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Abstract—Visible Light Communication (VLC), which is a
recent technology that operates at the visible light spectrum band,
is a very propitious technology complementary to RF in the era
of spectrum crisis. Because of the extensive deployment of energy
efficient Light Emitting Diodes (LEDs) and the advancements in
LED technology with fast nanosecond switching times, VLC has
gained a lot of interest recently. In this paper, we consider a down-
link VLC architecture which is capable of providing simultaneous
lighting and communication coverage across an indoor setting.
We design a multi-element hemispherical bulb which transmits
multiple data streams from its LEDs to mobile receivers. The
architecture employs a Line-of-Sight (LOS) alignment protocol
to tackle the hand-off issue caused by the mobility of the receivers
in the room. We formulate an optimization problem that jointly
addresses the LED-user associations as well as the LEDs’ trans-
mit powers in order to maximize the Signal-to-Interference plus
Noise Ratio (SINR) while taking into consideration an acceptable
illumination uniformity constraint across the room. We propose
a near-optimal solution using Geometric Programming (GP) to
solve the optimization problem, and compare the performance
of this GP solution to low complexity heuristics.

Index Terms—Visible Light Communication; illumination Uni-
formity; joint Optimization;

I. INTRODUCTION

V Isible Light Communications (VLC) is an emerging
technology with significant potential to provide com-

plementary wireless access speeds. As the number of Internet-
of-Things (IoT) devices is exploding and the need for more
aggregate wireless access capacity, VLC solutions are of high
value. Recently, multi-element architectures in VLC systems
have attracted attention by optical wireless communications
researchers [1]–[3]. The multi-element VLC networks can offer
increased aggregate throughput via simultaneous wireless links
and attain higher spatial reuse. The downlink data transmission
efficiency may be significantly improved by using multi-
element VLC modules due to its light beam directionality
where each transmitter, e.g., a Light Emitting Diode (LED),
can be modulated with different data streams. Most of the
VLC literature can be categorized into four groups based on
the number of transmitters and datastreams involved in the
design. Fig. 1 makes a visual comparison of these categories
and Table I provides a high-level coverage of their design
characteristics.
Single Element Single Datastream (SESD) designs are where
one LED sends one datastream to one receiver. SESD VLC
systems were heavily studied, especially in the early stages
of VLC research, with a focus on modulation and data
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Fig. 1: VLC architectures.

rate. In [4], the authors were able to show high speed data
transmission using a phosphorescent white LED. 40 Mb/s
speed was reported using On-Off Keying (OOK) modulation
and more than 100Mb/s speed using Quadrature Amplitude
Modulation (QAM), although the distance between the LED
and photodiode was very small, i.e., 1cm. In a more practical
setup demonstrated in [5], the authors were able to transmit
data with a distance of 2.5m using off-the-shelf LEDs with
115Kb/s speed. In [6], performance of a novel LED lamp
arrangement was investigated for reducing the Signal-to-
Interference Noise Ratio (SINR) fluctuation from different
locations in the room for multi-user VLC. They assumed that
the illumination uniformity of the system would be maintained
as the distribution of luminance had the same shape as that
of the received optical power. This can be assumed only
if the transmitters of the system have a fixed amount of
source power in such a way that the received optical power
in the room floor is uniform which is different from the case
considered in this work. Another work [7] with emphasis on
SINR proposed a coverage optimization model where genetic
algorithm is used for optimizing LED arrangements. While
maintaining the illumination requirement, a 75% improvement
in communication coverage is attained. However, this work
did not consider illumination uniformity though, and all the
LEDs were assumed to have the same transmit power. In SESD
designs, distance between the transmitter and the receiver plays
a great role in data transmission speed.
Single Element Multi Datastream (SEMD) designs have one
LED sending multiple datastreams to multiple receivers. Signif-
icant amount of work explored how to use a single light source
to serve multiple receivers, mostly via techniques involving
diffuse optics and sharing of the VLC link. In [8], an outdoor
VLC system is considered with a powerful light source to serve
a large number of users accommodated by a big area. The work
focused on the problem of using VLC system resources based
on Time Division Multiple Access (TDMA) technique while
aiming to maximize the spectral efficiency of the downlink
fulfilling a Quality-of-Service (QoS) requirement. In [9], the
authors analyzed a diffuse VLC Multiple-Input Multiple-Output



(MIMO) system taking Line-Of-Sight (LOS) propagation into
account. Their simulation indicated that the angular diversity
detectors had better performance over vertical oriented receivers
for the mobile optical receivers.
Multi Element Single Datastream (MESD) techniques employ
multiple LEDs that send one datastream to one receiver. In order
to increase the received light intensity at the receiver, MESD
designs use multiple LED sources sending the same data to a
single receiver. Availability of multiple transmitters in MESD
designs allows cooperative transmission [10], where the time of
arrival from all the LEDs can be used to improve the detection
probability of data bits at the receiver, and hence reduce BER.
By employing multiple photo-detectors at the receiver, MESD
designs also allow MIMO modulation techniques. Such MIMO
VLC designs were shown to maximize data rate well with a
modified singular value decomposition [11] while maintaining
certain illumination requirements.
Multi Element Multi Datastream (MEMD) designs recently
emerged and used multiple LEDs sending multiple datastreams
to multiple receivers. Due to the additional flexibility in the
multiplicity of elements and datastreams, more interesting
MEMD VLC system combinations are possible based on
LED placements and coverage of the illumination areas. The
authors in [12] proposed a multi-cell VLC system for large
area networks, where LED arrays in one cell can coordinate
with LED arrays in the adjacent cells to cancel the inter-cell
interference. In another recent work [13], Discrete Multi-Tone
(DMT) modulation scheme has been shown to significantly
improve the throughput of VLC in a room. In [14], the
authors studied LED assignment problem in MEMD VLC
systems taking proportional fairness and QoS requirement into
consideration. They proposed suboptimal heuristic algorithms
for LED assignment to receivers.

Illumination uniformity is an important factor to be consid-
ered in MEMD architecture where uniform light distribution
needs to be considered as each LED’s transmit power is being
tuned. Otherwise, spotty lighting might emerge while the
transmit powers of LEDs are being tuned for maximal SINR.
Our work in this paper considers a more practical scenario than
the previous works in the literature, where we jointly optimize
the illumination uniformity with users’ QoS. It is critical to
ensure quality lighting in the room, while optimizing the LED
assignment problem with a source power constraint on each
LED. This type of MEMD architecture can improve the system
performance as investigated in [15], [16].

TABLE I: Issues of different VLC architectures.

