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Abstract— Ground penetrating radar (GPR) is a useful
instrument for smarter infrastructure applications, in particular,
for the localization and mapping of underground infrastructure
and other subsurface assets, due to its ability to sense metallic
and nonmetallic buried objects. For instance, air-coupled, mul-
tistatic GPR could potentially be employed to quickly produce
subsurface maps for public and private stakeholders, enabling
rational and more efficient planning of underground infrastruc-
ture inspection, maintenance, and construction. An application of
interest in such context is a faster identification of underground
utilities location and depth by innovative data visualization meth-
ods, such as augmented reality. A 3-D model of the subsurface
asset is desirable for such applications. However, raw GPR
data is often hard to interpret. Imaging algorithms are applied
to improve GPR data readability and signal-to-noise ratio by
focusing the spread energy. Here, a processing pipeline that takes
raw 3-D multistatic GPR data as input and yields a 3-D model
as output is proposed. Initially, a 3-D back-projection algorithm
is applied to air-coupled, multistatic GPR data to recover buried
target localization. An enhancement filter, tailored for tubular
structures, is applied to reduce background noise and highlight
structures of interest in the 3-D image. This process is successfully
applied to three laboratory scenarios of plastic buried targets
with different sizes and shapes.

Index Terms— 3-D feature extraction, augmented reality (AR),
back-projection algorithm (BPA), enhancement filter, ground
penetrating radar (GPR), imaging, multistatic radar, smart
infrastructure, synthetic aperture radar.

I. INTRODUCTION
GROUND penetrating radar (GPR) is a remote geophys-
ical sensing method based on the scattering of elec-
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tromagnetic (EM) waves [1], [2]. It has been applied in the
detection of geological features [3], [4], inspection of bridge
decks and railroad ballast [5], [6], detection of concrete rebar
[71, self-driving vehicles [8], and localization and assessment
of buried utilities [9]. This last application makes GPR a
good tool for smart infrastructure applications, as underground
assets are often aging in unknown location and condition.
Current commercial GPR systems are commonly ground-
coupled, however, for faster surveys, air-coupled GPR systems
are desired. Multistatic GPR systems can reduce survey time
even more by covering a larger area, or yet provide a more
comprehensive assessment of the subsurface. A high-speed
GPR could inspect a bridge deck without blocking traffic,
reducing survey costs [10].

Furthermore, advances in smartphone sensor suites
and computing power have enabled the potential of
mobile augmented reality (AR) applications in smart
infrastructure [11], [12]. A desirable feature is to visualize
underground assets in AR to facilitate post-survey localization
of buried utilities. The GPR data could be used in AR
visualization of the subsurface, but raw GPR data is generally
hard to interpret, as point scatterers emerge as hyperbolas
in 2-D GPR scans or as hyperboloids in 3-D GPR scans.
To improve data readability and increase signal-to-noise
ratio (SNR), migration or imaging algorithms are used
to focus the acquired backscattered waves, with potential
recovery of the scattering target surface shape. Imaging
algorithms may be further leveraged to produce 3-D models
of underground utilities that could be used in AR applications
to indicate their position. Ozdemir et al. [13] studied several
migration methods, such as Stolt migraton [14], Kirchhoff
migration [15], and so on, and assessed in terms of focusing
performance and computation time. The study reveals that one
of the most promising imaging algorithms is the time-domain
back-projection algorithm (BPA). The advantages of the BPA
include its suitability for parallel computing, capability of
integrating data collected in arbitrary survey trajectories, and
natural formulation for layered structures, such as air-ground.
In multistatic GPR systems, the data acquired by different
receivers may not be simply stacked or averaged, as these
receivers have different time delays due to their spatial
offsets. The BPA can properly account for the antenna’s
spatial offset and project distinct receiver images to the actual
spatial coordinates. This is in contrast with frequency-domain
imaging algorithms that require regular grid samples for
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efficient fast Fourier transform (FFT), frequency domain
interpolation, and phase compensations to fuse each receiver
image [16], [17].

