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Purpose: To present a general and efficient method for macroscopic intravoxel B
0
 

inhomogeneity corrected reconstruction from multi-TE acquisitions.
Theory and Methods: A signal encoding model for multi-TE gradient echo (GRE) 
acquisitions that incorporates 3D intravoxel B

0
 field variations is derived, and a low-

rank approximation to the encoding operator is introduced under piecewise linear 
B
0
 assumption. The low-rank approximation enables very efficient computation and 

memory usage, and allows the proposed signal model to be integrated into general 
inverse problem formulations that are compatible with multi-coil and undersampling 
acquisitions as well as different regularization functions.
Results: Experimental multi-echo GRE data were acquired to evaluate the proposed 
method. Effective reduction of macroscopic intravoxel B

0
 inhomogeneity induced 

artifacts was demonstrated. Improved R∗

2
 estimation from the corrected reconstruc-

tion over standard Fourier reconstruction has also been obtained.
Conclusions: The proposed method can effectively correct the effects of intravoxel 
B
0
 inhomogeneity, and can be useful for various imaging applications involving 

GRE-based acquisitions, including fMRI, quantitative R∗

2
 and susceptibility map-

ping, and MR spectroscopic imaging.
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echo acquisitions

1  |   INTRODUCTION

MR acquisitions using multiple gradient echoes (GREs) have 
a wide range of applications, including functional MRI, quan-
titative R∗

2
 and susceptibility mapping, myelin water imaging, 

fat/water imaging, and even general MR spectroscopic imag-
ing.1-7 As these acquisitions sample signal evolutions along 
the free induction decay, they inherently encode signals re-
lated to both tissue-dependent properties and macroscopic B0 

field inhomogeneity. While the first is generally the signal of 
interest, the latter often introduces significant artifacts in the 
reconstructed images as well as errors in the subsequent quan-
titative analysis due to intravoxel dephasing and additional 
echo-time (TE) dependent signal distortions.6-9 A straightfor-
ward approach to address this issue is to decrease the voxel 
size by extending k-space coverages,10,11 thus reducing intra-
voxel B0 variations, but at the expense of longer acquisitions 
and increased susceptibility to system instability and motion.
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A number of signal processing–based methods have also 
been proposed to mitigate the effects of macroscopic intra-
voxel B0 field inhomogeneity for GRE acquisitions. One 
main approach is to derive voxel-wise TE-dependent modula-
tion functions originating from B0 inhomogeneity and apply 
post-reconstruction correction by removing these modula-
tions from the data or incorporating them into the parameter 
fitting model.6-9,12-16 However, the voxel-wise modulation 
function is reconstruction-method dependent and can be 
rather difficult to derive for advanced reconstruction tech-
niques which yield more complicated point-spread functions. 
An alternative approach is to perform B0 corrected recon-
struction by incorporating field inhomogeneity modeling into 
the imaging equation and solving the corresponding inverse 
problem. Such an approach is more general but can be very 
computationally expensive if intravoxel B0 variations are con-
sidered.17,18 Therefore, most methods have been limited to 
2D acquisitions and assumed constant B0 distributions within 
each voxel.19-24 Through-plane B0 variations have been con-

sidered with slice profile modeling for non-Cartesian read-
outs,25 but limited to single-TE, 2D scans while ignoring 
in-plane intravoxel inhomogeneity.

In this work, we developed a new method for efficient 
3D intravoxel B0 inhomogeneity corrected reconstruction 
that can be flexibly adapted to different acquisition strat-
egies and allows the use of different regularization func-
tions. Specifically, we derived a signal encoding model for 
multi-TE GRE acquisitions that incorporates 3D intravoxel 
B0 variations, and introduced a low-rank approximation to 
the encoding operator under a piecewise linear inhomoge-
neity assumption, enabling very efficient computation of 
the forward model. The new encoding model can be incor-
porated into general inverse problem formulations for B0  
corrected reconstruction, compatible with both multi-coil  
and undersampled acquisitions. Experimental multi-echo 
GRE data have been acquired to evaluate the proposed 
method. Effective reduction of intravoxel B0 inhomogene-
ity induced image artifacts was demonstrated along with 
improved R∗

2
 estimation from the corrected reconstruction 

over standard Fourier reconstruction. We expect the pro-
posed method to be useful for various imaging applications 
involving T∗

2
 contrast, including fMRI, quantitative R∗

2
 and 

susceptibility mapping, fat/water imaging and general MR 
spectroscopic imaging.