Issue SESD MESD SEMD MEMD
Simple architecture X X
Complexity X X
Association problem X X
Special reuse X X
Handling multiple receivers X
Illumination problem X X
High data rate X

Thus far, we have covered many different aspect of studies in
VLC and categorized them based on the number of transmitters

and data streams in the design. The main differences of our
work from the literature are presented below:
• While some of the previous works had illumination

constraint by mainly focusing on improving the data rate,
we are keeping illumination uniformity in our objective
function, which can provide the best possible uniform
lighting as well as the highest possible minimum SINR
among all the users. So, we are optimizing both SINR
and illumination uniformity at the same time.

• We consider the cases where LEDs have narrow diver-
gence angles (e.g., less than 40o) unlike the prior studies
(including MIMO VLC [17]) that mainly looked at the
scenarios using diffused light beams with large divergence
angles.

• The biggest difference of our work is that we consider
MEMD designs. The prior studies with multi-element
designs in the literature only considered single datastream
being sent to one of the users in the room [17]. In our
case, we handle multiple datastreams, each of which is
destined to a different user in the room. This brings the
hard problem of LED-user association in addition to the
SINR and uniformity maximization.

In this paper, we propose a novel MEMD framework by
designing a multi-element bulb in a spherical shape consisting
of multiple LEDs. This spherical shape allows high spatial
reuse in addition to improving the illumination uniformity of
the room. Each LED emits in a different direction, and hence,
the spherical multi-element bulb can attain an evenly scattered
lighting. Beyond the multi-element hemispherical bulb, to the
best of authors’ knowledge, this paper provides a framework
for joint optimization of the LEDs’ power and association
to receivers to improve the aggregate data rate (of multiple
data streams) and illumination uniformity in multi-element
VLC networks for the first time. The main contributions are
summarized as follows:
• Investigating a spherical multi-element bulb architecture

in downlink VLC transmission, where each LED can be
assigned to a receiver for data transmission or used for
increasing the uniformity of illumination.

• Formulating an optimization problem that maximizes the
ratio of SINR over the illumination uniformity taking into
consideration the transmit peak power, minimum accept-
able illumination uniformity, and LEDs-users associations.

• Solving the formulated optimization problem by finding
the best LEDs’ transmit power and the association between
the LEDs and users. Therefore, the following two solution
have been proposed:

– Due to non-convexity of the problem, we firstly
propose a benchmark solution by approximating
the non-convex optimization problem into a convex
optimization problem and solve it using Geometric
Programming (GP) [18].

– Then, we propose efficient low complexity parti-
tioning algorithms to achieve near optimal practical
solution.

The rest of the paper is organized as follows: Section II
describes our spherical multi-element VLC architecture and



the system model of it. Our joint optimization problem is
formulated and its NP hardness is proven in Section III. Near-
optimal approximation solution to the problem is presented
in Section IV, followed by heuristic approaches in Section V.
Selected numerical simulation results are presented in Section
VI. Finally, our work is summarized in Section VII.

II. MEMD VLC SYSTEM MODEL

We consider a single hemispherical bulb for an indoor VLC
system consisting of M LEDs serving U users. Each LED m
transmits power equal to Pm Watt, ∀m = 1, ..,M as shown
in Fig. 1(b). We also consider that the hemispherical bulb
structure with two functions: Illumination of the room and
wireless download to mobile users by acting as an access point
for the room. It consists of multiple transmitters (i.e., LEDs)
to facilitate simultaneous downloads to multiple receivers (i.e.,
users) as shown in Fig. 2. These LEDs are attached to the
surface of the bulb in several layers pointing towards different
directions so that they can illuminate different parts of the
room. Furthermore, in addition to wireless communications,
the LEDs are intended to provide light coverage in the room.

As the hemispherical bulb (which is the AP) has many
transmitters attached to it, overall it has a broad coverage even
in cases where each LED transmitter has a narrow beam. In
fact, this is a key novelty of our work. We consider the cases
where LEDs have narrow divergence angles which causes spotty
lighting but attains pretty good throughput/SINR. Using smaller
divergence angle for the transmitters decreases the chance of
interference among multiple simultaneous data downloads as
the overlapping of LED beams is less compared to the cases of
larger divergence angles. To remedy the spotty lighting issue
of our design, we make the illumination uniformity a key part
of the optimization objective rather than just leaving it to a
constraint which typically can be done as the light intensity
being greater at a particular location on the room floor as in
some of the earlier works [7].

We envision mobile users equipped with a Photo-Detector
(PD) or a collection of PDs conformal to the surface of
the unit with additional apparatus like lenses as appropriate.
These users also need the capability of uploading using legacy
Radio Frequency (RF) transmitters. Each receive a separate
datastream download from the LED(s) with which they are in
LOS alignment. The design of these units requires joint work
of solid-state device and packaging as well as communication
protocols. For instance, multi-element conformal PDs can be
designed to cover a smartphone’s or a laptop’s surface, or
multiple PDs can be used to attain a large field-of-view (FOV)
[19] at the user.

Given multiple mobile users each downloading a different
datastrem, our MEMD VLC system aims to attain high
download speed for all users and smooth lighting across the
room. To do so, the bulb structure will have to perform two
tasks: (1) Partition LEDs to groups and assign each group
to a user so that the user’s download speed is maximized
with minimal interference to the other downloads in the room,
and (2) tuning transmit power of LEDS so as to maximize
the illumination uniformity in the room. The ideal scenario

would be to update the association and transmit power of the
LEDs instantly, i.e. whenever there is a change in the position
of any of the users, which is happening in our simulation
as we are solving the optimization problem and calculating
our objective function output based on several random sets of
user coordinates. In a practical scenario, though, it would
depend on the uplink speed of the RF transmitter of the
user as the bulb will be able to start the process and update
the association when it receives the acknowledgement from
the receivers responding to the search frames periodically
coming from the LEDs. Given the current system delays in the
association process (e.g., the frequency of search packets being
sent from the bulb, transmission delay of the search packets, the
receivers processing delay upon receiving the search packets,
the transmission delay of the acknowledgments from the
receivers, and processing delay of the acknowledgments at
the bulb), we are expecting the frequency of updating the
association and transmit powers to be in the order of tens of
milliseconds. Note that doing the update at several hundreds of
milliseconds is also acceptable since human movement happens
at larger timescales. More details of the association mechanism
of our architecture can be found in one of our earlier works
[1]. Next, we build a model of the system and formulate this
joint optimization problem.