Heading toward an automated, real-time survey and AR
visualization, a processing methodology that yields a 3-D
representation of important features present in the imaged
subsurface is of interest. The challenges in this task are
manifold. For instance, in a multistatic radar system, each
antenna may vary in specifications, leading to different SNRs
among different antennas. In addition, due to the antenna’s
spatial offset, each antenna covers a different area or footprint.
If a buried target is sensed only by one receiver, formation
of multistatic images by simple superposition of subsurface
images from each receiver may obfuscate the available infor-
mation and cause image distortion, jeopardizing the advantage
of multistatic GPR, or making the detection of low-intensity
targets in the image difficult.

The presence of important signals at different intensity
levels in the same image is a difficulty that also exists in
medical imaging. For instance, extraction of 3-D models of the
vascular system is challenging due to the different intensities
present in the image. Those differential intensities may be due
to various diameters of the vascular structure, nonuniformity
of the contrast bolus distribution within the vascular network,
and complex branch structure [18]-[20]. To circumvent this
issue, several enhancement filters have been proposed in
the vascular imaging literature to ease segmentation of 3-D
angiograms [21]. Owing to the tubular and spherical nature
of vascular elements, a large class of enhancement filters are
developed based on the Hessian of the 3-D image which con-
veys local information about the shape of a structure within the
image [20]. Such class of enhancement filters may be applica-
ble in GPR imaging of tubular and spheroid targets, such as
utility pipes and landmines, respectively, to enhance features
and facilitate extraction of a 3-D model from the image.

The novel contribution of this article is to propose a
data-processing scheme that takes as input multistatic ground
or air-coupled GPR data and outputs a 3-D model of relevant
features of the image by combining a 3-D multistatic BPA with
a Hessian-based enhancement filter, in pursuit of AR visualiza-
tion of buried utilities. To the best of the authors’ knowledge,
this is the first processing pipeline combining a BPA with an
enhancement filter toward smart infrastructure applications.

This article is organized as follows: In Section II, the BPA
for ground and air-coupled GPR system for both the 2-D
and 3-D cases is introduced. The initial part of the algorithm
has been presented in [22], but here a different approach is
proposed for the fusion of each receive—antenna pair image.
In Section III, an overview of the processing pipeline is
given and a Hessian-based enhancement filter is presented.
In Section IV, results for three laboratory experiments are
presented and discussed. The concluding remarks are given
in Section V.

II. BACK-PROJECTION ALGORITHM

In the BPA, the trace acquired by the GPR system at a scan
position is back-projected into the space domain based on the
wave travel time [16]. Performing this process for multiple
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Fig. 1. As the number N of back-projected traces increases, the target is
better focused. (a) Projection along the z-axis. (b) Projection along the x-axis.

(c) Projection along the y-axis.
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Fig. 2. Imaging scheme for 2-D (a) ground-coupled and (b) air-coupled

GPRs.

GPR scan positions leads to the constructive superposition
of the back-projected signals, enabling the recovery of the
scattering object’s position and/or shape. This target recon-
struction process is illustrated in Fig. 1. The figure shows
side view projection of the multistatic image. High-intensity
values of each trace corresponding to the buried target are
back-projected into the same subsurface region. As the number
N of back-projected traces increases, the image target gets into
focus, resolving its position and shape.

A fundamental step of the BPA is the accurate estimation
of the wave travel time to the scattering point of interest in
the domain. In Sections II-A and II-B, the wave travel time
computation for several scenarios is presented. Assuming that
receivers acquire the signal from each transmitter indepen-
dently, the prototypic case for the multistatic formulation is the
bistatic formulation. Hence, the wave travel times are initially
computed for the bistatic radar.

A. Ground-Coupled GPR Scan

1) Two dimensions: Consider the imaging scheme for a
ground-coupled bistatic GPR shown in Fig. 2(a). Let dap
denote the Euclidean distance between two points A, B.
Let P;, with i = 1,..., N, be a subsurface domain point,
and Pr, Pr be the transmit and receive antenna positions,
respectively. The total wave travel time from the transmitter
to the point P; and back to the receiver is given by

1(P;, Pr, Pr) = 1)

where v = ¢/4/€ is the wave speed, ¢ is the speed of light in
vacuum, and € is the ground dielectric constant.

