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1 | INTRODUCTION

Purpose: To present a general and efficient method for macroscopic intravoxel B,
inhomogeneity corrected reconstruction from multi-TE acquisitions.

Theory and Methods: A signal encoding model for multi-TE gradient echo (GRE)
acquisitions that incorporates 3D intravoxel B field variations is derived, and a low-
rank approximation to the encoding operator is introduced under piecewise linear
B, assumption. The low-rank approximation enables very efficient computation and
memory usage, and allows the proposed signal model to be integrated into general
inverse problem formulations that are compatible with multi-coil and undersampling
acquisitions as well as different regularization functions.

Results: Experimental multi-echo GRE data were acquired to evaluate the proposed
method. Effective reduction of macroscopic intravoxel B, inhomogeneity induced
artifacts was demonstrated. Improved R} estimation from the corrected reconstruc-
tion over standard Fourier reconstruction has also been obtained.

Conclusions: The proposed method can effectively correct the effects of intravoxel
B, inhomogeneity, and can be useful for various imaging applications involving
GRE-based acquisitions, including fMRI, quantitative R} and susceptibility map-

ping, and MR spectroscopic imaging.
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field inhomogeneity. While the first is generally the signal of
interest, the latter often introduces significant artifacts in the

MR acquisitions using multiple gradient echoes (GREs) have
a wide range of applications, including functional MRI, quan-
titative R and susceptibility mapping, myelin water imaging,
fat/water imaging, and even general MR spectroscopic imag-
ing."” As these acquisitions sample signal evolutions along
the free induction decay, they inherently encode signals re-

lated to both tissue-dependent properties and macroscopic By,

reconstructed images as well as errors in the subsequent quan-
titative analysis due to intravoxel dephasing and additional
echo-time (TE) dependent signal distortions.”® A straightfor-
ward approach to address this issue is to decrease the voxel
size by extending k-space coverages,lo’11 thus reducing intra-
voxel By, variations, but at the expense of longer acquisitions
and increased susceptibility to system instability and motion.
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A number of signal processing—based methods have also
been proposed to mitigate the effects of macroscopic intra-
voxel B, field inhomogeneity for GRE acquisitions. One
main approach is to derive voxel-wise TE-dependent modula-
tion functions originating from B,, inhomogeneity and apply
post-reconstruction correction by removing these modula-
tions from the data or incorporating them into the parameter
fitting model 5%-12-16 However, the voxel-wise modulation
function is reconstruction-method dependent and can be
rather difficult to derive for advanced reconstruction tech-
niques which yield more complicated point-spread functions.
An alternative approach is to perform B, corrected recon-
struction by incorporating field inhomogeneity modeling into
the imaging equation and solving the corresponding inverse
problem. Such an approach is more general but can be very
computationally expensive if intravoxel By, variations are con-
sidered.'”!® Therefore, most methods have been limited to
2D acquisitions and assumed constant By, distributions within
each voxel.'”?* Through-plane B, variations have been con-

o N
d.(k,,, TE) = J

—®p=1
N

=) sc,ncn(TE){m P(r

n=1

sidered with slice profile modeling for non-Cartesian read-
outs,” but limited to single-TE, 2D scans while ignoring
in-plane intravoxel inhomogeneity.

In this work, we developed a new method for efficient
3D intravoxel B, inhomogeneity corrected reconstruction
that can be flexibly adapted to different acquisition strat-
egies and allows the use of different regularization func-
tions. Specifically, we derived a signal encoding model for
multi-TE GRE acquisitions that incorporates 3D intravoxel
B, variations, and introduced a low-rank approximation to
the encoding operator under a piecewise linear inhomoge-
neity assumption, enabling very efficient computation of
the forward model. The new encoding model can be incor-
porated into general inverse problem formulations for B,
corrected reconstruction, compatible with both multi-coil
and undersampled acquisitions. Experimental multi-echo
GRE data have been acquired to evaluate the proposed
method. Effective reduction of intravoxel B, inhomogene-
ity induced image artifacts was demonstrated along with
improved R} estimation from the corrected reconstruction
over standard Fourier reconstruction. We expect the pro-
posed method to be useful for various imaging applications
involving 77 contrast, including fMRI, quantitative R} and
susceptibility mapping, fat/water imaging and general MR
spectroscopic imaging.

