A Novel Design of Spatially Coupled LDPC Codes
for Sliding Window Decoding

Min Zhu*, David G. M. Mitchellf, Michael Lentmaier?, and Daniel J. Costello, Jr.}
*State Key Laboratory of ISN, Xidian University, Xi’an, P. R. China, zhunanzhumin @ gmail.com
TKlipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USA, dgmm@nmsu.edu
iDepartment of Electrical and Information Technology, Lund University, Lund, Sweden, michael.lentmaier @eit.lIth.se
§Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA, dcostell @nd.edu

Abstract—We introduce a novel design of spatially coupled
low density parity check codes in order to reduce the effects
of error propagation in low-latency sliding window decoding
for large frame lengths or streaming applications. Specifically,
we employ reduced-degree check nodes spaced throughout the
coupling chain, which have the effect of allowing the decoder
to recover from error bursts. A simplified analysis of the block
error rate (BLER) of the proposed codes is presented that allows
us to predict the effect of different placements of reduced-degree
checks in the coupling chain. Simulation results supporting the
beneficial effect of the new code design on the overall BLER
performance are included.

I. INTRODUCTION

Spatially coupled low density parity check (SC-LDPC)
codes, the convolutional counterpart of low density parity
check block codes (LDPC-BCs), were first introduced in
[1]. Subsequently, it was shown in [2]-[5] that SC-LDPC
codes derived from regular LDPC-BC codes exhibit thresh-
old saturation, 1. e., the suboptimal belief propagation (BP)
iterative decoding threshold of SC-LDPC code ensembles over
memoryless binary-input symmetric-output channels coincides
with the optimal MAP threshold of their underlying LDPC-BC
ensembles.

Without loss of generality, we consider an example of (3,6)-
regular SC-LDPC codes, constructed by means of protographs
[6]. Fig. 1(a) shows an independent (uncoupled) sequence of
(3,6)-regular LDPC-BC protographs with base matrix B =
[3 3], while Fig. 1(b) shows a (3,6)-regular SC-LDPC code
chain obtained by applying edge spreading to the uncoupled
protographs in Fig. 1(a) [7]. The edge spreading is defined
by a set of component base matrices Bg = B; = By = [1 1]

satisfying the condition B = Y B,, where the coupling width

i=1

is m = 2.! Applying the graph lifting factor M to the SC-
LDPC protograph of Fig. 1(b) results in an ensemble of (3,6)-
regular SC-LDPC codes in which each time unit represents a
block of 2M coded symbols. An important feature of the SC-
LDPC protograph in Fig. 1(b) is the structured irregularity at
the beginning, comprised of a degree-2 check followed by a
degree-4 check before the graph assumes its regular structure,
that accounts for the threshold saturation phenomenon noted
above. For terminated (finite-length) protographs, a similar set
of reduced-degree checks also appears at the end [7].

Sliding window decoding (SWD) of SC-LDPC codes [8], as
opposed to using a standard flooding decoding schedule over
an entire terminated graph, can be employed to reduce decod-
ing latency (and decoding complexity) for long code chains

'The coupling width m is also referred to as the syndrome former memory

[1].

¢

|
2M J
symbols time

(@) (b)

Fig. 1. A (3,6)-regular SC-LDPC code protograph obtained from an under-
lying LDPC-BC protograph with base matrix B = [3, 3]. The black circles
represent variable nodes, and the “plus” squares represent check nodes. (a)
A chain of independent (uncoupled) protographs; (b) Spreading edges to the
m = 2 nearest neighbors.