2  |   THEORY

2.1  |  Signal model

A general signal encoding model for multi-echo GRE acqui-
sitions can be written as follows (ignoring the phase evolu-
tion during each short readout period): 

where ρ(r, TE) is the function of interest with TE being the 
echo time, Δf(r) the macroscopic B0 field inhomogeneity, 
sc(r) the coil sensitivity profile, nc(k, TE) the measurement 
noise, r = [x, y, z]T and k = [kx, ky, kz]

T are vectors denoting 
the spatial and k-space coordinates, respectively. Discretizing 
ρ using voxel basis function �n(r) = �(r−nΔr) (with Δr 
being the voxel size) while assuming piecewise constant sen-
sitivity maps leads to 

where m and n are the k-space sample and voxel indices, re-
spectively, cn(TE) denotes the signal intensity for the nth voxel 
at TE and Δfn(r) captures the field inhomogeneity variations 
within the nth voxel. While a common choice for ϕ(r) is the 
rectangular basis, denoted as ϕ(r)  =  rect(x/Δx)rect(y/Δy)
rect(z/Δz), evaluation of the integration in Equation 2 with an 
arbitrary Δfn(r) can be rather difficult. One straightforward 
solution is to let Δfn(r) be constant within individual vox-
els, which however is only accurate for very high-resolution 
acquisitions and can lead to significant image artifacts for 
lower-resolution data or at regions with strong field inhomo-
geneity. Another strategy is to assume a certain parametric 
form for Δfn(r). Specifically, if a locally linear assumption is 
used, that is, 

with gn being the intravoxel field gradient at the nth voxel and 
the rectangular (box-car) voxel basis is chosen, Equation 2 can 
be rewritten as 

 where

(1)
dc(k, TE)=∫

∞

−∞

sc(r)�(r, TE)e
i2�Δf (r)TEe−i2�k

Trdr + nc(k, TE)

(2)

dc(km, TE) = ∫
∞

−∞

N∑

n= 1

sc,ncn(TE)�(r−nΔr)ei2�Δf (r)TEe−i2�k
T
m
rdr+nc(km, TE)

=

N∑

n= 1

sc,ncn(TE) ∫
∞

−∞

�(r−nΔr)ei2�Δfn(r)TEe−i2�k
T
m
rdr+nc(km, TE),

(3)Δfn(r) = fn + gT
n
r, gn = [gnx, gny, gnz]

T ,

(4)

dc(km, TE) =

N∑

n= 1

sc,ne
i2�fnTEcn(TE)e

−i2�kT
m
rnWmn(TE) + nc(km, TE),
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The sinc functions arise from Fourier transform of the voxel 
basis functions modulated by intravoxel linear phases due to 
B0 inhomogeneity. This encoding operator can also be ex-
tended to consider B0 effects during each readout (ignored 
in this work for multi-echo GRE acquisitions), by replacing 
TE with TE + tm in the above equations where tm denotes 
the sampling time for the mth k-space point. It can be seen 
that directly evaluating the forward model in Equation 4 for 
high-resolution 3D reconstruction is memory prohibitive and 
computationally expensive because the coupling between  
the elements in W and e−i2�kTmrn prevents direct application  
of FFT. However, we will show in the subsequent sections 
that efficient computation can be derived by exploiting the 
fact that W can be well approximated by a low-rank matrix.

2.2  |  Low-rank approximation of the 
encoding operator

The encoding matrix W being approximately low rank can 
be motivated by an examination of its elements. Consider 

a 1D case where Wmn(TE) = sinc[(kmx−gnxTE)Δx], it can 
be seen that different columns in W are essentially a set of 
shifted sinc functions evaluated at k�

mx
−�knx (k�mx = kmxΔx 

and �knx = gnxΔxTE). Furthermore, for a practical B0 map, 
the intravoxel B0 gradients have a distribution that can be 
captured by a few representative values. As a result, all 
the shifted sinc functions have strong linear correlation, 
leading to the approximately low-rankness of W. This is 
illustrated in Supporting Information Figure S1. Figure 1 
shows the intravoxel field gradients along all three spatial 
directions obtained from an experimentally acquired B0 
field map, calculated using first-order finite differences  
of neighboring voxels (Figure 1A), and demonstrates the 
low-rank property of the encoding matrix W constructed 
from these field gradient maps. Specifically, we synthe-
sized a W using gnx, gny and gnz corresponding to a single 
slice (Constructing the encoding matrix W for the entire 
3D volume is memory prohibitive.), from which the singu-
lar values were computed and shown in Figure 1B. As can  
be seen, the singular values of W decay very rap-
idly, indicating that it can be accurately approximated 
by a low-rank matrix. Accordingly, for each TE, we  
can approximate W(TE) using the following low-rank 
factorization26-29 

(5)

Wmn(TE)

= sinc[(kmx−gnxTE)Δx]sinc[(kmy−gnyTE)Δy]sinc[(kmz−gnzTE)Δz].

F I G U R E  1   Low-rank decomposition of the W matrix in the proposed encoding model: A, maps of intravoxel field gradients calculated from 
an experimentally acquired B

0
 map (shown for a single slice and the horizontal direction is the x direction); B, the first 32 singular values for a W 

constructed using the field gradients in (A); C,D, illustrations of ul (k-space weighting) and vl (spatial modulation) corresponding to the first four 
singular values of W. The rapid singular value decay in (B) validates the low-rank approximation of W, with the dash line indicating where the 
approximation error falls below 0.1%. Note that the y-axis in (B) is in log scale

(A) (B)

(C)

(D)
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where U∈M × L and V∈L×N are two rank-L matrices, 
{ul}

L
l= 1

∈M and {vl}Ll= 1
∈N are the columns in U and rows  

in V, respectively (This low-rank factorization can be connected 
to singular value decomposition (SVD) of W, where the singu-
lar values are incorporated into U (as scaling factors for individ-
ual columns) or V (as scaling factors for individual rows).), M is 
the number of k-space samples and N is number of voxels in an 
image. As can be seen, the operation specified by W is decom-
posed into L components, each of which contains a voxel-wise 
multiplication between the image and vl, and a k-space point-
wise multiplication with ul. Figure 1C,D display the first four ul 
and vl components obtained from an SVD of the W described 
above, to help visualize their spatial and k-space modulation 
effects (each of these vectors were reshaped into images and the 
scaling effects of singular values on ul were removed for display 
purpose). With this approximation, we can avoid explicit stor-
age and computation of W and enabling the use of FFT in the 
forward model evaluation. More specifically, Equation 4 can 
be rewritten in the following matrix-vector multiplication form 

where dc,TE is a vector containing the measured data from the 
cth coil for image �TE (a vector containing all the image coef-
ficients), Sc captures the sensitivity map as well as the spatially 
dependent phase term ei2�fnTE (as a diagonal matrix), F

Ω
 is the 

Fourier encoding operator with sampling mask Ω, ⊙ denotes a 
Hadamard product (point-wise multiplication) and nc,TE is the 
noise vector. This reformulation allows a dramatic memory and 
computational complexity reduction for model-based intravoxel 
B0 corrected reconstruction. Particularly, consider a reconstruc-
tion size of 128 × 128 × 32, a complete storage of W requires 2 
TB memory and the computational complexity for directly eval-
uating W is (1011). Using the proposed approximation with a 
rank 8, the memory requirement is reduced to only 64 MB and 
the complexity with Equation 7 is reduced to (108), enabling 
dramatic computation acceleration. Supporting Information 
Table S1 further highlights these improvements.

2.3  |  Image reconstruction

With the signal equation in Equation 7, intravoxel B0 inho-
mogeneity corrected reconstruction can be obtained by solv-
ing the following regularized least-squares formulation 

where the first term measures data consistency and the second 
term imposes certain regularization on the single/multi-TE 
images. Different choices are available for R(·). We chose 
R({�TE}) =

∑
TE

��T�TE
��
2

2
, a spatial smoothness regulariza-

tion to demonstrate the utility of the proposed corrected re-
construction method (T is a finite difference operator), while 
more sophisticated functions can be used. For example, since 
the proposed model and formulation supports joint multi-TE 
image reconstruction, a joint sparsity/edge constraint can  
be readily incorporated.30-33 For the quadratic regularization, the  
linear conjugate gradient algorithm can be applied to solve the 
problem in Equation 8 efficiently. We note that a similar low-
rank approximation of the B0 inhomogeneity operator has been 
previously described in Ref. [25] for single-TE, 2D fMRI recon-
struction from long readouts, which considered through-slice 
B0 variations. This work takes the complete 3D intravoxel B0 
variations into account and focuses on addressing their effects 
in multi-echo acquisitions.