2 | THEORY

2.1 | Signal model

A general signal encoding model for multi-echo GRE acqui-
sitions can be written as follows (ignoring the phase evolu-
tion during each short readout period):

d (k, TE) =J 5.(0)p(r, TE) 2 WTE g=22K'x g 4y (K TE)
e )

where p(r, TE) is the function of interest with TE being the
echo time, Af(r) the macroscopic B, field inhomogeneity,
s.(r) the coil sensitivity profile, n.(k, TE) the measurement
noise, r = [x,y,z]7 and k = (k.. ky, k,]" are vectors denoting
the spatial and k-space coordinates, respectively. Discretizing
p using voxel basis function ¢, (r) = ¢(r—nAr) (with Ar
being the voxel size) while assuming piecewise constant sen-
sitivity maps leads to

D SenCaTEYD(X —nAr)e 2 OTE 25,k gy -y (K, TE)

(@)

— AR IOTE 25K gy (K,,, TE),

where m and n are the k-space sample and voxel indices, re-
spectively, ¢, (TE) denotes the signal intensity for the nth voxel
at TE and Af, (r) captures the field inhomogeneity variations
within the nth voxel. While a common choice for ¢(r) is the
rectangular basis, denoted as ¢(r) = rect(x/Ax)rect(y/Ay)
rect(z/Az), evaluation of the integration in Equation 2 with an
arbitrary Af,(r) can be rather difficult. One straightforward
solution is to let Af,(r) be constant within individual vox-
els, which however is only accurate for very high-resolution
acquisitions and can lead to significant image artifacts for
lower-resolution data or at regions with strong field inhomo-
geneity. Another strategy is to assume a certain parametric
form for Af, (r). Specifically, if a locally linear assumption is
used, that is,

AL®) =fy+Eir, 8 = (88 8ls  (3)
with g, being the intravoxel field gradient at the nth voxel and
the rectangular (box-car) voxel basis is chosen, Equation 2 can
be rewritten as

N
d(K,.TE) = Y s,,e>TEc, (TE)e ™" W, (TE) + n,(K,. TE),

n=1
“

where
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W,.(TE)
=sinc[(k,,, — 8, TE)Ax]sinc[(k,,, — g,, TE)Aylsinc[(k,,, — 8, TE)Az].
(%)
The sinc functions arise from Fourier transform of the voxel
basis functions modulated by intravoxel linear phases due to
B, inhomogeneity. This encoding operator can also be ex-
tended to consider B, effects during each readout (ignored
in this work for multi-echo GRE acquisitions), by replacing
TE with TE + ¢, in the above equations where f,, denotes
the sampling time for the mth k-space point. It can be seen
that directly evaluating the forward model in Equation 4 for
high-resolution 3D reconstruction is memory prohibitive and
computationally expensive because the coupling between
the elements in W and e~™.% prevents direct application
of FFT. However, we will show in the subsequent sections
that efficient computation can be derived by exploiting the
fact that W can be well approximated by a low-rank matrix.

2.2 | Low-rank approximation of the
encoding operator

The encoding matrix W being approximately low rank can
be motivated by an examination of its elements. Consider

(A)

FIGURE 1
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a 1D case where W, (TE) = sinc[(k,,, —g,,TE)Ax], it can
be seen that different columns in W are essentially a set of
shifted sinc functions evaluated at k! —&k, (k| =k, Ax
and 6k, = g, AxTE). Furthermore, for a practical B map,
the intravoxel B gradients have a distribution that can be
captured by a few representative values. As a result, all
the shifted sinc functions have strong linear correlation,
leading to the approximately low-rankness of W. This is
illustrated in Supporting Information Figure S1. Figure 1
shows the intravoxel field gradients along all three spatial
directions obtained from an experimentally acquired B,
field map, calculated using first-order finite differences
of neighboring voxels (Figure 1A), and demonstrates the
low-rank property of the encoding matrix W constructed
from these field gradient maps. Specifically, we synthe-
sized a W using g,,, g,, and g,, corresponding to a single
slice (Constructing the encoding matrix W for the entire
3D volume is memory prohibitive.), from which the singu-
lar values were computed and shown in Figure 1B. As can
be seen, the singular values of W decay very rap-
idly, indicating that it can be accurately approximated
by a low-rank matrix. Accordingly, for each TE, we
can approximate W(TE) using the following low-rank
factorization®®?’