JE

and for unterminated streaming (continuous transmission)
applications. For example, in Fig. 1(b), the red rectangular
box represents a decoding window of size W = 5 (blocks). To
decode (1) a BP flooding schedule is applied to all the nodes in
the window for some fixed number of iterations, or until some
stopping criterion is met, (2) the block of 2M target symbols
in the first window position is decoded according to the signs
of their log-likelihood ratios (LLRs), (3) the window shifts
one time unit (block) to the right, and (4) decoding continues
in the same fashion until the entire chain is decoded, where
the decoding latency in symbols is given by 2M W,

In order to reduce the decoding latency (and decoding
complexity), the window size W should be chosen as small as
possible. Defining the decoding constraint length as n = m—+1,
experimental results have shown that good performance can
typically be maintained as long as W > 4n [9]. However,
for smaller values of W (reduced latency), or for very long
code chains, infrequent but severe decoder error propagation
sometimes occurs. Error propagation can be triggered when,
after a block decoding error occurs, the decoding of the
subsequent block is affected, which in turn causes a continuous
string of block errors, resulting in an unacceptable loss in
performance. Techniques that involve adapting the number
of decoder iterations and shifting the window position have
recently been proposed by Klaiber et al. [10] to combat
the error propagation problem. Also, for the related class of
braided convolutional codes (BCCs) [11] with SWD [12],
error propagation mitigation methods that involve extending
the size of the window, resynchronization, and retransmission
have been proposed [13].

In this paper, we introduce a novel code design that
strategically places graph irregularities, viz., reduced-degree

check nodes, throughout the coupled chain, thus truncating
the error propagation without any changes to the decoder, at
a cost of some modest rate loss. In Section II, we describe
how error propagation is triggered in SWD of SC-LDPC
codes and present a simplified analysis of the block error
rate (BLER) performance that illustrates how the severity of
the problem depends on the length of the code chain. In
Section III, we introduce the new code design and use the
analysis from Section II to predict its performance, showing
how the effect of error propagation can be limited. Section IV
presents numerical results obtained from computer simulations
that confirm the ability of the new code design to limit error
propagation and improve performance, and some concluding
remarks are presented in Section V.

II. DECODER ERROR PROPAGATION IN SWD

In SWD of SC-LDPC codes, when a block of target symbols
at time ¢ is decoded, the window shifts to include the most
recent block of received symbols at time ¢+ W, and decoding
commences on the block of target symbols at time ¢+1. During
the decoding of the time ¢ + 1 block, for a coupling width of
m, the final LLRs of the m past decoded blocks, from time
t —m+ 1 to time ¢, remain involved in the decoding process,
although these LLRs are no longer updated.

Under normal operation, decoding proceeds with correctly
decoded blocks until such time as a block of target symbols
contains one or more LLRs with incorrect sign when the
window shifts, thus resulting in a block error. Typically, if
only a few symbols have incorrect LLRs and most of the
correct symbols have strong LLRs, the LLRs of the incorrectly
decoded block will have only a small effect, and the decoder
will recover and continue to correctly decode subsequent
blocks, assuming most of the symbols in the window have
large and correct LLRs. This type of operation results in
randomly distributed error blocks.

However, if an error block contains a large number of
incorrect LLRs, particularly if they have large absolute values
and many of the LLRs associated with the correct symbols are
small, those “bad” LLRs may negatively affect the decoding
of the next block of target symbols, causing a block error that
would not have occurred under normal operating conditions.
This in turn could trigger additional block errors, resulting
in an error propagation effect, i.e., a continuous sequence of
incorrectly decoded blocks.

In an application where information is transmitted in frames
of a fixed length L time units, with graph termination (reduced
check node degrees for m time units) following the last
block of transmitted variable nodes, any error propagation
will be limited and decoding will start fresh with the next
frame. However, if L is large, a significant number of blocks
could be affected by error propagation, thus severely degrading
performance. In a streaming application, with no termination,
the situation could be catastrophic, resulting in a BLER that
asymptotically tends to 1.

Before proceeding with a discussion of methods to circum-
vent decoder error propagation, it is instructive to consider
the difficulty of assessing the extent of the problem using
conventional Monte Carlo simulation techniques. Normally,
due to the constraints imposed by system operators on the
allowable time duration of submitted jobs, decoded BLERs are
determined by simulating a large number N of frames, each of

length L, such that the total number of simulated code symbols
nMLN 1is large enough to gather reliable error statistics,
where n is the number of variable nodes in the uncoupled
protograph (n = 2 in Fig. 1). Under normal decoder operating
conditions, when block errors occur randomly, this process
works perfectly well, but when the decoder experiences error
propagation, BLER statistics can be severely affected by the
particular combination of L and N chosen for the simulation.
Below, we give a simplified analysis of how error propagation
can affect the accuracy of simulated BLER statistics.

