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Abstract

Spatially coupled (SC) low-density parity-check (LDPC) codes can achieve capacity approach-

ing performance with low message recovery latency when using sliding window (SW) decoding. An

SC-LDPC code constructed from a protograph can be generated by first coupling a chain of block

protographs and then lifting the coupled protograph using permutation matrices. In this paper, we

introduce a systematic design to eliminate 4-cycles in a coupled protograph. Further using a quasi-

cyclic (QC) lifting, we introduce a procedure for constructing QC-SC-LDPC codes of girth at least

eight. This can be interpreted as a multi-stage graph lifting process that yields a greater flexibility in

designing QC-SC-LDPC codes with a large girth than previous approaches. Simulation results show

the design leads to improved decoding performance, particularly in the error floor, compared to random

constructions. Finally, we determine the minimum coupling width required to eliminate 4-cycles in a

coupled protograph.
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I. INTRODUCTION

Since the original work of Thorpe [1], it has been recognized that protographs provide an

efficient method of constructing low-density parity-check (LDPC) codes. Analyzing the iterative

decoding thresholds and minimum distance growth properties of small protographs facilitates

the construction of code ensembles with good asymptotic properties after applying a graph-

lifting procedure [2]. Protograph-based methods were used to construct good spatially coupled

LDPC (SC-LDPC) codes in [3], where an edge-spreading procedure is first used to couple

together a chain of block code protographs (thus introducing memory to the code), followed

by graph lifting using permutation matrices. This two-step code design procedure was shown

to result in SC-LDPC code ensembles with thresholds approaching the maximum a posteriori

(MAP) thresholds of their underlying LDPC block code ensembles, i.e., they exhibit the threshold

saturation effect [4] [5] [6] [3], and linear growth of minimum distance with block length, i.e., the

ensembles are asymptotically good. If the permutation matrices used in the lifting procedure are

circulants (shifted identity matrices), a quasi-cyclic (QC) ensemble results, a desirable property

for practical implementation [7]. One important aspect of finite-length LDPC code design is to

maximize the girth of the Tanner graph representation of the parity-check matrix to ensure that

the convergence behavior of iterative decoding is not negatively affected by short cycles. For

protograph-based constructions of QC-LDPC codes, this can be accomplished by applying the

Fossorier condition [8] to the graph lifting.

Several constructions of QC-SC-LDPC codes have been proposed recently in the literature

[7] [9]–[15]. Most of these approaches, including [11]–[15], focus on constructions of QC-SC-

LDPC codes that are based on a certain underlying block code structure. The goal of these papers

is to devise good edge spreading (or coupling) connections given the underlying code. These

approaches typically involve minimizing the harmful objects (cycles, absorbing sets) based on

the structure of the underlying code and were shown in those papers to result in QC-SC-LDPC

codes with improved code performance. However, the computational complexity of searching

for a good edge spreading limits the memory (or coupling width) of the resulting QC-SC-

LDPC codes to be small. For example, in [11] and [15], optimization techniques were used to

minimize the number of 6-cycles in circulant-based SC-LDPC codes. Due to the complexity of
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the optimization, however, this approach is limited to coupling widths less than or equal to two.

Direct designs of time-invariant QC-SC-LDPC codes, based on the polynomial representation

of the parity-check matrix of the code, were also investigated in [16]–[20]. The design of more

general SC-LDPC codes was also considered in [4] [21] [22], where protographs were constructed

with the smallest constraint length needed to avoid 4-cycles. Finally, memory efficient hardware

implementations of QC-SC-LDPC codes have been addressed in [23].

A primary motivation of this paper is the heuristic construction of SC-LDPC code designs with

large coupling widths, since such designs have been shown to be capable of better performance

on a fixed latency basis [24].1 Motivated by the results of [25] [26], we also take a more general

multi-stage lifting approach that can be used to improve the design of the code at each lifting

stage, where reduction/elimination of problematic objects can be achieved at the different stages,

including at the first graph-lifting, i.e., the protograph design stage. Our idea also depends on

the fact that the girth of a lifted graph is lower bounded by the girth of its base graph [12].

Hence, starting from a block code protograph with good asymptotic threshold and distance

properties, we design the edge spreading in two stages to maximize the girth and minimize the

number of short cycles in the SC protograph. The edge-spreading procedure can be interpreted

as decomposing a base matrix B (corresponding to a block code protograph) into a number of

component matrices, which are then used to form an SC base matrix BSC. In our approach, we

identify several sub-blocks of BSC that guide the design of the component matrices, leading to

an SC protograph with a girth of at least six.

By further performing a circulant-based graph-lifting of BSC and applying the Fossorier

condition to generate an SC parity-check matrix HSC, we obtain QC-SC-LDPC codes with

a girth of at least eight.2 Simulation results show that substantial performance gains, particularly

in the error floor, are achieved using the two-stage design approach compared to random code

constructions. Note that, with an undesigned SC protograph, the Fossorier condition can still be

applied to yield an SC-LDPC code of girth eight. However, the existence of many short cycles

in the protograph makes the process very complex. The two-stage approach, on the other hand,

1The decoding latency depends on the product of the coupling width and the graph lifting factor, so codes with a large
coupling width can still have small latency.

2In this paper, we have restricted our approach to eliminating cycles of length four and length six in the two design stages;
however, we believe that the approach could be suitably generalized to other design criteria.
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makes it much easier to apply the Fossorier condition, since the SC protograph has already

been designed to have girth six. In addition, in contrast to optimization methods [11] [15],

our heuristic approach allows us the possibility of using larger coupling widths, which make

it easier to guarantee girth six. Although the proposed multi-stage design framework does not

carry any guarantee of optimality, it does allow us the flexibility in code design needed to

reduce/eliminate harmful objects in the Tanner graph, e.g., cycles, absorbing sets, and so on.

Moreover, compared to the time-invariant QC-SC-LDPC code designs in [16]–[20], our approach

can produce periodically time-varying QC-SC-LDPC codes (of which time-invariant QC-SC-

LDPC codes are a special case), which have the potential of yielding larger minimum (free)

distances [3]. Further, if non-circulant or random liftings are desired, our approach still guarantees

a code with girth at least six and lends itself to asymptotic analyses of the SC-LDPC code

ensembles derived from the designed protographs, for which we then compute belief propagation

(BP) iterative decoding thresholds over the binary erasure channel (BEC). Finally, we perform

an heuristic search for the minimum coupling width required to eliminate 4-cycles in a coupled

protograph.