Singular Values for W

20 25 30

=]

Low-rank decomposition of the W matrix in the proposed encoding model: A, maps of intravoxel field gradients calculated from

an experimentally acquired B, map (shown for a single slice and the horizontal direction is the x direction); B, the first 32 singular values for a W

constructed using the field gradients in (A); C,D, illustrations of u, (k-space weighting) and v, (spatial modulation) corresponding to the first four

singular values of W. The rapid singular value decay in (B) validates the low-rank approximation of W, with the dash line indicating where the

approximation error falls below 0.1%. Note that the y-axis in (B) is in log scale
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W(TE)~ UV = Z w(TEWV! (TE), L<M.,N ()
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where Ue RM*L and Ve RL*N are two rank-L matrices,
{u}/_, €RMand {v,;}}_ €R" are the columns in U and rows
in V, respectively (This low-rank factorization can be connected
to singular value decomposition (SVD) of W, where the singu-
lar values are incorporated into U (as scaling factors for individ-
ual columns) or V (as scaling factors for individual rows).), M is
the number of k-space samples and N is number of voxels in an
image. As can be seen, the operation specified by W is decom-
posed into L components, each of which contains a voxel-wise
multiplication between the image and v,, and a k-space point-
wise multiplication with u,. Figure 1C,D display the first four u,
and v, components obtained from an SVD of the W described
above, to help visualize their spatial and k-space modulation
effects (each of these vectors were reshaped into images and the
scaling effects of singular values on u, were removed for display
purpose). With this approximation, we can avoid explicit stor-
age and computation of W and enabling the use of FFT in the
forward model evaluation. More specifically, Equation 4 can
be rewritten in the following matrix-vector multiplication form

L
d.rp = 2 uw(TE) O (Fo(V(TE) S, prg)} +1. 1 7
=1

=E. 1gPre+0. 1

where d,. 7 is a vector containing the measured data from the
cth coil for image p;, (a vector containing all the image coef-
ficients), S, captures the sensitivity map as well as the spatially
dependent phase term e”2%:7E (as a diagonal matrix), Fg, is the
Fourier encoding operator with sampling mask Q, © denotes a
Hadamard product (point-wise multiplication) and n,. 7 is the
noise vector. This reformulation allows a dramatic memory and
computational complexity reduction for model-based intravoxel
B, corrected reconstruction. Particularly, consider a reconstruc-
tion size of 128 X 128 X 32, a complete storage of W requires 2
TB memory and the computational complexity for directly eval-
uating W is @(10'"). Using the proposed approximation with a
rank 8, the memory requirement is reduced to only 64 MB and
the complexity with Equation 7 is reduced to 9(10®), enabling
dramatic computation acceleration. Supporting Information
Table S1 further highlights these improvements.

2.3 | Image reconstruction

With the signal equation in Equation 7, intravoxel B inho-
mogeneity corrected reconstruction can be obtained by solv-
ing the following regularized least-squares formulation

{Pre} = alzgm}in Z Z A7 _EC,TEPTE”§ +AR({p7e})s (8)
TE ¢

P1E

where the first term measures data consistency and the second
term imposes certain regularization on the single/multi-TE
images. Different choices are available for R(-). We chose
RUprED) = 2 ||TpTE||§, a spatial smoothness regulariza-
tion to demonstrate the utility of the proposed corrected re-
construction method (T is a finite difference operator), while
more sophisticated functions can be used. For example, since
the proposed model and formulation supports joint multi-TE
image reconstruction, a joint sparsity/edge constraint can
be readily incorporated.so'33 For the quadratic regularization, the
linear conjugate gradient algorithm can be applied to solve the
problem in Equation 8 efficiently. We note that a similar low-
rank approximation of the B, inhomogeneity operator has been
previously described in Ref. [25] for single-TE, 2D fMRI recon-
struction from long readouts, which considered through-slice
B, variations. This work takes the complete 3D intravoxel B,
variations into account and focuses on addressing their effects
in multi-echo acquisitions.