2) Three dimensions: In the ground-coupled GPR scan,
extension to the 3-D scenario, illustrated in Fig. 3(a),
is straightforward, requiring only the introduction of a third
coordinate in the distance calculations.

dpep, +dppg
v

B. Air-Coupled GPR Scan

1) Two dimensions: Consider the imaging scheme for an
air-coupled bistatic GPR shown in Fig. 2(b). The total wave
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Fig. 3.
GPRs.

Imaging scheme for 3-D (a) ground-coupled and (b) air-coupled

travel time is given by

dPFPS+dPSPi+dPiﬁS dp py @)
C 1) 0 C

t(P;, Pr, PR) =

where Ps and Ps are the interface scattering points. The point
Ps is approximated as [23]:

XC — X; .
xi + 71 if |t — xi| < der
<i .
xs(P;, Pr) = xi—i, if x> x; +der 3)
Zi .
xi + ———, if xr <X —der
e—1
for i = 1,..., N, where xc is the intersection point of a

straight line connecting P; to Pr and the air—ground interface.
The same formula can be applied to determine the scattering
point Ps on the signal return path by using the receiver
position Pr in place of the transmitter position Pr. The
distance criterion is given by de = (h — zi)(e/e — 1)/,
where £ is the antenna height above the ground level. Notice
that the z-axis points upward, so the subsurface points P; have
negative z;, such that d, is always positive. Here, it is assumed
that the transmit and receive antennas stay at the same and
constant height.

2) Three dimensions: For the 3-D case, illustrated
in Fig. 3(b), (2) can also be applied by adding an extra spatial
coordinate. The scattering points are then calculated by extend-
ing the approximation given in (3) through an homogeneous
transformation between a global coordinate system G and a
local coordinate system £ whose x-axis is aligned with the
antennas plane, depicted in Fig. 3(b), as explained in [22].
It yields the approximation

o= ST T e ) < Joos(y)lder
= Ve —z) @
S zicos(y)

Xi ﬁa if [x; — x1| > |cos(y)|der
fori =1,..., N, with ys = yr+((yi—yr1)/(xi—xT1)) (Xs —XT),
and cos(y) = (x; — x1/((x; —x1)* + (yi — y))'/?).

The same set of formulas can be applied using the receiver
position Pr in place of Pr to calculate the scattering point
position from the point P; to the receiver antenna.

C. BPA Image Formation

In the image formation process, the wave travel times to
all domain points P;, i = 1,..., N, are computed for each
k =1,...,M GPR scan position. Let t;x = t(P;, P%‘, Pﬁ)
denote the total travel time to point P; when the GPR system
is at the kth position.
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1) Bistatic: Let s*(r) be the signal acquired by the receiver
at the kth position. The bistatic BPA image is formed as

N M
Z(P) =YY s tix)d(P; — P)) )
i=1 k=1
where J(-) is the Kronecker delta.
Since there is an interest only in the image contrast,
the image is scaled as Z'(P;) = (Z(P;)/Z™), where
IM* = max |Z(F;)|.

1<i<n
2) Antenna Pattern: Let g(0; ) represent the antenna gain
as a function of 6;x, i = 1, ..., N, the angle formed between

the vertical axis and a line connecting the receiver to the
ith domain point when the system is at its kth position. The
bistatic image may be constructed accounting for the antenna
radiation pattern by substituting s¥ (tix) in (5) by

KOk tis) = 801 ) (tik) (6)

where slg (1) denotes the trace acquired by the receiver at the
kth position.

3) Multistatic: Consider a multistatic GPR system com-
posed of Q transmitters and R receivers. Under the condition
that the receivers acquire the signal from each transmitter
independently, that is, slq‘,r(t), the signal acquired by the
rth receiver from the gth transmitter at the kth position is
available, the bistatic image 7, , may be formed for each (g, )

transmitter—receiver pair, with g = 1,...,Q0,r = 1,..., R,
using (5), as
N M
Tyr(P)) = sy, (tix)3(P; — P)) @)

i=1 k=1
and scaled as Zj .(P)) =
ax __ )
5 = lrgl?lfxnﬂq,r(PI)L
Pereira et al. [22] formed the multistatic image by sum-
ming over all transmitter—receiver pairs images. Here, before

summation, an intermediary image fq,, is formed by squaring
each voxel (I, m, n) of the bistatic image Z, , as

Tgr P )i = Tgr (P - ®)

Notice that the image is squared after back-projection,
which is different from squaring the GPR data and back-
projecting. Squaring the image casts it into a form proportional
to power instead of voltage, lowering the noise level by
weighing each signal proportionally to its amplitude.