II. SC-LDPC CODES

The construction of a protograph-based SC-LDPC code can be described as a two-step pro-

cedure – first protograph coupling and then graph lifting [3]. A block protograph [1] is a small

bipartite graph with nc check nodes and nv variable nodes, where nc < nv. It can be represented

by a base matrix
B = [B(r, s)]nc×nv , (1)

where B(r, s), a non-negative integer, is the row-r column-s entry, r = 1, . . . , nc, s = 1, . . . , nv.

The entries determine the number of edges that connect check node r to variable node s in the

protograph. For example, Fig. 1(a) shows a block protograph defined by B = [3 3]. To construct

an SC protograph, we first replicate the block protograph as an infinite chain, as shown in

Fig. 1(b), and then spread edges from the variable nodes of the protograph at time instant t

by connecting them to check nodes at time instants t to t + ω. Repeating this spreading over

all the protographs in the chain yields an SC protograph with coupling width ω, as shown in

Fig. 1(c) for the case ω = 2. This edge spreading can be interpreted as decomposing B into

ω + 1 component matrices of the same size, i.e., B0,B1, . . . ,Bω, such that
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Fig. 1. (a) Block protograph for B = [3 3], (b) an infinite chain of block protographs, (c) coupling the protographs with
ω = 2, and (d) a finite chain of L coupled protographs.

B(r, s) =
ω∑
i=0

Bi(r, s), (2)

so the coupled protograph maintains the same check node and variable node degrees as the

original block protograph. If the block protograph has a regular structure that exhibits uniform

check node and variable node degrees, as in Fig. 1(a), the constructed SC protograph will also

be regular. In practice, an SC protograph is terminated after a finite number L of coupled

block protographs, where L is called the coupling length. The terminated protograph contains

Lnv variable nodes and (L + ω)nc check nodes, as shown in Fig. 1(d). The corresponding

(L+ w)nc × Lnv SC base matrix

B
(L)
SC =



B0

B1 B0

...
... . . .

Bω Bω−1 · · · B0

. . . . . .

Bω Bω−1 · · · B0

. . . ...

Bω Bω−1

Bω



(3)
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exhibits a diagonal band of nonzero entries. Note that the first and last ωnc check nodes have

reduced degrees, i.e., the terminated protograph has a slight irregularity at both ends, which is

an important feature in realizing the saturation threshold effect of SC-LDPC codes [3], [4], [5],

[6].

The parity-check matrix H
(L)
SC of an SC-LDPC code can be obtained by an M -fold matrix

expansion from B
(L)
SC that corresponds to an M -fold graph-lifting of the terminated SC proto-

graph [27]. In the lifted graph, each check node and variable node is replaced by M copies of the

original node and each edge is replaced by M edges connecting M pairs of check and variable

nodes. From B
(L)
SC = [B

(L)
SC (r, s)](L+ω)nc×Lnv , H

(L)
SC is generated by replacing each nonzero entry

in B
(L)
SC by a non-overlapping sum of B

(L)
SC (r, s) M ×M binary permutation matrices PM and

replacing each zero entry by the M ×M all zero matrix, so that H
(L)
SC also exhibits a diagonal

band of nonzero entries. The constraint length and design rate of the corresponding code are

v = Mnv(ω + 1) and R
(L)
SC = 1 − (L+ω)nc

Lnv
, respectively, and the asymptotic rate is given by

limL→∞R
(L)
SC , R

(∞)
SC = 1− nc

nv
. H

(L)
SC defines a particular SC-LDPC code, whose girth (denoted

g) is given by the length of the shortest cycle in the corresponding Tanner graph. We restate here

a Lemma from [12]. (Other similar girth characterizations of LDPC codes have been reported

in [34] [35] [36].)

Lemma 1. The girth of the Tanner graph of H
(L)
SC is lower bounded by the girth of the

protograph of B
(L)
SC .

Proof: Let g and g′ denote the girths of the Tanner graphs of B
(L)
SC and H

(L)
SC , respectively.

Assume g′ < g, i.e., H
(L)
SC contains a cycle of length less than g. Since H

(L)
SC is comprised of

permutation matrices, which contain only a single one in any row or column, this implies that

there also exists a cycle of length less than g in B
(L)
SC , which contradicts the fact that the girth

of B
(L)
SC is g.3

This lemma motivates the design in Section III.

III. DESIGN OF B
(L)
SC

Based on Lemma 1, the proposed approach aims to first eliminate (or reduce the number of)

4-cycles in B
(L)
SC . Then, using a systematic circulant-based lifting, we try to construct matrices

3If B(L)
SC contains integer values greater than one, corresponding to a multi-edge protograph, its Tanner graph has girth g = 2,

and the lemma follows immediately.
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Fig. 2. Nonzero entries (solid circles) that form 4-cycles in B
(L)
SC , where Ba, Bb, Bc and Bd, a, b, c, d ∈ {0, 1, . . . , ω}, are

nc × nv component matrices in B
(L)
SC .

H
(L)
SC with girth g ≥ 8. Due to the diagonal nature of B

(L)
SC (see (3)), a careful examination of

its structure is needed in the design.

A. Preliminaries

To illustrate the procedure, we consider the common case when the base matrix is all-

ones, i.e., B = 1nc×nv , resulting in an (nc, nv)-regular protograph. A 4-cycle in a coupled

protograph corresponds to four nonzero entries that form a rectangular array in B
(L)
SC . Fig. 2

shows demonstrative sketches of all possible patterns of 4-cycles in B
(L)
SC , which leads to the

following lemma.

Lemma 2. In B
(L)
SC , 4-cycles may be contained in: 1) one component matrix of B

(L)
SC (see Fig.

2(a)); 2) two component matrices that appear in the same row or the same column of B
(L)
SC (see

Figs. 2(b) and 2(c)); 3) four component matrices that appear in a rectangular array of B
(L)
SC (see

Fig. 2(d)).

We now decompose B
(L)
SC as follows:

• The representative block BR is defined as
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BR ,


Bω Bω−1 · · · B0

Bω · · · B1

. . . ...

Bω

 , (4)

with size (ω + 1)nc × (ω + 1)nv. By comparing (4) to (3), and noting the repeating diagonal

structure of B
(L)
SC , it can be seen that any combination of one, two, or four component matrices

that contain a 4-cycle in B
(L)
SC will appear in BR. Therefore, if BR does not contain 4-cycles,

neither will B
(L)
SC . To help explain our design, the following two definitions based on BR are

given:

• A constituent block BC is defined as

BC ,



Bβ−1 Bβ−2 · · · B1 B0

Bβ Bβ−1 · · · B2 B1

...
... . . . ...