3 | METHODS

3.1 | Estimation of {u,;} and {v,}

As the size of W can be prohibitively huge (of size M-by-N
with M being the number of k-space samples and N being
the number of voxels in the reconstruction), especially
for 3D imaging, directly calculating {u;}i_, and {v,}}_,
by performing SVD of W is impractical. However, given
the explicit low-rank factorization, we can devise efficient
ways to estimate {u,} and {v,;} without accessing the full W.
This has been demonstrated in the partial separability (PS)-
based dynamic imaging methods.*% Specifically, mode-
ling W as W = UV implies that the columns of W reside
in a low-dimensional subspace specified by U. Thus, the
columns in U can be treated as a basis of this subspace
and V as the corresponding coefficients. Therefore, we can
first synthesize a subset of the columns in W by randomly
sampling the field gradient maps (denoted as (g,(r), g,(r)
and g, (r)) within the signal regions, and obtain an estimate
of U by performing an SVD to these randomly sampled
columns (i.e., 5000) and selecting the L dominant left sin-
gular vectors and singular values. The rank L was chosen
by inspecting the singular value decay such that the trunca-
tion error was less than 0.5%. With U estimated, we can
then synthesize a subset of the rows in W by randomly
sampling k-space locations and estimate V by performing
a least-squares fitting using the corresponding rows in U.
The minimum number of rows needed is L but we randomly
selected 400 coordinates in the 3D k-space to ensure a suf-
ficiently good condition number for the estimation of V.
We found that for a typical 3D brain B, map, the estima-
tion error for U and V using such a scheme is less than
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0.1% compared to directly applying SVD to a complete W
matrix (details shown in Supporting Information Figure S2).
We also would like to note that our low-rank encoding
operator and the above estimation scheme are conceptu-
ally similar to the histogram principle component analysis
based approximation of complex exponential functions de-
scribed in Ref. [21], which only considered constant B, in
each voxel for 2D non-Cartesian acquisitions.

3.2 | Multi-echo implementation

The proposed model and reconstruction can readily be
extended to acquisitions with many echoes. Specifically,
the B, maps can be estimated directly from the multi-TE
data, for example, by performing a parametric fitting to an
initial/low-resolution reconstruction. TE-dependent u,(TE)
and v,(TE) can be estimated for individual W(7E)’s using
the estimation strategy described above. Two new sets of
matrices, {U,} € RM™*F and {V,} € R¥*F (with P being the
number of TEs), can then be constructed, each of which
contains the k-space and spatial modulation vectors for all
the TEs and the /th component. Accordingly, Equation 7
can be extended as

L
D, = ) U,0{Fy(V,08X)}+N,, )
I=1

where the N-by-P matrix X contains the images for all TEs
(ie, X = [pl, Pas - ,pP]) and the M-by-P matrices D and N
contain the measured data and noise for all TEs, respectively.
As a result, efficient implementations for joint multi-TE B,
corrected reconstruction can be performed, which can be eas-
ily scaled up to higher-dimensional imaging problems such as
MRST acquisitions with many echoes. For the cases with mul-
tiple or many TEs, a sparsity and low-rank constraint can also
be imposed on the unknown TE-dependent image sequence X.

