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Abstract—We investigate error propagation in sliding window
decoding of braided convolutional codes (BCCs). Previous studies
of BCCs have focused on iterative decoding thresholds, minimum
distance properties, and their bit error rate (BER) performance
at small to moderate frame length. Here, we consider a sliding
window decoder in the context of large frame length or one
that continuously outputs blocks in a streaming fashion. In this
case, decoder error propagation, due to the feedback inherent
in BCCs, can be a serious problem. To mitigate the effects
of error propagation, we propose several schemes: a window
extension algorithm where the decoder window size can be
extended adaptively, a resynchronization mechanism where we
reset the encoder to the initial state, and a retransmission
strategy where erroneously decoded blocks are retransmitted.
In addition, we introduce a soft BER stopping rule to reduce
computational complexity, and the tradeoff between performance
and complexity is examined. Simulation results show that, using
the proposed window extension algorithm, resynchronization
mechanism, and retransmission strategy, the BER performance
of BCCs can be improved by up to four orders of magnitude
in the signal-to-noise ratio operating range of interest, and the
soft BER stopping rule can be employed to reduce computational
complexity.

Index Terms—Braided convolutional codes, sliding window
decoding, decoder error propagation, window extension, resyn-
chronization, retransmission.

I. INTRODUCTION

BRAIDED convolutional codes (BCCs), first introduced in
[1], are a counterpart to braided block codes (BBCs) [2],1

which can be regarded as a diagonalized version of product
codes [6] or expander codes [7]. In contrast to BBCs, BCCs
use short constraint length convolutional codes as component
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1A type of BBC, braided Bose-Chaudhuri-Hocqenghem (BCH) codes [3],
and the closely related staircase codes [4], [5] have been investigated for high
speed optical communication.

codes. The encoding of BCCs can be described by a two-
dimensional sliding array of encoded symbols, where each
symbol is protected by two component convolutional codes.
In this sense, BCCs are a type of parallel-concatenated (turbo)
codes in which the parity outputs of one component encoder
are fed back and used as inputs to the other component
encoder at the succeeding time unit. Two variants of BCCs,
tightly and sparsely braided codes, were considered in [1].
Tightly braided convolutional codes (TBCCs) are obtained
if a dense array is used to store the information and parity
symbols. This construction is deterministic and simple to
implement but performs relatively poorly due to the absence
of randomness. Alternatively, sparsely braided convolutional
codes (SBCCs) employ random permutors and have “turbo-
like” code properties, resulting in improved iterative decoding
performance [1]. SBCCs can operate in either a bitwise or
blockwise mode, depending on whether convolutional or block
permutors are employed. Moloudi et al. characterized SBCCs
as a type of spatially coupled turbo code with a regular
graph structure and showed that threshold saturation occurs for
iterative decoding of SBCCs over the binary erasure channel
[8], [9], and Farooq et al. proposed a technique to compute
the thresholds of SBCCs on the additive white Gaussian noise
(AWGN) channel [10]. It was also shown numerically that
the free (minimum) distance of bitwise and blockwise SBCCs
grows linearly with the overall constraint length, leading to the
conjecture that SBCCs, unlike parallel or serial concatenated
codes, are asymptotically good [1], [9], [11].

Due to their turbo-like structure, SBCCs can be decoded
with iterative decoding. Analogous to LDPC convolutional
codes [12], [13], SBCCs can employ sliding window decoding
(SWD) for low latency operation [14]. Unlike SWD of LDPC
convolutional codes, which typically uses an iterative belief-
propagation (BP) message passing algorithm, SWD of SBCCs
is based on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm.
It has been shown that blockwise SBCCs with SWD have
excellent performance [14], but for large frame lengths or
streaming (continuous transmission) applications, it has been
observed that SBCCs are susceptible to infrequent but severe
decoder error propagation [15]. That is, once a block decoding
error occurs, decoding of the following blocks can be affected,
which in turn can cause a continuous string of block errors and
result in unacceptable performance loss. Although specialized
streaming codes have been widely investigated for burst-
erasure channels [16]–[18], our paper focuses on the use of
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capacity-approaching codes2 and the desire to limit latency by
employing SWD. To our knowledge, the only other work to
consider the error propagation problem with SWD of capacity-
approaching codes is the recent paper by Klaiber et al. ([19]).
That paper considered spatially coupled LDPC codes and the
mitigation methods developed there, including adapting the
number of iterations and window shifting, are different from
the ones we propose for BCCs.
In this paper, we examine the causes of error propagation

in SWD of SBCCs and propose several error propagation
mitigation techniques. Specifically, based on a prediction of
the reliability of a decoded block, a window extension algo-
rithm, a resynchronization mechanism, and a retransmission
strategy are introduced to combat the error propagation. In
addition, a soft bit-error-rate stopping rule is proposed to
reduce decoding complexity and the resulting tradeoff between
decoding performance and decoding complexity is explored.

II. REVIEW OF BRAIDED CONVOLUTIONAL CODES

In this section, we briefly review the encoding and SWD of
blockwise SBCCs. For further details, please refer to [1] and
[14].

A. Encoding

SBCCs are constructed using a turbo-like parallel concate-
nation of two component encoders. However, unlike turbo
codes, the two encoders share parity feedback. In this manner,
the systematic and parity symbols are “braided” together.
In this paper, we restrict our discussion to rate R = 1/3
blockwise SBCCs, but generalization to other rates and to
bitwise SBCCs is straightforward. In this case, the information
sequence enters the encoder in a block-by-block manner,
typically with a relatively large block size. Fig. 1 shows the
encoding process for a rate R = 1/3 blockwise SBCC, which
utilizes two recursive systematic convolutional (RSC) compo-
nent encoders each of rate Rcc = 2/3, where P(0), P(1), and
P(2) are each block permutors of length T . The information
sequence is divided into blocks of length T symbols, i.e.,
u = (u0,u1, . . . ,ut, . . .), where ut = (ut,1, ut,2, . . . , ut,T ).
At time t, ut is interleaved using P(0) to form ũt, and ut

and ũt enter the component encoders. The parity outputs v̂(i)
t

from encoder i, i ∈ {1, 2}, at time t are delayed by one time
unit, interleaved using P(1) and P(2), respectively, and then
enter the component encoders as the input sequences ṽ