...

Bω−1 Bω−2 · · · Bα−1 Bα−2

Bω Bω−1 · · · Bα Bα−1


, (5)

where ω = α+β−2 and α, β > 1, with size αnc×βnv. BC is obtained by forming a rectangular

matrix from BR that contains B0 in the upper right corner and one of the Bω component matrices

all along the diagonal of BR (except those in the upper left and lower right corners) in the lower

left corner. Hence, there are ω − 1 choices for BC. Note that when ω = 2, BC is unique, and

when ω = 1, BC does not exist. Note that each constituent block includes all component matrices

Bi. For a given BC, we define the weight wt(Bi) of a component matrix Bi as the number of

times it is included in BC, where
∑ω

i=0 wt(Bi) = αβ;

• Excluded patterns B
(j)
E are defined as

B
(1)
E =

[
Bω B0

]
, B

(2)
E =

B0

Bω

 ,
B

(j)
E =

Baj Bbj

Bcj Bdj

 , j = 3, 4, . . . , nE, (6)
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where aj, bj, cj, dj ∈ {0, 1, . . . , ω} and nE is the number of excluded patterns. Block B
(1)
E (resp.

B
(2)
E ) is the nc × 2nv (resp. 2nc × nv) single row (resp. column) pattern (pair of component

matrices) that appears in BR but cannot appear in BC, whereas B
(j)
E , j = 3, 4, . . . , nE, are all

2nc×2nv rectangular patterns that appear in BR but not in BC. The number of excluded patterns

nE depends on ω and the given BC, while the particular set of excluded patterns depends on

the given BC. Note that when ω = 2, there are only two excluded patterns B
(1)
E and B

(2)
E , since

the one 2nc × 2nv rectangular pattern in BR also appears in BC. Also, when ω = 1, the only

excluded patterns are B
(1)
E and B

(2)
E .

The following example illustrates the above definitions.

Example 1. When ω = 4, we have

BR =



B4 B3 B2 B1 B0

B4 B3 B2 B1

B4 B3 B2

B4 B3

B4


.

BC can be chosen as the 3nc × 3nv pattern

BC =


B2 B1 B0

B3 B2 B1

B4 B3 B2

 ,
where wt(B0) = wt(B4) = 1, wt(B1) = wt(B3) = 2, and wt(B2) = 3. The excluded patterns

are

B
(1)
E =

[
B4 B0

]
, B

(2)
E =

B0

B4

 , B
(3)
E =

B3 B0

B4 B1

 ,B(4)
E =

B1 B0

B4 B3

 ,
where, following the notation of (6), we have a3 = 3, b3 = 0, c3 = 4, d3 = 1 and a4 = 1, b4 = 0,

c4 = 4, d4 = 3.

Note that the constituent block can also be chosen as the 2nc × 4nv pattern

BC =

B3 B2 B1 B0

B4 B3 B2 B1

 ,
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or the 4nc × 2nv pattern

BC =


B1 B0

B2 B1

B3 B2

B4 B3

 .

In each of these cases, wt(B0) = wt(B4) = 1 and wt(B1) = wt(B2) = wt(B3) = 2. The

2nc × 4nv choice of BC results in the excluded patterns

B
(1)
E =

[
B4 B0

]
, B

(2)
E =

B0

B4

 , B
(3)
E =

B2 B0

B4 B2

 ,B(4)
E =

B2 B1

B4 B3

 ,
B

(5)
E =

B1 B0

B3 B2

 ,B(6)
E =

B1 B0

B4 B3

 ,
while the 4nc × 2nv choice of BC results in the excluded patterns

B
(1)
E =

[
B4 B0

]
, B

(2)
E =

B0

B4

 , B
(3)
E =

B3 B0

B4 B1

 ,B(4)
E =

B3 B1

B4 B2

 ,
B

(5)
E =

B2 B0

B3 B1

 ,B(6)
E =

B2 B0

B4 B2

 . �
The above definitions lead to the following theorem.

Theorem 3. The coupled protograph of B
(L)
SC does not have any 4-cycles if the chosen BC and

its associated B
(j)
E , j = 1, 2, . . . , nE, do not contain any 4-cycles.

Proof: The result follows directly from Lemma 2. For case 1), BC includes all possible

component matrices Bi, i = 0, 1, . . . , ω. For cases 2) and 3), BC and B
(j)
E , j = 1, 2, . . . , nE, have

been defined such that they contain all possible patterns of component matrices that can result

in 4-cycles in BR, and hence in B
(L)
SC . Therefore, if there are no 4-cycles in the chosen BC and

the associated B
(j)
E , j = 1, 2, . . . , nE, there are no 4-cycles in B

(L)
SC .

Based on Theorem 3, we now proceed to design the component matrices Bi such that neither

the chosen BC nor its associated B
(j)
E contain any 4-cycles. The proposed design includes two

stages: Stage 1 initializes the component matrices based on the B
(j)
E ; Stage 2 modifies the

component matrices based on BC.
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B. Design Stage 1

Given a base matrix B = 1nc×nv and a representative block BR with coupling width ω, a

constituent block BC is chosen and its associated excluded patterns B
(j)
E are determined. Then

the Stage 1 design insures that the component matrices and the excluded patterns do not contain

any 4-cycles. Let Inc denote the nc × nc identity matrix. Furthermore, let Ξnc×(nv−nc) denote

an nc × (nv − nc) binary matrix with a minimum row weight of one and a maximum column

weight as small as possible.4 Stage 1 is summarized as Design Rule 1 below.

Design Rule 1 Initialize the component matrices (Stage 1)
1.1: Let B0 = [Inc Ξnc×(nv−nc)], where Ξnc×(nv−nc) is chosen as above such that there is no

4-cycle in B0.

1.2: Initialize Bω such that it contains no 4-cycle and there are no 4-cycles in B
(1)
E or B

(2)
E ,

the minimum row weight of Bω is two, and, given these constraints, Bω has a maximum

column weight as small as possible.

1.3: Initialize B1,B2, . . . ,Bω−1 such that

1) B(r, s) =
∑ω

i=0 Bi(r, s), i.e., (2) is satisfied;

2) There is no 4-cycle in any of the component matrices Bi, i = 1, 2, . . . , ω − 1, or in the

excluded patterns B
(j)
E (j = 3, 4, . . . , nE).