The squaring of the image could have been performed after
the summation of the initial Z, , bistatic images but it is advan-
tageous to perform it before summation due to the different
footprints of each receive antenna. Each transmitter—receiver
BPA image is well focused within its coverage area, but
contains a significant amount of artifacts outside that coverage
area. Artifacts from one receive antenna would introduce
undesired signals in other receive antenna footprint region.
For instance, consider the diagram shown in Fig. 4. The
first receiver Rj observes a subsurface region highlighted in
blue. The antenna view is limited by its radiation pattern, but
the back-projection process may not account for this effect
accurately, especially in air-coupled scenarios. Because of

(Zg,r(Pj)/13%5"), where
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Fig. 4.  First receiver, Ry, back-projection region extends beyond (red)

the antenna coverage region (blue). This causes artifacts to be introduced
in the second antenna, R;, coverage region (green).

Fig. 5. Side-view projection illustrating the artifacts present in the area
beyond a receive antenna footprint in (a) original bistatic image and the
mitigation of these artifacts in (b) squared bistatic image.

this, the receiver R; back-projected signals extend beyond
its field of view. This not observed area is shown in red,
corresponding to an artifact region that is outside of antenna
coverage. The artifact region is overlapped with the region
covered by the second receiver Rj, highlighted in green,
which may result in distortion when all receivers’ subsurface
images are summed directly to form the multistatic image.
Signals projected beyond the antenna’s area of coverage
have lower absolute values compared to the coverage area.
Hence, squaring the signal before summation helps mitigate
the artifacts because lower values will be penalized with
smaller weights, whereas regions of high focus will be less
penalized. Examples of these artifacts from one of the cases
studied in this article (first receiver image of Case 1) are
highlighted in Fig. 5(a), which shows a side-view projection
of a normalized bistatic GPR image using the absolute values
of the image data. The absolute values of the image were
taken to prevent artificial attenuation of the projection by
destructive interference along the projection axis since the
original 3-D image has positive and negative artifacts. For
comparison, the mitigation provided by squaring the image
is evidenced in Fig. 5(b).

Squaring the original BPA images has the caveat of elim-
inating information concerning the relative values of the
ground and the buried target’s dielectric constant. For the
target, for example, metallic object, whose dielectric constant
value is higher than that of the ground, the backscattered
signal has an opposite polarity from the incident signal,
whereas for the target, for example, polymeric object, whose
dielectric constant value is lower than that of the ground,
the backscattered and the incident signals maintain the same
polarity. Hence, one may infer the target material based on
the phase shift of the scattered wave. Squaring the signal
leads to lose of the signal phase polarity information and
does not allow distinguishing these two cases. As a solution,
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Fig. 6. Top-view projection illustrating (a) uneven distribution of the
BPA. (b) Artificial highlighting of the BPA image. (c) Compensation by
averaging, which reduces the effect on high-contribution areas but highlight
low-contribution noisier regions.

if there is an interest in determining the buried target mate-
rial, instead of only squaring the signal, one may preserve
the signals of the original image, that is, define the voxel
(I, m,n) of a second intermediary image as (I;Er (Pi)imn =
Sign((:[q,r(Pj))l,m,n)(:[q,r(Pj))l,m,n, with Iq,r(Pj) as in (8),
and sign(-) is the pixelwise sign function.