Assume that, in any given frame, the decoder operates in
one of two states: (1) a random error state S, in which
block errors occur independently with probability p, and
(2) an error propagation state Sep, in which block errors
occur with probability 1. Also assume that, at each time unit
t = 1,2,3,...,L the decoder transitions from state S., to
state Sep independently with probability ¢ (typically, ¢ < p)
and that, once in state Sep, the decoder remains there for the
rest of the frame.? A state diagram describing this situation is
shown in Fig. 2.

() (o

Fig. 2. The state diagram describing the operation of a decoder subject to
error propagation.

Now consider that n, M, and B E LN, the total number
of blocks to be simulated, are fixed, and let A = oL and
Q = N/a, so that B = LN = AQ, where the frame length
parameter o« > 1. We can view a = 1 as corresponding to
simulating N frames of length L and o > 1 as corresponding
to simulating a smaller number €2 of frames of length A > L,
while maintaining the same total number of simulated sym-
bols nM B.*> Under normal (random error) decoder operating
conditions, the simulated BLER should be independent of the
chosen value of . When decoder error propagation is possible,
however, we now show that the value of a can affect the
simulated BLER.

For a frame of length A, we express the probability that the
decoder first enters state Sep, at time ¢ = 7 (and thus stays in
state Sep, until time ¢ = A) as

Pr(Sepst=[r:A)=q(l—q) ", r=12....A, (1)
where the notation ¢ = [t; : t3] denotes the set of time units

from ¢; to to. Similarly, we can write the probability that the
decoder stays in state S, throughout the entire frame as

A
P(Sest=[1:A)=1=> P (Sep,t = [r: A]))
=(1-q".

Now, given that a frame that enters state Se, at time ¢t = 7,
we can express the average BLER as

PBL (T = 1) = 1, (38.)
2 A given frame can (1) operate entirely in state Sy, where error propagation
never occurs, (2) start in state Sre and then at some time transition to state
Sep, or (3) operate entirely in state Sep, where the very first block is decoded
incorrectly and block errors continue throughout the rest of the frame.
3We assume « is chosen so that Q and A are integers.

PerL(r)=p-(r—2)4+0-141-(A—7+1)]/A 3b)
=p- (r=2)+A—7+1]/A,7=2,... A,

where we note that state S., must be preceded by at least
one correctly decoded block. Finally, we can write the overall
average BLER as

A
PsL =Y PL(7) Py (Sep,t = [r: A])

+p- P (S, t=1[1:4]) 4

A
:ZPBL (M) ql—q)" " +p - (1—g)".
T=1

Looking at (4), it is clear that, if ¢ = 0, i.e., we never enter
state Sep, then Pgpr, = p, independent of the frame length
A. This is the normal condition under which Monte Carlo
simulations are conducted. However, under error propagation
conditions, the simulated BLER will increase as a function of
the frame length, as the following example illustrates.

Example 1: Assume ¢ = 1074, p = 1072, and L = 100.*

Case 1: For o = 1, i.e., we simulate {2 = N frames, each
of length A = L = 100. Using (3) and (4) we obtain Pgp, =
1.4982 - 107253

Case 2: For a = 10, i.e., we simulate 2 = N/10 frames,
each of length A = 10L = 1000, we obtain Pgy, = 5.7939 -
102,

Case 3: For « = 100, i.e., we simulate Q@ = N/100
frames, each of length A = 100L = 10,000, we obtain
Pgr, = 3.74244 - 10~ L. [|

From the example, we clearly see that, under error propa-
gation conditions, the simulated BLER depends on the frame
length A = «L, becoming worse as « increases. We now
illustrate this effect using actual simulated data rather than the
above simplified analysis, where Pgy, is plotted as a function
of Ep,/Ny and the frame length parameter c.