In the above design, note that Step 1.1 insures that the minimum row weight of B0 is two.

Requiring each row of B0 and Bω to have a minimum row weight of two is desirable since

they are the only component matrices in the top and bottom rows of B
(L)
SC , respectively, and a

row weight of at least two is needed to assist the startup and termination of decoding. Since

B0 = [Inc Ξnc×(nv−nc)], we must ensure Ξnc×(nv−nc) has no 4-cycles. When nv − nc ≥ nc, this

is equivalent to ensuring the maximum column weight of Ξnc×(nv−nc) is one. However, when

nv − nc < nc, maintaining a minimum row weight of one for Ξnc×(nv−nc) will inevitably make

the maximum column weight greater than one. In this case, Ξnc×(nv−nc) must be designed such

that no set of four 1s will appear in a rectangular array. Furthermore, restricting the maximum

column weights of B0 and Bω to be as small as possible simplifies Step 1.3. The remaining

4If nv−nc ≥ nc (R
(∞)
SC ≥ 1

2
), the maximum column weight of Ξnc×(nv−nc) can be as low as one. If nv−nc < nc (R

(∞)
SC <

1
2
), it will have a maximum column weight greater than one.
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component matrices B1,B2, . . . ,Bω−1 are then initialized based on the already chosen B0 and

Bω and avoiding 4-cycles in the excluded patterns B
(j)
E (j = 3, 4, . . . , nE). The following example

illustrates Design Rule 1.

Example 2. Given B = 13×8 and ω = 4, BR, BC, B
(1)
E , B

(2)
E , B

(3)
E , and B

(4)
E are given in

Example 1, where BC is the 3nc × 3nv pattern, i.e., α = β = 3. We employ Design Rule 1 to

initialize the component matrices. First, we let

B0 = [I3 Ξ3×5] =


1 0 0 1 0 1 0 0

0 1 0 0 1 0 0 1

0 0 1 0 0 0 1 0

 .
Placing B0 into B

(2)
E , we then initialize

B4 =


0 1 1 0 0 0 0 0

1 0 0 0 0 0 1 0

0 1 0 0 0 1 0 0

 ,
such that neither B

(1)
E nor B

(2)
E contains any 4-cycles. In order to initialize B1, B2, and B3, we

place both B0 and B4 into the excluded patterns B
(3)
E and B

(4)
E . To satisfy (2), as well as to

avoid 4-cycles in these two excluded patterns, we design B1 and B3 as

B1 =


0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 , B3 =


0 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1

 ,
and then B2 is given by

B2 =


0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0

1 0 0 1 1 0 0 0

 .
The above design ensures that there are no 4-cycles in all the component matrices and excluded

patterns.

Finally, we place the initialized component matrices into BC and check if it contains any 4-

cycles. If not, the coupled protograph of B
(L)
SC has g ≥ 6, and the design is complete. Otherwise,

we proceed to Stage 2 to eliminate (or reduce the number of) 4-cycles that remain in BC. In this
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example, there are two 4-cycles in BC, so Stage 2 is needed to further modify the component

matrices. �

C. Design Stage 2

Design Rule 2 Modify the component matrices (Stage 2)
2.1: Identify a 4-cycle in BC with entries

BC(x1, y1) = 1, BC(x1, y2) = 1,

BC(x2, y1) = 1, BC(x2, y2) = 1.

2.2: Suppose that the four entries belong to component matrices Bi1 , Bi2 , Bi3 , and Bi4 , where
(i1, i2, i3, i4) ∈ {0, 1, . . . , ω}. Denote these entries as

Bi1(r1, s1) = 1, Bi2(r1, s2) = 1,

Bi3(r2, s1) = 1, Bi4(r2, s2) = 1.

2.3: Among these four entries, identify those that have not previously been flipped. Pick one
that belongs to a component matrix of the highest weight and denote it Bi′(r

′, s′), where i′ ∈
{i1, i2, i3, i4} and (r′, s′) ∈ {(r1, s1), (r1, s2), (r2, s1), (r2, s2)}. Flip down the entry Bi′(r

′, s′)
such that

Bi′(r
′, s′) : 1 → 0, (7)

Also flip down all entries in B
(j)
E (j = 1, 2, . . . , nE) and BC that correspond to entry Bi′(r

′, s′).
2.4: Flip up an entry Bi(r

′, s′) such that

Bi(r
′, s′) : 0 → 1, (8)

where i ∈ {0, 1, . . . , ω} and i 6= i′, conditioned on
1) The entry has not been previously flipped (down or up);
2) The flipping does not create new 4-cycles in Bi or in any B

(j)
E that includes Bi;

3) The number of 4-cycles contained in BC does not increase after the flipping (down and
up) process is completed.
Also flip up all entries in B

(j)
E (j = 1, 2, . . . , nE) and BC that correspond to entry Bi(r

′, s′).
2.5: If the flipping in Step 2.4 succeeds, go to Step 2.6; else, reflip Bi′(r

′, s′) to its original
value, i.e.,

Bi′(r
′, s′) : 0 → 1. (9)

Also reflip all entries in B
(j)
E (j = 1, 2, . . . , nE) and BC that correspond to entry Bi′(r

′, s′),
and go to Step 2.3.
2.6: Repeat Steps 2.1 to 2.4 until all 4-cycles are removed or there are no more eligible entries
to flip.

Stage 2 modifies the initialized component matrices to remove the remaining 4-cycles in BC,

if possible. In order to further distinguish between an entry in BC and one in Bi, we use BC(x, y)
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to denote the row-x column-y entry in BC, for x = 1, . . . , nc and y = 1, . . . , βnv. Stage 2 is

characterized by a so-called check-and-flip process in which, if a 4-cycle exists in BC, one of

its nonzero entries is flipped down from 1 to 0. Since the flipped entry belongs to a component

matrix, maintaining (2) requires that we also flip up an entry from 0 to 1 in one of the other

component matrices. But this flipping should not create 4-cycles in this component matrix or in

the excluded patterns that contain this component matrix. Moreover, the number of 4-cycles in

BC should not increase. Stage 2 is summarized as Design Rule 2 below.

In Step 2.2 of the design, i1, i2, i3, and i4 do not need to be distinct. In Step 2.3, we prioritize

the “flipping down” of a nonzero entry of a component matrix that has maximum weight in BC.