(A) (B) (C)
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3.3 | Data acquisition

Simulations and in vivo experiments were performed to
evaluate the proposed method. For simulation, a single-TE
image and a By map were first obtained from an experimen-
tally acquired 3D multi-TE GRE scan (with a matrix size of
256 x 256 x 40 and a voxel size of 0.9 x 0.9 x 1.5 mm?).
The magnitude image |I(r)l was taken and the B, map was
subject to a piecewise linear fit. A new complex-valued
image was then synthesized by combining the magnitude
image and phase introduced by the fitted B, map Af(r) as
follows: I(r) = |I(r)|e2*~™TE with TE being the echo time
of the original acquisition. A high-resolution single-slice
2D image (256 x 256) and a low-resolution version with
k-space truncated to 128 x 128 were first used to evaluate
the proposed B, corrected reconstruction with a full W as
well as the low-rank approximation. A set of low-resolution
k-space data (128 X 128 X 20 matrix size) was subsequently
simulated for the full 3D reconstruction tests. For in vivo
experiments, high-resolution (HR) multi-echo 3D GRE data
(0.9 x 0.9 x 1.5mm? voxel size) and accompanying low-
resolution (LR) scans (2 X 2 X 3 mm? voxel size) were ac-
quiredona3 T Siemens Prismascanner (Siemens Healthineers,
Erlangen, Germany) equipped with a 20-channel head
coil. The other imaging parameters are: TR = 68 ms, TE =
[4.1, 7.6, 11.1, 146, 18.1, 21.6, 25.1, 28.6, 33.0, 45.0] ms
(10 echoes), FOV = 220 x 220 x 72, flip angle = 15° and
bandwidth/pixel = 520 Hz. All experiments were performed
with approval from local Institutional Review Board and
participants’ consent.

4 | RESULTS

Figure 2 shows the reconstruction results from the simulated
single-slice data. The regularization parameter 1 for the
proposed reconstruction was chosen using the discrepancy

(D) (E)

6.62%

FIGURE 2 Comparison of reconstructions from a 2D single-slice simulation data with B, map illustrated in (A); B, reconstruction from

the high-resolution data (with a k-space truncation after removing the phase); C, direct Fourier reconstruction from the low-resolution data; D, B,

corrected reconstruction using the full W matrix; and E, the proposed reconstruction using a rank-8 approximation of W. Relative [, errors using the

image in (B) as a reference are also shown (in the bottom right corners) for a quantitative evaluation. Effective artifact reduction (as highlighted by

the yellow arrows in B) and quantitative improvement were achieved by the proposed method
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(A)

(B)
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principle. The By map used in this simulation is shown in
Figure 2A and the reconstructed magnitude images are com-
pared in Figure 2B-E. Specifically, a “reference” (Figure 2B)
was generated by truncating the k-space of the high-resolution
magnitude image (from 256 X 256 to a 128 X 128 k-space
coverage). As the phase has been removed before k-space
truncation, there is no intravoxel B effects. A direct Fourier
reconstruction of the low-resolution k-space data from
the complex-valued image was shown in Figure 2C, and
the results produced by the proposed method in Figure 2D
(reconstruction using the full W) and Figure 2E (reconstruc-
tion using a rank-8 approximation of W). Relative [/, errors
with respect to the reference image were also calculated for a
quantitative evaluation. As can be seen, the proposed method
effectively reduced the image artifacts in the direct Fourier
reconstruction of low-resolution data caused by intravoxel B,
inhomogeneity, and produced a more accurate reconstruc-
tion. The low-rank approximated encoding operator yielded
almost the same results as using the full W. Reconstructions
from this simulation data using approximated W at differ-
ent ranks are further compared in the Supporting Information
Figure S3. The results remain similar for a range of Ls.

A set of 3D reconstruction results, with and without
the proposed B, corrected reconstruction using the low-
rank encoding operator, are shown in Figure 3. Different
axial slices across the 3D volume are shown. Compared
to the Fourier reconstruction of the low-resolution k-space
data, the proposed method significantly reduced the
image artifacts and signal loss due to the 3D intravoxel B,

FIGURE 3
A, the B, maps used in the simulation

Simulation results (3D):

(from experimental data); B, images
reconstructed from a truncated k-space

of the high-resolution magnitude image
(without intravoxel B, effects and treated

as the “gold standard”); C, a direct Fourier
reconstruction from the 128 X 128 x 20
low-resolution k-space data (no intravoxel
B, correction); and D, the proposed
reconstruction from the same low-resolution
data. Different columns show images at
different slices (images towards the right are
closer to the sinus area). Effective artifact
reduction was achieved by the proposed
method (as indicated by the yellow arrows).
Quantitative improvement is demonstrated
using the relative £, errors shown in the
bottom right corner of the images

variations. Similar to the 2D case, the proposed method
produced quantitatively more accurate results compared
to the Fourier reconstruction (as demonstrated by the I,
errors calculated using the k-space truncated high-resolution
magnitude image as the reference).