(i)
t+1,

i ∈ {1, 2}, at time t+1. The information block ut, the parity
output block v̂

(1)
t of encoder 1, and the parity output block

v̂
(2)
t of encoder 2 are sent over the channel as the encoded

block vt =
(
ut, v̂

(1)
t , v̂

(2)
t

)
at time t. In order to depict

the encoding process conceptually, a chain of encoders that
operates at different time instants is illustrated in Fig. 2. At
each time instant, there is a turbo-like encoder which consists
of two parallel concatenated RSC component encoders. These
turbo-like encoders are coupled by feeding the parity sequence

2Conventional convolutional codes with Viterbi decoding can always be
used in streaming applications, but their performance falls far short of what
can be achieved with capacity-approaching codes.
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Fig. 1. Encoder for a rate R = 1/3 blockwise SBCC.

generated at the current time instant to the encoders at the next
time instant, so that the coupling memory is 1 in this case. For
initialization, at time instant 0, we assume that ṽ(1)

−1 = 0 and
ṽ
(2)
−1 = 0.
Transmission can be terminated after a frame consisting of

L encoded blocks by inserting a small number l of additional
blocks (typically l ≪ L), in which case the rate is given by
RL = 1

3 ·
L

L−l and we suffer a slight rate loss, or unterminated
(in a continuous streaming fashion), in which case the rate is
given by R = 1

3 .

B. Sliding Window Decoding

In order to help describe the proposed error propagation mit-
igation methods, the structure of the sliding window decoder
[14] is shown in Fig. 3. The window size is denoted as w. The
block at time instant t is the target block for decoding in the
window containing the blocks received at times t to t+w−1.
The decoding process in a window beings with I1 turbo, or
vertical, iterations on the target block at time t, during which
the two component convolutional codes pass soft messages
on the T information bits in that block to each other. Then,
soft messages on the parity bits are passed forward, and I1
vertical iterations are performed on the block at time t + 1.
This continues until I1 vertical iterations are performed on the
last received block in the window. Then the process is repeated
in the backward direction (from the last block to the first block
in the window) with soft messages being passed back through
the 2w BCJR decoders. This round trip of decoding is called a
horizontal iteration. After I2 horizontal iterations, the T target
symbols are decoded, and the window shifts forward to the
next position, where the T symbols at time t+ 1 become the
target symbols.3

III. ERROR PROPAGATION

Since an encoded block in a blockwise SBCC affects the
encoding of the next block (see Fig. 2), each time a block
of target symbols is decoded, the log-likelihood ratios (LLRs)
associated with the decoded symbols also affect the decoding
of the next block. Hence if, after a fixed maximum number

3Other decoding schedules were proposed in [14], but those do not affect
the general discussion in this paper.
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Fig. 2. Encoder chain for a rate R = 1/3 blockwise SBCC.
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Fig. 3. Sliding window decoder for blockwise SBCCs [14].

of decoding iterations, some unreliable LLRs remain in the
target block and cause a block decoding error, those unreliable
LLRs can potentially trigger a string of additional block errors,
resulting in error propagation.

A. Motivation

Example 1: To illustrate this effect, we consider an example
of two identical 4-state (memory m = 2) RSC component
encoders whose generator matrix is given by

G (D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
, (1)

where we assume the encoders are left unterminated at the
end of each block. The three block permutors P(0), P(1), and
P(2) are assumed to be chosen randomly with the same size
T = 8000, and we also assume that transmission stops after a
frame of L blocks is decoded and a uniform decoding schedule
is used (see [14] for details).4 The bit error rate (BER), block
error rate (BLER), and frame error rate (FER) performance for
transmission over the AWGN channel with BPSK signalling
are plotted in Fig. 4 as functions of the channel signal-to-
noise ratio (SNR) Eb/N0, where the window size w = 3,

4In a uniform decoding schedule, the same number of vertical iterations in
the forward message passing process (from the first block to the last block in
the decoding window) are performed on each block. Likewise, in the backward
message passing process (from the last block to the first block in the window),
the same number of vertical iterations are performed.

the number of vertical iterations is I1 = 1, the number of
horizontal iteration is I2 = 20, and the frame length is L =
1000 blocks.

From Fig. 4, we see that the rate R = 1/3 blockwise
SBCC performs about 0.5 dB away from the Shannon limit
and 0.4 dB away from the finite-length bound [20] at a BER
of 10−6. Even so, among the 10000 simulated frames, several
were observed to exhibit error propagation. For example, 9
such frames were observed at Eb/N0 = 0.04 dB. In order
to depict the error propagation phenomenon clearly, we show
the bit error distribution per block of one frame with error
propagation in Fig. 5(a). We see that, for I2 = 20, from
block 830 on, the number of error bits is large, and the
errors continue to the end of the frame, a clear case of error
propagation. For I2 = 30, error propagation starts two blocks
later than for I2 = 20, but we see that the overall effect of
increasing the number of iterations is minimal.5 On the other
hand, the bit error distribution per block, based on 10000
simulated frames with two different window sizes, is shown in
Fig. 5(b), where we see that increasing the window size from
3 to 4 reduces the number of error propagation frames from
9 to 1, thus significantly improving performance. �

5In related work on spatially coupled LDPC codes with sliding window
decoding, Klaiber et al. [19] have also noted a problem with error propagation
and have successfully employed an adaptive number of iterations and window
shifting to improve performance in that case.
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Fig. 4. The BER, BLER, and FER performance of a rate R = 1/3 SBCC
with T = 8000 and L = 1000.