In doing so, we remove the most nonzero entries in BC, so that more 4-cycles are likely to be

removed. It is possible that none of the four entries in an identified 4-cycle allows a complete

flipping (both flipping down and flipping up), in which case the remaining 4-cycle is labelled

dormant. However, a dormant 4-cycle can be targeted for flipping again if some other complete

flipping occurs and it still exists. For small coupling widths ω, though, it may not be possible to

eliminate all dormant 4-cycles in BC. Increasing ω allows more freedom in the design, making

it easier to eliminate 4-cycles in BC. However, this also increases the design complexity, since

the constituent block BC is larger and there are more component matrices Bi and excluded

patterns B
(j)
E to consider, meaning that the flipping up of Step 2.4 must satisfy more conditions.

In general, Stage 2 either eliminates all 4-cycles or minimizes the number of 4-cycles in BC

and, as a result, in B
(L)
SC . The following example illustrates Design Rule 2.

Example 3. Given the component matrices B0,B1, . . . ,B4 that were initialized in Example 2,

we form the constituent block BC shown in Fig. 3(a). We see that there are two 4-cycles, defined

by entries BC(1, 7), BC(1, 20), BC(8, 7), and BC(8, 20) (or B2(1, 7),B0(1, 4),B4(2, 7), and

B2(2, 4) in component matrix notation), and BC(1, 17), BC(1, 20), BC(9, 17), and BC(9, 20) (or

B0(1, 1),B0(1, 4),B2(3, 1), and B2(3, 4) in component matrix notation), which are highlighted

by the squares.

We now apply Design Rule 2 to remove these 4-cycles. Take the 4-cycle defined by BC(1, 7),

BC(1, 20), BC(8, 7), and BC(8, 20) as an example, which belong to component matrices B2, B0,

B4, and B2, respectively. Since wt(B2) = 3 and wt(B0) = wt(B4) = 1, entry BC(1, 7) is chosen

to be flipped down from 1 to 0, so that i′ = 2 and (r′, s′) = (1, 7), and we also flip down the other

two B2(1, 7) entries that appear in BC. (Note that B2 is not contained in any of the excluded
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(b) The modified BC after one complete flipping,
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(c) The modified BC after 4 flippings.

Fig. 3. The Stage 2 design of Example 3.
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patterns for this choice of BC.) Fig. 3(b) shows the modified BC in which the three flipped down

B2(1, 7) entries are highlighted by the circles. In order to maintain the edge-spreading condition

(see (2)), we must flip up an entry Bi(1, 7), where i 6= 2. Since B4(1, 7),B3(1, 7),B1(1, 7), and

B0(1, 7) have not been previously flipped, we choose the two B3(1, 7) entries, corresponding to

BC(4, 7) and BC(7, 15), to be flipped up from 0 to 1, which is highlighted by the triangles in

Fig. 3(b). We then check and find that this flipping up step does not create new 4-cycles in B3

or in the excluded patterns B
(1)
E , B

(2)
E , B

(3)
E , or B

(4)
E and that it does not increase the number of

4-cycles in BC. As a result, the targeted 4-cycle in BC has been removed. The other 4-cycle in

BC can be removed in a similar manner. In all, a total of 4 flippings (flipping down BC(1, 7)

and BC(3, 1), and flipping up BC(4, 7) and BC(6, 1)) are required to remove the two 4-cycles in

BC. The resulting BC is shown in Fig. 3(c). Its girth is six, which is highlighted in the figure.

As a result, we can insure that B
(L)
SC also has girth g = 6. �

Intuitively, the above design can be seen as guiding the spreading of the ncnv 1’s in B over the

ω+ 1 component matrices in such a way that 4-cycles are eliminated in the coupled protograph.

As another example, given the block protograph defined by B = 12×4 and coupling width ω = 2,

we can apply the above two stage design to obtain

B0 =

1 0 0 1

0 1 0 1

 ,B1 =

0 0 1 0

0 0 0 0

 ,B2 =

0 1 0 0

1 0 1 0

 ,
thus insuring that the coupled protograph of B

(L)
SC does not contain any 4-cycles. The resulting

coupled protograph, which in this case has girth g = 12, is shown in Fig. 4.

Fig. 4. A coupled protograph with coupling width ω = 2 and girth g = 12.

If Stage 2 does not eliminate all the 4-cycles in BC
5 for a particular set of initial component

5We note here that it is easier to design a BR that does not contain any 4-cycles for larger values of ω, since the individual
component matrices are sparser.
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matrices Bi, i = 0, 1, . . . , ω, designed in Stage 1, or if it results in a B0 or Bω with minimum

row weight less than two (for example, in the coupled protograph of Fig. 4, the minimum

row weight of B2 is one), the design can be repeated with a different set of initial component

matrices. Alternatively, one can impose maintaining a minimum row weight of two for B0 and

Bω as a constraint when flipping down in Step 2.3 (although this may limit our ability to find

a 4-cycle free BC). In the case of unterminated codes (or codes with large L) that are decoded

with sliding window (SW) decoding, the row weight of Bω has little effect on performance, and

hence the constraint on Bω can be relaxed. Further, for ω > 2, there are multiple choices for

BC, each of which is associated with a different set of excluded patterns. Our experience has

shown that the choice of BC does not affect whether or not 4-cycles can be eliminated (although

choosing different sets of initial component matrices can yield different results). This follows

from the fact that, when using a different constituent block and its associated excluded patterns,

the two-stage design has already checked through all possible patterns that could contain 4-

cycles. In other words, different choices of BC, along with the associated excluded patterns B
(j)
E ,

and the subsequent component matrix initialization only affect the scheduling of the flipping,

not whether 4-cycles can be eliminated.6 Finally, we note that, after achieving girth g = 6, the

design procedure can be continued in an attempt to reduce the number of 6-cycles in the coupled

protograph. The way in which finding a 4-cycle free BR depends on the code parameters nc,

nv, and ω will be discussed in the following subsection.

D. Coupling Width Required to Eliminate 4-Cycles

In order to apply our approach to other SC protographs, it is helpful to identify what is the

minimum ω required to achieve girth 6, since we will typically want small ω to minimize latency.

Based on the base matrix B = 1nc×nv , the proposed design can be seen as assigning the ncnv 1s

in B to the ω + 1 component matrices B0,B1, . . . ,Bω in a way such that BR does not contain

4-cycles. Intuitively, a larger ω gives more design freedom, so that the Stage 1 design can already

ensure that BR does not contain 4-cycles when ω is sufficiently large. However, the proposed

design can result in many possibilities for the designed component matrices. Due to the heuristic

nature of the design, it is difficult to theoretically characterize the minimum ω for insuring a

6The search complexity can be reduced by choosing BC in (5) such that α = β−1, β, or β+1, which minimizes the number
of excluded patterns (see Example 1).
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TABLE I
THE MINIMUM w THAT INSURES BR DOES NOT CONTAIN 4-CYCLES.