TABLE II: List of Key Symbols
Notation Description
M Number of LEDs
U Number of users
N Number of sensors in the room
B Communication bandwidth
Pm Transmit power of LED m
P̄ Maximum LED’s transmit power
εmu Association between LED m and user u
hmu Channel gain between LED m and user u
Au User PD area
dmu Distance between LED m and user u

ϕmu, φmu Irradiance and incidence angles, respectively
φc FOV angle of the PD

Q0(ϕmu) Lambertian radiant intensity
q The order of Lambertian emission

ϕ1/2 The transmitter semiangle at half power
Γu SINR at user u
ϑ Illumination uniformity
α0 The luminous efficiency
µ Minimum acceptable illumination uniformity

A. Assumptions and Notation

For this study, we make the following assumptions:
• Each mobile user inside the room has one PD receiver

and one RF transmitter, and is capable of extracting the
desired signal from the optical transmitters.

• Locations of the mobile users are known to the access
point, i.e., the bulb structure.

• There are N fixed light sensors assumed to be distributed
uniformly inside the room. These sensors are not equipped
with decoders and only used to ensure the illumination
uniformity. Further, these sensors are not purposed for
providing illumination, but rather for measuring illumi-
nation, and we do not need to employ them in a real
scenario. We are solving this optimization problem for
a multi-element VLC bulb whose dimensions are known
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and the room dimensions are fixed as well. These N
sensors are used in our simulations in order to calculate
the illumination level at the points on the floor, hence the
illumination uniformity of the room. As far as the value
of N is concerned, the larger it is, the more accurately we
can calculate the illumination uniformity of the room. But
after a certain point, it is not worthy to increase N for a
larger runtime as we can reach a near perfect accuracy.
From our experimentation, we found 100 sensors to be
sufficient for the room size we consider.

To ease the rest of the discussion in the paper, we summarize
our notation in Table II.

B. Layered Bulb Structure and Placement of LEDs

We place the LEDs on the hemispherical bulb on l layers
as shown in Fig. 2. Let L be the maximum possible number
of layers, and Ki is the maximum possible number of LED in
the i-th layer. Depending on the shape of the bulb and LED
transmitters1, L and K can have different upper limits. To find
the maximum number of layers L, we assume the LEDs to be
spaced as closely as possible. First, we calculate how many
LEDs can possibly be placed on the surface of any one half
on the hemispherical bulb when looking from the x-z plane
(y=0). So, each LED on the same layer will create the same
angle with the center point of the bulb (since their radius is
the same) which can be defined as:

θLB = 2 sin−1
(rt
R

)
(1)

where rt is the radius of an LED and R is the radius of the bulb.
The factor 2 comes from the fact that we are using transmitter
radius as our parameter for the calculation, and the angle the
whole transmitter (with its diameter) creates with the center
of the bulb is twice the angle it creates with its radius. Fig. 3
illustrates this more clearly. Then, the maximum number of
layers for a particular rt and R can be expressed as:

L =

⌊
90o

θLB

⌋
(2)

1These LED transmitters may be composed of one or more LEDs. We
assume that the transmitters are circular with a radius rt=1.5cm, which can
be implemented by multiple LEDs placed in a circle. We will keep referring
to these circular transmitters as ‘LEDs’ or ‘LED transmitters’.

where θLB is measured in degrees.
Next, we calculate the upper limit of the number of LEDs

in a particular layer i. If the angle between the i-th layer and
the perpendicular normal is θi, then the radius of circle created
by the LED boards in the i-th layer will be:

rli = R cos θi (3)

Then, the angle created by each LED with the center of this
circle will be:

θli = 2 sin−1(
rt
rli

) (4)

Lastly, the maximum number of possible LEDs in the i-th
layer can be calculated as:

Ki =

⌊
360o

θli

⌋
(5)

where θli is measured in degrees. In our earlier work [2], we
designed techniques to optimize the number of LEDs in each
layer (i.e., ki) up to these maximum values (i.e., Ki) for their
corresponding layer. The key insight was to place more LEDs
at the lower layers of the bulb as they contribute more for the
achievable throughput. Thus, in this paper, we place the LEDs
at the lower layers first and go up if more LEDs are available.

C. LED-User Association

Let us introduce a binary variable εmu that indicates the
association between LED m and user u, and is given as follows:

εmu =

{
1, if LED m is associated with user u.
0,otherwise. (6)

Following the MEMD model, we assume that user u can
be associated to many LEDs at the same time. In contrary,
any LED is not allowed to associate with more than one
user simultaneously. Thus, the following constraint should be
respected:

U∑
u=1

εmu ≤ 1, ∀m. (7)



D. Channel Model

In our channel model, we assume that the multipath propa-
gation resulting from reflections and refractions is neglected
and only LOS channel model is considered [20]. Therefore,
the downlink communication channel between LED m and
user u can be expressed as [21]

hmu =

{ Au

d2mu
Q0(ϕmu) cos(φmu) , 0 ≤ φmu ≤ φc

0 , φmu ≥ φc
(8)

where Au is the user PD area and dmu is the distance between
LED m and user u. ϕmu and φmu are the irradiance and
incidence angles, respectively (shown in Fig. 4). φc is the FOV
angle of the PD. We have assumed that no optical filter is used.
Q0(ϕmu) is the Lambertian radiant intensity and expressed as

Q0(ϕmu) =
(q + 1)

2π
cosq(ϕmu), (9)

where q = − ln(2)/ ln(cos(ϕ1/2)) is the order of Lambertian
emission and ϕ1/2 is the transmitter semi-angle at half power.

Because of the nature of our system design (hemispherical
bulb in the center of the room ceiling) the beams coming out
from most of the LEDs in the bulb do not experience significant
reflection. Beams coming from only a few number of LEDs
in the higher layers of the bulb experience reflection from the
side walls of the room. For this minimal effect of reflection,
we do not consider it in our channel model to cut down the
running time of our simulations.

E. SINR Calculation

We assume that each LED is either associated with one user
or used for lighting only. Therefore, SINR at user u can be
expressed as

Γu =
βuu

2

N0B +
U∑
k=1
k 6=u

βku
2

(10)

where βiu =
M∑
m=1

εmihmuPm. βiu, B and N0 are the total

power received by user i from its assigned LEDs, the commu-
nication bandwidth and the spectral density of the Additive
White Gaussian Noise (AWGN), respectively.

F. Illumination Uniformity

Another important factor to be considered is illumination
intensity distribution across the room floor. Specifically, the
illumination uniformity, ϑ, can be defined as the ratio between
the minimum and the average illumination intensity [22] among
all N sensors, and is expressed as

ϑ =
min
n

(σn)

1
N

N∑
n=1

σn

(11)

where σn =
M∑
m=1

α0Pmhmn is the received total power at

sensor n, α0 is the luminous efficiency that depends on the

LED color wavelength, hmn is the channel between LED m
and sensor n and min(.) is the minimum function. It should
be noted that the illumination uniformity is based only on the
illumination generated by the LEDs on the bulb which is Pm
for a particular, LED m and the channels between M LEDs
and N sensors which is hmn for a particular m and n. It does
not have any relation with the number of users U .