B. A Decoder Model of Error Propagation

Assuming that information is transmitted in frames of length
L, a significant number of blocks could be affected by error
propagation if L is large, thus severely degrading the BLER
performance. We now give a brief analysis of how error
propagation affects the BLER performance of SWD.6

Assume that, in any given frame, the decoder operates in
one of two states: (1) a random error state Sre in which
block errors occur independently with probability p, and
(2) an error propagation state Sep in which block errors
occur with probability 1. Also assume that, at each time unit
t = 1, 2, 3, . . . , L the decoder transitions from state Sre to
state Sep independently with probability q (typically, q ≪ p)
and that, once in state Sep, the decoder remains there for the
rest of the frame.7 A state diagram describing this situation is
shown in Fig. 6.
Consider a simulation scenario in which the information

block size T and B, the total number of blocks to be simulated,
are fixed, where N is the total number of simulated frames,
B = LN , and TB is the total number of simulated symbols.
Under normal (random error) decoder operating conditions,
the simulated BLER should be independent of the particular
combination of L and N chosen. When decoder error propa-
gation is possible, however, we now show that, for fixed B,
the values of L and N can affect the simulated BLER.
For a frame of length L, we express the probability that the

decoder first enters state Sep at time t = τ (and thus stays in
state Sep until time t = L) as

Pτ (Sep, t = [τ : L]) = q(1− q)
τ−1

, τ = 1, 2, . . . , L, (2)

where the notation t = [t1 : t2] denotes the set of time units

6A similar analysis was presented in a recent paper [21] on SWD of
spatially coupled low-density parity-check (LDPC) codes.

7A given frame can (1) operate entirely in state Sre, where error
propagation never occurs, (2) start in state Sre and then at some time transition
to state Sep, or (3) operate entirely in state Sep, where the very first block
is decoded incorrectly and block errors continue throughout the rest of the
frame.
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Fig. 5. The bit error distribution per block for a rate R = 1/3 blockwise
SBCC with T = 8000: (a) one frame with different numbers of iterations,
w = 3, and (b) 10000 frames with different window sizes, I1 = 1, I1 = 20.
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Fig. 6. The state diagram describing the operation of a decoder subject to
error propagation.

from t1 to t2. Similarly, we can write the probability that the
decoder stays in state Sre throughout the entire frame as

P (Sre, t = [1 : L]) = 1−
L∑

τ=1

Pτ (Sep, t = [τ : L]) = (1− q)
L
.

(3)
Now, given that a frame enters state Sep at time t = τ , we
can express the average BLER as

PBL (τ = 1) = 1, (4a)
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PBL (τ) = [p · (τ − 2) + L− τ + 1]/L, τ = 2, . . . , L,
(4b)

where we note that state Sep must be preceded by at least
one correctly decoded block. Finally, we can write the overall
average BLER as

PBL =
L∑

τ=1

PBL (τ) · q(1− q)
τ−1

+ p · (1− q)
L
. (5)

Looking at (5), it is clear that, if q = 0, i.e., we never enter
state Sep, then PBL = p, independent of the frame length
L. This is the normal condition under which Monte Carlo
simulations are conducted. However, under error propagation
conditions, the simulated BLER will increase as a function
of the frame length. We also note that the model parameters
p and q will depend on a variety of factors, including the
block size T , the component encoder memory m, the channel
SNR, and the decoder window size w. For example, both lower
SNRs and smaller values of w will result in larger values of
p (random block error probability) and q (error propagation
probability), making the performance more sensitive to the
value of L. By contrast, high SNR and large w will reduce p
and q, making performance less sensitive to the value of L.
Further, weaker codes (smaller values of T and m) will result
in larger values of p and q, but in this case it is also possible
(with nonzero probability) for the decoder to return from state
Sep to state Sre, i. e., to recover from error bursts, as illustrated
in several examples using small values of T presented in the
succeeding sections. For our analysis here, however, we are
primarily interested in strong codes that can operate close to
capacity with low latency, and in this case it is almost always
true that the decoder stays in state Sep once an error burst
begins.
Example 2: Consider a rate R = 1/2 blockwise BCC with

information block size T = 1000, window size w = 5, and
different frame lengths L and numbers of simulated frames
N such that the total number of simulated blocks is B =
LN = 107, or TLN = 1010 simulated symbols. The BLER
performance is shown in Fig. 7.
From Fig. 7, we see that the simulation runs with a larger

frame length L and a smaller number of simulated frames N
exhibit higher BLERs than those with smaller L and larger
N , for the same total number of simulated blocks B = LN .
Also note that, in a true streaming environment (L → ∞), the
BLER will tend to 1.0! �
This example makes clear that, for L ≫ 1000, and par-

ticularly for streaming transmission, error propagation will
severely degrade the decoding performance illustrated in Fig.
4. In the next section, we look more carefully at the error
propagation statistics, and then in Section V we introduce
three ways of mitigating error propagation in sliding window
decoding of SBCCs.

IV. WHAT CAUSES ERROR PROPAGATION?

In this section, we investigate the causes of error propa-
gation during sliding window decoding of SBCCs. To this
end, we introduce the concept of a superstate to describe
the complete state of the encoder at a given time t, i.e., the

0.4 0.45 0.5 0.55 0.6
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10-2

10-1

100

Fig. 7. The BLER performance of a R = 1/3 BCC with T=1000, w=5,
and different values of L and N such that TLN = 1010.

information needed to generate the 3T -symbol encoded block
vt from the T -symbol information block ut. From Fig. 1, with
the 4-state RSC component encoders of (1), we see that the
superstate consists of the two T-bit parity input sequences from
the previous block plus the four component encoder register
bits at the beginning of a block, which together determine the
output block vt for a given input block ut.8

In the following, we give two examples with different
permutor sizes to illustrate the causes of error propagation.

Example 3: We first consider the case of large permutor
(block) size T . 10000 frames of the rate R = 1/3 blockwise
SBCC from Example 1 were simulated at Eb/N0 = 0.04 dB
(corresponding to a BER of about 10−7) with T = 8000, w =
3, I1 = 1, I2 = 20, and L = 1000. LLRs are capped at ±20.
The simulated frames consisted of correct frames, frames with
short bursts of one or two block errors, and error-propagation
frames.9 The frequency of the burst-error frames and error-
propagation frames among the 10000 simulated frames, along
with the mean burst length, is shown in Fig. 8.10

Fig. 9 shows the bit error distribution per block for an
example error-propagation frame selected from the 10000
simulated frames.11 Here, we see that the error propagation
starts at block 606, which has 354 errors, and continues to
the end of the frame. The number of bit errors in block 607
increases to around 1200. Then, in the remaining blocks, the
number of bit errors is around 1500.