Figure 4 compares the reconstructions from an in vivo
multi-echo GRE data. The By, map used for correction is
shown in Figure 4A. Similar to the comparison in simulation,
a reference was obtained by first removing the phase in the
HR image (from the HR data) and truncating the k-space (in
Figure 4B). A direct Fourier reconstruction and the proposed
reconstruction with intravoxel By correction (L = 10) from the
LR data are also shown (Figure 4C,D). As can be seen, the
HR data has minimal intravoxel dephasing due to the smaller
voxel size, while the LR Fourier reconstruction has apparent
artifacts in regions with strong B, inhomogeneity variations.
The proposed method effectively reduced these artifacts, pro-
ducing similar images as the reconstruction from HR data.
R’ maps were also estimated from the three different recon-
structions and compared in Figure 5, along with signal decay
curves chosen from two representative voxels. Significant
artifact reduction as well as better matching signal decays to
the HR data can also be observed for the proposed method,
further demonstrating its utility in improving subsequent
quantitative analysis for multi-echo GRE acquisitions. An ad-
ditional set of reconstruction from another in vivo data (from
a different volunteer) is shown in Supporting Information
Figure S4 to further demonstrate the effectiveness of the
proposed method. The residual artifacts observed in the
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-40
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FIGURE 4 Results from the in vivo multi-echo GRE data: A, B, maps for different slices across the 3D volume; B, reconstructed images for

the corresponding slices at a specific TE (25.1 ms) from the HR data (k-space truncation after removing phases at the original resolution);

C, direct Fourier reconstruction from the LR data; D, the proposed reconstruction from the LR data. The HR reconstruction has minimal intravoxel

dephasing induced artifacts due to a small voxel size. The LR Fourier reconstruction has apparent B, induced artifacts which were reduced by the

proposed reconstruction. The slice locations are indicated by the red lines in a sagittal view of the 3D volume shown on the left

corrected reconstructions are likely caused by errors in the
field maps, estimated field gradients, and potentially inaccu-
racy of the piece-wise linear model in voxels with significant
B, variations.

5 | DISCUSSION AND
CONCLUSION

We have developed a new reconstruction method for macro-
scopic intravoxel By inhomogeneity correction. The proposed
method incorporates the effects of intravoxel field variations
into the data acquisition model and introduces a low-rank
approximation to the resulting encoding operator, enabling
efficient memory usage, computation, and integration into
any regularized reconstruction formulation. Effective during-
reconstruction B, inhomogeneity correction for multi-echo
GRE data have been demonstrated with reduced intravoxel
dephasing induced artifacts and improved quantitative R}
estimation. We expect the proposed method to be useful for
a range of applications involving 77 contrast and multi-echo
GRE acquisitions.

The current model only includes TE dependence in the
encoding operator W and ignores the time evolution for the
k-space data acquired during each readout, which should be
considered for EPI or spiral type of acquisitions with lon-
ger readouts. However, the proposed method can be read-
ily extended to these scenarios by incorporating sampling
time dependence into different rows of W and estimating
the low-rank factorization accordingly. Another approach
is to introduce the time dimension (or the FID dimension)
and reformulate the reconstruction problem in a higher
dimensional (k,t)-space. Similar strategies have been re-
cently proposed for multi-shot EPI-based imaging,34 where
the multi-shot EPI reconstruction was formulated as a
multi-TE imaging problem with sparse sampling. In this
case, the time dependence in the k-space sampling can be
mapped to the TE dimension in our multi-TE formulation,
which will allow for potential incorporation of different
constraints on the unknown multi-TE images for improved
reconstruction. The proposed low-rank encoding operator
can also be applied to joint RS mapping and image recon-
struction problems as described in Ref. [23,35] and allow
more efficient computation.
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——HR data: Fourier recon
—LR data: Fourier recon
—LR data: Proposed
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0.005 0.01 0.015 0.02 0.025 0.03

