performance of our designed spatially coupled base
matrices Bé? with both random and (non-periodically time-varying) QC liftings, where the
resulting designed SC-LDPC codes have girths of six and eight, respectively. For comparison, we
also consider undesigned SC-LDPC codes with randomly chosen base matrices Béé) and random
liftings, which typically have a girth of only four for the selected lengths. The simulations were
performed over the additive white Gaussian noise (AWGN) channel using BPSK modulation.
(Note that the BP decoding threshold analysis of the designed and undesigned code ensembles
in Section IV was conducted over the BEC, since this is a quick and convenient platform for
testing and refining our design approach. Its primary conclusions also hold for the AWGN
channel, which is a more realistic channel model for simulating the performance of practical
communication systems.) Sliding window (SW) decoding [4], [22] was used, where a window
covers W consecutive block protographs in the coupled graph and the window size W (in blocks)
satisfies w+1 < W < L. Decoding was performed based on the partial Tanner graph framed by
the window, where M Wn,. check nodes and M Wn, variable nodes are included in a decoding
window. In each window position, a block of Mn, target symbols, corresponding to the first
block of Mn, variable nodes in the window, is decoded, and then the window shifts by one
block. Sliding along the diagonal band of Hé? SW decoding estimates codeword symbols
block-by-block, resulting in a decoding latency of only W blocks. The maximum number of
iterations per window position was 100, and the soft bit-error-rate (BER) stopping rule [29]
was employed, with a threshold BER of 10~°. Standard flooding schedule (FS) decoding across
the entire terminated graph was also performed for comparison. For FS decoding, a maximum
number of 1000 iterations was allowed, and a stopping rule based on the parity-check matrix
Hé? was employed.

Fig. 8 shows the simulated performance of designed and undesigned SC-LDPC codes with
(ne,ny) = (3,6) and w = 3. The undesigned base matrix Bgé) was randomly chosen, with the
constraints that By and B3 have a minimum row weight of two and (2) must be satisfied. The

component matrices of the g = 6 designed Béé) were

100010 000101
Bo={010100,Bi=|0010 10},
001001 110000
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Fig. 9. Performance of designed and undesigned SC-LDPC codes with (n¢,n.) = (3, 8).
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and the g = 8 designed Héé) was obtained from Bé? by doing a (non-periodic) QC lifting
using the Fossorier condition. In all cases, L = 100, M = 100, and Ré? = (0.485. The results
show that the designed codes substantially outperform the undesigned codes, particularly in the
error floor, and that increasing the girth by performing a QC lifting further improves the error
floor performance. Also, with FS decoding, the designed and undesigned codes exhibit similar
waterfall performance, consistent with the BP decoding threshold analysis of Section III.D.
Fig. 9 shows the performance of designed and undesigned SC-LDPC codes with (n.,n,) =
(3,8) and w = 4. For the undesigned code, the 3 x 8 binary component matrices were chosen
such that By and B, have a minimum row weight of two and the edge-spreading condition (see
(2)) must be satisfied. L and M were again chosen to be 100, so in this case Réé) = 0.61. The

results again show the designed codes outperform the undesigned codes, most noticeably in the
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error floor. We also again see that, since g = 8, a QC lifting further improves the error floor
performance of the designed codes compared to a random lifting. Finally we note that, with
SW decoding, larger window sizes W result in better performance, consistent with the tradeoff
between W (latency) and performance reported in [32].

Finally, in order to demonstrate the advantage of our designed QC-SC-LDPC codes, Fig. 10
compares their performance to the SC-LDPC code designed using the optimal overlap (OO)
partitioning and circulant power optimizer (CPO) approach of [12], where FS decoding was used
in both cases. Both codes were designed from a block protograph with (n.,n,) = (3,7), using
the same lifting factor M = 7 and coupling length L. = 60. They both have the same codeword
length of 2940 bits and code rate of 0.56. However, the coupling width of our designed code
is 3, whereas the OO-CPO code has coupling width only 1. This means that our code enjoys a
larger constraint length than the OO-CPO code, viz., 196 vs. 98. It can be seen that our designed
code outperforms the OO-CPO code by 1.3dB at a BER of 10~%, which is mostly due to the
fact that we have a larger constraint length and enjoy a larger guaranteed girth, eight vs. six for
the OO-CPO code. Note that, if we further lower the lifting factor from seven to six for our
designed code, its constraint length will be reduced to 168, and we see that it still maintains
a substantial performance advantage over the OO-CPO code. However, if we further lower the
lifting factor to match the constraint length of the OO-CPO code, we can no longer achieve

girth eight in the lifted graph.

VII. CONCLUSIONS

In this paper, we introduced a two-stage design procedure for constructing spatially coupled
protographs with girth at least 6. The first stage produces an initial set of component matrices that
satisfy the edge-spreading condition such that the coupled protograph contains a small number
of 4-cycles; while the second stage employs a systematic approach to eliminate the remaining
4-cycles, thus guaranteeing a girth of at least 6. This was followed by performing a QC (circulant-
based) lifting of the coupled protograph that satisfies the Fossorier condition in order to obtain
girth 8. Both non-periodic and periodic liftings were proposed, and simulations were used to
demonstrate that the new designed codes exhibit substantial error floor improvement compared to
random constructions. Compared to previous approaches that focused on optimization techniques

and time-invariant constructions, the two-stage design approach allows us to consider larger
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Fig. 10. Performance comparison of our designed codes with the OO-CPO SC-LDPC code with (n.,n.) = (3,7).

coupling widths as well as time-varying code constructions. Finally, empirical results on the

minimum coupling width w needed to ensure girth g = 6 for (n., n,)-regular coupled protographs

was presented.
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