In Fig. 10, we show the decoded LLRs of blocks 605
(0 errors), 606 (354 errors), and 607 (1224 errors) of an

8The component RSC encoders are not terminated at the end of a block,
so the register bits at the beginning of block t are the same as those at the
end of block t− 1.

9When consecutive error blocks continue to the end of a frame, we call
it error propagation. When the last block in a sequence of one or more
consecutive error blocks does not coincide with the end of a frame, we call
it a burst error.

10Note that, since there may be multiple burst errors in a frame, or a frame
may contain burst errors along with error propagation, the total number of
burst errors may exceed the number of frames containing burst errors.

11The example frames demonstrate the typical behavior of all the recorded
error frames of a given type.
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Fig. 8. The frequency of the error frames in a rate R = 1/3 SBCC with
T = 8000, w = 3, I1 = 1, I2 = 20, and L = 1000 at Eb/N0 = 0.04 dB.
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Fig. 9. The bit error distribution per block in an example error-propagation
frame from a rate R = 1/3 SBCC with T = 8000.

example burst-error frame. We see that the LLR magnitudes
of block 605 are mostly around 20, while the LLRs of block
606 range from about -10 to +10 almost uniformly, and the
LLR magnitudes of block 607 are mostly around zero. This
indicates that when error propagation begins, the average LLR
magnitudes in a block quickly deteriorate to around zero,
resulting in a sequence of unreliable blocks.
We now examine the bit error distribution per block in a

typical erroneous frame that does not exhibit error propagation,
selected from the same 10000 simulated frames. The example
frame selected contains a total of 3 error bits confined to
block 188. Fig. 11 shows the decoded LLRs of blocks 187
(0 errors), 188 (3 errors), and 189 (0 errors). In this case, we
see that a small number of bit errors in a single block does
not trigger error propagation. In this regard, it is instructive
to contrast the LLRs of block 606 in Fig. 10, which triggers
error propagation, with those of block 188 in Fig. 11, which
does not. �
In summary, for large block size T , a small number of bit

errors in a block tends to affect only one or (occasionally)
two blocks at a time, while larger numbers of bit errors
in a block typically trigger error propagation. Also, when
error propagation occurs, the corresponding decoded LLR
magnitudes are highly unreliable, which indicates that we
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Fig. 10. The LLRs of blocks 605, 606, and 607 in an example error-
propagation frame from a rate R = 1/3 SBCC with T = 8000.
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Fig. 11. The LLRs of blocks 187, 188, and 189 in an example erroneous
frame that does not display error propagation from a rate R = 1/3 SBCC
with T = 8000.

can design mitigation measures to detect and combat error
propagation based on the decoded LLR magnitudes.

Example 4: We next consider the case of a smaller permutor
(block) size T . 10000 frames of the rate R = 1/3 blockwise
SBCC from Example 1 were simulated at Eb/N0 = 1.2 dB
(corresponding to a BER of about 10−4) with T = 100,
w = 14, I1 = 1, I2 = 20, and L = 1000. The frequency
of the burst-error frames and error-propagation frames among
the 10000 simulated frames, along with the mean burst length,
is shown in Fig. 12. We see that, compared to using a larger
permutor (block) size (see Fig. 8), burst-error frames are in
the majority, the burst errors are longer on average, and there
are relatively few error-propagation frames.

We now examine a typical burst-error frame, which has
burst length 14 (from block 879 to block 892), in more detail.
Fig. 13 shows the bit error distribution per block along with the
decoded LLRs. We see that in this case (with T = 100), unlike
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Fig. 12. The frequency of the error frames in a rate R = 1/3 SBCC with T = 100, w = 14, I1 = 1, I2 = 20, and L = 1000 at Eb/N0 = 1.2 dB.

the case in Fig. 9 (with T = 8000), the decoder recovers from
the burst of block errors, and error propagation does not occur.
However, the average magnitudes of the LLRs in the burst are
relatively small (roughly between -10 to +10), which is similar
to the LLR behavior shown in Fig. 10 when T = 8000.

In order to better understand the process of decoder recovery
from an error burst, we tracked the superstates obtained from
the decoded sequence by making hard decisions on the LLRs
of the two parity output blocks (parity inputs for the next
block) and the two encoder states after each information block
is decoded and compared them to the superstates obtained by
encoding the correct sequence of information blocks. Figs.
14-15 show the comparative results of these two superstate
sequences, where, in order to highlight the details of the burst-
error blocks, we only show the results in their vicinity. (The
superstates corresponding to the blocks not shown in Figs.
14-15 are the same in both cases.) From Fig. 14, we see
that the parity input block portion of the superstate sequences
differs from block 880 to block 892, which agrees exactly
with the distribution of burst-error blocks. In other words,
starting with block 879 and continuing through block 891, the
hard decisions obtained from the parity output block LLRs
of both component decoders are incorrect, causing incorrect
parity input blocks in the succeeding blocks. Fig. 15 compares
the initial encoder state portion of the superstate (obtained
by making hard decisions on the final encoder state LLRs of
the previous block) in the two cases. Here, the results are
somewhat different, with encoder 1 having only 7 different
initial states (out of the 13 error blocks), while encoder 2
has only 3 different initial states. In other words, the 100-
bit initial parity input block portion of the superstate has a
greater influence on the propagation of block errors than does
the 2-bit initial encoder state portion, and error propagation
only ends when both the parity input blocks and the initial
encoder states remerge. Also, although we see here that
(particularly for small block sizes) bursts of block errors don’t
necessarily result in error propagation and the decoder can
recover, additional burst-error blocks can occur later in a long
frame or in a streaming application. �
Examples 3 and 4 show that, for larger permutor (block)

sizes, error propagation or single block error frames are the
most likely, while for smaller permutor (block) sizes, burst-
error frames occur more often. Therefore it is necessary to
design mitigation techniques to combat both error propaga-

875 880 885 890 895 900
0

1

(a) Encoder 1

875 880 885 890 895 900
0

1

(b) Encoder 2

Fig. 14. The difference between the actual sequence of parity input blocks
and the correct sequence of parity input blocks in each block (“1” represents
“different” and “0” represents “the same”).