III. PROBLEM FORMULATION

The approach of maximizing the total data rate which is
known in the literature as Max C/I [23], promotes users with
favorable channel and interference conditions by allocating to
them most of the resources, whereas users suffering from higher
propagation losses and/or interference levels will have very low
data rates. Therefore, due to the unfairness of total sum data
rate utility, the need for more fair utility metrics arises. For this
reason, we choose to use Max-Min utility of the SINR. The
Max-Min utilities are a family of utility functions attempting to
maximize the minimum SINR in a network [24]. By increasing
the priority of users having lower SINR, Max-Min utilities
lead to more fairness in the network.

The key goal of our approach is to find solutions that balance
illumination uniformity as well as communication efficiency,
i.e., high SINR. As one of the key novelties in our work
is considering the narrow beams from the LED transmitters
which can cause uneven lighting in the room, we have placed
illumination uniformity inside the objective function of our
optimization problem. This ensures a more general approach to
solve the problem of finding the best possible combination of
illumination and communication. In this section, we formulate
an optimization problem aiming to maximize the product of
minimum SINR of all users (min

u
(Γu)) and the illumination

uniformity by taking into consideration the association and
illumination intensity constraints. The optimization problem
can be expressed as

maximize
εmu∈{0,1},Pm≥0

min
u

(Γu) ϑ (12)

subject to:
Pm ≤ P̄ , ∀m, (13)
U∑
u=1

εmu ≤ 1, ∀m, (14)

ϑ ≥ µ, (15)

where constraints (13) and (14) represent the power and
association constraints, respectively. Constraint (15) is to ensure
that the illumination uniformity is above a certain threshold,
where µ is the minimum acceptable illumination uniformity
for an indoor setting [22].

We consider the communication signal for LED m to be
carried on the background DC light intensity with power Pm.
And, for the case of only illumination, we assume that all LEDs
are providing the same background light intensity with power
Pm. This power can be adjusted to achieve the best possible
SINR and lighting distribution in both the cases considered
here. Basically, Pm is considered as the DC power when the
LED is providing illumination only, and Pm is considered



(a) Input graph of the problem with
all possible links.

(b) Solution of the problem after re-
moval of some links.

Fig. 5: Comparison with minimum ν-cut problem.

the average power when it is providing both illumination and
communication. Similar assumptions can also be found at [14],
[25].

In order to simplify the problem, we define new decision
variables for minimum illumination Imin and minimum SINR
Γmin, respectively, as

Imin = min
n

(σn), (16)

Γmin = min
u

(Γu). (17)

Using these new variables, our optimization problem be-
comes

maximize
εmu∈{0,1}

Pm,Imin,Γmin≥0

ΓminImin

1
N

N∑
n=1

σn

(18)

subject to:
σn ≥ Imin, ∀n, (19)

βuu
2

N0B +
U∑
k=1
k 6=u

βku
2

≥ Γmin, ∀u. (20)

and (13), (14), (15).
Notice that, the formulated optimization problem in (18)-(20)

is a mixed-integer non-linear problem (MINP).

Algorithm 1 Decremental design for MIN ν CUT

procedure PARTITION(M,U)
while !solved do
solved = MIN ν CUT (G(V,E))
for i = 1 to M do

for j = 1 to U do
if if edge (i, j) ε solved then
εij = 1

end if
end for

end for
end while
end procedure

A. NP-Completeness

We have found our optimization problem to be NP-complete
by reducing it to the Minimum ν-cut problem, a well known
NP-complete problem [26]. We define our main problem

in (12) as PARTITION WITH UNIFORMITY or
PARTITION WU , and the minimum ν-cut problem as
MIN ν CUT . Also, if we consider ϑ to be a fixed value
between 0.7 and 1, then PARTITION WU becomes a prob-
lem with fixed uniformity. We define this version of the prob-
lem as PARTITION FOR FIXED UNIFORMITY
or PARTITION FFU .

In MIN ν CUT , the input is a weighted undirected graph,
G(V,E) from which a set of edges needs to be removed
such that the graph becomes a set of ν connected components
with minimum weight [27]. The problem is NP-complete if
we specify ν vertices and ask for the Minimum ν-cut which
separates these vertices among each of the sets.

Now, if we consider every possible link between each
transmitter and receiver in our MEMD VLC system (only
considering the links where the receiver falls in the coverage
area of the transmitter) then the collection of all these edges
are similar to the input graph in the Minimum ν-cut problem.
This is shown in Figure 5(a), where three transmitters on the
bulb are named as T1, T2 and T3, and three receivers are
named as R1, R2 and R3. The link between transmitter i and
receiver j is named as Lij . To make our problem comparable
with MIN ν CUT , we first define a simplified version of the
input graph G(V,E) by assuming weight of these edges as the
received signal strength from the LED to its assigned receiver,
so the objective function described in (18) is dependent on
these edges. Let this simplified version of the problem be
PARTITION .

Lemma 1: MIN ν CUT is polynominal time reducible to
PARTITION , i.e., PARTITION <P MIN ν CUT .
Proof : If we solve PARTITION as if it is MIN ν CUT ,
then some edges from the input graph will removed so that the
overall cost is the minimum. The ν vertices in MIN ν CUT
is comparable with the number of receivers, and the ν connected
components in the graph can be compared with the partitions
in the bulb for the optimum assignment. Thus, this very
simplified version of the problem, PARTITION , is NP-
complete whereas the actual problem is even more difficult to
solve as each link is dependent on the other links in most of the
cases. This is due to the fact that, when calculating SINR for
each receiver, signal coming from the transmitters other than the
assigned one are treated as interference. Also, the illumination
uniformity constraint (15) is another factor to consider in our
original problem. Algorithm 1 shows that MIN ν CUT is
convertible to PARTITION in polynomial time.

Lemma 2: PARTITION is polynominal time reducible
to PARTITION FFU , i.e., PARTITION FFU <P
PARTITION .
Proof : We can reduce PARTITION to
PARTITION FFU by considering µ as a set of t
discrete values µ1, µ2, ...µt from 0.7 to 1, where t is a very
large number. Thus, solving PARTITION FFU iteratively
for all these discrete uniformity values, we can find the
solution of PARTITION . This is shown in Algorithm 2.

Theorem 1: PARTITION FFU is NP-Complete.
Proof : It follows from Lemma 1 and Lemma 2.



Algorithm 2 Decremental design for PARTITION

procedure PARTITION(M,U)
µ→ µ1, µ2 ... µt

while !solved do
for i = 1 to t do
solved = PARTITION FFU(m,u, µi)

end for
end while
end procedure

Theorem 2: PARTITION WU is NP-Complete.
Proof : By Theorem 1, PARTITION FFU is proven to be
NP-Complete. One can write an iterative algorithm similar to
Algorithm 2 to show that PARTITION WU is reducible
to PARTITION FFU in polynomial time. This proves
PARTITION WU is NP-Complete, too.