Here, the main interest is in imaging a subsurface target
and extracting a representative 3-D model for AR visualization
and not determining the target material. Hence, the multistatic
image is formed using the squared values as

0O R
I(P) = > Iyr(P)). ©

g=1r=1

III. IMAGE ENHANCEMENT AND MODEL EXTRACTION

Pereira et al. [22] used isosurfaces of manually selected
values to obtain a representative 3-D model of the buried
targets. This is possible in a low-noise image with a single
simply shaped target whose dielectric constant is significantly
different from the background. However, in more challenging
cases, the image may have considerable background noise
caused by many factors, for instance, by the different antenna
specifications of the multistatic GPR system, presence of
targets with dielectric constants closer to the ground rendering
a small contrast between the background and the target,
complex shape target, and so on. On top of this, the BPA
introduces an artificial bias in the formed image associated
with each antenna footprint. This bias can be visualized by
back-projecting a constant unity signal in the domain. This
process leads to Fig. 6(a), showing the top-view projection
of the BPA signal contributions of a receive antenna in a
multistatic GPR. Fig. 6(b) shows the artificial highlighting of
the BPA image on the central-upper region where no buried
targets are present due to this bias. Compensation of this effect
could be implemented by, for example, averaging image voxel
intensity over the number of signal contributions. It should
be noted that the areas of high-density signal contributions
are expected to exhibit better focusing and higher SNR as
more signals are contributing to the image reconstruction.
While compensating this bias works well in areas of high
contribution, it leads to a higher weight of noisier regions
of the image as shown in Fig. 6(c). Due to this duality,
compensation of the BPA bias with such an approach might
not be beneficial in general.

These characteristics of the BPA image together with the
challenges associated with a multistatic radar system, such
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Fig. 7. Case 2: (a) Side-view projection illustrating the signal focusing at
the top and bottom of a pipe cross section. (b) Top-view projection showing
the tube-like structure of those regions.

as antenna performance variations, and different antenna ori-
entations and associated polarization, calls for an enhance-
ment process to facilitate image interpretation and 3-D model
extraction.

As stated in Section I, the application interest of this
article is detecting underground utilities that are usually of
tubular forms, that is, the BPA image exhibits tube-like shapes,
as depicted in Fig. 7. A Hessian-based enhancement filter,
described in the section ahead, is applied on the BPA image
to highlight tubular targets in the image, aiding in the 3-D
model extraction process.

A. Hessian-Based Enhancement Filtering

Subsurface imaging presents challenges that bear similarity
to vasculature imaging. For instance, the vascular network is
immersed in a volume filled with other tissue structures, while
in GPR imaging, the structures of interest, such as pipelines,
are surrounded by a medium containing rocks, roots, soil
layers, and so on. This causes the reconstructed structures
of interest to be embedded in a noisy volume. Important
elements of the vascular network, such as vessels, aneurysms,
and bifurcations, have different dimensions and shapes, and
respond differently to contrast bolus, rendering image analysis
and processing difficult due to the different intensity values
of those elements. The same may happen in GPR imaging
if, for instance, the imaged region has targets of different
materials, or if the geometry favors scattering in some direc-
tions depending on the antenna polarization, or if there are
local changes on the ground, for example, different volumetric
water content. In multistatic GPR, another challenge is to
preserve the information collected by all receivers, since they
observe different areas. Over-observed areas, that is, areas
covered by more than one receive antenna, may saturate the
multistatic image and hinder the preservation and visibility of
low-intensity but important structures in the individual receiver
images. Moreover, the geometry of the targets of interest in
both vascular imaging and in the GPR application of interest
here are tubular.

To address such issues, the vascular imaging community
introduced several enhancement filters [19], [20], [24]-[26].
A class of such enhancement filters are based on the image
derivatives, in particular, on the eigenvalues of the Hessian of
the image which contain information regarding the shape of
the imaged structure [19].
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In Hessian-based methods, the image Z(x), x € RP is
expanded as

1
Z(x0 + 9%X0,6) ~ To.5 + X4 VI 5 + Eaxg Ho.00%0. (10)

The symbol o corresponds to the scale associated
with a D-dimensional Gaussian distribution G(x,0) =
(1/(27raz)D/z)e(”XT"”/z"z), used to compute the derivatives
by convolution as (0/0x)Z(x,0) = o?Z(x) * (0/0x)G(X, 7).
The parameter y defines a family of functions. As explained
in [19], the second-order derivative of the Gaussian is able
to identify contrasts in a scale ¢. Thus, ¢ is a scale that
can be chosen prior to segmentation based on GPR system
parameters, for example, at the order of the wavelength of
significant power transmitted, or determined offline through
calibration. Eigenvalues and eigenvectors of the Hessian have
an intuitive geometrical interpretation [19], [20] and convey
information regarding the local image curvature. This implies
that the Hessian eigenvalues can be used to identify tubular
or spherical structures. Thus, such enhancement filters may be
used to improve the BPA images of tubular structures, such
as pipelines.