875 880 885 890 895 900
0

1

(a) Encoder 1

875 880 885 890 895 900
0

1

(b) Encoder 2

Fig. 15. The difference between the actual initial encoder state sequences
and the correct initial encoder state sequences (“1” represents “different” and
“0” represents “the same”).
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Fig. 13. The bit error distribution per block and the LLRs of blocks 877 to 894 in frame 843 of a rate R = 1/3 SBCC with T = 100.

tion and burst errors. Based on the information obtained in
Examples 3 and 4, i.e., that the absolute values of the LLRs
of the information bits decrease during error propagation or
burst errors, algorithms can be designed to combat these
error conditions. In addition, it is important to be able to
detect error propagation or a burst error early in the process,
to avoid having to accept large numbers of decoded block
errors. Therefore, the span of blocks over which the LLRs are
observed must be carefully chosen.
In the following section, we present three techniques de-

signed to mitigate error propagation and burst errors of finite
duration.

V. ERROR PROPAGATION MITIGATION

In this section, we propose a window extension algorithm,
a resynchronization mechanism, and a retransmission strategy
to mitigate the effect of error propagation in sliding window
decoding of SBCCs. Due to page limits, we refer readers
to [22] for more details of the following five mitigation
algorithms.

A. Window Extension Algorithm

In [14], window decoding of SBCCs is performed with
a fixed window size w. Based on the results presented in
Fig. 5(b), we now introduce a variable window size con-
cept for sliding window decoding, where the window size
can change from an initial value w = winit to a max-
imum of w = wmax > winit

12. Before describing the
window extension algorithm, we give some definitions. Let
ℓ(i,j) =

(
ℓ
(i,j)
0 , ℓ

(i,j)
1 , ℓ

(i,j)
2 , . . . , ℓ

(i,j)
T−1

)
denote the decision

12The initial window size winit should be chosen to optimize performance
under normal (non error propagation) conditions. See [14] for a discussion of
how to optimize the window size.

LLRs of the T information bits in the ith block, i ∈
{t, t+ 1, . . . , t+ w − 1}, of the current window after the jth
horizontal iteration. Then the average absolute LLR of the T
information bits in block i after the jth horizontal iteration is
given by

ℓ̄(i,j) =
1

T

T−1∑
k=0

∣∣∣ℓ(i,j)k

∣∣∣. (6)

Also, we define the observation span τ as the number of
consecutive blocks in the decoding window over which the
average absolute LLRs are to be examined.

During the decoding process, the window extension algo-
rithm operates as follows: with w = winit, when the number of
horizontal iterations reaches its maximum value I2, if any of
the average absolute LLRs of the first τ blocks in the current
window, 1 ≤ τ ≤ w, is lower than a predefined threshold θ,
i.e., if

ℓ̄(i,I2) < θ, for any i ∈ {t, t+ 1, . . . , t+ τ − 1} , (7)

then the target block is not decoded, the window size is in-
creased by 1, and the decoding process restarts with horizontal
iteration number 1.13 This process continues until either the
target block is decoded or the window size reaches w = wmax,
in which case the target block is decoded regardless of whether
(7) is satisfied.

Assuming an initial window size w = winit = 3, Fig.
16 illustrates how the decoder window size increases by 1
each time (7) is satisfied, up to a maximum window size
of w = wmax = 6. Note that when window extension
is triggered, the decoding delay, along with the decoding
complexity, increases, so that an average latency measure

13When decoding restarts, all the LLRs in the old blocks, except for
the channel LLRs, are initialized to be 0s. In other words, the previous
intermediate messages are not reused.
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(a) T = 8000, winit = 3, wmax = 6, τ = 2, and θ = 10.
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(b) T = 500, winit = 6, wmax = 12, τ = 3, θ = 10.

Fig. 17. BER (solid curves), BLER (dashed curves), and FER (dotted curves)
performance comparison of a rate R = 1/3 SBCC with and without the
window extension.

must be adopted to characterize delay. Also, some buffering
is required, and the decoder output is no longer continuous.
These practical considerations suggest that wmax should not be
too large.14 If error propagation persists given this constraint,
window extension can be combined with one of the other
mitigation methods, as discussed later in this section.
For the same simulation parameters used in Example 1,

the BER, BLER, and FER performance of a rate R = 1/3
blockwise SBCC both with and without the window extension
algorithm is shown in Fig. 17(a), where T = 8000, winit = 3,
wmax = 6, the observation span τ = 2, and the threshold
θ = 10.15,16 (Throughout the remainder of this section, we

14Since, during horizontal iterations, messages from a given block are only
shared with one adjacent block, the processing can be achieved, in principle,
by using the existing hardware with a fixed window size w = winit serially,
along with additional memory, to increase wmax as needed.

15After some experimentation, wmax = 6 was found to give a reasonable
tradeoff among complexity, memory requirements, and delay in this example.

16The choice of θ = 10 is based on the information regarding typical LLR
magnitudes during error bursts and error propagation presented in Figs. 10
and 13. Note that the higher the threshold θ, the more often window extension
is triggered, which increases decoding complexity, while smaller values of θ
risk failing to detect error propagation.

0.16%

0 1 2
0

0.1

0.2

Fig. 18. The frequency of the error frames in a rate R = 1/3 SBCC with
window extension for T = 8000, winit = 3, and wmax = 6 at Eb/N0 =
0.04 dB.

assume I1 = 1, I2 = 20, and L = 1000.) We see that window
extension shows an order of magnitude improvement in BER,
BLER, and FER compared to using a fixed window size. We
also remark that, even though wmax = 6, the average window
size w̄ is found to be only slightly larger than winit, e.g.,
w̄ = 3.0014 for Eb/N0 = 0.04 dB, since window extension
is only activated in the few cases when error propagation is
detected.