3  |   METHODS

3.1  |  Estimation of {u
l
} and {v

l
}

As the size of W can be prohibitively huge (of size M-by-N 
with M being the number of k-space samples and N being 
the number of voxels in the reconstruction), especially 
for 3D imaging, directly calculating {ul}Ll= 1

 and {vl}Ll= 1
 

by performing SVD of W is impractical. However, given 
the explicit low-rank factorization, we can devise efficient 
ways to estimate {ul} and {vl} without accessing the full W.  
This has been demonstrated in the partial separability (PS)-
based dynamic imaging methods.26-29 Specifically, mode-
ling W as W = UV implies that the columns of W reside 
in a low-dimensional subspace specified by U. Thus, the 
columns in U can be treated as a basis of this subspace 
and V as the corresponding coefficients. Therefore, we can 
first synthesize a subset of the columns in W by randomly 
sampling the field gradient maps (denoted as (gx(r), gy(r) 
and gz(r)) within the signal regions, and obtain an estimate 
of U by performing an SVD to these randomly sampled 
columns (i.e., 5000) and selecting the L dominant left sin-
gular vectors and singular values. The rank L was chosen 
by inspecting the singular value decay such that the trunca-
tion error was less than 0.5%. With U estimated, we can 
then synthesize a subset of the rows in W by randomly 
sampling k-space locations and estimate V by performing 
a least-squares fitting using the corresponding rows in U.  
The minimum number of rows needed is L but we randomly 
selected 400 coordinates in the 3D k-space to ensure a suf-
ficiently good condition number for the estimation of V.  
We found that for a typical 3D brain B0 map, the estima-
tion error for U and V using such a scheme is less than 

(6)W(TE)≈UV =

L∑

l= 1

ul(TE)v
T
l
(TE), L≪M,N

(7)
dc,TE =

L∑

l= 1

ul(TE)⊙{F
Ω
(vl(TE)⊙Sc�TE)}+nc,TE

=Ec, TE�TE+nc,TE

(8){�̂TE} = argmin
{�TE}

∑

TE

∑

c

‖‖dc,TE−Ec,TE�TE
‖‖
2

2
+𝜆R({�TE}),
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0.1% compared to directly applying SVD to a complete W  
matrix (details shown in Supporting Information Figure S2).  
We also would like to note that our low-rank encoding 
operator and the above estimation scheme are conceptu-
ally similar to the histogram principle component analysis 
based approximation of complex exponential functions de-
scribed in Ref. [21], which only considered constant B0 in 
each voxel for 2D non-Cartesian acquisitions.

3.2  |  Multi-echo implementation

The proposed model and reconstruction can readily be 
extended to acquisitions with many echoes. Specifically, 
the B0 maps can be estimated directly from the multi-TE 
data, for example, by performing a parametric fitting to an 
initial/low-resolution reconstruction. TE-dependent ul(TE) 
and vl(TE) can be estimated for individual W(TE)’s using 
the estimation strategy described above. Two new sets of 
matrices, {Ul}∈M×P and {Vl}∈N×P (with P being the 
number of TEs), can then be constructed, each of which 
contains the k-space and spatial modulation vectors for all 
the TEs and the lth component. Accordingly, Equation 7 
can be extended as 

where the N-by-P matrix X contains the images for all TEs 
(ie, X =

[
�1,�2, … ,�P

]
) and the M-by-P matrices D and N 

contain the measured data and noise for all TEs, respectively. 
As a result, efficient implementations for joint multi-TE B0 
corrected reconstruction can be performed, which can be eas-
ily scaled up to higher-dimensional imaging problems such as 
MRSI acquisitions with many echoes. For the cases with mul-
tiple or many TEs, a sparsity and low-rank constraint can also 
be imposed on the unknown TE-dependent image sequence X.