Enhancement filters are defined as functions v : R? — R of
the Hessian eigenvalues that amplify structures of interest in
the image. Here, the Jerman enhancement filter (JEF) is chosen
due to its superior efficacy in amplifying tubular structures
[20]. Let H € R3*3 be the Hessian of Z(P) with P € R3. Its
eigenvalues are A1, A2, A3 with [A1] < |42] < |43]. The JEF is
defined as

v(41, A2, 43)
0, if 12<0vi,=<0
1, . . if 12>4,/2>0 an
230y —22) |=———| ., otherwi
5(2p — A2) {/12 _}_/IJ otherwise
where 1, is the regularized 13 calculated as
A3, if A3 > A
Ap(A3,20) =S A, if 0 < A3 <], (12)

0, otherwise

where 1; = tmaxpA3(P,0), and = € [0,1] is a filter
parameter setting the filter maximum gain cutoff threshold.
Higher 7 values lead to higher 1, values, meaning that less
voxels of the image receive the maximum filter enhancement
(v = 1), since it is harder to satisfy the condition A2 > 1,/2.
For instance, for ¢ = 1, one has 1, = maxp A3(P, o), hence
the maximum filter gain is applied only when A, is at least
half of the maximum A3 in the entire image. Conversely,
lower values of 7 makes the filter more sensitive, since more
regions of the image will receive maximum enhancement.
Further, in the JEF, y = 2, that is, the Hessian components
are proportional to the square of the scaling factor o. Let
A7 (P;) : R — R be a function returning the eigenvalues
of the Hessian of the image 7 at the point P;. The enhanced
image is obtained as &(P;) = v(H7(P))).

Fig. 8 shows the top- and side-view projections of the
original images (left column) and the Jerman filter-enhanced
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Fig. 8.

images (right column) of the experiments studied in this article
(details are provided in Section IV). In the enhanced images,
the main structures of the target of interest are highlighted
while most of the background noise is removed.

Inspection of the enhanced image isosurfaces enables the
choice of a threshold value that yields a 3-D solid model.
Let 5 be the chosen threshold value by this image inspection.
Define a classifier A, : R® — [0, 1] as

0, ifx <np

Ay) = (13)

1, otherwise.

Then the 3-D model is obtained as the binarized image
M3p(Pj) = Ay(E(Pj)).

B. Processing Pipeline

The multistatic GPR data-processing pipeline is summarized
in Fig. 9. The input raw 3-D GPR data from each of three
receivers are back-projected, normalized, and squared, and
finally summed to compose a multistatic image. The resulting
image is then enhanced using the JEF for 3-D modeling.
A processing step that can be applied in the BPA image
or as a preprocess in the GPR raw data is the removal of
ground reflection. Performing mean subtraction is a common
method to remove direct coupling and ground reflection but
there is the risk of removing backscattered signals of targets
that were parallel to the survey path. For underground utility
applications, there is a minimum depth expected for pipelines,
such that the image can be zeroed above that depth, or the BPA
may be formed only in the region of interest, that is, define
the domain of interest as a region starting an offset below the
ground level.

IV. EXPERIMENTS

As shown in Fig. 10(a), a multistatic GPR system composed
of a transmitter antenna and three receiver antennas was
used to generate data sets in the laboratory experiments.
The antennas are horn antennas whose operating band spans
from 600 MHz to 6 GHz [27]. The system is controlled by
a 4-channel Keysight PNA-X network analyzer to perform

Top- and side-view projections of the image prior to (left column) and after (right column) enhancement for each case studied in this article.