To examine the effect of a smaller block size, the BER,
BLER, and FER performance of the rate R = 1/3 blockwise
SBCC of Example 1 both with and without the window
extension is shown in Fig. 17(b) for T = 500, winit = 6,
wmax = 12, τ = 3, and θ = 10. We again see that window
extension shows almost an order of magnitude improvement
in BER, BLER, and FER compared to using a fixed window
size, and the average window size, e.g., w̄ = 6.00004 for
Eb/N0 = 0.9 dB, is only slightly larger than winit = 6.

To further illustrate the performance gains achieved by the
window extension algorithm, the frequency of the burst-error
frames and error-propagation frames over a total of 10000
frames, along with the mean burst length, is shown in Fig.
18 for Eb/N0 = 0.04 dB and T = 8000. In this case,
compared to Fig. 8, we see that window extension reduces
the frequency of both error propagation frames and length 1
burst-error frames by roughly a factor of 10, while completely
eliminating the small number of bursts of length 2. Also, we
have observed empirically that the frequency of error frames
decreases as we increase the observation span τ . Therefore, in
order to maintain an acceptable tradeoff between performance
and decoding complexity,17 we typically choose

τ=
⌈winit

2

⌉
. (8)

To again examine the effect of a smaller block size, Fig.
19 shows the frequency of the burst-error frames and error-
propagation frames over a total of 10000 frames, along with
the mean burst length, both with and without window exten-
sion, for T = 500 and Eb/N0 = 0.8 dB. Plots are included
for two different values of the observation span τ , τ = 2
and τ = 3. Unlike the large block size (T = 8000) case,
we see here that window decoding results in many different

17Increasing τ also increases the complexity of performing the threshold
test in (7).



IEEE TRANSACTIONS ON COMMUNICATIONS 10

Decoder1

Decoder2

Channel

LLR

Decoder1

Decoder2

Decoder2

Decoder1

Decoder1

Decoder2

Decoder2

Decoder1

Decoder1

Decoder2

Decoder2

Decoder1

Decoder1

Decoder2

T target symbols

at time t

Block tt Block t + 1t + 1 Block

Initial window size 4w=3w= 5w= 6w=

Block BlockBlock

Fig. 16. Sliding window decoder with the window extension algorithm.

burst-error lengths. (More detailed information about the error
frames is given in Table I, where any frame containing error
propagation is counted as an error-propagation frame and
the number of burst-error frames includes those with both
single and multiple burst errors.) In particular, without window
extension, we experience burst errors as long as 691 blocks, a
mean burst length of 189.49, and 19 error-propagation frames.
With window extension, the total number of burst-error frames,
the maximum length of error bursts, the mean burst length,
and the number of error-propagation frames are all reduced,
with τ = 3 performing better than τ = 2, consistent with our
choice in (8).
Considering the effect of an even smaller block size, Fig.

20 shows the frequency of the burst-error frames and error-
propagation frames over a total of 10000 frames, along with
the mean burst length, with window extension for T = 100 and
Eb/N0 = 1.2 dB with winit = 14 and wmax = 20. Comparing
to Fig. 12 without window extension, we see that window
extension reduces the frequency of error-propagation frames
from 0.12% to 0.03% and the frequency of burst-error frames
by about a factor of 4, while the mean burst length stays about
the same.

B. Resynchronization Mechanism

We see from Fig. 17(a) that the window extension algorithm
greatly reduces the effect of error propagation. However,
for very long frames or for streaming applications, even
one occurrence of error propagation can be catastrophic. We
now introduce a resynchronization mechanism to address this
problem.18

As noted above, the parity input sequences in the first block
of an SBCC encoder output sequence are known. Therefore,
the input LLRs for the first block are more reliable than for
the succeeding blocks. Motivated by this observation, and

18Resynchronization can be employed with or without window extension.
Resynchronization is considered without window extension in Section V-B
and with window extension in Section V-C.

assuming the availability of an instantaneous noiseless binary
feedback channel, we propose that, when the sliding window
decoding algorithm is unable to recover from error propaga-
tion, the encoder resets to the 0 state and restarts encoding.
This resynchronization mechanism is described below.

In attempting to decode the target block at time t in the
window decoding algorithm, if the average absolute LLRs of
the target block satisfy,

ℓ̄(t,I2) < θ, (9)
we consider the target block as failed, where θ is the same
predefined threshold employed in window extension. If we
experience Nr consecutive failed target blocks, we then
declare an error propagation condition and initiate encoder
and decoder resynchronization using the feedback channel.
In other words, the encoder 1) sets the initial states of the
two component convolutional encoders to “0”, and 2) begins
encoding the next block with two known (all “0”) parity
input sequences together with the next information block.
Meanwhile, the decoder makes decisions based on the current
LLRs for the w blocks in the current window and restarts
decoding once w new blocks are received.19

In order to test the efficiency of resynchronization, we
simulated the rate R = 1/3 blockwise SBCC of Example 1
with different permutor (block) sizes and different numbers of
consecutive failed target blocks (Nr). Fig. 21(a) shows the
BER/BLER performance comparison with and without the
resynchronization.20 The parameters are T = 8000, w = 3,
and Nr = 2. We see that, with the help of resynchronization,
we obtain about two orders of magnitude improvement in
both the BER and the BLER in the typical SNR operating

19Note that, in comparison to block codes, where the encoder resynchro-
nizes at the beginning of each block, here resynchronization is employed only
when needed, thus making BCCs better suited than block codes to a streaming
environment.

20Although resynchronization terminates error propagation in a frame, thus
improving both the BER and the BLER, it does not reduce the number of
frames in error. For this reason, FER results are not included in Figs. 21(a)
and 21(b).
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Fig. 19. The frequency of the error frames in a rate R = 1/3 SBCC with and without window extension for T = 500 at Eb/N0 = 0.8 dB.