FIGURE 5 R;maps obtained from the reconstructions in Figure 4. The maps obtained from the HR reconstruction, LR Fourier

reconstruction, and the proposed reconstruction are shown in (A) to (C), respectively, for four slices. The signal decays for two representative

voxels are shown in (D) and (E) to further illustrate the correction effects. The locations of the voxels are marked by symbols with different shapes

in (A). The proposed method yielded more consistent signal variations along TE to the HR data than the LR reconstruction

While the well-defined sinc function kernels in the en-
coding matrix W are the result of rectangular voxel basis and
piece-wise linear B, inhomogeneity models, we expect that
W should still be approximately low rank with choices of
other voxel bases, eg, Gaussian or triangle functions. In this
case, different columns in W will just be products of many
shifted Gaussian or squared-sinc functions with strong cor-
relation. The use of higher-order intravoxel B, functions can
lead to much more complicated expressions of W, some even
without an analytical form, which needs to be investigated
with more rigors in future research.

It should be pointed out that in this work we used a B, map
initially estimated from the low-resolution data to calculate
the field gradients, while a more accurate high-resolution B,
map will lead to more accurate field gradient estimates thus
improving the correction or even allowing the incorporation
of more complicated intravoxel field variations. We would
also like to note that the proposed method shares conceptual
similarities with the time/frequency-segmentation methods
described in Ref. [36] and a more general version described
in Ref. [21] where essentially a low-rank based approxima-
tion was applied to the complex exponential function e2*4
with Af, and ¢ denoting the field inhomogeneity value at
the nth voxel and readout time vector, respectively, without
considering intravoxel B, variations. Combinations of these
methods to address the problem of reconstruction from long
readouts, especially for non-Cartesian trajectories, are inter-
esting extensions to investigate in follow-up research.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in
the Supporting Information section.

FIGURE S1 Illustration of the approximately low-rankness of
W using a 1D case with elements W, = sinc [(k,, — g, TE)Ax];
(A) A histogram of the By, field gradients from an experimen-
tally acquired B, map. The x-axis denotes 6k,, = g, TEAx;
(B) Plots of different columns in W. These curves have a
strong linear dependence such that W can be well approxi-
mated by a low-rank matrix

FIGURE S2 Comparison of the low-rank decomposition U
and V estimated using a direct SVD of the encoding matrix
W and the proposed random sampling plus least-squares
fitting scheme. The intravoxel B, field gradients for a
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single 2D slice were used due to the memory requirement
to store the complete W for SVD. As can be seen, the U and
V estimated from these two different schemes show almost
no difference. The relative £, error is less than 0.1%
FIGURE S3 Comparison of B, corrected reconstructions
from the 2D simulation data in Figure 2; Reconstruction using
the full W matrix is shown in the first column and the recon-
structions using low-rank approximations of W with different
ranks (L) are shown in the subsequent columns. The results
remain similar for a range of Ls as the rank truncation error
is small (<1%), while too low of an L leads to noticeable arti-
facts, as expected for the case of L = 2 (truncation error >5%)
FIGURE S4 B, corrected reconstruction by the proposed
method from data acquired from another volunteer. The acqui-
sition parameters were the same as the data used to generate
Figures 4 and 5. The arrangement is the same as in Figure 4

TABLE S1 Comparison of memory usage and computation
complexity for directly evaluating W and the proposed low-
rank approximation. M and N denote the numbers of k-space
samples and reconstruction voxels, respectively. The num-
bers in the highlighted rows correspond to a reconstruction
size of 128 x 128 X 32 and L = 8. As L is orders of magnitude
smaller than M or N, significant reduction in memory usage
and computation is achieved
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