Fig. 9. GPR data-processing pipeline: raw GPR data for each receiver is given
as input. The BPA is applied, and the resulting image squared and scaled. All
receiver images are then summed. The multistatic image is enhanced using
the JEF and binarized using a suitable threshold level.

frequency sweeping and scattering signal acquisition. The
experiments are conducted on a sandbox where three test
cases are implemented, each of which has a different object
for detection. The first case is a 1 in (25.4 mm) polyvinyl
chloride (PVC) pipe perpendicular to GPR scan direction
shown in Fig. 11(I). The second case is a 4 in (116 mm) PVC
pipe shown in Fig. 11(II). The third case is a U-shaped pipe
of 2 in (50.8 mm) PVC pipe partially shown in Fig. 11(III).
The dielectric constant € of sand is 4. The pipes are buried
at depths ranging from 1 in (25.4 mm) to 2 in (50.8 mm).
For all cases, each B-scan image is composed of 80 A-scan
traces taken approximately every 10-mm interval. Each B-scan
is taken parallel and 1 in (25.4 mm) apart of each other,
as illustrated in Fig. 10(b). In all cases, the pipes are hollow,
that is, filled with air. This has an effect on the observed
diameter, as will be pointed in case 2. The antenna radiation
pattern is shown in Fig. 12.
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Fig.

Photograph of the 1 in PVC pipe.

Fig. 11.
-14dB -8dB -4dB -2dB 0dB
90° _o0°
60 60
30 30
"
Fig. 12. Far-field horn antenna radiation pattern employed in the BPA.

The BPA images for cases 1 and 2 are computed in
the region [0.7,1.0] x [0,0.4] x [—0.1,0] m3 discretized
in 51 x 51 x 51 points. For case 3, the BPA is computed in the
region [0.3,0.9] x [0,0.4] x [-0.1, 0] m3 and discretized in
61 x 41 x 51 points. The cutoff threshold parameter of the JEF
is set to © = 1. The filter scale was set to half the wavelength
of the antenna’s center frequency 3 GHz considering the wave
speed on the ground, ¢ ~ 25 mm.

A. Case 1: 1 in PVC Pipe

Fig. 13(I) shows, from top-left to top-right, inserts of
the first to third receiver for illustration purposes. Note the
different regions of focus of each receive antenna. The main
image shows the 3-D multistatic image prior to enhancement.
Since the pipe diameter is at the order of magnitude of
the emitted wavelengths, it is not possible to resolve the
top and bottom surfaces. The resolved depth is about 2 in.,
which is in good agreement with the ground truth. Fig. 14(I)
shows the enhanced image. Notice that the background noise
level is greatly reduced. Finally, the 3-D model resulting
from manually thresholding the image is shown in Fig. 15(1).
Projections of the final model are shown in Fig. 16(I).

B. Case 2: 4” PVC Pipe

Fig. 13(II) shows, from top-left to top-right, inserts of
the first to third receiver for illustration purposes. The main
image shows the 3-D multistatic image. Good focusing is
also achieved, especially of the top surface, shown in the
slice. The diameter is large enough such that the top and
the bottom of the pipe are identified. The resolved depth is

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 8, AUGUST 2020

about 1 in., which is in good agreement with the ground
truth. This is the pipe whose side-view is shown in Fig. 7.
Notice that the distance between the top and bottom signal
focus points shown in that image is about 50 mm, roughly
half the expected diameter. This is because the pipe is filled
with air, and the back-projection model assumes the entire
subsurface region to have a dielectric constant of € = 4.
This dielectric constant implies a wave speed of v = c¢/2,
thus leading to half the expected diameter, since for the same
flight time that speed covers half the distance that would be
covered at the speed of light. Also, as both the top and bottom
interfaces are resolved, it could lead to incorrect interpretation,
for example, concluding that there are two buried targets. This
is an uncertainty inherent in the raw GPR data, since two
hyperbolas are formed. Some observations could be used to
aid in distinguishing these two scenarios. For instance, it is
rare that two distinct targets are perfectly aligned, whereas a
single larger target will exhibit the alignment between the top
and bottom interfaces. Also, as briefly discussed in Section II,
signal polarity might inform the target material. If the top and
bottom targets are of different materials, considering signal
polarity might aid in distinguishing both cases. Fig. 14(Il)
shows the enhanced image. Notice that the background noise
level is greatly reduced in this case as well. Finally, the 3-D
model resulting from thresholding the image with a suitable
value is shown in Fig. 15(II). The top- and side-view projec-
tions of the final model are presented in Fig. 16(II).