TABLE I
THE DISTRIBUTION OF ERROR FRAMES FOR A RATE R = 1/3 SBCC WITH AND WITHOUT WINDOW EXTENSION FOR T = 500 AND Eb/N0 = 0.8 dB.

Number of
error frames

Number of error-
propagation frames

Number of burst-
error frames

Largest
burst size

Mean
burst size

No window extension 74 19 55 691 189.49
τ = 2 35 6 29 455 121.14
τ = 3 28 4 24 443 120.67

range.21 We also note that the curves tend to merge as the
SNR increases, since error propagation, and thus the need for
window extension or resynchronization, is rare under good
channel operating conditions.

Fig. 21(b) shows the BER/BLER performance comparison
with resynchronization for two different values of Nr, with
T = 500 and w = 6. We see that the performance withNr = 1
is slightly better than with Nr = 2, which implies that, for
short block lengths, resynchronization should be launched as
soon as (9) is satisfied by a single target block.22

21Note that Fig. 18 implies that Nr = 1 would not be a good choice here,
since the high frequency of single block errors would result in only modest
improvements in BER/BLER at a cost of significantly more resynchronization
requests, i.e., increased decoding complexity.

22Fig. 19(a) implies that Nr = 1 is a good choice here because of the
relative scarcity of single block errors.

C. Window Extension plus Resynchronization

Window extension and resynchronization can also be em-
ployed together in order to further mitigate the effects of
error propagation. Basically, window extension is triggered
whenever (7) is satisfied. When the window size w reaches
wmax and (7) is still satisfied, the decoder resets w to winit

and then checks if (9) is satisfied. If so, resynchronization is
launched.

To demonstrate the efficiency of resynchronization com-
bined with window extension, the BER, BLER, and FER
performance of a rate R = 1/3 blockwise SBCC employing
both techniques is shown in Fig. 22(a) for T = 500, Nr = 2,
winit = 6, wmax = 12, τ = 2, and θ = 10. We see that,
compared to the R = 1/3 blockwise SBCC of Example
1, the rate R = 1/3 blockwise SBCC with window exten-
sion and resynchronization gains approximately two orders
of magnitude in BER and BLER and about one order of
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Fig. 20. The frequency of the error frames in a rate R = 1/3 SBCC with window extension for T = 100 at Eb/N0 = 1.2 dB.
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(b) T = 500 and w = 6 for Nr = 1 and Nr = 2.

Fig. 21. BER (solid curves) and BLER (dashed curves) comparison of a rate
R = 1/3 SBCC with and without resynchronization.

magnitude in FER at typical operating SNRs.23 We also note
that, comparing to Fig. 21(b), combining resynchronization
with window extension gains almost an order of magnitude in
BER and BLER compared to resynchronization alone.

23Including window extension along with resynchronization allows im-
provements in the FER, unlike the results for resynchronization alone.
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Fig. 22. BER (solid curves), BLER (dashed curves), and FER (dotted curves)
comparison of a rate R = 1/3 SBCC with window extension combined with
(a) resynchronization and (b) retransmission.

D. Retransmission Strategy

In the resynchronization mechanism, once resynchroniza-
tion is triggered, decisions are made on the remaining blocks
in the current window, where it is likely that errors still
exist. In order to eliminate these errors, we now describe a
retransmission strategy as an alternative to resynchronization.

After a target block is decoded, if its average absolute
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LLRs satisfy (9), we consider the target block as failed. If
there are N ′

r consecutive failed target blocks, retransmission
is triggered, again employing an instantaneous noiseless binary
feedback channel, using the following steps:

• The encoder sets the initial states of the two component
convolutional encoders to “0”;

• The information blocks corresponding to the N ′
r failed

blocks and the w − 1 remaining blocks in the window
reenter the encoder, in sequence, and the corresponding
encoded blocks are retransmitted.24 The first retransmit-
ted information block is encoded with two known (all
“0”) parity input sequences;

• The decoder is reset to its original state and decoding
begins again with the first retransmitted block.

The difference between resynchronization and retransmis-
sion is that no blocks are retransmitted in the former case,
whereas N ′

r +w− 1 blocks are retransmitted at a time in the
latter case. Therefore, unlike resynchronization, retransmission
involves some rate loss. However, unlike a conventional hybrid
automatic repeat request (HARQ) scheme, the parity feedback
(memory) in the encoding process and the fact that the
component encoder states are reset to zero results in a dif-
ferent sequence of transmitted blocks (albeit representing the
same sequence of information blocks), meaning that standard
techniques such as selective repeat and Chase combining will
not be as effective as the new approach proposed above.25 The
average effective rate (or throughput) of the retransmission
strategy is given by

R̃ =
T · L

T/R ·
(
L+ S̄r · (N ′

r + w − 1)
) , (10)

where R is the code rate of the SBCC without retransmission
and S̄r is the average number of retransmissions in a frame.
In the following, we give two examples to illustrate the

effectiveness of the retransmission strategy.
Example 5: We first consider the rate R = 1/3 blockwise

SBCC of Example 1 with T = 8000, N ′
r = 2, and w = 3.

The BER/BLER performance with both resynchronization and
retransmission is shown in Fig. 23(a).26 Compared to the
R = 1/3 blockwise SBCC of Example 1, resynchronization
gains about two orders of magnitude and retransmission almost
four orders of magnitude in BER, while the gains in BLER
are about two orders of magnitude for resynchronization and
slightly more for retransmission. We also see that the curves
tend to merge as the SNR increases, as we have noted
previously, i.e., the error propagation mitigation methods we

24This requires a buffer at the transmitter to store the most recentN ′
r+w−

1 encoded blocks, so they are available for re-encoding when a retransmission
request is received.

25We choose to reset the component encoders to the “0” state because
BCCs are a type of spatially coupled code and thus benefit from termination at
the beginning of a frame. It would also be possible to not reset and selectively
repeat only blocks that satisfy (9), thus improving throughput at a cost of
reduced performance. As suggested by a reviewer, this would be an interesting
option to investigate in future research.