Example 2: The BLER performance of SWD of the (3,6)-
regular SC-LDPC codes of Fig. 1(b) is shown in Fig. 3,
with W = 18, M = 2000, L = 250, N = 20,000,
frame length A = oL, number of frames Q@ = N/«, and
frame length parameter o =1, 2, and 4, where we note
that, in each case, the total number of simulated blocks is
B = LN = AQ = 5 x 10% and the total number of
simulated code symbols is nM B = 2 x 10'°. From the figure,
we observe that, with increasing «, the BLER performance
becomes worse, even though there are relatively few error-
propagation frames overall, thus confirming the results of the
above analysis.® |

IIT. A NOVEL CONSTRUCTION OF SC-LDPC CODES

In order to combat the problem of error propagation in
SWD, we now introduce a novel code design based on occa-
sionally inserting additional check nodes into the protograph
of a regular SC-LDPC code. This structured irregularity, which
we refer to as check node doping, slightly reduces the code

4Here p and q are chosen arbitrarily for purposes of illustration. In practice,
p and g would be functions of the signal-to-noise (SNR) E},/Ng and W and
could be determined experimentally.

SWe note from (4) that the calculation of Pgp, depends only on the frame
length A and not on the number of simulated frames 2.

OFig. 3 represents only a narrow range of SNRs, below the threshold
(1.11 dB) of the underlying LDPC-BC, where error propagation presents a
significant problem. For larger values of Ej/No and/or W, SWD typically
recovers from an error burst and returns to the random error state.

10°
-6 -A =250, a =1, Q=20000, BLER
Y - A =500, a =2, 2=10000, BLER
901k TS - & -A = 1000, a = 4, 2=5000, BLER
B S -
e TSR N
25 ~. ~.
= 10 e T
M o, ~.
S~ R b R
102 ¢ T e
o ~ 4
104 ; ; S~y
0.75 0.8 0.85 0.9
Ey/Ny (dB)

Fig. 3. SWD BLER performance of the (3,6)-regular SC-LDPC codes of
Fig. 1(b) for three different frame lengths but the same number of simulated
blocks.

rate but has the beneficial effect of partitioning a long or
continuous graph into shorter “sections”, thus limiting the
effects of error propagation.” Because check node doping
effectively divides a long frame into shorter sub-frames, we
can apply the simplified analysis of the previous section to
demonstrate the improved BLER performance compared to
a standard regular code design. To illustrate the graph doping
process, we consider the (3,6)-regular SC-LDPC codes of Fig.
1(b) as an example, while noting that the design can be applied
in the same way to any (J, K)-regular SC-LDPC code.

A. Code Construction

In the (3,6)-regular SC-LDPC code design shown in Fig.
1, all the variable nodes (VNs) have degree 3, while all the
check nodes (CNs), except the ones at the graph boundaries,
have degree 6. As noted previously, the reliable information
generated by the reduced-degree CNs at the boundaries is
responsible for the threshold saturation property of SC-LDPC
codes. Motivated by this fact and our desire to limit the effects
of error propagation in long frames, the CN doped code design
introduces similar reduced-degree CNs at different points in
the coupled chain, as shown in Fig. 4, where the VNs at time
t = 11 (colored red) spread their three edges to the CNs at
times t =7 +1,t =7 + 2, and t = 7 + 3; the red VNs
at time ¢t = 719 spread their three edges to the CNs at times
t=1+2,t=79+3, and t = 79 +4, and so on, i.e., if the red
VNs at time ¢ = 7; are chosen as the jth doping point, their
edges are connected to the CNs at times 7; + j, 7 + j + 1,
and 7; + j + 2. Additionally, the VNs between doping points
(colored black) are coupled in the same way as the preceding
red VN pair. This construction has the effect of inserting an
additional CN at each doping point, and as a result three degree
4 CNs (colored green) are generated. At a cost of a slight rate
loss, these reduced degree CNs at the doping points result in
stronger “local” codes compared to the standard (3,6)-regular
design, which facilitates the ability of a SWD to truncate error
propagation. The base matrix corresponding to these CN doped
SC-LDPC codes is shown in Fig. 5(a).