C. Case 3: 2 in U-Shaped PVC Pipe

Fig. 13(III) shows, from top-left to top-right, inserts of the
first to third receiver for illustration purposes. The main image
shows the 3-D multistatic image. Note the presence of a strong
signal noise along the x-axis in the left insert. Furthermore,
part of the pipe is aligned with the scan direction, preventing
the application of traditional mean subtraction to raw GPR
data. The inserts also indicate that the along-path section of
the pipe is observed well by the third antenna (right insert)
but poorly by the other antennas (left and center). A simple
sum leads to a strong intensity on the section of the pipe
perpendicular to the survey, which is observed by all antennas.
The enhanced image, shown in Fig. 14(III), helps clearing
the background noise and retains the information provided
by the third antenna. The resolved depth is between 1 and
2 in., in agreement with the ground truth. The pipe joint
region, however, is somewhat attenuated. Still, the enhanced
image is superior for the purpose of generating the 3-D model.
To extract a similar volume of the pipe as shown in Fig. 15(III)
would generate a considerable noise region in the original 3-
D image, especially due to the BPA bias present in the first
antenna image. This is a challenging scenario since there is a
presence of significant noise in one of the images, part of the
target is observed only by few antennas, and the same target
has regions of different intensity. A good 3-D model, shown
in Fig. 15(I1I), is recovered albeit with some degree of ground
noise. Top- and side-view projections of the final model are
shown in Fig. 16(III).
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Slice of the resulting multistatic image for each case. Inserts above illustrate, from left to right, receivers 1, 2, and 3 back-projected images.

(111)

(111)

Fig. 13.
ey (11)
Fig. 14. Slice of the multistatic image enhanced by the Jerman filter for each case.
(D (1D)
Fig. 15. Extracted solid after thresholding for each case.

Fig. 16. Top- and side-view projections of the final model for each case.

V. CONCLUSION AND DISCUSSIONS

Most of the GPR imaging literature covers the 2-D, mono-
layer, monostatic case. The BPA applied here, based on [22],
can be employed for 3-D bilayer multistatic GPR. In [22],
two buried metallic objects of relatively simple shapes were

studied. Here, PVC pipes of different sizes and shapes are pre-
sented corroborating the good performance of the algorithm.
Moreover, since the calculation of the wave travel times and
addition to the final image may be performed with parallel
computation, very short computation times can be achieved.
For instance, for the largest images with over 130000 image
points, computation for each receiver image is performed
under 5 s running in an Acer Predator Helios 300 PH315-51.
It is possible to decrease computation time even further by
leveraging on cloud cluster computing.

The JEF was very effective in enhancing the tubular struc-
tures imaged. To the author’s knowledge, such filter technique
has not been applied in GPR underground utilities survey
before, nor in landmine or unexploded ordnance detection,
which opens an invitation to investigate the transfer of knowl-
edge from the medical imaging field to GPR applications and
vice versa.

For the imaging GPR, the sensitivity is an important factor
determining system’s sensing performance. In this article,
a sensitivity studied has not been performed, as in our lab-
oratory settings, a sufficiently high SNR, between —10 and
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—30 dB, was present. In the next step of research, the sensitiv-
ity effect in GPR field applications will be investigated. Some
of the challenges in field applications are: higher signal loss,
irregular interfaces, unknown dielectric constant, and so on.
Furthermore, to be able to penetrate deeper into the ground,
lower-frequency EM waves have to be employed. This will
reduce the image resolution, potentially preventing the clear
determination of the target shape, although the target position
should still be recovered. Also, accurate position of the GPR
system is required for correct back-projection. Most commer-
cial GPR systems are equipped with either wheel encoders or
GPS which typically present resolution on the meter range.
Hence, there is a plethora of research opportunities on the
path to field deployment. Those will be objects of our future
research.

In conclusion, the application of a processing pipeline to
GPR data, encompassing image reconstruction and enhance-
ment, to create 3-D models of subsurface tubular structures
toward advanced underground infrastructure visualization is
demonstrated and validated.
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