IV. NEAR OPTIMAL SOLUTION

In order to simplify the problem (12), we propose to
approximate the joint optimization problem using Geometric
Programming (GP). To do this, we first relax the variable εmu
and make it continuous, i.e., 0 ≤ εmu ≤ 1. After obtaining an
optimal value of εmu, we propose an efficient way to recover
the best and closest upper integer value. We apply a successive
convex approximation (SCA) approach to transform the non-
convex problem into a sequence of relaxed convex subproblems
that follows GP formulation [28].

A. Geometric Programming

GP deals with a class of nonlinear and non-convex opti-
mization problems that can be solved after converting them to
nonlinear but convex problems [29]. The standard form of GP
is defined as the minimization of a posynomial function subject
to inequality posynomial constraints and equality monomial
constraints as given below

minimize
b

f0(b) (21)

subject to:
fl(b) ≤ 1, ∀l = 1, · · · , L, (22)

f̃l̃(b) = 1, ∀l̃ = 1, · · · , L̃, (23)

where fl(b), l = 0, · · · , L are posynomials and f̃l̃(z), l̃ =
1, · · · , L̃ are monomials. A monomial is defined as a function
f : Rn++ → R as follows:

f(b) = ǎ ba11 ba22 ... baZZ , (24)

where the multiplicative constant ǎ ≥ 0, and the exponential
constants az ∈ R, z = 1, ..., Z . A posynomial is a non-negative
sum of monomials.

In general, GP in its standard form is a non-convex optimiza-
tion problem, because posynomials and monomials functions
are non-convex functions. However, with a logarithmic change
of the variables, objective function, and constraint functions,
the optimization problem can be turned into an equivalent
convex form using the property that the logarithmic sum of

exponential functions is convex (see [29] for more details).
Therefore, the GP convex form can be formulated as

minimize
c

log f0(ec) (25)

subject to:
log fl(e

c) ≤ 0, ∀l = 1, · · · , L, (26)

log f̃l̃(e
c) = 0, ∀l̃ = 1, · · · , L̃, (27)

where the new variable c is a vector that consists of [cz] =
[log bz]. It can be noticed that (18)-(20) can be transformed to
the GP standard form easily. In order to convert the optimization
problem formulated in (18)-(20) to a GP standard form,
we propose to apply approximation for constraint (19) and
constraint (20). The single condensation method is employed
to convert this constraint to posynomial as described below:

Definition 1: The single condensation method for GP involves
upper bounds on the ratio of a posynomial over a posynomial.
It is applied to approximate a denominator posynomial g(b)
to a monomial function, denoted by g̃(b) and leaving the
numerator as a posynomial, using the arithmetic-geometric
mean inequality as a lower bound [28]. Given the value of b at
the iteration r − 1 of the SCA b(r−1), the posynomial g that,
by definition, has the form g(b) ,

∑J
j=1 µj(b), where µj(b)

are monomials, can be approximated as:

g(b) ≥ g̃(b) =
J∏
j=1

(
µj(b)

µ̃j(b(r−1))

)µ̃j(b(r−1))

, (28)

where µ̃j(b
(r−1)) =

µj(b(r−1))

g(b(r−1))
. J corresponds to the total

number of monomials in g(b).
In order to convert constraints (19) and (20) to posynomials,

we propose to apply the single condensation method given in
Definition 1 to approximate the denominator posynomial to a
monomial function, where in this case J = M and J = M(M+
1)/2 for constraints (19) and (20), respectively. Therefore,
constraints (19) and (20) can be expressed respectively as

Imin

g̃1

(
P

(r)
m

) ≤ 1, ∀n, (29)

Γmin

N0B +
U∑
k=1
k 6=u

βku
2


g̃2

(
P

(r)
m , ε

(r)
mu

) ≤ 1, ∀u. (30)

B. GP Standard Form Transformation

By considering the approximations of (29) and (30), we can
formulate the GP approximated subproblem at iteration r of



the SCA as

minimize
ε(r)mu,P

(r)
m ,

Γ
(r)
min,I

(r)
min≥0

1
N

N∑
n=1

M∑
m=1

α0P
(r)
m hmn

Γ
(r)
minI

(r)
min

(31)

subject to:

I
(r)
min

g̃1

(
P

(r)
m

) ≤ 1, ∀n, (32)

Γmin

N0B +
U∑
k=1
k 6=u

β
(r)
ku

2


g̃2

(
P

(r)
m , ε

(r)
mu

) ≤ 1 ∀u, (33)

P
(r)
m

P̄
≤ 1, ∀m, (34)

U∑
u=1

ε(r)mu ≤ 1, ∀m, (35)

µ
N σ

(r)
n hmn

Imin
≤ 1 (36)

The optimization problem given in (31)-(36) can be trans-
formed to a convex form as given in (25)-(27). Therefore, each
iteration of the SCA can be solved optimally as described in
Algorithm 3 using any standard optimization methods [30].
Each GP in the iteration r loop (lines 3-5) tries to improve the
accuracy of the approximations to a particular minimum in the
original feasible region. This is performed until no improvement
in the objective function is made. A parameter, ξ → 0, is
introduced to control the accuracy of the algorithm convergence
of the objective function as follows: |χ(r) − χ(r−1)| ≤ ξ.

Algorithm 3 SCA Algorithm

1: Select feasible initial values b0 = [ε
(0)
mu, P

(0)
m ,Γ

(0)
min, I

(0)
min].

2: r=1
3: while Convergence (|χ(r) − χ(r−1)| ≤ ξ) do
4: Approximate the denominators using the arithmetic geometric

mean as indicated in (28) using b(r−1).
5: Solve the optimization problem using the interior-point

method to determine the new approximated solution b(r) =
[ε

(r)
mu, P

(r)
m ,Γ

(r)
min, I

(r)
min].

6: Update r = r + 1
7: end while

V. HEURISTIC SOLUTIONS

Since PARTITION WU is an NP-Complete problem,
we try to design heuristics with low complexity in terms of
computation and memory. The users in the MEMD VLC system
will be mobile and ad hoc. The existing users will move around
in the room or leave the room, and new users will enter the
room. These events will require the re-partitioning and re-
assignment of LEDs to users and re-tuning of their transmit
powers so as the keep the joint optimization objective high.
Thus, it is crucial to minimize the time it takes to re-optimize
the optimization parameters, which is the reason for us to
design heuristics. We present two heuristics in this section and,
later, compare them to the GP approximation by simulations.
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Fig. 6: A case of interference for an user: LEDs L1, L2 and L3
are assigned to user 1, 2 and 3 respectively. In this case, received
power from L2 and L3 will be considered as interference at
user 1 - since these LEDs are assigned to user 2 and user 3.