(nc, nv) ω (nc, nv) ω (nc, nv) ω (nc, nv) ω
(2, 3) 1 (3, 4) 2 (4, 5) 2 (5, 6) 4
(2, 4) 2 (3, 5) 2 (4, 6) 3 (5, 7) 4
(2, 5) 2 (3, 6) 3 (4, 7) 4 (5, 8) 5
(2, 6) 3 (3, 7) 3 (4, 8) 5 (5, 9) 6
(2, 7) 3 (3, 8) 4 (4, 9) 5 (5, 10) 8
(2, 8) 4 (3, 9) 4 (4, 10) 6
(2, 9) 4 (3, 10) 5

(2, 10) 5 (3, 11) 5
(2, 11) 5 (3, 12) 6
(2, 12) 6

4-cycle free BR.7 Alternatively, we have employed an exhaustive search for the minimum ω

resulting from the proposed design with given (nc, nv) pairs. Our results obtained using Design

Rules 1 and 2, thus ensuring the minimum row weight of 2 for the initial B0 and Bω needed

to assist the startup and termination of decoding, are shown in Table I. Our search results echo

some existing characterizations in the literature of the minimum coupling width needed to ensure

a coupled protograph contains no 4-cycles. For example, our results match well with Lemma 4

of [16], which gives a lower bound on ω needed to ensure a 4-cycle-free SC parity-check matrix

for a time-invariant construction of the same type as our more general time-varying construction.

Also, when nc = 2, our search results exactly match the coupled protograph design of [33], for

which the minimum ω that ensures no 4-cycles is nv

2
when nv is even and nv−1

2
when nv is odd.

We observe that, for the same nc, a larger nv requires a larger ω to insure a 4-cycle free BR.

For example, when (nc, nv) = (2, 6), the minimum ω is 3, while when (nc, nv) = (2, 9), the

minimum ω is 4. This is because increasing nv not only leads to more 1s to be assigned to the

component matrices, but the asymptotic rate R(∞)
SC = 1− nc

nv
of the designed code also becomes

higher, making it more challenging to design a matrix BR that does not contain 4-cycles. This can

also be seen by comparing designs with the same ncnv (the same number of 1s to be assigned),

where a smaller ratio of nc

nv
(a higher asymptotic rate) requires a larger coupling width. For

7In recent papers [11] [15], optimization techniques were used to minimize the number of 6-cycles in array-based SC-LDPC
codes. Due to the complexity of the optimization, however, this approach is limited to values of ω ≤ 2, whereas our heuristic
design allows us to reach much larger values of ω.
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example, when (nc, nv) = (4, 6), the minimum ω is 3, while the minimum values of ω are 4

and 6 for (nc, nv) = (3, 8) and (nc, nv) = (2, 12), respectively. This is because the component

matrices of higher rate codes have relatively more columns than rows, making it easier to form

4-cycles, thus requiring a larger ω to spread the 1s over more component matrices. Finally, for

the same asymptotic rate, we see that increasing nc (and nv) also leads to an increase in the

minimum required ω. For example, (nc, nv) = (2, 4) requires ω = 2, while (nc, nv) = (3, 6) and

(nc, nv) = (4, 8) require ω = 3 and ω = 5, respectively. This is because, for the same ratio nc

nv
, a

larger nc (and nv) means that there are more 1s to be assigned to the component matrices, and

consequently a larger ω is required.

IV. BP DECODING THRESHOLDS OF THE DESIGNED CODE ENSEMBLES

The above coupled protograph design ensures that the constructed codes have large girth,

thereby yielding good error floor performance. However, the design does not guarantee good wa-

terfall performance. Therefore, we now compare the BP decoding thresholds of several designed

SC-LDPC protograph-based code ensembles over the BEC to those of undesigned (random edge

spreading) protograph-based ensembles constructed from the same all-one base matrix 1nc×nv .

Note that the Shannon limit of a BEC is 1− ε, where ε is the erasure probability.

Fig. 5 shows the BP decoding thresholds of the designed and undesigned protograph-based

ensembles with different choices of nc, nv, and ω, where the coupling widths ω are chosen such

that the designed protographs have girth g = 6. It can be seen that, in all cases, the BEC decoding

threshold decreases as the coupling length L increases (due to the increasing rate R(L)
SC ) up to a

certain point, after which the BP decoding thresholds of the SC-LDPC code ensembles saturate

and approach the MAP decoding thresholds of their underlying LDPC block code ensembles

(0.488, 0.497, and 0.499 for (3, 6), (4, 8), and (5, 10)-regular ensembles, respectively). This is

due to the structured irregularity at the beginning and end of the coupled graph that results in

threshold saturation and is consistent with [3], [4], [5], [6].

We observe that the designed and undesigned ensembles have similar BP decoding thresholds,

especially when L is large. This is due to the fact that our design does not change the row weight

of a full diagonal band (that contains Bω, Bω−1, . . ., B0) or the column weight of the SC base

matrix, and thus it has the same degree profile as an undesigned protograph. Comparing the

ensembles with different column (and row) weights, we see that, for the same asymptotic rate
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Fig. 5. BP decoding thresholds of designed and undesigned SC-LDPC code protograph-based ensembles.

R
(∞)
SC = 0.5, increasing the column (and row) weight leads to a decrease in the BP decoding

threshold for small values of L, where the termination causes significant rate loss. But larger

column (and row) weights lead to better BP decoding thresholds as L becomes larger and

tends to infinity, where the rate loss approaches zero. This follows from the fact that block

code ensembles with larger column (and row) weights have better minimum distance properties,

and thus their MAP decoding thresholds are better. In contrast, for regular LDPC block code

ensembles, where threshold saturation does not occur, higher column (and row) weights result

in worse BP decoding thresholds. In summary we see that the BP thresholds of the designed

ensembles closely track those of undesigned ensembles and approach the MAP thresholds of the

underlying block code ensembles for large L, thus insuring that the designed codes also achieve

good waterfall performance.
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Fig. 6. A 3× 3 grid of nonzero entries corresponding to a 6-cycle in B
(L)
SC , where r1 < r2 < r3 and s1 < s2 < s3.