3.3  |  Data acquisition

Simulations and in vivo experiments were performed to 
evaluate the proposed method. For simulation, a single-TE 
image and a B0 map were first obtained from an experimen-
tally acquired 3D multi-TE GRE scan (with a matrix size of 
256  ×  256  ×  40 and a voxel size of 0.9 × 0.9 × 1.5mm3). 
The magnitude image |I(r)| was taken and the B0 map was 
subject to a piecewise linear fit. A new complex-valued 
image was then synthesized by combining the magnitude 
image and phase introduced by the fitted B0 map Δf(r) as 
follows: I(r) = |I(r)|ei2�Δf (r)TE, with TE being the echo time 
of the original acquisition. A high-resolution single-slice 
2D image (256  ×  256) and a low-resolution version with  
k-space truncated to 128 × 128 were first used to evaluate 
the proposed B0 corrected reconstruction with a full W as 
well as the low-rank approximation. A set of low-resolution 
k-space data (128 × 128 × 20 matrix size) was subsequently 
simulated for the full 3D reconstruction tests. For in vivo 
experiments, high-resolution (HR) multi-echo 3D GRE data 
(0.9 × 0.9 × 1.5mm3 voxel size) and accompanying low- 
resolution (LR) scans (2 × 2 × 3mm3 voxel size) were ac-
quired on a 3 T Siemens Prisma scanner (Siemens Healthineers, 
Erlangen, Germany) equipped with a 20-channel head 
coil. The other imaging parameters are: TR = 68 ms, TE =  
[4.1,  7.6,  11.1, 14.6, 18.1,  21.6, 25.1,  28.6,  33.0,  45.0]  ms  
(10 echoes), FOV = 220 × 220 × 72, flip angle = 15◦ and 
bandwidth/pixel = 520 Hz. All experiments were performed 
with approval from local Institutional Review Board and  
participants’ consent.

4  |   RESULTS

Figure 2 shows the reconstruction results from the simulated  
single-slice data. The regularization parameter λ for the  
proposed reconstruction was chosen using the discrepancy 

(9)Dc =

L∑

l= 1

Ul⊙{F
Ω
(Vl⊙ScX)}+Nc,

F I G U R E  2   Comparison of reconstructions from a 2D single-slice simulation data with B
0
 map illustrated in (A); B, reconstruction from 

the high-resolution data (with a k-space truncation after removing the phase); C, direct Fourier reconstruction from the low-resolution data; D, B
0
 

corrected reconstruction using the full W matrix; and E, the proposed reconstruction using a rank-8 approximation of W. Relative l
2
 errors using the 

image in (B) as a reference are also shown (in the bottom right corners) for a quantitative evaluation. Effective artifact reduction (as highlighted by 
the yellow arrows in B) and quantitative improvement were achieved by the proposed method

(A) (B) (C) (D) (E)
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principle. The B0 map used in this simulation is shown in 
Figure 2A and the reconstructed magnitude images are com-
pared in Figure 2B-E. Specifically, a “reference” (Figure 2B) 
was generated by truncating the k-space of the high-resolution  
magnitude image (from 256 × 256 to a 128 × 128 k-space 
coverage). As the phase has been removed before k-space 
truncation, there is no intravoxel B0 effects. A direct Fourier 
reconstruction of the low-resolution k-space data from  
the complex-valued image was shown in Figure 2C, and 
the results produced by the proposed method in Figure 2D 
(reconstruction using the full W) and Figure 2E (reconstruc-
tion using a rank-8 approximation of W). Relative l2 errors 
with respect to the reference image were also calculated for a 
quantitative evaluation. As can be seen, the proposed method 
effectively reduced the image artifacts in the direct Fourier 
reconstruction of low-resolution data caused by intravoxel B0  
inhomogeneity, and produced a more accurate reconstruc-
tion. The low-rank approximated encoding operator yielded 
almost the same results as using the full W. Reconstructions 
from this simulation data using approximated W at differ-
ent ranks are further compared in the Supporting Information 
Figure S3. The results remain similar for a range of Ls.