A. SINR First Approach (SFA)
In this approach, we propose to solve our optimization

problem using a two-step iterative approach given the location
coordinates of all users. In the first step, we optimize the LED-
user association and the LED transmit powers that maximize
the SINR. Then in the second step, by keeping the association
fixed from the first step, we adjust only the LEDs’ power level
in order to achieve maximum objective function in (20) which
is a function of SINR and illumination uniformity. The details
of the proposed algorithm are as follows:

1) Maximize SINR
a) We set a maximum power value, Pmax, that can

be assigned to an LED. We use Pmax = 100 mW.
b) We assign LED m to the closest user to its beam

projection if the user lies in the cone of LED m.
c) If there is no user in the cone, then also Pmax is

allocated to LED m initially and it is not assigned
to any of the users.

d) If there is more than one user in the cone of LED m,
then we assign this LED to the user which is nearest
to the center of the cone of the LED, but with
fractional power, since there will be interference in
this case. For simplicity, we calculate this fraction
by taking the distances of the nearest and second
nearest user from the center of the LED cone into
account. For example, if the distance of the nearest
user from the center of the cone is d1 and the
distance of the second nearest user from the center
of the cone is d2 then the allocated power to LED
m would be, Pm = Pmax(1-d1/d2) (shown in Fig.
6). When the second nearest user is much closer to
the nearest user, the ratio of d1 and d2 is higher,
and that makes the value of Pm to be lower to
minimize the effect of interference.

After assigning all M LEDs in this fashion (which
focuses on SINR) we try to improve the illumination
uniformity in the next step.



0.1 0.2 0.3 0.4 0.5 0.6 0.7

Tolerance, 

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
M

in
. T

hr
ou

gh
pu

t (
bp

s)
10

7

2 users

5 users

8 users

(a) Minimum throughput vs. tolerance for
2, 5 and 8 users. M = 391. and θd = 40o.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Tolerance, 

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

1.9

A
vg

. T
hr

ou
gh

pu
t (

bp
s)

10
7

2 users

5 users

8 users

(b) Average throughput vs. tolerance for
2, 5 and 8 users. M = 391. and θd = 40o.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Tolerance, 

0.65

0.7

0.75

0.8

0.85

0.9

0.95

U
ni

fo
rm

ity

2 users

5 users

8 users

(c) Illumination uniformity vs. tolerance for
2, 5 and 8 users. M = 391 and θd = 40o.

Fig. 7: Effect of τ on throughput and uniformity for UFA.

2) Maximize Uniformity
a) We set four discrete power levels (i.e., Pmax,

Pmax/2, Pmax/3, Pmax/4) which can be allocated
to the LEDs that are unassigned instead of allocating
them the full power. We allocate these discrete
power levels to the LEDs which are unassigned
and equipped with full power.

b) We then recalculate the illumination uniformity
using (11) and select the discrete power values
for the LEDs that gives the maximum uniformity.

This heuristic gives a lower priority to the illumination
uniformity and aims to maximize SINR with low complexity
while trying to achieve an acceptable illumination uniformity.

B. Uniformity First Approach (UFA)
In SFA, we try to maximize the SINR by assigning as much

power as possible to the LEDs which have only one user in
their cones, then try to improve the illumination uniformity.
In the UFA, we do the opposite - we try to find the allocated
power values of the LEDs for the best possible illumination
uniformity, then we modify these power values to improve the
SINR. The approach is described below:

1) We formulate a quasi-convex optimization problem
that can be solved efficiently using bisection [29] to
obtain the allocated power values for the LEDs for
maximum possible uniformity, where the optimal solution
is obtained for a fixed SINR value, i.e., Γmin is constant.
This problem can be formulated as

minimize
Pm,Imin≥0

1
N

N∑
n=1

σn

ΓminImin
(37)

subject to (13), (19).

We denote the resulting Pm values as intermediate power
values which are P1i, P2i, .... PMi for M LEDs.

2) When there is only one or no user in LED m’s cone,
then we proceed like Step 1(c) in SFA but with a little
difference. Instead of allocating maximum power to LED
m, we allocate max(Pmi(1+τ), Pmax). We try different
values for τ , from 0.1 to 0.7 which is a measurement of
how much we can deviate the allocated power to LED
m from its intermediate value Pmi.

3) Then, we proceed like Step 1(d) in SFA but with a
little difference. The equation for the allocated power
to LED m will be Pm = Pmi(1-d1/d2). We also make
sure that Pm is within the tolerance limit we set, thus
Pm ≥ Pmi(1− τ).

This approach gives more priority to the illumination uniformity
and makes sure that the minimum uniformity constraint in (15)
is satisfied as τ gets closer to 0. A larger tolerance limit τ
allows UFA to deviate from the uniformity-satisfying transmit
power values for a higher throughput. In essence, τ can be used
as a knob to tune UFA between optimizing for uniformity and
throughput. Tuning τ enables flexibility in our approach to solve
the joint optimization problem. The designer of the VLC system
could tune τ in our formulation in order to attain solutions
favoring higher throughput or more uniform illumination while
still satisfying the minimum illumination constraint followed
by the previous studies in the literature. This effect of τ can
be seen in Fig. 7, where we plot minimum throughput, average
throughput and illumination uniformity vs. the tolerance value
τ for 2, 5 and 8 users cases. As described earlier, minimum
and average throughput gradually increase while uniformity
gradually decreases for higher value of τ .

A critical design issue to consider in our problem is the
dynamic nature of the VLC system in terms of the number of
users, since it can change at any time with arrival or departure
of users. In order to find solutions attaining higher SINR
than what our approach finds, it may be possible to solve a
traditional VLC SINR maximization problem [7] by feeding an
appropriate minimum illumination constraint to the optimizer,
e.g., approximately 0.925 for an attained minimum throughput
of 15.2 Mbps from Fig. 7). However, this minimum illumination
threshold changes depending on the user count and positions in
the system. Thus, it would be necessary to find the appropriate
illumination threshold before using the SINR maximization
approach. Our approach allows a more flexible framework. The
tolerance variable τ enables us to run a fast heuristic to find a
good solution when the number of served users or positions
change. Further, using our approach, the designer of the VLC
system can get the highest possible illumination uniformity
with zero tolerance, and then improvement of the minimum
throughput (SINR) is possible in two ways:

First, the designer can increase τ up to 1 while making sure
the threshold of minimum allowable illumination uniformity is
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Fig. 8: Runtime vs. No. of users for UFA and GP. M = 65.

maintained (which is the constraint (15) in our formulation)
in search of a higher SINR.