V. QC LIFTING BASED ON B
(L)
SC

Given a designed B
(L)
SC , we can employ a systematic lifting using circulants in an attempt

to further reduce the multiplicity of short cycles and increase the girth. In this paper, we pay

particular attention to the removal of all 6-cycles (and any remaining 4-cycles) so that the

resulting H
(L)
SC is QC and has g ≥ 8, although the approach could be extended in a straightforward

way to target higher girth. Note that, without loss of generality, any 6-cycle can be represented

by a 3 × 3 grid of nonzero entries in B
(L)
SC , as illustrated in Fig. 6 for the 6-cycle highlighted

in Fig. 3(c). In general, circulants can be chosen using the Fossorier condition (Theorem 2.1 of

[8]) to avoid a 2k-cycle, k = 2, 3, . . ., in a parity-check matrix. For example, if the six nonzero

entries that constitute the 6-cycle in Fig. 6 (indicated by the solid circles) are lifted with different

circulants I
(θ)
M , where I

(θ)
M denotes the shifted identity matrix with each row of the M×M identity

matrix IM cyclically shifted to the left by θ positions, and the shifting factors satisfy

(θ3 − θ9) 6= (θ2 − θ5) + (θ4 − θ7) mod M, (10)

then there are no 6-cycles in the lifted subgraph corresponding to H
(L)
SC associated with this

6-cycle in B
(L)
SC . In this case, we say that the 6-cycle in the protograph has been “removed” by

lifting. In general, a QC lifting based on B
(L)
SC results in non-periodically time-varying SC-LDPC

codes, but for ease of implementation it is desirable to construct periodically time-varying, or

even time-invariant codes [31].8 We treat these two cases separately below.

8Note that, if we use the same set of circulants for lifting every column of B(L)
SC , we will obtain a time-invariant QC-SC-LDPC

code. However, the time-varying designs give us added flexibility, making it easier to achieve girth 8 for a given M . Also, if
M is too small, it may not be possible to achieve girth 8 at all with the time-invariant constraint.
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A. The Non-Periodic Case

We start by identifying all the nonzero entries that participate in 6-cycles of B
(L)
SC . The iden-

tified 6-cycles are then removed sequentially by selecting circulants according to the Fossorier

condition. (The remaining nonzero entries can be lifted using randomly generated circulants.)

However, since nonzero entries can participate in multiple 6-cycles, care must be taken to insure

that cycle removal does not create new short cycles elsewhere in the graph. In our approach,

the entries and shifting factors are recorded after removing each cycle. Before a new 6-cycle

is targeted for lifting, we first check to see if any of its nonzero entries have been previously

lifted. If so, they are left unchanged, and the shifting factors of the other nonzero entries in the

cycle are chosen such that the Fossorier condition is satisfied (if possible). For sufficiently large

M , we have found that there is enough freedom in choosing the shifting factors to construct

non-periodically time-varying QC-SC-LDPC codes with g ≥ 8.

B. The Periodic Case

To construct periodically time-varying QC-SC-LDPC codes with period ω+1, we can proceed

by choosing the shifting factors for only the nonzero entries in the first ω + 1 columns of B
(L)
SC

that participate in 6-cycles. In the following columns, the shifting factors in every set of ω + 1

columns of B
(L)
SC will be a replication of those in the first ω+ 1 columns. Note that this gives us

a more efficient lifting than in the non-periodic case, since we do not have to check the entire

coupled protograph of length L for 6-cycle removal, but only the first ω + 1 columns of B
(L)
SC .

B
(L)
SC can be seen as consisting of L columns of component matrices B0, B1, . . ., Bω, as shown

in Fig. 7, where we index the columns as τ = 1, 2, . . . , ω, ω+1, . . . , L. For nc > 2, 6-cycles can

be contained in component matrices that occupy the same row (or column) of B
(L)
SC . However,

from Fig. 7 we can see that 6-cycles will not be contained in any two columns of component

matrices, indexed by τ1 and τ2, respectively, if |τ1− τ2| > ω, since in this case the two columns

will not have any component matrices that occupy the same row. This observation enables us

to design the shifting factors for the first ω + 1 columns of B
(L)
SC as follows. We first design the

column 1 shifting factors such that all its 6-cycles are removed. The designed shifting factors of

column 1 are then replicated in column ω + 2. Next, we design column 2 such that all 6-cycles

that exist in column 2 alone, jointly between columns 1 and 2, and jointly between columns 2

and ω+ 2 are removed. Then the designed shifting factors of column 2 are replicated in column
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Fig. 7. Periodic design of QC-SC-LDPC codes.

ω + 3. Since this insures that the joint 6-cycles between columns 1 and 2 are removed and the

shifting factors of column ω + 2 are replicas of those in column 1, there must also be no joint

6-cycles between columns ω+ 2 and ω+ 3. This process then continues until we design column

ω + 1 such that all 6-cycles that exist within column ω + 1 alone and jointly between column

ω+ 1 and the previously designed columns (1, 2, . . ., ω, ω+ 2, ω+ 3, . . ., 2ω+ 1) are removed.

Following the design of column ω + 1, all the shifting factors for the nonzero entries of all the

component matrices in the first ω+1 columns that participate in 6-cycles have been chosen, i.e.,

no 6-cycles exist in the first ω+1 columns of B
(L)
SC . This lifting design can then be replicated for

every following set of ω+ 1 columns of B
(L)
SC , so that the designed parity-check matrix H

(L)
SC has

period ω + 1 and girth g ≥ 8. Again, a large lifting factor M gives more freedom in choosing

the shifting factors to insure g ≥ 8.

As an enhancement to the above procedure, in both the non-periodic and periodic cases, the

6-cycle profile of the SC protograph could be generated. We could then determine the shifting
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factors for the nonzero entries of B
(L)
SC that are involved in the most cycles, followed by the

others in decreasing order. This would improve our ability to eliminate 6-cycles, at a cost of the

increased complexity of ordering the nonzero entries of B
(L)
SC according to their cycle involvement.

The complexity of our proposed multi-stage code design approach depends on designing the

SC base matrix BSC to avoid 4-cycles and then graph-lifting based on BSC. The complexity

of designing BSC depends on the number of 4-cycles that remain in the constituent block BC

after initializing the component matrices in Stage 1. Similarly, the complexity of the lifting

based on BSC depends on the number of 6-cycles (and any remaining 4-cycles) in BSC. (In the

case of periodic QC lifting, the cycle counting is limited to the first ω + 1 columns only of

BSC, which considerably simplifies the problem.) Therefore, obtaining the cycle profile of BC

following the Stage 1 design and the cycle profile of BSC following the Stage 2 design is crucial

to characterizing the design complexity. However, due to the heuristic nature of the design, an

explicit characterization of the complexity is not feasible.