To decode a CN doped (3,6)-regular SC-LDPC code, SWD
can be applied to the doped chain, with a slight difference
in the way the window shifts compared to standard (3,6)-
regular SWD. The window-shifting schedule for check node
doped (3,6)-regular SC-LDPC codes is illustrated in Fig. 4

"The basic concept of doping was first introduced by ten Brink in [14].

(protograph view) and Fig. 5(b) (base matrix view) For a
window of size W, the block of 2M symbols at the earliest
time (leftmost position in the window) are the target symbols.
Flooding BP decoding is performed within the window, either
using a fixed number of iterations or with a stopping rule.
After a block of target symbols is decoded, the window (VNs
and CNs) shifts by one time unit. When a doping point (red
VN pair) becomes the target block, the window shifts by one
VN time unit to include one new block of VNs, as before, but
it shifts by two CN time units to include two new blocks of
CNs (and thus still including the same total number of CNs).®
After the red target symbols are decoded, the window (VNs
and CNs) again shifts by one time unit until the next doping
point is reached, and the same process is repeated. Generally,
for the VN block of (red) target symbols at doping point 7;, the
decoding window covers the VNs from times 7; to 7; +W —1
and the CNs from time 7; +j to 7; +j + W — 1.

B. BLER Analysis

We now make use of the simplified analysis of the BLER
of SWD of SC-LDPC codes presented in Sec. II to illustrate
the advantage of CN doped SC-LDPC codes. Let \;,j €
[0,1,...,1 — 1] denote the number of blocks in each sub-
frame of the graph (between doping points), where [represents
the number of sub-frames in a frame. Referring to Fig. 4,
for a frame of length A, it follows that Zé;%) Aj=A, where

Aj = Tjy1 — T4, To 2 0, and 7 2 A. We now make the
assumption that, if error propagation occurs in the ith sub-
frame, the decoder state S, will be truncated at the end of
that sub-frame.” This allows us to apply the analysis of Sec.
II independently to each sub-frame.

Since, there are \; blocks, j € [0,1,...,1— 1], in the jth
sub-frame, according to (4) we can write the average BLER
of this sub-frame as

Aj
Pgry, = ZPBL,Aj (1) -
T=1
where Ppr, »,; () is the average BLER given that the jth sub-
frame enters state S, at time ¢ = 7. Now using (3) we can
express Ppr, (7) as

PBL,)\j (T = 1) = 1,

q1—q)" " +p1l -9, ()

(6a)

Popy (1) =[p-(T=2)+ N =7+ 1]/Nj, 7 =2,...).
(6b)
Finally, we can write the overall average BLER as
-1
> PLo - A
j=0
Ps1,.doped = T @)

To determine the best doping points for a fixed number of
sub-frames [, (7) can be treated as an optimization problem
with respect to the A; parameters. Here we consider only the
important special case that the doped CNs are spaced uniform-

8We note here that the time scales differ for VNs and CNs, since the CN
doping interrupts the regular pattern of exactly one CN for every two VNs.

This assumption is supported by extensive simulations showing that CN
doping is effective in limiting error propagation, as will be demonstrated in
the next section.

ly in the coupling chain (thatis A\; = X, j € [0,1,...,1 —1]),
in which case (7) can be written as
PBL,doped:PBL)\|A—)\7 j:Oala"'vl_la
(3)
_ZPBL)\ g(1— ¢ " +p(1— g™

Example 3: Assume g=10"% p=10"2, and A = 1000.

Case 1: For the original (3,6)-regular SC-LDPC codes, we
obtain Pgy, = 5.7939 - 1072 (same as case 2 in Example 1).

Case 2: If one doped CN is spaced in the middle of the
chain, i.e., Ay = A1 = A = 500, then according to (8) we
obtain PBL,doped = 3.4391-102.