A set of 3D reconstruction results, with and without 
the proposed B0 corrected reconstruction using the low-
rank encoding operator, are shown in Figure 3. Different 
axial slices across the 3D volume are shown. Compared 
to the Fourier reconstruction of the low-resolution k-space 
data, the proposed method significantly reduced the 
image artifacts and signal loss due to the 3D intravoxel B0 

variations. Similar to the 2D case, the proposed method 
produced quantitatively more accurate results compared 
to the Fourier reconstruction (as demonstrated by the l2  
errors calculated using the k-space truncated high-resolution  
magnitude image as the reference).

Figure 4 compares the reconstructions from an in vivo 
multi-echo GRE data. The B0 map used for correction is 
shown in Figure 4A. Similar to the comparison in simulation, 
a reference was obtained by first removing the phase in the 
HR image (from the HR data) and truncating the k-space (in 
Figure 4B). A direct Fourier reconstruction and the proposed 
reconstruction with intravoxel B0 correction (L = 10) from the 
LR data are also shown (Figure 4C,D). As can be seen, the 
HR data has minimal intravoxel dephasing due to the smaller 
voxel size, while the LR Fourier reconstruction has apparent 
artifacts in regions with strong B0 inhomogeneity variations. 
The proposed method effectively reduced these artifacts, pro-
ducing similar images as the reconstruction from HR data. 
R∗

2
 maps were also estimated from the three different recon-

structions and compared in Figure 5, along with signal decay 
curves chosen from two representative voxels. Significant  
artifact reduction as well as better matching signal decays to 
the HR data can also be observed for the proposed method, 
further demonstrating its utility in improving subsequent 
quantitative analysis for multi-echo GRE acquisitions. An ad-
ditional set of reconstruction from another in vivo data (from 
a different volunteer) is shown in Supporting Information 
Figure S4 to further demonstrate the effectiveness of the 
proposed method. The residual artifacts observed in the 

F I G U R E  3   Simulation results (3D): 
A, the B

0
 maps used in the simulation 

(from experimental data); B, images 
reconstructed from a truncated k-space 
of the high-resolution magnitude image 
(without intravoxel B

0
 effects and treated 

as the “gold standard”); C, a direct Fourier 
reconstruction from the 128 × 128 × 20 
low-resolution k-space data (no intravoxel 
B
0
 correction); and D, the proposed 

reconstruction from the same low-resolution 
data. Different columns show images at 
different slices (images towards the right are 
closer to the sinus area). Effective artifact 
reduction was achieved by the proposed 
method (as indicated by the yellow arrows). 
Quantitative improvement is demonstrated 
using the relative �

2
 errors shown in the 

bottom right corner of the images

(A)

(B)

(C)

(D)
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corrected reconstructions are likely caused by errors in the 
field maps, estimated field gradients, and potentially inaccu-
racy of the piece-wise linear model in voxels with significant 
B0 variations.

5  |   DISCUSSION AND 
CONCLUSION

We have developed a new reconstruction method for macro-
scopic intravoxel B0 inhomogeneity correction. The proposed 
method incorporates the effects of intravoxel field variations 
into the data acquisition model and introduces a low-rank 
approximation to the resulting encoding operator, enabling 
efficient memory usage, computation, and integration into 
any regularized reconstruction formulation. Effective during-
reconstruction B0 inhomogeneity correction for multi-echo 
GRE data have been demonstrated with reduced intravoxel 
dephasing induced artifacts and improved quantitative R∗

2
  

estimation. We expect the proposed method to be useful for 
a range of applications involving T∗

2
 contrast and multi-echo 

GRE acquisitions.

The current model only includes TE dependence in the 
encoding operator W and ignores the time evolution for the 
k-space data acquired during each readout, which should be 
considered for EPI or spiral type of acquisitions with lon-
ger readouts. However, the proposed method can be read-
ily extended to these scenarios by incorporating sampling 
time dependence into different rows of W and estimating 
the low-rank factorization accordingly. Another approach 
is to introduce the time dimension (or the FID dimension) 
and reformulate the reconstruction problem in a higher 
dimensional (k,t)-space. Similar strategies have been re-
cently proposed for multi-shot EPI-based imaging,34 where 
the multi-shot EPI reconstruction was formulated as a 
multi-TE imaging problem with sparse sampling. In this 
case, the time dependence in the k-space sampling can be 
mapped to the TE dimension in our multi-TE formulation, 
which will allow for potential incorporation of different 
constraints on the unknown multi-TE images for improved 
reconstruction. The proposed low-rank encoding operator 
can also be applied to joint R∗

2
 mapping and image recon-

struction problems as described in Ref. [23,35] and allow 
more efficient computation.