Second, with τ > 0, the designer can quickly find a good
solution to learn the minimum illumination uniformity for that
solution and then solve a traditional VLC SINR maximization
problem [7] with the learned illumination uniformity threshold
to search for a higher SINR.

Although in the second approach we may be able to find a
higher SINR, we will need to run the optimizer for each of these
τ values and for each time the total number of users is changed
- which is highly time-consuming. This is where the approach
presented in our paper is most useful as we will need to run
the optimizer only once - which can be to find the maximum
illumination uniformity for a particular bulb configuration, and
then from that we can find SINR for different τ values, and
user count and positions. Thus, this approach takes less time
overall while it is yet capable of obtaining a near optimal SINR
if required.

C. Computational and Memory Complexity

We are assuming M total LEDs and N total sensors in our
problem. In both UFA and SFA, we check each of the LEDs
to allocate source power and assign it to a user if needed.
This effectively takes O(M) time. The majority of the time
is needed in calculating hmu and hmn, which take O(MU)
and O(MN), respectively. hmn is only calculated once since
user coordinates do not affect the communication channel
between the LEDs and sensors. So, we can ignore the O(MN)
complexity from the hmn calculation as it will only be done
when the VLC system is initialized. Thus, the overall running
time complexity of both SFA and UFA is O(MU).

Regarding the memory complexity, in both approaches we
have to store the coordinates of M LEDs to calculate hmu
and hmn. We store the value of hmu and hmn too, which
takes space of O(MU) and O(NU) respectively. SINR and
illumination uniformity variables takes space of O(U) and
O(N), respectively. So, overall the memory complexity of
SFA and UFA is O((M +N)U).

Calculating the complexity of the GP solution is not very
straightforward as we use the ’fmincon’ command of MATLAB
in order to get the solution of our constrained nonlinear multi-
variable objective function. In order to compare the GP solution
with UFA in terms of running time, we the runtime versus
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Fig. 9: Difference in signal strength across the room floor
assuming the hemispherical bulb in the center of the ceiling.

TABLE III: Simulation Parameters

Parameter Value
Room Size 6m x 6m x 3m
Radius of the hemispherical bulb, R 40cm
Number of LEDs on the bulb, M 391
Radius of an LED transmitter, rt 1.5cm
Divergence angle of the LEDs, θd 40o, 50o
Maximum transmit power of the LEDs, P 0.1W
Radius of a PD receiver∗, rr 3.75cm
Number of users, U 2-8
Number of sensors, N 100
Visibility, V 0.5km
Optical signal wavelength, λ 650nm
AWGN spectral density, N0 2.5 x 10−20 W/Hz
Modulation bandwidth, B 20MHz
Minimum uniformity, µ 0.7

∗We assume that an array of PDs is used to attain a large receiver area.

number of users plot to observe the growth with respect to
the growing number of users, which is shown in Fig. 8. We
can clearly see that even for a small number of user range
(2 to 8) the running time for GP starts to grow very quickly
whereas for UFA it remains almost the same. This is the most
important advantage of UFA over GP.

VI. SIMULATION RESULTS

In this section, we provide simulation results to study the
performance of our MEMD VLC system model. Our aim is to
see if the SFA and UFA heuristics can attain performance close
enough to the GP solution, and identify any notable outcomes
emerging from our designs. We focus on two metrics: Minimum
throughput among the users and illumination uniformity. To
compare our proposed methods (SFA, UFA, and GP), we use
exact same input parameters for all of them. We randomly
placed the users on the room floor with their receiver’s FOV
normal looking towards the ceiling. We report the average of
the minimum throughout and illumination uniformity results
among these randomly generated cases. To gain confidence in
our results, we repeated the simulation experiments 300 times
for all the results.

We use white LEDs with luminous efficiency α0 = 60
lumen/watt [31]. The default values of the remaining input
parameters used in our simulations are given in Table III.
For placing LEDs on the bulb, we followed the method in
Section II-B. In particular, for a bulb with R = 40cm radius,
we place M = 391 LEDs on 20 layers with k1..20 = [1, 6,
12, 15, 19, 26, 30, 37, 43, 33, 30, 28, 25, 21, 16, 13, 11, 10,
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Fig. 10: Comparison between UFA and SFA.

9, 6]. The throughput and uniformity results we will present
are likely to be attained by fewer LEDs; however, we want to
observe the potential performance our heuristic and use a high
number of LEDs in the simulation experiments.

A. UFA versus SFA

First, we compare the two heuristic approaches, UFA and
SFA to see whether one performs significantly better. We
have compared both minimum throughput among the users
and illumination uniformity for 2 to 8 users for these two
approaches, as seen in Fig. 10(a) and Fig. 10(b). As we can
see, minimum throughput and uniformity decrease for both
approaches with increased number of users. Also, as expected,
UFA gives better uniformity and SFA gives better minimum
throughput. Although SFA gives a higher minimum throughput
compared to UFA, the uniformity is poor and practically
unacceptable, as typically the illumination uniformity of an
indoor setting should be at least close to µ=0.7. UFA is able
to maintain this uniformity target even for 8 users. So, from
this point on, we choose UFA to be the preferred heuristic
solution as it is able to maintain an acceptable uniformity value
although it has produced lower minimum throughput.

B. GP Solution versus UFA

In order to understand how close our heuristics can get to our
near-optimal solution via GP, we compare it to our preferred
heuristic solution, UFA, with different tolerance values. An
impediment is the time complexity of the GP solution. Since
it takes too long to run GP, we reduce the LED count M on
the bulb to make it tractable with our computation capabilities.
Following the method in Section II-B, we place M = 65 LEDs
on 7 layers with k1..7 = [1, 11, 14, 17, 10, 7, 5].

In Fig. 11(a) and 11(b), we observe that GP solution obtains
much better minimum throughput compared to UFA but the
uniformity is a little lower in some cases where τ = 0.25, as
it tries to put more balance in the objective function output
towards throughput. It is clear from Fig. 11(c) that, for the
objective function, the GP beats UFA for all tolerance values.
Although GP has a higher objective function output in all the
cases, UFA can come close in terms of minimum throughput
for higher τ values and in terms of uniformity for lower τ
values. This is verifying our intuitions that τ can be used to
tune UFA’s balance between throughput and uniformity.