VI. NUMERICAL RESULTS
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Fig. 8. Performance of designed and undesigned SC-LDPC codes with (nc, nv) = (3, 6).
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In this section, we present the simulated performance of our designed spatially coupled base

matrices B
(L)
SC with both random and (non-periodically time-varying) QC liftings, where the

resulting designed SC-LDPC codes have girths of six and eight, respectively. For comparison, we

also consider undesigned SC-LDPC codes with randomly chosen base matrices B
(L)
SC and random

liftings, which typically have a girth of only four for the selected lengths. The simulations were

performed over the additive white Gaussian noise (AWGN) channel using BPSK modulation.

(Note that the BP decoding threshold analysis of the designed and undesigned code ensembles

in Section IV was conducted over the BEC, since this is a quick and convenient platform for

testing and refining our design approach. Its primary conclusions also hold for the AWGN

channel, which is a more realistic channel model for simulating the performance of practical

communication systems.) Sliding window (SW) decoding [4], [22] was used, where a window

covers W consecutive block protographs in the coupled graph and the window size W (in blocks)

satisfies ω+ 1 ≤ W ≤ L. Decoding was performed based on the partial Tanner graph framed by

the window, where MWnc check nodes and MWnv variable nodes are included in a decoding

window. In each window position, a block of Mnv target symbols, corresponding to the first

block of Mnv variable nodes in the window, is decoded, and then the window shifts by one

block. Sliding along the diagonal band of H
(L)
SC , SW decoding estimates codeword symbols

block-by-block, resulting in a decoding latency of only W blocks. The maximum number of

iterations per window position was 100, and the soft bit-error-rate (BER) stopping rule [29]

was employed, with a threshold BER of 10−6. Standard flooding schedule (FS) decoding across

the entire terminated graph was also performed for comparison. For FS decoding, a maximum

number of 1000 iterations was allowed, and a stopping rule based on the parity-check matrix

H
(L)
SC was employed.

Fig. 8 shows the simulated performance of designed and undesigned SC-LDPC codes with

(nc, nv) = (3, 6) and ω = 3. The undesigned base matrix B
(L)
SC was randomly chosen, with the

constraints that B0 and B3 have a minimum row weight of two and (2) must be satisfied. The

component matrices of the g = 6 designed B
(L)
SC were

B0 =


1 0 0 0 1 0

0 1 0 1 0 0

0 0 1 0 0 1

 ,B1 =


0 0 0 1 0 1

0 0 1 0 1 0

1 1 0 0 0 0

 ,
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Fig. 9. Performance of designed and undesigned SC-LDPC codes with (nc, nv) = (3, 8).

B2 =


0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 ,B3 =


0 1 1 0 0 0

1 0 0 0 0 1

0 0 0 1 1 0

 ,
and the g = 8 designed H

(L)
SC was obtained from B

(L)
SC by doing a (non-periodic) QC lifting

using the Fossorier condition. In all cases, L = 100, M = 100, and R
(L)
SC = 0.485. The results

show that the designed codes substantially outperform the undesigned codes, particularly in the

error floor, and that increasing the girth by performing a QC lifting further improves the error

floor performance. Also, with FS decoding, the designed and undesigned codes exhibit similar

waterfall performance, consistent with the BP decoding threshold analysis of Section III.D.

Fig. 9 shows the performance of designed and undesigned SC-LDPC codes with (nc, nv) =

(3, 8) and ω = 4. For the undesigned code, the 3 × 8 binary component matrices were chosen

such that B0 and B4 have a minimum row weight of two and the edge-spreading condition (see

(2)) must be satisfied. L and M were again chosen to be 100, so in this case R(L)
SC = 0.61. The

results again show the designed codes outperform the undesigned codes, most noticeably in the
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error floor. We also again see that, since g = 8, a QC lifting further improves the error floor

performance of the designed codes compared to a random lifting. Finally we note that, with

SW decoding, larger window sizes W result in better performance, consistent with the tradeoff

between W (latency) and performance reported in [32].

Finally, in order to demonstrate the advantage of our designed QC-SC-LDPC codes, Fig. 10

compares their performance to the SC-LDPC code designed using the optimal overlap (OO)

partitioning and circulant power optimizer (CPO) approach of [12], where FS decoding was used

in both cases. Both codes were designed from a block protograph with (nc, nv) = (3, 7), using

the same lifting factor M = 7 and coupling length L = 60. They both have the same codeword

length of 2940 bits and code rate of 0.56. However, the coupling width of our designed code

is 3, whereas the OO-CPO code has coupling width only 1. This means that our code enjoys a

larger constraint length than the OO-CPO code, viz., 196 vs. 98. It can be seen that our designed

code outperforms the OO-CPO code by 1.3dB at a BER of 10−8, which is mostly due to the

fact that we have a larger constraint length and enjoy a larger guaranteed girth, eight vs. six for

the OO-CPO code. Note that, if we further lower the lifting factor from seven to six for our

designed code, its constraint length will be reduced to 168, and we see that it still maintains

a substantial performance advantage over the OO-CPO code. However, if we further lower the

lifting factor to match the constraint length of the OO-CPO code, we can no longer achieve

girth eight in the lifted graph.

VII. CONCLUSIONS

In this paper, we introduced a two-stage design procedure for constructing spatially coupled

protographs with girth at least 6. The first stage produces an initial set of component matrices that

satisfy the edge-spreading condition such that the coupled protograph contains a small number

of 4-cycles; while the second stage employs a systematic approach to eliminate the remaining

4-cycles, thus guaranteeing a girth of at least 6. This was followed by performing a QC (circulant-

based) lifting of the coupled protograph that satisfies the Fossorier condition in order to obtain

girth 8. Both non-periodic and periodic liftings were proposed, and simulations were used to

demonstrate that the new designed codes exhibit substantial error floor improvement compared to

random constructions. Compared to previous approaches that focused on optimization techniques

and time-invariant constructions, the two-stage design approach allows us to consider larger
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Fig. 10. Performance comparison of our designed codes with the OO-CPO SC-LDPC code with (nc, nv) = (3, 7).

coupling widths as well as time-varying code constructions. Finally, empirical results on the

minimum coupling width ω needed to ensure girth g = 6 for (nc, nv)-regular coupled protographs

was presented.
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