Case 3: If three doped CNs are spaced uniformly, i.e., A\g =
A1 = A2 = A3 = A = 250, then according to (8) we obtain
Py doped = 2.2321 - 1072 [|

From the example, we see that the CN doped (3,6)-regular
SC-LDPC code has improved BLER performance compared
to the original (3,6)-regular SC-LDPC code, at a cost of a
slight rate loss due to the additional CNs, and that adding
more doping points further improves the BLER performance
while increasing the rate loss.

C. Rate Loss

Let n. and n, denote the total number of CNs and the total
number of VNs in CN doped SC-LDPC codes, respectively.
The design rate of the CN doped SC-LDPC codes with frame
length A and ~ doped CNs is given as

Ne A+m Y
()(1—R> o

RAdoped—]-_i—l_
Ny

where R = 1 — n./n, is the design rate of the uncoupled

protograph [7].

Compared to the design rate Ry = 1 — (&42) (1 - R)
of the original SC-LDPC codes [7], we see from (9) that the
design rate of CN doped SC-LDPC codes is smaller, i.e., CN
doping results in some rate loss. However, we note that full
termination at the doping points, which also truncates error
propagation, results in a larger rate loss. Below, the design
rates of the three cases considered in Example 3 are calculated.

Case 1: v =0, Ra—1000 = 1 — (193052) (1 — 0.5) = 0.499.
Case 2: v = 1, Ra=1000.doped = 1 — (£55552) (1 —0.5) —
10 0 5 = 0.4985. For full termination, Ra=500 = 1 —
(29£2) (1 — 0.5) = 0.498.

Case 3 7 = 3, Rac1o00oped = 1 — (120052 (1 0.5) -
100‘5)(= 0.4975. For full termination, Rp—s50 = 1 —
(252£2) (1 — 0.5) = 0.496.

From these results, we note that, even though CN doping
results in some rate loss, the rate loss of full termination is
greater.

I'V. NUMERICAL RESULTS

In order to verify the effectiveness of the new code design,
the bit error rate (BER) distribution per block of a typical
error-propagation frame in SWD of both CN doped (Fig. 4)
and standard (Fig. 1(b)) (3,6)-regular SC-LDPC codes sent
over an AWGN channel with BPSK signaling is plotted in Fig.
6, where M = 2000, L = 250, and W = 18. Two examples of
CN doping are included, one with a single doping point at time
t = 125, and one with two doping points at ¢ = 83 and 166.
From the figure, we can clearly see that CN doping effectively
truncates the error propagation and that adding more doped
check nodes truncates the error propagation earlier.

Target symbols

M
LI
[

A

2M symbols window size W

window shifting

window size W

Fig. 4. The protograph and SWD schedule for a CN doped (3,6)-regular SC-LDPC code with occasional structured irregularities (CNs of reduced degree)

spaced throughout the chain.

.
.
— — p—

1
1
1

Check nodes
with degree 4

11
111
111
1

(a) Construction

|
1 1:1 1 : ' |
111111 “doping point” :
VN

IRRRe ,.é___s____:______l

[11 | |

: 1 1 | |

| | 1111 : :

| Sk .

| | 1 1‘.. | :

L ! [I

Snnl et Bttt |

|

|

|

—_———— =

(b) SWD schedule

Fig. 5. The base matrix view of the construction and SWD schedule for CN doped (3,6)-regular SC-LDPC codes.

BER

L —o— Standard
b —+— Doping at block 125
—6o— Doping at blocks 83 and 166

0 50 100 150 200 250
Block index

Fig. 6. Bit error rate distribution per block.

Next, for a termination length L = 500 and window size
W = 18, Fig. 7 shows the BER and BLER performance
comparison between the standard (3,6)-regular SC-LDPC code
with rate R = 0.498 and a CN doped (3,6)-regular SC-LDPC
code with rate R = 0.497. We note that the CN doped code
gains up to two orders of magnitude in BER and more one
order of magnitude in BLER compared to the standard code
at SNR operating points of interest.