F I G U R E  4   Results from the in vivo multi-echo GRE data: A, B
0
 maps for different slices across the 3D volume; B, reconstructed images for 

the corresponding slices at a specific TE (25.1 ms) from the HR data (k-space truncation after removing phases at the original resolution);  
C, direct Fourier reconstruction from the LR data; D, the proposed reconstruction from the LR data. The HR reconstruction has minimal intravoxel 
dephasing induced artifacts due to a small voxel size. The LR Fourier reconstruction has apparent B

0
 induced artifacts which were reduced by the 

proposed reconstruction. The slice locations are indicated by the red lines in a sagittal view of the 3D volume shown on the left

(A)

(B)

(C)

(D)
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While the well-defined sinc function kernels in the en-
coding matrix W are the result of rectangular voxel basis and 
piece-wise linear B0 inhomogeneity models, we expect that 
W should still be approximately low rank with choices of 
other voxel bases, eg, Gaussian or triangle functions. In this 
case, different columns in W will just be products of many 
shifted Gaussian or squared-sinc functions with strong cor-
relation. The use of higher-order intravoxel B0 functions can 
lead to much more complicated expressions of W, some even 
without an analytical form, which needs to be investigated 
with more rigors in future research.

It should be pointed out that in this work we used a B0 map 
initially estimated from the low-resolution data to calculate 
the field gradients, while a more accurate high-resolution B0 
map will lead to more accurate field gradient estimates thus 
improving the correction or even allowing the incorporation 
of more complicated intravoxel field variations. We would 
also like to note that the proposed method shares conceptual 
similarities with the time/frequency-segmentation methods  
described in Ref. [36] and a more general version described 
in Ref. [21] where essentially a low-rank based approxima-
tion was applied to the complex exponential function ei2�Δfnt 
with Δfn and t denoting the field inhomogeneity value at 
the nth voxel and readout time vector, respectively, without 
considering intravoxel B0 variations. Combinations of these 
methods to address the problem of reconstruction from long 
readouts, especially for non-Cartesian trajectories, are inter-
esting extensions to investigate in follow-up research.
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FIGURE S1 Illustration of the approximately low-rankness of  
W using a 1D case with elements Wmn = sinc

[
(km−gnxTE)Δx

]
: 

(A) A histogram of the B
0
 field gradients from an experimen-

tally acquired B
0
 map. The x-axis denotes �knx = gnxTEΔx; 

(B) Plots of different columns in W. These curves have a 
strong linear dependence such that W can be well approxi-
mated by a low-rank matrix
FIGURE S2 Comparison of the low-rank decomposition U  
and V estimated using a direct SVD of the encoding matrix 
W and the proposed random sampling plus least-squares 
fitting scheme. The intravoxel B

0
 field gradients for a 
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single 2D slice were used due to the memory requirement 
to store the complete W for SVD. As can be seen, the U and 
V estimated from these two different schemes show almost 
no difference. The relative �

2
 error is less than 0.1%

FIGURE S3 Comparison of B
0
 corrected reconstructions 

from the 2D simulation data in Figure 2; Reconstruction using 
the full W matrix is shown in the first column and the recon-
structions using low-rank approximations of W with different 
ranks (L) are shown in the subsequent columns. The results 
remain similar for a range of Ls as the rank truncation error 
is small (<1%), while too low of an L leads to noticeable arti-
facts, as expected for the case of L = 2 (truncation error >5%)
FIGURE S4 B

0
 corrected reconstruction by the proposed 

method from data acquired from another volunteer. The acqui-
sition parameters were the same as the data used to generate 
Figures 4 and 5. The arrangement is the same as in Figure 4

TABLE S1 Comparison of memory usage and computation 
complexity for directly evaluating W and the proposed low-
rank approximation. M and N denote the numbers of k-space 
samples and reconstruction voxels, respectively. The num-
bers in the highlighted rows correspond to a reconstruction 
size of 128 × 128 × 32 and L = 8. As L is orders of magnitude 
smaller than M or N, significant reduction in memory usage 
and computation is achieved
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