26In Figs. 23(a) and 23(b), we plot the performance in terms of Es/N0

rather than Eb/N0, since the average effective rate R̃ changes depending
on the channel noise conditions. The chosen values of N ′

r were optimized
empirically in both cases.

-5 -4.95 -4.9 -4.85 -4.8 -4.75 -4.7
10-10

10-5

100

(a) T = 8000, N ′
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(b) T = 500, N ′
r = 1, and w = 6.

Fig. 23. BER (solid curves) and BLER (dashed curves) comparison of a rate
R = 1/3 SBCC with both resynchronization and retransmission.

propose help mainly in a narrow, but very important, range of
SNRs, viz., the operating range in many applications. �

Example 6: We next consider the rate R = 1/3 blockwise
SBCC of Example 1 with T = 500, N ′

r = 1, and w = 6.
The BER/BLER performance with both resynchronization
and retransmission is shown in Fig. 23(b). Compared to the
R = 1/3 blockwise SBCC of Example 1, resynchronization
again gains about two orders of magnitude and retransmission
almost four orders of magnitude in BER, while the gains
in BLER are almost two and three orders of magnitude,
respectively. The frequencies of the burst-error frames and
error-propagation frames, along with the mean burst length,
are also given in Fig. 24, which shows that both retrans-
mission and resynchronization provide significant performance
improvements, but that retransmission is best. �

E. Window Extension plus Retransmission

Retransmission can also be combined with window exten-
sion. Similar to the case of window extension with resynchro-
nization, the decoder tries window extension until w = wmax

and (7) is still satisfied, and then it checks if the retransmission
condition (9) is satisfied. The BER/BLER/FER performance of
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Fig. 24. The frequency of the error frames in a rate R = 1/3 SBCC with and without resynchronization and retransmission for T = 500 at Es/N0 = −4
dB.

the rate R = 1/3 blockwise SBCC of Example 1 employing
window extension plus retransmission is shown in Fig. 22(b)
for T = 500, N ′

r = 2, winit = 6, wmax = 12, τ = 2, and
θ = 10. We see that, compared to the rate R = 1/3 blockwise
SBCC of Example 1, the SBCC with window extension and
retransmission gains close to one order of magnitude in FER,
more than three orders of magnitude in BLER, and four orders
of magnitude in BER in the SNR operating range of interest,
exceeding the gains obtained with window extension plus
resynchronization shown in Fig. 22(a). This confirms the fact
that the retransmission eliminates some of the error blocks
that remain following resynchronization. Also, comparing Fig.
22(b) to Fig. 23(b) illustrates the advantage of combining
window extension and retransmission.

VI. EARLY STOPPING RULE

The decoding complexity of SBCCs with sliding window
decoding depends mainly on the number of horizontal itera-
tions. Therefore, in order to minimize unnecessary horizontal
iterations, we introduce a soft BER stopping rule, which was
first proposed for spatially coupled LDPC codes in [23].27 Ev-
ery time a horizontal iteration finishes, the average estimated
bit error rate BERest of the target bits in the current window
is obtained using the following steps:

• Calculate the decision LLR (the sum of the channel
LLR, the prior LLR, and the extrinsic LLR) ℓj of every

27Other stopping rules, such as the cross-entropy rule from [14], could be
employed here. However, since the LLR magnitudes must be used anyway in
the mitigation methods, it is easy to use them also to compute the soft BER
estimates.

information bit in the target block, j = 0, 1, . . . , T − 1;
• Compute the average estimated BER of the target infor-

mation bits as

BERest =
1

T

T−1∑
j=0

1.0/
(
1.0 + exp

(∣∣ℓj∣∣)).
• If the average estimated BER of the target bits satisfies

BERest ≤ γ, decoding is stopped and a decision on the
target symbols in the current window is made, where γ
is a predefined threshold value.

Note that window extension, resynchronization, and the soft
BER stopping rule can operate together in a sliding window
decoder. We now give an example to illustrate the tradeoffs
between performance and computational complexity when
these error propagation mitigation schemes are combined with
the soft BER stopping rule. Fig. 25 shows the performance of
the rate R = 1/3 blockwise SBCC of Example 1 with window
extension, resynchronization, and the soft BER stopping rule
for the same simulation parameters used in Fig. 22(a) and
γ = 5 × 10−8. We see that using the stopping rule degrades
the BER performance only slightly, but the BLER performance
is negatively affected in the high SNR region.28 The average
number of horizontal iterations per block is shown in Fig. 26,
where we see that the soft BER stopping rule greatly reduces
the required number of horizontal iterations, especially in the
high SNR region.

28The BLER loss at high SNR can be reduced by using a smaller γ, at
a cost of some increased decoding complexity, since a smaller τ results in a
lower probability that a block will contain some bit errors.
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Fig. 25. BER (solid curves) and BLER (dashed curves) comparison of a
rate R = 1/3 SBCC with window extension and resynchronization, with and
without the soft BER stopping rule.
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Fig. 26. Number of horizontal iterations of a rate R = 1/3 SBCC with
window extension and resynchronization, with and without the soft BER
stopping rule.

VII. CONCLUSION

In this paper we investigated the severe but infrequent
error propagation problem associated with blockwise SBCCs
and low latency sliding window decoding, which can have
a catastrophic effect on performance for large frame lengths
and continuous streaming operation. We began by examining
the causes of error propagation in sliding window decoding
of SBCCs, noting that it is always accompanied by near zero
average LLR magnitudes in the incorrectly decoded blocks.
Based on this observation, a window extension algorithm, a
resynchronization mechanism, and a retransmission strategy
were proposed to mitigate the error propagation. The FER,
BLER, and BER of blockwise SBCCs with these three error
propagation mitigation methods was shown to improve perfor-
mance by up to four orders of magnitude in the SNR operating
range of interest. Furthermore, a soft BER stopping rule
was introduced and shown to significantly reduce decoding
complexity with only a slight effect on BER performance.
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