V. CONCLUSION

In this paper, we presented the concept of check node doped
(J, K)-regular SC-LDPC codes to limit the effects of error
propagation in low latency SWD for large frame length or
streaming applications. The novel code design takes advantage
of a structured irregularity in the code graph introduced by

10_2 ETSs i S
g TTSIge-l L
v To . Tt
= 10 s]
)J ~
/M ~
= =
~5
A
10® i
—e—L=500, N=20000, BER \
- & -L=500, N=20000, BLER
——L=500, N=20000, doped CN at t=250, BER
g [~ # ~1:=500, N=20000, doped CN at t=250, BLER
10°
0.8 0.82 0.84 0.86 0.88 0.9
E,/Ny (dB)

Fig. 7. Performance comparison of doped and undoped codes.

occasionally adding check nodes (doping) that allow SWD
to recover from error propagation. A simplified analysis of
the BLER indicates that improved performance is obtained by
increasing the number of doping points, at a cost of some
slight rate loss, and simulation results were used to further
illustrate the beneficial effect of the new code design.

ACKNOWLEDGMENT

This work was supported in part by NSFC under Grant
61701368 and by the National Science Foundation under Grant
Nos. ECCS-1710920 and OIA-1757207.

REFERENCES

[1] A. J. Felstrom, and K. Sh. Zigangirov, “Time-varying periodic convo-
lutional codes with low-density parity-check matrix,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 2181-2191, Sep. 1999.

[2] M. Lentmaier, A. Sridharan, D. J. Costello, Jr., and K. Sh. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274-5289, Oct. 2010.

[3] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803-834, Feb.
2011.

[4] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. Inf. Theory, vol. 59, no. 12, pp. 7761-7813, Dec. 2013.

[5] S.Kumar, A.J. Young, N. Macris, and H. D. Pfister, “A proof of threshold
saturation for spatially-coupled LDPC codes on BMS channels,” in Proc.
50th Annu. Allerton Conf. Commun., Control, Comput., Monticello, 1L,
USA, Oct. 2012, pp. 176-184.

[6] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” Jet Propuls. Lab., Pasadena, CA, USA, INP Prog. Rep.
42-154, Aug. 2003.

[7]1 D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled
LDPC codes constructed from protographs,” IEEE Trans. Inf. Theory, vol.
61, no. 9, pp. 4866-4889, Sep. 2015.

[8] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory, vol.
58, no. 4, pp. 2303-2320, Apr. 2012.

[9] K. Huang, D. G. M. Mitchell, L. Wei, X. Ma, and D. J. Costello,
“Performance comparison of LDPC block and spatially coupled codes
over GF (q),” IEEE Transactions on Communications, vol. 63, no. 3, pp.
592-604, Mar. 2015.

[10] K. Klaiber, S. Cammerer, L. Schmalen, and S. ten Brink, “Avoiding
burst-like error patterns in windowed decoding of spatially coupled LDPC
codes,” in Proc. IEEE 10th Int. Symp. on Turbo Codes & Iterative Inf.
Processing (ISTC), Hong Kong, China, 2018, pp. 1-5.

[11] W. Zhang, M. Lentmaier, K. Sh. Zigangirov, and D. J. Costello, Jr.,
“Braided convolutional codes: a new class of turbo-like codes,” IEEE
Trans. Inf. Theory, vol. 56, no. 1, pp. 316-331, Jan. 2010.

[12] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, Jr., and B.
Bai, “Braided convolutional codes with sliding window decoding,” IEEE
Trans. on Communications, vol. 65, no. 9, pp. 3645-3658, Sept. 2017.

[13] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, Jr., and
B. Bai, “Combating error propagation in window decoding of braided
convolutional codes,” in Proc. IEEE Int. Symp. Information Theory, Vail,
CO, USA, June 17-22, 2018, pp. 1380-1384.

[14] S. ten Brink, “Code doping for triggering iterative decoding conver-
gence,” in Proc. IEEE Int. Symp. Information Theory, Washington, DC,
USA, June 24-29, 2001, pp. 235.