C. Effect of Number of Users on UFA

Although UFA yields lower objective function output values
in comparison to GP, a huge advantage of it is a much lower
complexity. With GP, it becomes even more time-consuming
to calculate the minimum throughput or uniformity in case
of a high number of users (8 and above) whereas it can be
done relatively quickly using UFA. Thus, we analyze how the
throughput and uniformity changes when more users are added
to the system. As shown in Fig. 12, the minimum throughput
continues to decrease for higher number of users as expected,
and a good uniformity value is maintained by UFA even for a
very high number of users. Although marginal reduction in the
minimum throughput is large early on (e.g., going from 2 to 3
users causes about a 3-fold decrease in minimum throughput),
it is notable that UFA maintains a high minimum throughput
even when the room is crowded. For instance, even though
the number of users in the room increases by a 10-fold, the
reduction in minimum throughput is also by 10-fold (from
≈108Bits/s to ≈107Bits/s). Further, we observe that higher
tolerance does not yield much improvement on the minimum
throughput as seen in Fig. 12(a).

D. UFA with Different Room Sizes

We also look at how minimum throughput and uniformity
is affected by different room sizes and shapes, e.g., the room
gets more rectangular. To observe this, we keep increasing the
width of the room by 1m at a time and keep the length of
the room constant. Results are seen in Fig. 13. As the room
floor gets more rectangular, spaces are more at both sides, so
the chances of the users being more scattered increases, which
means there are less chances of interference. But, with higher
number of users, interference is going to be more likely, thus
the throughput decreases. In the case of uniformity, it becomes
increasingly difficult to maintain balanced lighting with the
width of the floor being significantly greater than the length,
which explains the dip in uniformity for more rectangular room
floors (Fig. 13(b)). Although, in case of small number of users,
we can see the opposite scenario in Fig. 13(a). Whenever we are
making the room more rectangular, it decreases the possibility
of interference as they are going to be more scattered, but at the
same time it increases the possibility of a user being in a ’low
signal strength’ region where there is much less transmitter
coverage (these regions are shown in Fig. 9). After a particular
number of users in the system the second possibility becomes
more dominant over the first one, which explains the transitions
in Fig. 13(a).

E. Effect of Divergence Angles with UFA

We also look at the effect of divergence angle of the LEDs
with UFA. We use 3 divergence angle values = 10o, 20o and
40o. In Fig. 14(a), 14(b), and 14(c), we observe minimum
throughput, average throughput and uniformity, respectively.
As we can see, throughput for 10o and 20o is higher because
of less interference since the beams are too directional, but this
hampers the uniformity a lot as well. The average throughput
for 10o goes higher than 20o for more than 4 users, as we see
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Fig. 11: Comparison between GP and UFA with M = 65 and θd = 50o.
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Fig. 12: Throughput and Uniformity for many users for UFA. M = 391 and θd = 40o.
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Fig. 13: Throughput and Uniformity for different room sizes. M = 391 and θd = 40o.

in Fig. 14(b). When the number of users are less than or equal
to 4, the possibility of high interference with higher divergence
angle is dominant enough to keep the throughput higher, but
after that, the effect of interference becomes too high, making
the throughput better for lesser divergence angle. Performance
in the case of 40o is the best among these cases since a very
balanced lighting is obtained with the ability to cover more
users, as a result not hampering the average throughput too
much.

F. Effect of Bulb Radius on UFA

We try to see the effect of different bulb radius on the system
for UFA. As shown in Fig. 15, we plot minimum and average
throughput as well as uniformity versus the number of users
for R = 40cm, 50cm, 60cm and 70cm. We can see that the
decline of minimum throughput is the least in the case of 40
cm bulb radius, the value we have typically used. Uniformity

is almost the same for all cases though a little better for higher
bulb radius, as the LED beams can cover a little more space
in the corner of the room floor. Average throughput is a little
higher for greater bulb radius as the more expanded beam
distribution is the cause of relatively less interference. We
can see a small transition like Fig. 13(a) in Fig. 15(a), as the
possibility of a particular user being in a ’less coverage’ area
is low for a small number of users, so higher bulb radius gives
just a little better throughput in this case. But the mentioned
possibility is significant enough in the case of more than 3
users, which makes the minimum throughput value lower for
the higher bulb radius.

G. Heatmaps of the Transmit Power of LEDs with UFA and
GP

To explore how the transmit powers of the LEDs are allocated
with our proposed algorithms, we plot the projection point from
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Fig. 14: Comparison between different divergence angles in UFA. M = 391.
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Fig. 15: Comparison between different bulb radius in UFA. M = 391 and θd = 40o.
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(a) Heatmaps of the transmit power of
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260 280 300 320 340

X coordinates (cm)

260

270

280

290

300

310

320

330

340

Y
 c

o
o

rd
in

a
te

s
 (

c
m

)

0.02

0.04

0.06

0.08

0.1
Source power(W)

(b) Heatmaps of the transmit power of
LEDs with GP. M = 65.

Fig. 16: Heatmaps of the transmit power of LEDs with UFA
and GP.

the top of each LED on the floor using different colors, where
the color of a particular projection point of an LED indicates
the amount of transmit power of that LED. Like subsection
VI-B, The higher the LEDs are in the bulb, the more outwards
their projections points are in floor. As we can see in Fig. 16,
transmit power of the LEDs in the higher layers are more than
those of the lower layers in the bulb. This is to maintain a
good uniformity as the LEDs in the higher layers cover the
corner (darker) spots in the room.

VII. SUMMARY AND FUTURE WORK

In this paper, we explored in a multi-element multi-
datastream (MEMD) VLC architecture where VLC is used
for downlink and RF for uplink. For the downlink, we have
formulated the problem of resolving tuning LED transmit
powers and LED-user association as an optimization problem.
The optimization problem takes the users’ throughput and

illumination uniformity into consideration and handles dynamic
assignment of the transmitters to react to the mobility of users.
We showed the problem is NP-Complete.

For the MEMD VLC downlink and access optimization,
we proposed a near-optimal approximation solution and two
suboptimal heuristic solutions, i.e., SINR First Approach (SFA)
and Uniformity First Approach (UFA). We have analyzed the
performance of the two heuristic solutions and found that
UFA is significantly better. We, then, compared UFA with the
near-optimal solution and found out that it is not far away
from the near-optimal approach. A key insight is that one can
design low complexity heuristics for the MEMD VLC downlink
problem. From our simulations, for reasonable assumptions
about the LEDs and bulb size, we observed that UFA can attain
about 10Mbps minimum throughput while keeping illumination
uniformity higher than 0.7 for up to 20 receivers in a 36m2

room.
Several future works are possible related to the MEMD

VLC downlink approach. For the partitioning problem, other
heuristic algorithms may be explored to attain results that are
closer to the optimal solution. It would be interesting to see
the how the proposed algorithms perform with different system
parameters (e.g., room shape, shape of the bulb) and whether
there are any relationship between them. In our work, we
considered receivers/users up to 20. Designing MEMD VLC
downlink and access techniques that can work for thousands
of receivers in the room is also a worthy direction.
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